WO2020184125A1 - 非水電解質蓄電素子及び蓄電装置 - Google Patents

非水電解質蓄電素子及び蓄電装置 Download PDF

Info

Publication number
WO2020184125A1
WO2020184125A1 PCT/JP2020/006687 JP2020006687W WO2020184125A1 WO 2020184125 A1 WO2020184125 A1 WO 2020184125A1 JP 2020006687 W JP2020006687 W JP 2020006687W WO 2020184125 A1 WO2020184125 A1 WO 2020184125A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
aqueous electrolyte
power storage
Prior art date
Application number
PCT/JP2020/006687
Other languages
English (en)
French (fr)
Inventor
理史 ▲高▼野
健太 上平
智典 加古
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2021504878A priority Critical patent/JP7484884B2/ja
Publication of WO2020184125A1 publication Critical patent/WO2020184125A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte power storage element and a power storage device.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are widely used in electronic devices such as personal computers and communication terminals, automobiles, etc. due to their high energy density.
  • the non-aqueous electrolyte secondary battery generally has a pair of electrodes electrically separated by a separator and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between the two electrodes. It is configured to charge and discharge.
  • capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as non-aqueous electrolyte power storage elements other than non-aqueous electrolyte secondary batteries.
  • the positive electrode and the negative electrode of such a non-aqueous electrolyte power storage element usually have a layer structure in which an active material layer is laminated on a conductive base material.
  • aluminum is generally used as the positive electrode base material and copper is generally used as the negative electrode base material because it does not corrode with respect to the potentials of the positive electrode and the negative electrode.
  • it has been studied to use aluminum as a negative electrode base material, which is more flexible, easier to handle, and less costly than copper.
  • 0.1V vs It is known that the alloying reaction of aluminum and lithium occurs at a low potential near Li / Li + .
  • the present invention has been made based on the above circumstances, and an object of the present invention is to suppress alloying of aluminum as a negative electrode base material with lithium even when charged at a high rate at a high temperature. It is an object of the present invention to provide a non-aqueous electrolyte storage element capable of producing a non-aqueous electrolyte storage element, and a power storage device including such a non-aqueous electrolyte storage element.
  • the non-aqueous electrolyte power storage element made to solve the above problems includes a negative electrode base material made of aluminum and a negative electrode active material layer laminated on the negative electrode base material and containing non-graphicular carbon. It is a non-aqueous electrolyte power storage element having a negative electrode having a negative electrode and a non-aqueous electrolyte containing a lithium salt, and having a density of the negative electrode active material layer of 0.9 g / cm 3 or more and 1.2 g / cm 3 or less.
  • the power storage device is a power storage device including the non-aqueous electrolyte power storage element and a control unit that controls charging of the non-water electrolyte power storage element with a current amount in a range including 3C or more. ..
  • a non-aqueous electrolyte storage element capable of suppressing alloying of aluminum as a negative electrode base material with lithium even when charged at a high rate at a high temperature, and such a non-aqueous electrolyte storage element.
  • a power storage device including an element can be provided.
  • FIG. 1 is a schematic view showing a power storage device according to an embodiment of the present invention and a state in which the power storage device is mounted on a vehicle.
  • FIG. 2 is an external perspective view showing a non-aqueous electrolyte secondary battery according to an embodiment of the non-aqueous electrolyte power storage device of the present invention.
  • FIG. 3 is a graph showing the negative electrode potentials of the batteries of Examples and Comparative Examples in a fully charged state.
  • FIG. 4 is a linear sweep voltammogram of aluminum foil measured in an experimental example.
  • the non-aqueous electrolyte power storage element comprises a negative electrode base material made of aluminum, a negative electrode laminated on the negative electrode base material and having a negative electrode active material layer containing non-graphicular carbon, and a lithium salt. It is a non-aqueous electrolyte power storage element that comprises a non-aqueous electrolyte and has a density of the negative electrode active material layer of 0.9 g / cm 3 or more and 1.2 g / cm 3 or less.
  • the non-aqueous electrolyte power storage element has the above configuration, it is possible to suppress alloying of aluminum as a negative electrode base material with lithium even when charged at a high rate at a high temperature.
  • the reason for this is not clear, but the following is presumed.
  • the density of the negative electrode active material layer is less than 0.9 g / cm 3 , the contact between the non-graphitic carbons which are the negative electrode active materials and the contact between the non-graphitable carbon and the negative electrode base material are insufficient, and the resistance The increase increases the overvoltage.
  • the density of the negative electrode active material layer exceeds 1.2 g / cm 3 , it is difficult for the non-aqueous electrolyte to sufficiently penetrate into the negative electrode active material layer, and the overvoltage becomes large due to the lack of the non-aqueous electrolyte inside the negative electrode active material layer. Become. In particular, when charging at a high rate, the overvoltage tends to increase. When the overvoltage becomes large in this way, the negative electrode potential tends to fall below the alloying potential in a state close to full charge.
  • the density of the negative electrode active material layer is 0.9 g / cm 3 or more and 1.2 g / cm 3 or less, so that it is high at high temperature. Even if the battery is charged at a rate, the negative electrode potential is unlikely to fall below the alloying potential, and it is presumed that alloying with lithium is suppressed. As described above, according to the non-aqueous electrolyte storage element, the alloying of aluminum of the negative electrode base material with lithium is suppressed, so that the performance deterioration of the non-aqueous electrolyte storage element can be suppressed.
  • the "aluminum negative electrode base material” means that the material of the negative electrode base material is pure aluminum or an aluminum alloy.
  • non-graphitic carbon refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane measured by a wide-angle X-ray diffraction method before charging / discharging or in a discharged state of 0.340 nm or more.
  • the “discharged state” here means that the open circuit voltage is 0.7 V or more in a unipolar battery using a negative electrode containing a carbon material as a negative electrode active material as a working electrode and metallic lithium as a counter electrode. To say.
  • the open circuit voltage is substantially the same as the potential of the negative electrode containing the carbon material with respect to the oxidation-reduction potential of lithium.
  • the open circuit voltage is 0.7 V or more
  • the potential of the negative electrode is 0.7 V (vs. Li / Li + ) or more
  • the carbon material which is the negative electrode active material can be stored and discharged by charging and discharging. It means that sufficient lithium ions are released.
  • the "density" of the negative electrode active material layer means a value obtained by dividing the mass of the negative electrode active material layer by the apparent volume of the negative electrode active material layer.
  • the apparent volume refers to the volume including the void portion, and can be obtained as the product of the average thickness and the area of the negative electrode active material layer.
  • the negative electrode further has a conductive layer provided between the negative electrode base material and the negative electrode active material layer, and the conductive layer is a region on the negative electrode base material on which the negative electrode active material layer is laminated. It is preferable to cover the whole.
  • the density of the negative electrode active material layer is preferably 1.0 g / cm 3 or more and 1.1 g / cm 3 or less.
  • the negative electrode potential at the upper limit voltage of the non-aqueous electrolyte power storage element is 0.3 V vs. It is preferably Li / Li + or more.
  • the negative electrode potential at the upper limit voltage is 0.3 V vs.
  • the "upper limit voltage for use” means the highest voltage if there is a description of the working voltage range in the instruction manual of the non-aqueous electrolyte power storage element. If there is no instruction manual or the like, it means a voltage value controlled so as not to rise further by a control device or the like of a non-aqueous electrolyte power storage element. Further, in the method of confirming the "negative electrode potential at the upper limit voltage for use", first, in the non-aqueous electrolyte power storage element, the amount of electricity to be charged when the upper limit voltage for use is set from the state of the predetermined voltage scheduled to be disassembled is specified.
  • the non-aqueous electrolyte power storage element is disassembled under a predetermined voltage state, the specified charging electricity amount is charged by a unipolar test using the disassembled negative electrode, and the open circuit potential after charging is measured. Determine the negative electrode potential at the upper limit voltage.
  • the non-aqueous electrolyte storage element is preferably for a power source having a function of being charged by regenerative energy. Since a power source having a function of being charged by regenerative energy, such as a power source for a hybrid electric vehicle, is charged at a high rate, alloying with lithium is likely to occur when aluminum is used as a negative electrode base material. Therefore, even if the negative electrode base material is charged at a high rate, the non-aqueous electrolyte power storage element capable of suppressing the alloying of aluminum of the negative electrode base material with lithium has a function of being charged by such regenerative energy. When used as a power source, it has great advantages.
  • the power storage device is a power storage device including the non-aqueous electrolyte power storage element and a control unit that controls charging of the non-water electrolyte power storage element with a current amount in a range including 3C or more. Since the power storage device includes the non-aqueous electrolyte power storage element according to the embodiment of the present invention, the negative electrode base material can be alloyed with lithium of aluminum even when charging is performed at a high rate of 3C or more. It can be suppressed. Therefore, the power storage device can suppress the deterioration of the performance of the power storage device even if the power storage device is repeatedly charged at a high rate.
  • 1C is a current value at which the amount of electricity when the non-aqueous electrolyte storage element is energized with a constant current for 1 hour is the same as the nominal capacity of the non-aqueous electrolyte storage element, and is "3C". Is a current value three times that value.
  • the non-aqueous electrolyte power storage element has a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • a non-aqueous electrolyte secondary battery will be described as an example of the non-aqueous electrolyte power storage element.
  • the positive electrode and the negative electrode usually form electrode bodies that are alternately superposed by stacking or winding through a separator.
  • the electrode body is housed in a battery container, and the non-aqueous electrolyte is filled in the battery container.
  • the non-aqueous electrolyte is interposed between the positive electrode and the negative electrode.
  • the battery container a known metal battery container, resin battery container, or the like that is usually used as a battery container for a non-aqueous electrolyte secondary battery can be used.
  • the positive electrode has a positive electrode base material and a positive electrode active material layer arranged directly on the positive electrode base material or via an intermediate layer such as a conductive layer.
  • the positive electrode base material has conductivity.
  • conductive means that the volume resistivity is measured according to JIS-H-0505 (1975 years) is not more than 10 7 ⁇ ⁇ cm, and "non-conductive” means that the volume resistivity is 10 7 ⁇ ⁇ cm greater.
  • metals such as aluminum, titanium, tantalum, and stainless steel or alloys thereof are used. Among these, aluminum and aluminum alloys are preferable from the viewpoint of balance of potential resistance, high conductivity and cost.
  • examples of the form of forming the positive electrode base material include foil, a vapor-deposited film, and the like, and foil is preferable from the viewpoint of cost. That is, aluminum foil and aluminum alloy foil are preferable as the positive electrode base material. Examples of aluminum or aluminum alloy include A1085, A1N30, and A3003 specified in JIS-H-4000 (2014).
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material layer is usually formed from a so-called positive electrode mixture containing a positive electrode active material.
  • the positive electrode active material layer contains optional components such as a conductive agent, a binder (binder), a thickener, and a filler, if necessary.
  • Examples of the positive electrode active material include composite oxides represented by Li x MO y (M represents at least one kind of transition metal) (Li x CoO 2 having a layered ⁇ -NaFeO type 2 crystal structure, Li x NiO 2). , Li x MnO 3 , Li x Ni ⁇ Co ⁇ Mn (1- ⁇ - ⁇ ) O 2, etc., Li x Mn 2 O 4 , Li x Ni ⁇ Mn (2- ⁇ ) O 4, etc. with spinel type crystal structure, etc.
  • Li x MO y M represents at least one kind of transition metal
  • Li w Me x (XO y ) z (Me represents at least one kind of transition metal, X represents, for example, P, Si, B, V, etc.)
  • Polyanion compounds LiFePO 4 , LiMnPO 4 , LiNiPO) 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, etc.).
