WO2020184011A1 - 高電圧補機および高電圧補機制御システム - Google Patents

高電圧補機および高電圧補機制御システム Download PDF

Info

Publication number
WO2020184011A1
WO2020184011A1 PCT/JP2020/004608 JP2020004608W WO2020184011A1 WO 2020184011 A1 WO2020184011 A1 WO 2020184011A1 JP 2020004608 W JP2020004608 W JP 2020004608W WO 2020184011 A1 WO2020184011 A1 WO 2020184011A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
control circuit
switching power
auxiliary machine
Prior art date
Application number
PCT/JP2020/004608
Other languages
English (en)
French (fr)
Inventor
輝明 大山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080020310.3A priority Critical patent/CN113557161B/zh
Publication of WO2020184011A1 publication Critical patent/WO2020184011A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to a high-voltage auxiliary machine mounted on an electric vehicle and a high-voltage auxiliary machine control system that controls the drive of the high-voltage auxiliary machine.
  • an electric vehicle capable of performing quick charging by a quick charging facility (hereinafter, simply referred to as "quick charging facility") installed outside the vehicle.
  • the electric vehicle is equipped with a high-voltage battery that stores a high voltage, a main engine (that is, a traveling motor) that is driven by the power supplied from the high-voltage battery, and various high-voltage auxiliary machines.
  • a first circuit breaker is installed in a battery circuit connecting a vehicle connector to which an external connector of a quick charging facility is connected and a high-voltage battery, and the high-voltage battery and a predetermined high-voltage supplement are installed.
  • This electric vehicle turns on the first circuit breaker and turns off the second circuit breaker when the high voltage battery is charged from the quick charging facility.
  • noise generated by the high-voltage auxiliary machine is prevented from flowing out to the quick charging facility via the power supply line, the vehicle connector, the external connector, and the like.
  • the high-voltage auxiliary machine applied to the electric vehicle is not necessarily required to operate while charging the high-voltage battery, it is conceivable to stop the energization of the load of the high-voltage auxiliary machine.
  • the internal switching power supply transforms the electric power supplied from the high-voltage battery or the low-voltage battery, and supplies the electric power to its own microcomputer, sensor, driver IC, and the like.
  • the internal switching power supply is configured to automatically start when power is supplied from a high-voltage battery or a low-voltage battery. Therefore, when the high-voltage battery is charged, the internal switching power supply is driven, and when the noise generated from the internal switching power supply flows out to the quick charging equipment via the equipment circuit, battery circuit, vehicle connector, external connector, etc., the power supply system of the quick charging equipment May cause problems.
  • EMC abbreviation of electromagnetic compatibility
  • An object of the present disclosure is to provide a high-voltage auxiliary machine and a high-voltage auxiliary machine control system capable of suppressing the outflow of noise to a quick charging facility with a simple configuration.
  • the present invention relates to a high-voltage auxiliary machine that is driven by being supplied with electric power from a high-voltage battery (6) mounted on the electric vehicle (2).
  • the high voltage auxiliary machine includes a main circuit (22), a drive control circuit (23), and an internal switching power supply (24).
  • the main circuit switches between electrical connection and disconnection between the high voltage battery and the load (21).
  • the drive control circuit controls the drive of the main circuit.
  • the internal switching power supply converts the electric power supplied from the low-voltage battery (7) or the high-voltage battery mounted on the electric vehicle into the voltage driven by the main circuit and the drive control circuit, and supplies the electric power to the main circuit and the drive control circuit. Supply.
  • this high-voltage auxiliary machine can suppress the outflow of noise to the quick charging equipment with a simpler configuration without increasing the physique, weight, and manufacturing cost.
  • the high-voltage auxiliary equipment control system is supplied from the vehicle connector (4) to which the external connector (10) of the quick charging facility (3) installed outside the vehicle is connected, and from the vehicle connector via the power supply line (5). It is mounted on an electric vehicle including a high-voltage battery (6) for storing electric power and a low-voltage battery (7) for storing electric power having a lower voltage than the high-voltage battery.
  • the high-voltage auxiliary equipment control system includes the high-voltage auxiliary equipment described in one aspect of the present disclosure and the charge control device (9). When the connection between the external connector of the quick charging equipment and the vehicle connector is detected, the charge control device outputs a signal to the high voltage auxiliary to stop the operation of the internal switching power supply of the high voltage auxiliary.
  • the internal switching power supply stops operating due to a signal output from the charge control device to the high-voltage auxiliary machine. Therefore, it is possible to prevent noise caused by the operation of the internal switching power supply from flowing out to the quick charging facility.
  • the high-voltage auxiliary machine 1 of the present embodiment is mounted on the electric vehicle 2.
  • the electric vehicle 2 is configured to be capable of quick charging by a quick charging facility 3 installed outside the vehicle.
  • the electric vehicle 2 on which the high-voltage auxiliary machine 1 of the present embodiment is mounted will be described.