  • the elements or polyanions in these compounds may be partially substituted with other elements or anion species.
  • one of these compounds may be used alone, or two or more of these compounds may be mixed and used.
  • Li x Ni ⁇ Co ⁇ Mn (1- ⁇ - ⁇ ) O 2 having a layered ⁇ -NaFeO type 2 crystal structure and containing at least Ni, Co, and Mn.
  • examples thereof include a lithium transition metal composite oxide represented by.
  • x is more than 0 and 1.3 or less, and may be 1.
  • ⁇ and ⁇ are each more than 0, and the sum of ⁇ and ⁇ is less than 1.
  • ⁇ , ⁇ and (1- ⁇ - ⁇ ) may be, for example, 0.1 or more and 0.8 or less, and may be 0.3 or more and 0.5 or less, respectively.
  • lithium transition metal composite oxide examples include LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 3/5 Co 1/5 Mn 1/5 O 2 , and LiNi 1/2 Co 1/5 Mn. Examples thereof include 3/10 O 2 , LiNi 1/2 Co 3/10 Mn 1/5 O 2 , LiNi 8/10 Co 1/10 Mn 1/10 O 2 .
  • the lower limit of the content of the positive electrode active material in the positive electrode active material layer is preferably 70% by mass, more preferably 80% by mass.
  • the upper limit of this content for example, 99% by mass is preferable, and 95% by mass is more preferable.
  • the content (grain amount) of the positive electrode active material per unit area in the positive electrode active material layer is, for example, 3 mg / cm 2 or more and 20 mg / cm 2 or less.
  • the content (weighting amount) per unit area of the positive electrode active material is the amount in one layer laminated on one surface of the positive electrode base material. The same applies to the content (weight) per unit area of the negative electrode active material described later.
  • the conductive agent is not particularly limited as long as it is a conductive material that does not adversely affect the battery performance.
  • a conductive agent include natural or artificial graphite; carbon black such as furnace black, acetylene black, and Ketjen black; metal; conductive ceramics and the like.
  • the shape of the conductive agent include powder and fibrous.
  • the content of the conductive agent in the positive electrode active material layer can be, for example, 1% by mass or more and 10% by mass or less.
  • binder examples include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, and styrene butadiene. Elastomers such as rubber (SBR) and fluororubber; polysaccharide polymers and the like can be mentioned.
  • the content of the binder in the positive electrode active material layer can be, for example, 1% by mass or more and 10% by mass or less.
  • the thickener examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • CMC carboxymethyl cellulose
  • the content of the thickener in the positive electrode active material layer can be, for example, 0.1% by mass or more and 5% by mass or less.
  • the positive electrode active material layer may not contain a thickener.
  • the filler is not particularly limited as long as it does not adversely affect the battery performance.
  • the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, and glass.
  • the content of the filler in the positive electrode active material layer can be, for example, 0.1% by mass or more and 5% by mass or less.
  • the positive electrode active material layer may not contain a filler.
  • the average thickness of the positive electrode active material layer is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the conductive layer of the positive electrode is a coating layer on the surface of the positive electrode base material, and includes conductive particles such as carbon particles to reduce the contact resistance between the positive electrode base material and the positive electrode active material layer.
  • the positive electrode conductive layer can be formed, for example, by a composition containing a conductive agent used for the positive electrode active material layer and the same as those exemplified as the binder.
  • the negative electrode has a negative electrode base material and a negative electrode active material layer arranged directly on the negative electrode base material or via a conductive layer.
  • the negative electrode base material is made of aluminum. That is, the material of the negative electrode base material is aluminum or an aluminum alloy. The content of aluminum in the negative electrode base material is, for example, 95% by mass or more, preferably 99% by mass or more. An oxide film may be formed on the surface of the negative electrode base material.
  • Aluminum foil and aluminum alloy foil are preferable as the negative electrode base material. Specific examples of the aluminum and the aluminum alloy are the same as those exemplified for the positive electrode base material.
  • the negative electrode active material layer contains non-graphitic carbon that functions as a negative electrode active material.
  • the negative electrode active material layer is usually formed from a so-called negative electrode mixture containing a negative electrode active material.
  • the negative electrode mixture contains optional components such as a conductive agent, a binder, a thickener, and a filler, if necessary.
  • a conductive agent, a binder, a thickener, and a filler the same one as that of the positive electrode active material layer can be used.
  • non-graphitizable carbon contained in the negative electrode active material layer examples include non-graphitizable carbon (hard carbon) and easily graphitizable carbon (soft carbon), and non-graphitizable carbon is preferable.
  • non-graphitizable carbon examples include a calcined phenol resin, a calcined furan resin, and a calcined furfuryl alcohol resin.
  • easily graphitizable carbon examples include coke and pyrolyzable carbon.
  • the non-graphitizable carbon refers to a carbon material having d 002 of 0.36 nm or more and 0.42 nm or less.
  • the non-graphitizable carbon usually has a property that it is difficult to form a graphite structure having three-dimensional stacking regularity among non-graphitizable carbons.
  • the graphitizable carbon refers to a carbon material having d 002 of 0.34 nm or more and less than 0.36 nm.
  • the graphitizable carbon usually has a property that a graphite structure having a three-dimensional stacking regularity can be easily formed among non-graphitizable carbons.
  • the negative electrode active material may further contain a negative electrode active material other than non-graphitic carbon.
  • examples of such other negative electrode active materials include graphite; metals or metalloids such as Si and Sn; metal oxides such as Si oxides and Sn oxides or metalloid oxides; polyphosphate compounds and the like.
  • the lower limit of the content of non-graphitic carbon with respect to the total negative electrode active material is preferably 90% by mass, more preferably 95% by mass, and even more preferably 99% by mass. As described above, by increasing the content of non-graphitic carbon in the negative electrode active material, the negative electrode potential can be easily controlled, and the alloying of aluminum of the negative electrode base material with lithium can be further suppressed.
  • the upper limit of this content may be 100% by mass.
  • the lower limit of the non-graphitable carbon content in the negative electrode active material layer is preferably 80% by mass, more preferably 90% by mass, and even more preferably 95% by mass.
  • the upper limit of this content for example, 99% by mass is preferable, and 98% by mass is more preferable.
  • the content of the conductive agent in the negative electrode active material layer can be, for example, 0.1% by mass or more and 5% by mass or less.
  • the negative electrode active material layer may not contain a conductive agent.
  • the content of the binder in the negative electrode active material layer can be, for example, 0.5% by mass or more and 5% by mass or less.
  • the content of the thickener in the negative electrode active material layer can be, for example, 0.1% by mass or more and 3% by mass or less.
  • the content of the filler in the negative electrode active material layer can be, for example, 0.1% by mass or more and 5% by mass or less.
  • the negative electrode active material layer may not contain a filler.
  • the lower limit of the density of the negative electrode active material layer is 0.9 g / cm 3 , preferably 0.95 g / cm 3 , and more preferably 1.0 g / cm 3 .
  • the upper limit of the density is 1.2 g / cm 3, preferably 1.15 g / cm 3, more preferably 1.1 g / cm 3, more preferably 1.05 g / cm 3.
  • the density of the negative electrode active material layer can be adjusted by, for example, the particle size of non-graphitable carbon, the pressure of the press during molding of the negative electrode active material layer, and the like.
  • the content (grain amount) of the negative electrode active material in the negative electrode active material layer per unit area is, for example, 3 mg / cm 2 or more and 20 mg / cm 2 or less.
  • the average thickness of the negative electrode active material layer is, for example, 30 ⁇ m or more and 200 ⁇ m or less.
  • the conductive layer of the negative electrode (negative electrode conductive layer) is a coating layer on the surface of the negative electrode base material, and is provided between the negative electrode base material and the negative electrode active material layer.
  • the negative electrode conductive layer can reduce the contact resistance between the negative electrode base material and the negative electrode active material layer and suppress the increase in resistance, and as a result, the alloying of aluminum of the negative electrode base material with lithium can be reduced.
  • the negative electrode conductive layer should cover 95% or more of the region on the negative electrode base material on which the negative electrode active material layer is laminated. It is preferable that the entire region on the negative electrode base material on which the negative electrode active material layer is laminated is covered. That is, it is preferable that each component constituting the negative electrode active material layer such as non-graphitic carbon is not in contact with the negative electrode base material.
  • the negative electrode conductive layer can be formed by, for example, a composition containing a conductive agent and a binder.
  • the conductive agent used in the negative electrode conductive layer include those similar to those exemplified as the conductive agent used in the positive electrode active material layer, and carbon particles such as graphite and carbon black are preferable.
  • the content of the conductive agent in the negative electrode conductive layer can be, for example, 20% by mass or more and 60% by mass or less.
  • binder used for the negative electrode conductive layer examples include those exemplified as the binder used for the positive electrode active material layer, and cellulosic binders, chitosan binders and acrylic binders are preferable. These binders are less likely to swell with respect to a non-aqueous electrolyte (non-aqueous electrolyte solution), exhibit good conductivity, and can effectively suppress the alloying of aluminum as a negative electrode base material with lithium. ..
  • the cellulosic binder and the chitosan binder may be a cellulose derivative or a chitosan derivative that has been hydroxyalkylated, carboxyalkylated, sulfate esterified, or the like.
  • examples of the cellulose derivative include carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose and the like. These may be salts.
  • Acrylic binders include polyacrylic acid, polymethacrylic acid, polyitaconic acid, poly (meth) acryloyl morpholine, poly N, N-dimethyl (meth) acrylamide, poly N, N-dimethylaminoethyl (meth) acrylate, and poly N. , N-Dimethylaminopropyl (meth) acrylamide, polyglycerin (meth) acrylate and the like.
  • the content of the binder in the negative electrode conductive layer can be, for example, 40% by mass or more and 80% by mass or less.
  • the negative electrode conductive layer may be formed by plating a metal that does not substantially react with lithium.
  • a woven fabric, a non-woven fabric, a porous resin film, or the like As the material of the separator, for example, a woven fabric, a non-woven fabric, a porous resin film, or the like is used. Among these, a porous resin film is preferable from the viewpoint of strength, and a non-woven fabric is preferable from the viewpoint of liquid retention of a non-aqueous electrolyte.
  • a porous resin film is preferable from the viewpoint of strength
  • a non-woven fabric is preferable from the viewpoint of liquid retention of a non-aqueous electrolyte.
  • polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of strength
  • polyimide and aramid are preferable from the viewpoint of oxidative decomposition resistance.
  • a composite separator having a porous resin film and an inorganic porous layer may be used.
  • Non-aqueous electrolytes include lithium salts.
  • the non-aqueous electrolyte is usually a non-aqueous electrolyte solution containing a lithium salt as an electrolyte salt and a non-aqueous solvent for dissolving the electrolyte salt.
  • the non-aqueous electrolyte may be a solid electrolyte or the like.
  • Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2). C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 and other fluorinated hydrocarbon groups Examples thereof include lithium salts having. Among these, an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
  • the upper limit is not particularly limited, but is preferably 2.5 mol / L, more preferably 2 mol / L, and even more preferably 1.5 mol / L.
  • the non-aqueous electrolyte may contain an electrolyte salt other than the lithium salt.
  • an electrolyte salt include sodium salt, potassium salt and the like.
  • the electrolyte salt may be substantially composed of only a lithium salt.
  • the content ratio of the lithium salt in the electrolyte salt is preferably 90 mol% or more, more preferably 99 mol% or more.
  • non-aqueous solvent a known non-aqueous solvent usually used as a non-aqueous solvent for a general non-aqueous electrolyte for a power storage element can be used.
  • the non-aqueous solvent include cyclic carbonates, chain carbonates, esters, ethers, amides, sulfones, lactones, nitriles and the like. Among these, it is preferable to use at least cyclic carbonate or chain carbonate, and it is more preferable to use cyclic carbonate and chain carbonate in combination.
  • the volume ratio of the cyclic carbonate to the chain carbonate is not particularly limited, but is, for example, 5:95 or more and 50:50 or less. Is preferable.
  • cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VC vinylene carbonate
  • VEC vinylethylene carbonate
  • FEC fluoroethylene carbonate
  • difluoroethylene carbonate difluoroethylene carbonate
  • styrene carbonate catechol carbonate
  • 1-phenylvinylene carbonate 1,2-diphenylvinylene carbonate and the like
  • PC is preferable.
  • chain carbonate examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diphenyl carbonate and the like, and among these, EMC is preferable.
  • the negative electrode potential at the upper limit voltage of the non-aqueous electrolyte power storage element is 0.3 V vs. It is preferably Li / Li + or more. With this setting, the negative electrode potential does not easily fall below the alloying potential even when charging at a high temperature, and the alloying of aluminum of the negative electrode base material with lithium can be more sufficiently suppressed.
  • the upper limit of the negative electrode potential at this operating upper limit voltage is not particularly limited, and for example, 0.5 V vs. It may be Li / Li + or less, and 0.4 V vs. It may be Li / Li + or less.
  • the closed circuit potential of the negative electrode at the upper limit voltage of use is 0.3 V vs. It is preferably used under the condition of Li / Li + or more. With this setting, the negative electrode potential does not easily fall below the alloying potential even when charged at a high rate under high temperature, and the alloying of aluminum as the negative electrode base material with lithium is further sufficiently suppressed. Can be done.
  • the upper limit of the closed circuit potential of the negative electrode at this operating upper limit voltage is not particularly limited, and for example, 0.5 V vs. It may be Li / Li + or less, and 0.4 V vs. It may be Li / Li + or less.
  • the negative electrode potential at the upper limit voltage of use can be adjusted by designing the capacitance of the positive electrode and the negative electrode. For example, it can be adjusted by adjusting the type of each active material of the positive electrode and the negative electrode and the ratio of the content (weight of basis weight) of each active material per unit area.
  • the positive electrode active material is a lithium transition metal composite oxide represented by Li x Ni ⁇ Co ⁇ Mn (1- ⁇ - ⁇ ) O 2
  • the negative electrode active material is non-graphitic carbon.
  • the mass ratio (P / N) of the content (P) of the positive electrode active material per unit area in the positive electrode active material layer and the content (N) of the negative electrode active material in the negative electrode active material layer per unit area is 0. It is preferably .75 or more and 1.30 or less, and more preferably 0.80 or more and 1.25 or less.
  • the positive electrode active material is a polyanion compound (LiFePO 4 or the like) and the negative electrode active material is non-graphographic carbon
  • the content (P) of the positive electrode active material per unit area in the positive electrode active material layer and the negative electrode active material layer is preferably 0.68 or more and 1.30 or less, and more preferably 0.80 or more and 1.25 or less.
  • the non-aqueous electrolyte storage element can be used in the same field as the conventional non-aqueous electrolyte storage element, but among them, it can be used as a power source (storage element) having a function of being charged and discharged by regenerative energy.
  • Power supplies that have the function of being charged and discharged by regenerative energy include hybrid electric vehicle (HEV) power supplies, electric vehicle (EV) power supplies, plug-in hybrid vehicle (PHEV) power supplies, other vehicle power supplies, and train power supplies. And so on.
  • HEV hybrid electric vehicle
  • EV electric vehicle
  • PHEV plug-in hybrid vehicle
  • the method for producing the non-aqueous electrolyte power storage element is not particularly limited, and known methods can be combined.
  • the non-aqueous electrolyte power storage element includes, for example, an electrode body in which positive electrodes and negative electrodes are produced, a non-aqueous electrolyte is prepared, and positive electrodes and negative electrodes are laminated or wound alternately via a separator. It can be produced by a production method including forming, accommodating a positive electrode and a negative electrode (electrode body) in a battery container, and injecting the non-aqueous electrolyte into the battery container. The above injection can be performed by a known method. After injection, a non-aqueous electrolyte secondary battery (storage element) can be obtained by sealing the injection port.
  • a negative electrode having a negative electrode active material layer having a predetermined density can also be produced by a conventionally known method. Specifically, it can be obtained by laminating the negative electrode active material layer directly on the negative electrode base material or via the conductive layer.
  • the laminating of the negative electrode active material layer can usually be performed by applying a negative electrode mixture.
  • the negative electrode mixture is usually a paste containing each component of the negative electrode active material layer and a dispersion medium (solvent).
  • the dispersion medium water or an organic solvent such as N-methylpyrrolidone (NMP) may be appropriately selected and used.
  • the coating of the negative electrode mixture can be performed by a known method. Usually, after coating, the coating film is dried to volatilize the dispersion medium.
  • the coating film in the thickness direction.
  • the press can be performed using a known device such as a roll press.
  • the conductive layer can also be formed, for example, by applying a paste for forming the conductive layer and drying it.
  • the power storage device 100 includes the non-aqueous electrolyte secondary battery 1 according to the non-aqueous electrolyte power storage element embodiment of the present invention and the non-aqueous electrolyte secondary battery. It is provided with a control unit 102 that controls charging / discharging of 1.
  • the power storage device 100 includes a power storage unit 101 having a plurality of non-aqueous electrolyte secondary batteries 1 and a control unit 102 that charges and discharges the non-aqueous electrolyte secondary battery 1 and controls the charge and discharge. It has.
  • the control unit 102 controls the non-aqueous electrolyte secondary battery 1 to be charged / discharged at a high rate, particularly to be charged. Specifically, the control unit 102 is set to control the charging of the non-aqueous electrolyte secondary battery 1 with a current amount in a range including 3C or more. The control unit 102 may be set to control charging with a current amount in a range including 5C or more, and further 10C or more. The upper limit of the amount of electricity in charging is not particularly limited, but charging may be controlled with a current amount of 50C or less, 30C or less, or 20C or less.
  • the power storage device 100 includes the non-aqueous electrolyte secondary battery 1 according to the embodiment of the present invention, an alloy of aluminum as a negative electrode base material with lithium even when charging is performed at a high rate of 3C or more. It is possible to suppress the deterioration of the performance and the deterioration of the performance.
  • the control unit 102 and the vehicle control device 111 that controls the engine, the motor, the drive system, the electrical system, and the like are connected to the vehicle-mounted LAN and CAN. It is connected by an in-vehicle communication network 112 such as.
  • the control unit 102 and the vehicle control device 111 communicate with each other, and the power storage device 100 is controlled based on the information obtained from the communication. As a result, for example, the driving energy becomes regenerative energy during deceleration, and the non-aqueous electrolyte secondary battery 1 is charged.
  • the power storage device 100 (non-aqueous electrolyte secondary battery 1) is used as a power source having a function of being charged by regenerative energy.
  • the power storage device 100 can be mounted as a power source for automobiles such as electric vehicles, hybrid electric vehicles, and plug-in hybrid vehicles.
  • the present invention is not limited to the above-described embodiment, and can be implemented in various modifications and improvements in addition to the above-described embodiment.
  • the mode in which the power storage element is a non-aqueous electrolyte secondary battery has been mainly described, but other non-water electrolyte power storage elements may be used.
  • other non-aqueous electrolyte power storage elements include capacitors (electric double layer capacitors, lithium ion capacitors) and the like.
  • the positive electrode and the negative electrode may not be provided with the conductive layer.
  • FIG. 2 shows a schematic view of a rectangular non-aqueous electrolyte secondary battery 1 which is an embodiment of the non-aqueous electrolyte power storage element according to the present invention.
  • the figure is a perspective view of the inside of the battery container.
  • the electrode body 2 is housed in the battery container 3.
  • the electrode body 2 is formed by winding a positive electrode having a positive electrode active material and a negative electrode having a negative electrode active material through a separator.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4'
  • the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5'.
  • the configuration of the non-aqueous electrolyte power storage element according to the present invention is not particularly limited, and examples thereof include a cylindrical power storage element, a square power storage element (rectangular power storage element), and a flat power storage element.
  • Lithium cobalt nickel-manganese composite oxide LiCo 1/3 Ni 1/3 Mn 1/3 O 2
  • acetylene black AB
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • This positive electrode mixture paste was applied to both sides of the aluminum foil (A1085, aluminum content 99.85% by mass) so that an uncoated portion (positive electrode active material layer non-formed region) was partially formed, and dried. ..
  • the coating amount (weighting amount) of the positive electrode active material in the positive electrode active material layer was 7.8 mg / cm 2 . Then, a roll press was performed to obtain a positive electrode.
  • the mass ratio of non-graphitizable carbon, SBR, and CMC was 97.9: 1.5: 0.6 (in terms of solid content).
  • the paste for forming the conductive layer is applied to both sides of the aluminum foil (A1N30, aluminum content 99.30% by mass) so that an uncoated portion (negative electrode active material layer non-forming region) is partially formed, and dried. As a result, a conductive layer was formed.
  • the surface of the conductive layer was coated with a negative electrode mixture paste and dried.
  • the coating amount (weighting amount) of the negative electrode active material in the negative electrode active material layer was 8.4 mg / cm 2 . Then, a roll press was performed to obtain a negative electrode.
  • the density of the negative electrode active material layer was 0.9 g / cm 3 .
  • the mass ratio (P / N) of the content (P) of the positive electrode active material per unit area in the positive electrode active material layer and the content (N) of the negative electrode active material in the negative electrode active material layer per unit area is 0. It was 9.
  • the entire region on the negative electrode base material on which the negative electrode active material layer is laminated is covered with the conductive layer.
  • the non-aqueous electrolyte is prepared by dissolving LiPF 6 in a solvent mixed so that the volume ratio of propylene carbonate, dimethyl carbonate and ethyl methyl carbonate is 30:35:35 so that the salt concentration is 1.2 mol / L. Prepared.
  • Example 1 non-aqueous electrolyte power storage element
  • Examples 2 to 4 and Comparative Examples 1 to 2 are the same as in Example 1 except that the pressure of the roll press during the production of the negative electrode is adjusted and the density of the negative electrode active material layer is changed as shown in Table 1. Obtained each battery.
  • the laminated cell was charged with a constant current (CC) at a charging current of 10 C and a charging end voltage of 3.6 V in a constant temperature bath at 25 ° C., and the closed circuit potential of the negative electrode immediately before the end of charging was measured.
  • the measurement results are taken as the negative electrode potential in the fully charged state, and are shown in Table 1 and FIG.
  • the alternating current resistance (ACR) of each battery was measured as follows. First, the battery is charged with a constant current constant voltage (CCCV) at a charging current of 1C and a charge termination voltage of 3.6V in a constant temperature bath at 25 ° C., and then a constant current (CC) is charged with a discharge current of 1C and a discharge termination voltage of 2.4V.
  • CCCV constant current constant voltage
  • CC constant current
  • Discharge was performed.
  • constant current (CC) charging was performed with a charging current of 1 C for an amount of electricity corresponding to 20% of the amount of discharged electricity.
  • the ACR of the charged battery was measured using an AC resistance meter (milliohm high tester) having a measurement frequency of 1 kHz. Table 1 shows the ACR of each battery as a relative value based on Example 3 (100%).
  • LSV Linear sweep voltammetry
  • the batteries of each example are charged at 10 C at a high temperature of 65 ° C.
  • the closed circuit potential of the negative electrode is also 0.3 V vs. The inventors have confirmed that it does not fall below Li / Li + . Therefore, in the batteries of each embodiment, the alloying of aluminum of the negative electrode base material with lithium can be suppressed even when the battery is charged at a high rate at a high temperature.
  • the present invention can be applied to a non-aqueous electrolyte power storage element used as a power source for personal computers, electronic devices such as communication terminals, automobiles, etc., particularly as a power source having a function of being charged by regenerative energy.
  • Non-aqueous electrolyte secondary battery 2 Electrode body 3 Battery container 4 Positive terminal 4'Positive lead 5 Negative terminal 5'Negative lead 100 Power storage device 101 Power storage unit 102 Control unit 110 Vehicle 111 Vehicle control device 112 Communication network

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の一態様に係る非水電解質蓄電素子は、アルミニウム製の負極基材と、上記負極基材に積層され、非黒鉛質炭素を含む負極活物質層とを有する負極、及びリチウム塩を含む非水電解質を備え、上記負極活物質層の密度が0.9g/cm以上1.2g/cm以下である非水電解質蓄電素子である。

Description

非水電解質蓄電素子及び蓄電装置
 本発明は、非水電解質蓄電素子及び蓄電装置に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極と、この電極間に介在する非水電解質とを有し、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の非水電解質蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。
 このような非水電解質蓄電素子の正極及び負極は、通常、導電性の基材に活物質層が積層された層構造を有する。一般的なリチウムイオン二次電池においては、正極及び負極のそれぞれの電位に対して腐食しないなどの理由で、正極基材にアルミニウム、負極基材に銅が用いられることが一般的である。このような中、銅よりも柔軟で取り扱いが容易であり、かつ低コストであるアルミニウムを負極基材に用いることが検討されている。一方、0.1V vs.Li/Li付近の低電位でアルミニウムとリチウムとの合金化反応が生じることが知られている。アルミニウムを負極基材に用いた場合、このような低電位に負極がさらされると、負極基材であるアルミニウムとリチウムとの合金化反応が生じる。すると、負極基材であるアルミニウムが微粉化し、負極基材と負極活物質との接触点が少なくなったり、負極活物質が脱落したりすることにより、負極の抵抗が高まり、蓄電素子としての性能が低下する。そこで、特許文献1には、このような合金化反応を抑制するために、負極の駆動電位を0.1V vs.Li/Li以上となるように調整されたリチウムイオン二次電池が提案されている。
特開平9-283117号公報
 自動車用電源等、回生エネルギーによって充電される機能を有する電源などにおいては、高いレートでの急速な充電が行われる。しかし、負極基材にアルミニウムが用いられた従来の非水電解質蓄電素子において、高いレートでの充電を繰り返した場合は、負極の電位が低くなりやすく、上記合金化反応が生じやすい。特に、高温下で使用される場合、リチウムとの合金化が生じる電位(合金化電位)が高くなるため、上記合金化反応がより生じやすくなる。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、高温下における高いレートでの充電がされても、負極基材のアルミニウムのリチウムとの合金化を抑制することができる非水電解質蓄電素子、及びこのような非水電解質蓄電素子を備える蓄電装置を提供することである。
 上記課題を解決するためになされた本発明の一態様に係る非水電解質蓄電素子は、アルミニウム製の負極基材と、上記負極基材に積層され、非黒鉛質炭素を含む負極活物質層とを有する負極、及びリチウム塩を含む非水電解質を備え、上記負極活物質層の密度が0.9g/cm以上1.2g/cm以下である非水電解質蓄電素子である。
 本発明の他の一態様に係る蓄電装置は、上記非水電解質蓄電素子、及び3C以上を含む範囲の電流量で上記非水電解質蓄電素子の充電の制御を行う制御部を備える蓄電装置である。
 本発明によれば、高温下における高いレートでの充電がされても、負極基材のアルミニウムのリチウムとの合金化を抑制することができる非水電解質蓄電素子、及びこのような非水電解質蓄電素子を備える蓄電装置を提供することができる。
図1は、本発明の一実施形態に係る蓄電装置及びこれを車両に搭載した状態を示す模式図である。 図2は、本発明の非水電解質蓄電素子の一実施形態に係る非水電解質二次電池を示す外観斜視図である。 図3は、実施例及び比較例の各電池の満充電状態の負極電位を示したグラフである。 図4は、実験例で測定したアルミニウム箔のリニアスイープボルタモグラムである。
 本発明の一実施形態に係る非水電解質蓄電素子は、アルミニウム製の負極基材と、上記負極基材に積層され、非黒鉛質炭素を含む負極活物質層とを有する負極、及びリチウム塩を含む非水電解質を備え、上記負極活物質層の密度が0.9g/cm以上1.2g/cm以下である非水電解質蓄電素子である。
 当該非水電解質蓄電素子は、上記構成を有することにより、高温下における高いレートでの充電がされても、負極基材のアルミニウムのリチウムとの合金化を抑制することができる。この理由は定かでは無いが、以下が推測される。負極活物質層の密度が0.9g/cm未満の場合は、負極活物質である非黒鉛質炭素同士の接触や、非黒鉛質炭素と負極基材との接触が不十分であり、抵抗増加により過電圧が大きくなる。一方、負極活物質層の密度が1.2g/cmを超える場合は、負極活物質層内部に十分に非水電解質が浸透し難く、負極活物質層内部の非水電解質不足により過電圧が大きくなる。特に、高いレートで充電を行う場合、過電圧が大きくなりやすい。このように過電圧が大きくなると満充電に近い状態において負極電位が合金化電位を下回りやすくなる。これに対し、本発明の一実施形態に係る非水電解質蓄電素子によれば、負極活物質層の密度を0.9g/cm以上1.2g/cm以下としているため、高温下における高いレートでの充電がされても、負極電位が合金化電位以下になり難く、リチウムとの合金化が抑制されると推測される。このように当該非水電解質蓄電素子によれば、負極基材のアルミニウムのリチウムとの合金化が抑制されるため、非水電解質蓄電素子の性能低下を抑制することができる。
 ここで、「アルミニウム製の負極基材」とは、負極基材の材質が、純アルミニウム又はアルミニウム合金であることをいう。
 「非黒鉛質炭素」とは、充放電前又は放電状態において広角X線回折法から測定される(002)面の平均格子面間隔(d002)が0.340nm以上の炭素材料をいう。なお、ここでいう「放電状態」とは、負極活物質として炭素材料を含む負極を作用極として、金属リチウムを対極としてそれぞれ用いた単極電池において、開回路電圧が0.7V以上であることをいう。即ち、開回路状態での金属リチウム対極の電位は、リチウムの酸化還元電位とほぼ等しいことから、上記開回路電圧は、リチウムの酸化還元電位に対する炭素材料を含む負極の電位とほぼ同等であり、上記開回路電圧が0.7V以上であることは、上記負極の電位が0.7V(vs.Li/Li)以上であり、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されていることを意味する。
 また、負極活物質層の「密度」とは、負極活物質層の質量を負極活物質層の見かけの体積で除した値をいう。見かけの体積とは、空隙部分を含む体積をいい、負極活物質層の平均厚さと面積との積として求めることができる。
 上記負極が、上記負極基材と上記負極活物質層との間に設けられる導電層をさらに有し、上記導電層は、上記負極活物質層が積層されている上記負極基材上の領域の全体を被覆していることが好ましい。負極基材と負極活物質層との間にこのような導電層を設けることで、局所的に負極活物質層の電位が低くなった場合も、負極基材を被覆する導電層によってアルミニウムのリチウムとの合金化を十分に抑制することができる。
 上記負極活物質層の密度が1.0g/cm以上1.1g/cm以下であることが好ましい。負極活物質層の密度を上記範囲とすることで、負極基材のアルミニウムのリチウムとの合金化をより十分に抑制することができる。
 当該非水電解質蓄電素子の使用上限電圧における負極電位が0.3V vs.Li/Li以上であることが好ましい。使用上限電圧における負極電位が0.3V vs.Li/Li以上に設定されていることで、高温下の充電の際も、負極電位が合金化電位を下回り難く、負極基材のアルミニウムのリチウムとの合金化をより十分に抑制することができる。また、負極基材以外にアルミニウムが用いられている場合も、このアルミニウムのリチウムとの合金化が十分に抑制できる。
 なお、「使用上限電圧」とは、非水電解質蓄電素子の取扱説明書等に使用電圧範囲の記載があればそのもっとも高い電圧を意味する。取扱説明書等がなければ、非水電解質蓄電素子の制御装置等によって、それ以上上がらないように制御されている電圧値のことを意味する。また、「使用上限電圧における負極電位」の確認方法は、まず、非水電解質蓄電素子において、解体を予定している所定電圧の状態から上記使用上限電圧とする際の充電電気量を特定する。次いで、所定電圧の状態で非水電解質蓄電素子を解体し、解体後の負極を用いた単極試験により、特定した上記充電電気量を充電し、充電後の開回路電位を測定することで、使用上限電圧における負極電位を決定する。
 当該非水電解質蓄電素子は、回生エネルギーによって充電される機能を有する電源用であることが好ましい。ハイブリッド電気自動車用の電源等、回生エネルギーによって充電される機能を有する電源は、高いレートでの充電が行われるため、アルミニウムを負極基材に用いた場合にリチウムとの合金化が生じやすい。このため、高いレートでの充電がされても、負極基材のアルミニウムのリチウムとの合金化を抑制することができる当該非水電解質蓄電素子を、このような回生エネルギーによって充電される機能を有する電源に用いた場合、利点が大きい。
 本発明の一実施形態に係る蓄電装置は、当該非水電解質蓄電素子、及び3C以上を含む範囲の電流量で当該非水電解質蓄電素子の充電の制御を行う制御部を備える蓄電装置である。当該蓄電装置は、本発明の一実施形態に係る非水電解質蓄電素子を備えるため、3C以上の高いレートで充電が行われる場合であっても、負極基材のアルミニウムのリチウムとの合金化を抑制することができる。従って、当該蓄電装置は、高いレートでの充電が繰り返し行われても、蓄電装置の性能低下を抑制することができる。
 なお、「1C」とは、非水電解質蓄電素子に1時間の定電流通電を行ったときの電気量が、この非水電解質蓄電素子の公称容量と同じとなる電流値であり、「3C」とは、その3倍の電流値である。
 以下、本発明の一実施形態に係る非水電解質蓄電素子及び蓄電装置について詳説する。
<非水電解質蓄電素子>
 本発明の一実施形態に係る非水電解質蓄電素子は、正極、負極及び非水電解質を有する。以下、非水電解質蓄電素子の一例として、非水電解質二次電池について説明する。正極及び負極は、通常、セパレータを介して積層又は巻回により交互に重畳された電極体を形成する。この電極体は電池容器に収納され、この電池容器内に上記非水電解質が充填される。非水電解質は、正極と負極との間に介在する。また、電池容器としては、非水電解質二次電池の電池容器として通常用いられる公知の金属電池容器、樹脂電池容器等を用いることができる。
(正極)
 正極は、正極基材、及びこの正極基材に直接又は導電層等の中間層を介して配される正極活物質層を有する。
(正極基材)
 正極基材は、導電性を有する。なお、「導電性」を有するとは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cm以下であることを意味し、「非導電性」とは、上記体積抵抗率が10Ω・cm超であることを意味する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。また、正極基材の形成形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極基材としてはアルミニウム箔及びアルミニウム合金箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085、A1N30、A3003等が例示できる。
(正極活物質層)
 正極活物質層は、正極活物質を含む。正極活物質層は、通常、正極活物質を含むいわゆる正極合剤から形成される。正極活物質層は、必要に応じて導電剤、バインダー(結着剤)、増粘剤、フィラー等の任意成分を含む。
 正極活物質としては、例えばLiMO(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(層状のα-NaFeO型結晶構造を有するLiCoO,LiNiO,LiMnO,LiNiαCoβMn(1-α-β)等、スピネル型結晶構造を有するLiMn,LiNiαMn(2-α)等)、LiMe(XO(Meは少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、V等を表す)で表されるポリアニオン化合物(LiFePO,LiMnPO,LiNiPO,LiCoPO,Li(PO,LiMnSiO,LiCoPOF等)が挙げられる。これらの化合物中の元素又はポリアニオンは、他の元素又はアニオン種で一部が置換されていてもよい。正極活物質層においては、これら化合物の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 好適な正極活物質の一例としては、層状のα―NaFeO型結晶構造を有し、少なくともNi、Co、及びMnを含む、上記LiNiαCoβMn(1-α-β)で表されるリチウム遷移金属複合酸化物が挙げられる。LiNiαCoβMn(1-α-β)中、xは0超1.3以下であり、1であってよい。α及びβは、それぞれ0超であり、かつαとβとの和は1未満である。α、β及び(1-α-β)は、それぞれ例えば0.1以上0.8以下であってよく、0.3以上0.5以下であってもよい。
 上記リチウム遷移金属複合酸化物としては、例えばLiNi1/3Co1/3Mn1/3、LiNi3/5Co1/5Mn1/5、LiNi1/2Co1/5Mn3/10、LiNi1/2Co3/10Mn1/5、LiNi8/10Co1/10Mn1/10等を挙げることができる。
 正極活物質層における正極活物質の含有量の下限としては、70質量%が好ましく、80質量%がより好ましい。一方、この含有量の上限としては、例えば99質量%が好ましく、95質量%がより好ましい。
 正極活物質層における正極活物質の単位面積当たりの含有量(目付量)としては、例えば3mg/cm以上20mg/cm以下である。正極活物質の単位面積当たりの含有量(目付量)とは、正極基材の一方の面に積層された1層分における量である。後述する負極活物質の単位面積当たりの含有量(目付量)についても同様である。
 導電剤としては、電池性能に悪影響を与えない導電性材料であれば特に限定されない。このような導電剤としては、天然又は人造の黒鉛;ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック;金属;導電性セラミックス等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。正極活物質層における導電剤の含有量としては、例えば1質量%以上10質量%以下とすることができる。
 バインダーとしては、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。正極活物質層におけるバインダーの含有量としては、例えば1質量%以上10質量%以下とすることができる。
 増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。正極活物質層における増粘剤の含有量としては、例えば0.1質量%以上5質量%以下とすることができる。正極活物質層には、増粘剤は含有されていなくてもよい。
 フィラーとしては、電池性能に悪影響を与えないものであれば特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、ゼオライト、ガラス等が挙げられる。正極活物質層におけるフィラーの含有量としては、例えば0.1質量%以上5質量%以下とすることができる。正極活物質層には、フィラーは含有されていなくてもよい。
 正極活物質層の平均厚さとしては、例えば10μm以上100μm以下である。
(正極導電層)
 正極の導電層(正極導電層)は、正極基材の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで正極基材と正極活物質層との接触抵抗を低減する。正極導電層は、例えば、上記正極活物質層に用いられる導電剤及びバインダーとして例示したものと同様のものを含有する組成物により形成できる。
(負極)
 負極は、負極基材、及びこの負極基材に直接又は導電層を介して配される負極活物質層を有する。
(負極基材)
 負極基材は、アルミニウム製である。すなわち、負極基材の材質は、アルミニウム又はアルミニウム合金である。負極基材におけるアルミニウムの含有率としては、例えば95質量%以上であり、99質量%以上が好ましい。負極基材には、表面に酸化被膜が形成されていてよい。負極基材としてはアルミニウム箔及びアルミニウム合金箔が好ましい。アルミニウム及びアルミニウム合金の具体例としては、正極基材において例示したものと同様である。
(負極活物質層)
 負極活物質層は、負極活物質として機能する非黒鉛質炭素を含む。負極活物質層は、通常、負極活物質を含むいわゆる負極合剤から形成される。負極合剤は、必要に応じて導電剤、バインダー、増粘剤、フィラー等の任意成分を含む。導電剤、バインダー、増粘剤、フィラー等の任意成分は、正極活物質層と同様のものを用いることができる。
 負極活物質層に含まれる非黒鉛質炭素としては、例えば難黒鉛化性炭素(ハードカーボン)や、易黒鉛化性炭素(ソフトカーボン)などが挙げられ、難黒鉛化成炭素が好ましい。難黒鉛化性炭素としては、フェノール樹脂焼成体、フラン樹脂焼成体、フルフリルアルコール樹脂焼成体等を挙げることができる。易黒鉛化性炭素としては、コークス、熱分解炭素等を挙げることができる。難黒鉛化性炭素とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。難黒鉛化性炭素は、通常、非黒鉛質炭素の中でも、3次元的な積層規則性を持つ黒鉛構造が生成し難い性質を有する。易黒鉛化性炭素とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。易黒鉛化性炭素は、通常、非黒鉛質炭素の中でも、3次元的な積層規則性を持つ黒鉛構造が生成し易い性質を有する。
 負極活物層には、非黒鉛質炭素以外の負極活物質がさらに含まれていてもよい。このような他の負極活物質としては、例えば黒鉛;Si、Sn等の金属又は半金属;Si酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;ポリリン酸化合物等が挙げられる。なお、全負極活物質に対する非黒鉛質炭素の含有量の下限としては、90質量%が好ましく、95質量%がより好ましく、99質量%がさらに好ましい。このように、負極活物質中の非黒鉛質炭素の含有量を高めることで、負極電位の制御が容易になり、負極基材のアルミニウムのリチウムとの合金化をより抑制することができる。この含有量の上限としては、100質量%であってよい。
 負極活物質層における非黒鉛質炭素の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましい。一方、この含有量の上限としては、例えば99質量%が好ましく、98質量%がより好ましい。負極活物質層における非黒鉛質炭素の含有量を上記範囲とすることで、良好な密着性や塗布性と確保しつつ、放電容量を大きくすることなどができる。
 負極活物質層における導電剤の含有量としては、例えば0.1質量%以上5質量%以下とすることができる。負極活物質層には、導電剤が含有されていなくてもよい。負極活物質層におけるバインダーの含有量としては、例えば0.5質量%以上5質量%以下とすることができる。負極活物質層における増粘剤の含有量としては、例えば0.1質量%以上3質量%以下とすることができる。負極活物質層におけるフィラーの含有量としては、例えば0.1質量%以上5質量%以下とすることができる。負極活物質層には、フィラーは含有されていなくてもよい。
 負極活物質層の密度の下限は0.9g/cmであり、0.95g/cmが好ましく、1.0g/cmがより好ましい。一方、この密度の上限は1.2g/cmであり、1.15g/cmが好ましく、1.1g/cmがより好ましく、1.05g/cmがさらに好ましい。負極活物質層の密度を上記範囲内とすることで、高温下における高いレートでの充電がされても、負極電位が合金化電位以下になり難くなり、負極基材のアルミニウムのリチウムとの合金化が抑制される。
 負極活物質層の密度は、例えば非黒鉛質炭素の粒径、負極活物質層の成形時におけるプレスの圧力などによって調整することができる。
 負極活物質層における負極活物質の単位面積当たりの含有量(目付量)としては、例えば3mg/cm以上20mg/cm以下である。負極活物質層の平均厚さとしては、例えば30μm以上200μm以下である。
(負極導電層)
 負極の導電層(負極導電層)は、負極基材の表面の被覆層であり、負極基材と負極活物質層との間に設けられる。負極導電層は、負極基材と負極活物質層との接触抵抗を低減し、抵抗増加を抑えることができる結果、負極基材のアルミニウムのリチウムとの合金化を低減することができる。
 負極基材のアルミニウムのリチウムとの合金化を低減する点から、負極導電層は、負極活物質層が積層されている負極基材上の領域のうちの95%以上を被覆していることが好ましく、負極活物質層が積層されている負極基材上の領域の全体を被覆していることがより好ましい。すなわち、非黒鉛質炭素等の負極活物質層を構成する各成分は、負極基材と接触していないことが好ましい。
 負極導電層は、例えば導電剤及びバインダーを含有する組成物により形成できる。負極導電層に用いられる導電剤としては、正極活物質層に用いられる導電剤として例示したものと同様のものを挙げることができ、黒鉛、カーボンブラック等の炭素粒子が好ましい。負極導電層における導電剤の含有量としては、例えば20質量%以上60質量%以下とすることができる。
 負極導電層に用いられるバインダーとしては、正極活物質層に用いられるバインダーとして例示したものも挙げることができ、セルロース系バインダー、キトサン系バインダー及びアクリル系バインダーが好ましい。これらのバインダーは、非水電解質(非水電解液)に対して膨潤し難く、良好な導電性を発揮しつつ、負極基材のアルミニウムのリチウムとの合金化を効果的に抑制することができる。
 セルロース系バインダー及びキトサン系バインダーは、ヒドロキシアルキル化、カルボキシアルキル化、硫酸エステル化等がなされたセルロース誘導体又はキトサン誘導体であってもよい。例えば、セルロース誘導体としては、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース等を挙げることができる。これらは、塩であってもよい。アクリル系バインダーとしては、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリ(メタ)アクリロイルモルホリン、ポリN,N-ジメチル(メタ)アクリルアミド、ポリN,N-ジメチルアミノエチル(メタ)アクリレート、ポリN,N-ジメチルアミノプロピル(メタ)アクリルアミド、ポリグリセリン(メタ)アクリレート等を挙げることができる。
 負極導電層におけるバインダーの含有量としては、例えば40質量%以上80質量%以下とすることができる。
 その他、負極導電層は、リチウムと実質的に反応しない金属のメッキ等により形成されていてもよい。
(セパレータ)
 セパレータの材質としては、例えば織布、不織布、多孔質樹脂フィルム等が用いられる。これらの中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。セパレータの主成分としては、強度の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。また、これらの樹脂を複合してもよい。その他、多孔質樹脂フィルムと無機多孔層とを有する複合セパレータ等であってもよい。
(非水電解質)
 非水電解質は、リチウム塩を含む。非水電解質は、通常、電解質塩としてのリチウム塩と、電解質塩を溶解する非水溶媒とを含む非水電解液である。非水電解質は、固体電解質等であってもよい。
 リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のフッ化炭化水素基を有するリチウム塩などを挙げることができる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。
 非水電解質におけるリチウム塩の含有量の下限としては、0.1mol/Lが好ましく、0.3mol/Lがより好ましく、0.5mol/Lがさらに好ましく、0.7mol/Lが特に好ましい。一方、この上限としては、特に限定されないが、2.5mol/Lが好ましく、2mol/Lがより好ましく、1.5mol/Lがさらに好ましい。
 非水電解質には、リチウム塩以外の電解質塩が含まれていてもよい。このような電解質塩としては、ナトリウム塩、カリウム塩等を挙げることができる。但し、電解質塩は、実質的にリチウム塩のみから構成されていてよい。電解質塩に占めるリチウム塩の含有割合としては、90mol%以上が好ましく、99mol%以上がより好ましい。
 非水溶媒としては、一般的な蓄電素子用非水電解質の非水溶媒として通常用いられる公知の非水溶媒を用いることができる。非水溶媒としては、環状カーボネート、鎖状カーボネート、エステル、エーテル、アミド、スルホン、ラクトン、ニトリル等を挙げることができる。これらの中でも、環状カーボネート又は鎖状カーボネートを少なくとも用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比(環状カーボネート:鎖状カーボネート)としては、特に限定されないが、例えば5:95以上50:50以下とすることが好ましい。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、カテコールカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等を挙げることができ、これらの中でもPCが好ましい。
 鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート等を挙げることができ、これらの中でもEMCが好ましい。
(使用上限電圧における負極電位)
 当該非水電解質蓄電素子の使用上限電圧における負極電位は、0.3V vs.Li/Li以上であることが好ましい。このように設定されていることで、高温下の充電の際も、負極電位が合金化電位を下回り難く、負極基材のアルミニウムのリチウムとの合金化をより十分に抑制することができる。この使用上限電圧における負極電位の上限は特に限定されず、例えば0.5V vs.Li/Li以下であってよく、0.4V vs.Li/Li以下であってもよい。また、当該非水解質蓄電素子は、使用上限電圧における負極の閉回路電位が0.3V vs.Li/Li以上でなる条件で使用されることが好ましい。このように設定されていることで、高温下における高いレートで充電される際も、負極電位が合金化電位を下回り難く、負極基材のアルミニウムのリチウムとの合金化をさらに十分に抑制することができる。この使用上限電圧における負極の閉回路電位の上限は特に限定されず、例えば0.5V vs.Li/Li以下であってよく、0.4V vs.Li/Li以下であってもよい。
 使用上限電圧における負極電位は、正極及び負極の電気容量の設計により調整することができる。例えば、正極及び負極の各活物質の種類や、各活物質の単位面積当たりの含有量(目付量)の比を調整することにより、調整することができる。
 具体的には、正極活物質がLiNiαCoβMn(1-α-β)で表されるリチウム遷移金属複合酸化物であり、負極活物質が非黒鉛質炭素である場合、正極活物質層における正極活物質の単位面積当たりの含有量(P)と負極活物質層における負極活物質の単位面積当たりの含有量(N)との質量比(P/N)としては、0.75以上1.30以下が好ましく、0.80以上1.25以下がより好ましい。
 正極活物質がポリアニオン化合物(LiFePO等)であり、負極活物質が非黒鉛質炭素である場合、正極活物質層における正極活物質の単位面積当たりの含有量(P)と負極活物質層における負極活物質の単位面積当たりの含有量(N)との質量比(P/N)としては、0.68以上1.30以下が好ましく、0.80以上1.25以下がより好ましい。
(用途)
 当該非水電解質蓄電素子は、従来の非水電解質蓄電素子と同様の分野に用いることができるが、中でも、回生エネルギーによって充電され、放電される機能を有する電源(蓄電素子)として用いられることが好ましい。回生エネルギーによって充放電される機能を有する電源としては、ハイブリッド電気自動車(HEV)用電源、電気自動車(EV)用電源、プラグインハイブリッド自動車(PHEV)用電源、その他の自動車用電源、電車用電源等を挙げることができる。その中でも、高いレートでの充電性能が求められるHEV用電源、アイドリングストップ車エンジン始動用電源として用いられることが特に好ましい。
(非水電解質蓄電素子の製造方法)
 当該非水電解質蓄電素子の製造方法は、特に限定されず、公知の方法を組み合わせて行うことができる。当該非水電解質蓄電素子は、例えば、正極及び負極を作製すること、非水電解質を調製すること、正極及び負極を、セパレータを介して積層又は巻回することにより交互に重畳された電極体を形成すること、正極及び負極(電極体)を電池容器に収容すること、並びに上記電池容器に上記非水電解質を注入することを備える製造方法により製造することができる。上記注入は、公知の方法により行うことができる。注入後、注入口を封止することにより非水電解質二次電池(蓄電素子)を得ることができる。
 また、所定の密度を有する負極活物質層を有する負極も、従来公知の方法により製造することができる。具体的には、負極基材に直接又は導電層を介して負極活物質層を積層することにより得ることができる。上記負極活物質層の積層は、通常、負極合剤の塗工により行うことができる。負極合剤は、通常、負極活物質層の各成分と分散媒(溶媒)とを含むペーストである。分散媒としては、水やN-メチルピロリドン(NMP)等の有機溶媒を適宜選択して用いればよい。負極合剤の塗工は公知の方法により行うことができる。通常、塗工後、塗膜を乾燥させて、分散媒を揮発させる。その後、塗膜を厚さ方向にプレスすることが好ましい。これにより、負極活物質層の密度や密着性を高めることなどができる。上記プレスは、例えばロールプレス等、公知の装置を用いて行うことができる。導電層の形成も、例えば、導電層形成用のペーストを塗工し、乾燥させることにより行うことができる。
<蓄電装置>
 図1に示すように、本発明の一実施形態に係る蓄電装置100は、本発明の非水電解質蓄電素子の一実施形態に係る非水電解質二次電池1と、この非水電解質二次電池1の充放電の制御を行う制御部102とを備えている。具体的には、蓄電装置100は、複数の非水電解質二次電池1を有する蓄電ユニット101と、非水電解質二次電池1の充放電を行い、その充放電の制御を行う制御部102とを備えている。
 制御部102は、非水電解質二次電池1を高いレートで充放電、特に充電を行うように制御する。具体的には、制御部102は、3C以上を含む範囲の電流量で非水電解質二次電池1の充電の制御を行うように設定されている。制御部102は、5C以上、さらには10C以上を含む範囲の電流量で充電の制御を行うように設定されていてもよい。充電における電気量の上限は特に制限されないが、50C以下、30C以下、又は20C以下の電流量で充電の制御を行うように設定されていてもよい。蓄電装置100は、本発明の一実施形態に係る非水電解質二次電池1を備えるため、3C以上の高いレートで充電が行われる場合であっても、負極基材のアルミニウムのリチウムとの合金化を抑制することができ、性能低下を抑制することができる。
 この蓄電装置100を車両110に搭載した場合には、図1に示すように、制御部102と、エンジンやモーター、駆動系、電装系等を制御する車両制御装置111とが、車載LAN、CANなどの車載用の通信網112で接続される。制御部102と車両制御装置111とが通信を行い、その通信から得られる情報をもとに蓄電装置100が制御される。これにより、例えば駆動エネルギーが減速時に回生エネルギーとなって非水電解質二次電池1に充電される。このように、車両110においては、蓄電装置100(非水電解質二次電池1)は、回生エネルギーによって充電される機能を有する電源として用いられている。蓄電装置100は、電気自動車、ハイブリッド電気自動車、プラグインハイブリッド自動車等の自動車用電源として搭載することができる。
<その他の実施形態>
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。例えば、上記実施の形態においては、蓄電素子が非水電解質二次電池である形態を中心に説明したが、その他の非水電解質蓄電素子であってもよい。その他の非水電解質蓄電素子としては、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)等が挙げられる。また、正極及び負極において、導電層は設けられていなくてもよい。
 図2に、本発明に係る非水電解質蓄電素子の一実施形態である矩形状の非水電解質二次電池1の概略図を示す。なお、同図は、電池容器内部を透視した図としている。図2に示す非水電解質二次電池1は、電極体2が電池容器3に収納されている。電極体2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
 本発明に係る非水電解質蓄電素子の構成については特に限定されるものではなく、円筒型蓄電素子、角型蓄電素子(矩形状の蓄電素子)、扁平型蓄電素子等が一例として挙げられる。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
(正極の作製)
 正極活物質であるリチウムコバルトニッケルマンガン複合酸化物(LiCo1/3Ni1/3Mn1/3)、導電剤であるアセチレンブラック(AB)、バインダーであるポリフッ化ビニリデン(PVDF)及び非水系分散媒であるN-メチルピロリドン(NMP)を用いて正極合剤ペーストを調製した。なお、正極活物質、バインダー及び導電剤の質量比率は90:5:5(固形分換算)とした。この正極合剤ペーストをアルミニウム箔(A1085、アルミニウム含有量99.85質量%)の両面に、一部に未塗布部(正極活物質層非形成領域)が形成されるように塗布し、乾燥した。正極活物質層中の正極活物質の塗工量(目付量)は、7.8mg/cmとした。その後、ロールプレスを行い、正極を得た。
(負極の作製)
 導電剤であるアセチレンブラックとバインダーであるキトサンとを、質量比で1:2の割合にて混合し、導電層形成用ペーストを調製した。なお、分散媒としては、NMPを用いた。
 負極活物質として非黒鉛質炭素である難黒鉛化性炭素、バインダーであるスチレンブタジエンゴム(SBR)、増粘剤であるカルボキシメチルセルロース(CMC)、並びに分散媒である水を混合して負極合剤ペーストを調製した。難黒鉛化性炭素とSBRとCMCとの質量比率は、97.9:1.5:0.6(固形分換算)とした。
 導電層形成用ペーストをアルミニウム箔(A1N30、アルミニウム含有率99.30質量%)の両面に、一部に未塗布部(負極活物質層非形成領域)が形成されるように塗布し、乾燥させることにより導電層を形成した。この導電層の表面に、負極合剤ペーストを塗工し、乾燥した。負極活物質層中の負極活物質の塗工量(目付量)は、8.4mg/cmとした。その後、ロールプレスを行い、負極を得た。負極活物質層の密度は、0.9g/cmであった。正極活物質層における正極活物質の単位面積当たりの含有量(P)と負極活物質層における負極活物質の単位面積当たりの含有量(N)との質量比(P/N)は、0.9であった。なお、得られた負極において、負極活物質層が積層されている負極基材上の領域の全体が、導電層で被覆されている状態とした。
(非水電解質の調製)
 非水電解質は、プロピレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートの体積比率が30:35:35となるように混合した溶媒に、塩濃度が1.2mol/LとなるようにLiPFを溶解させて調製した。
(セパレータ)
 セパレータには、ポリエチレン微多孔膜を用いた。
(電池の組み立て)
 上記正極と負極とセパレータとを積層して巻回した。その後、正極の正極活物質層非形成領域及び負極の負極活物質層非形成領域を正極リード及び負極リードにそれぞれ溶接して容器に封入し、容器と蓋板とを溶接後、上記非水電解質を注入して封口した。この様にして実施例1の電池(非水電解質蓄電素子)を得た。
[実施例2~4、比較例1~2]
 負極作製の際のロールプレスの圧力を調整し、負極活物質層の密度を表1に示す通りに変更したこと以外は実施例1と同様にして、実施例2~4及び比較例1~2の各電池を得た。
[評価]
(満充電状態での負極電位及び交流抵抗の測定)
 得られた各電池について、25℃の恒温槽内において電池を充電電流1C、充電終止電圧3.6Vで定電流定電圧(CCCV)充電を行った後、放電電流1C、放電終止電圧2.4Vで定電流(CC)放電を行った。つぎに、グローブボックス内で解体し、正極板及び負極板を取り出した。取り出した正極板及び負極板を用い、参照極としてリチウム金属を配置したラミネートセルを組み立てた。つぎに、25℃の恒温槽内においてラミネートセルを充電電流10C、充電終止電圧3.6Vで定電流(CC)充電を行い、充電終了直前における負極の閉回路電位を測定した。測定した結果を満充電状態での負極電位とし、表1及び図3に示す。
 また、各電池の交流抵抗(ACR)をつぎのように測定した。まず、25℃の恒温槽内において電池を充電電流1C、充電終止電圧3.6Vで定電流定電圧(CCCV)充電を行った後、放電電流1C、放電終止電圧2.4Vで定電流(CC)放電を行った。つぎに、放電電気量の20%に相当する電気量分を充電電流1Cで定電流(CC)充電を行った。充電後の電池について、測定周波数1kHzの交流抵抗計(ミリオームハイテスタ)を用い、ACRを測定した。実施例3を基準(100%)とした相対値として、各電池のACRを表1に示す。
[実験例]
 25℃、45℃及び65℃の各恒温槽内において、アルミニウム箔のリニアスイープボルタンメトリー(LSV)測定をつぎのように行った。作用極にアルミニウム箔(A1085、アルミニウム含有量99.85質量%)、対極及び参照極にリチウム金属、電解液にプロピレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートの体積比率が30:35:35となるように混合した溶媒に、塩濃度が1.2mol/LとなるようにLiPFを溶解させたものをそれぞれ準備し、3極式測定セルを作製した。25℃、45℃、65℃の各恒温槽内において、走査範囲を自然電極電位~0.0V vs.Li/Li 、走査速度を1mV/秒として、LSV測定を行った。得られたリニアスイープボルタモグラムを図4に示す。
Figure JPOXMLDOC01-appb-T000001
 図4に示されるように、アルミニウムは、高温下(65℃)においては、0.3V vs.Li/Liを下回るあたりから、反応が生じることがわかる。一方、表1及び図3に示されるように、負極活物質層の密度が0.9g/cm以上1.2g/cm以下である各実施例の電池においては、抵抗の上昇が抑制され、10Cでの充電がされても、負極電位が0.3V vs.Li/Li以上となっている。なお、満充電時の負極電位の温度依存性は小さく、25℃と65℃とでは負極電位はほとんど変わらず、各実施例の電池において65℃の高温下で10Cでの充電を行った場合の負極の閉回路電位も0.3V vs.Li/Liを下回らないことを発明者らは確認している。従って、各実施例の電池においては、高温下における高いレートでの充電がされても、負極基材のアルミニウムのリチウムとの合金化を抑制することができる。
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車等の電源、特に回生エネルギーによって充電される機能を有する電源として使用される非水電解質蓄電素子に適用できる。
1  非水電解質二次電池
2  電極体
3  電池容器
4  正極端子
4’ 正極リード
5  負極端子
5’ 負極リード
100 蓄電装置
101 蓄電ユニット
102 制御部
110 車両
111 車両制御装置
112 通信網

Claims (10)

  1.  アルミニウム製の負極基材と、上記負極基材に積層され、非黒鉛質炭素を含む負極活物質層とを有する負極、及び
     リチウム塩を含む非水電解質
     を備え、
     上記負極活物質層の密度が0.9g/cm以上1.2g/cm以下である非水電解質蓄電素子。
  2.  上記負極が、上記負極基材と上記負極活物質層との間に設けられる導電層をさらに有する、請求項1に記載の非水電解質蓄電素子。
  3.  上記導電層は、上記負極活物質層が積層されている上記負極基材上の領域の全体を被覆している請求項2に記載の非水電解質蓄電素子。
  4.  上記負極活物質層の密度が1.0g/cm以上1.1g/cm以下である請求項1乃至請求項3のいずれか1項に記載の非水電解質蓄電素子。
  5.  使用上限電圧における負極電位が0.3V vs.Li/Li以上である請求項1乃至請求項4のいずれか1項に記載の非水電解質蓄電素子。
  6.  回生エネルギーによって充電される機能を有する電源用である請求項1乃至請求項5のいずれか1項に記載の非水電解質蓄電素子。
  7.  正極基材と、上記正極基材に配され、正極活物質を含む正極活物質層とを有する正極をさらに備える、請求項1乃至請求項6のいずれか1項に記載の非水電解質蓄電素子。
  8.  上記正極活物質がリチウム遷移金属複合酸化物であり、
     上記正極活物質層における上記正極活物質の単位面積当たりの質量をPとし、上記負極活物質層における上記負極活物質の単位面積当たりの質量をNとしたときに、下記式1を満たす請求項1乃至請求項7のいずれか1項に記載の非水電解質蓄電素子。
     0.75≦P/N≦1.30 ・・・式1
  9.  上記正極活物質がポリアニオン化合物であり、
     上記正極活物質層における上記正極活物質の単位面積当たりの質量をPとし、上記負極活物質層における上記負極活物質の単位面積当たりの質量をNとしたときに、下記式2を満たす請求項1乃至請求項7のいずれか1項に記載の非水電解質蓄電素子。
     0.68≦P/N≦1.30 ・・・式2
  10.  請求項1から請求項9のいずれか1項に記載の非水電解質蓄電素子、及び
     3C以上を含む範囲の電流量で上記非水電解質蓄電素子の充電の制御を行う制御部
     を備える蓄電装置。
PCT/JP2020/006687 2019-03-11 2020-02-20 非水電解質蓄電素子及び蓄電装置 WO2020184125A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021504878A JP7484884B2 (ja) 2019-03-11 2020-02-20 非水電解質蓄電素子及び蓄電装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019043762 2019-03-11
JP2019-043762 2019-03-11

Publications (1)

Publication Number Publication Date
WO2020184125A1 true WO2020184125A1 (ja) 2020-09-17

Family

ID=72426210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006687 WO2020184125A1 (ja) 2019-03-11 2020-02-20 非水電解質蓄電素子及び蓄電装置

Country Status (2)

Country Link
JP (1) JP7484884B2 (ja)
WO (1) WO2020184125A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174415A (ja) * 2011-02-18 2012-09-10 Toshiba Corp 非水電解質電池の製造方法
JP2012174577A (ja) * 2011-02-23 2012-09-10 Sei Kk リチウム二次電池用負極電極板、負極およびリチウム二次電池
JP2015026524A (ja) * 2013-07-26 2015-02-05 住友電気工業株式会社 ナトリウム溶融塩電池用負極およびその製造方法、ならびにナトリウム溶融塩電池
JP2017010802A (ja) * 2015-06-23 2017-01-12 住友電気工業株式会社 ナトリウムイオン二次電池
JP2018055943A (ja) * 2016-09-28 2018-04-05 株式会社Gsユアサ リチウムイオン二次電池
JP2018174097A (ja) * 2017-03-31 2018-11-08 株式会社Gsユアサ 蓄電素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190527A (ja) 2017-04-28 2018-11-29 昭和電工株式会社 蓄電デバイス用集電体、その製造方法、およびその製造に用いる塗工液

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174415A (ja) * 2011-02-18 2012-09-10 Toshiba Corp 非水電解質電池の製造方法
JP2012174577A (ja) * 2011-02-23 2012-09-10 Sei Kk リチウム二次電池用負極電極板、負極およびリチウム二次電池
JP2015026524A (ja) * 2013-07-26 2015-02-05 住友電気工業株式会社 ナトリウム溶融塩電池用負極およびその製造方法、ならびにナトリウム溶融塩電池
JP2017010802A (ja) * 2015-06-23 2017-01-12 住友電気工業株式会社 ナトリウムイオン二次電池
JP2018055943A (ja) * 2016-09-28 2018-04-05 株式会社Gsユアサ リチウムイオン二次電池
JP2018174097A (ja) * 2017-03-31 2018-11-08 株式会社Gsユアサ 蓄電素子

Also Published As

Publication number Publication date
JPWO2020184125A1 (ja) 2020-09-17
JP7484884B2 (ja) 2024-05-16

Similar Documents

Publication Publication Date Title
KR101477873B1 (ko) 비수전해액형 리튬 이온 2차 전지
JP6848330B2 (ja) 非水電解質蓄電素子
US10199689B2 (en) Nonaqueous electrolyte secondary battery
JP6769334B2 (ja) 非水電解質蓄電素子用の負極、非水電解質蓄電素子及び非水電解質蓄電素子用の負極の製造方法
US9184446B2 (en) Non-aqueous electrolyte lithium ion secondary battery
KR20200089182A (ko) 에너지 밀도가 우수한 Si계 화합물을 포함하는 리튬 이차전지
JP6911655B2 (ja) 蓄電素子用非水電解質、非水電解質蓄電素子、及び非水電解質蓄電素子の製造方法
WO2021132208A1 (ja) 蓄電素子
JP7452420B2 (ja) 蓄電素子
JP7103344B2 (ja) 非水電解質蓄電素子
JP6950342B2 (ja) 負極及び非水電解質蓄電素子
CN109643828B (zh) 非水电解质蓄电元件
JP6848363B2 (ja) 負極及び非水電解質蓄電素子
EP3826092B1 (en) Nonaqueous electrolyte power storage element, and power storage device
WO2021020290A1 (ja) 非水電解質蓄電素子、その製造方法、及び蓄電装置
WO2020184125A1 (ja) 非水電解質蓄電素子及び蓄電装置
JP2021128843A (ja) 非水電解質蓄電素子
JP6922242B2 (ja) 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP2020173998A (ja) 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP6963747B2 (ja) 負極の製造方法
WO2018180829A1 (ja) 蓄電素子
JP2021163707A (ja) 非水電解質蓄電素子
JP2021022543A (ja) 蓄電素子
JP2021125377A (ja) 非水電解液二次電池
JP2021099970A (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770712

Country of ref document: EP

Kind code of ref document: A1