  • the electric vehicle 2 includes a vehicle connector 4, a power supply line 5, a high-voltage battery 6, a low-voltage battery 7, a main power supply control device 8, a charge control device 9, a plurality of high-voltage auxiliary machines 1, and the like.
  • the vehicle connector 4 is configured so that the external connector 10 of the quick charging facility 3 can be attached and detached.
  • the high-voltage battery 6 is a power supply device that stores electric power supplied from the vehicle connector 4 via the power supply line 5.
  • the high voltage battery 6 is composed of, for example, a lithium ion secondary battery.
  • the low-voltage battery 7 is a power supply device that stores electric power having a lower voltage than the high-voltage battery 6.
  • the low-voltage battery 7 stores electric power converted from the high-voltage battery 6 by the DC / DC converter 14.
  • the vehicle connector 4 and the high voltage battery 6 are electrically connected by the power supply line 5.
  • the power supply line 5 is provided with a system main relay 11 and a quick charge relay 12.
  • the system main relay 11 switches between an electrically connected state and a cutoff state between the high voltage battery 6 and the power supply line 5.
  • the operation of the system main relay 11 is controlled by the main power supply control device 8.
  • the system main relay 11 is connected by the control signal of the main power supply control device 8, power is supplied from the high voltage battery 6 to the plurality of high voltage auxiliary machines 1 via the power supply line 5 and the auxiliary machine wirings 16 to 19.
  • the high-voltage auxiliary machine 1 include a high-voltage heater 20, an electric compressor 13, a DC / DC converter 14, and an external power feeder 15.
  • the quick charge relay 12 switches between an electrically connected state and a cutoff state between the vehicle connector 4 and the power supply line 5.
  • the operation of the quick charge relay 12 is controlled by the charge control device 9.
  • the charge control device 9 detects the connection between the external connector 10 of the quick charging facility 3 and the vehicle connector 4 (hereinafter referred to as “connection of the charging connector”)
  • the charge control device 9 communicates with the quick charging facility 3 and quickly charges the battery.
  • the state of charge from the equipment 3 to the high-voltage battery 6 is controlled.
  • the charge control device 9 sets the quick charge relay 12 in the connected state and transmits the information to the main power supply control device 8.
  • the main power supply control device 8 receives the information from the charge control device 9, the system main relay 11 is connected.
  • the vehicle connector 4 and the high-voltage battery 6 are electrically connected via the power supply line 5. In this state, the high-voltage battery 6 can be quickly charged from the quick charging facility 3.
  • the high-voltage auxiliary machine 1 is a device that is driven by being supplied with electric power from the high-voltage battery 6.
  • the high voltage auxiliary machine 1 will be described by taking the high voltage heater 20 as an example.
  • the high-voltage heater 20 is used, for example, for heating air-conditioning air generated by an air conditioner in a vehicle interior (not shown), warming up the high-voltage battery 6.
  • the high voltage heater 20 includes a load 21, a main circuit 22, a drive control circuit 23, an internal switching power supply 24, a communication control circuit 25, and the like.
  • the load 21 of the high voltage heater 20 is, for example, a heating wire.
  • the main circuit 22, the drive control circuit 23, the internal switching power supply 24, and the communication control circuit 25 may be formed on a single board, or may be formed on a plurality of boards.
  • the main circuit 22 is an electronic control circuit for switching the electrical connection and disconnection between the high voltage battery 6 and the load 21.
  • the main circuit 22 has a high voltage switching element (not shown) in the middle of the circuit that electrically connects the auxiliary wiring 16 and the load 21.
  • the high voltage switching element for example, an IGBT (abbreviation for Insulated Gate Bipolar Transistor) is used.
  • IGBT Insulated Gate Bipolar Transistor
  • the drive control circuit 23 is an electronic control circuit composed of a microcomputer, a sensor, and the like.
  • the drive control circuit 23 is in charge of controlling the main circuit 22.
  • the drive control circuit 23 acquires detected values related to the temperature and power consumption of the load 21. Then, the drive control circuit 23 controls the drive of the high voltage switching element of the main circuit 22 according to the amount of heat required for the heating wire as the load 21.
  • the internal switching power supply 24 is a power supply device for converting the power supplied from the low-voltage battery 7 into a voltage driven by the main circuit 22 and the drive control circuit 23, and supplying power to the main circuit 22 and the drive control circuit 23. is there.
  • the internal switching power supply 24 is also called a switching type DC regulated power supply.
  • the internal switching power supply 24 includes a primary winding 26, a plurality of secondary windings 27 and 28, a switching element 29, a driver circuit 30, and the like.
  • the primary winding 26 and the plurality of secondary windings 27 and 28 form a transformer.
  • the primary winding 26 is electrically connected to the low voltage battery 7.
  • one secondary winding 27 is electrically connected to the main circuit 22.
  • the other secondary winding 28 is electrically connected to the drive control circuit 23.
  • the switching element 29 is a semiconductor switching element for repeatedly turning on / off the electric power flowing through the primary winding 26 at high speed.
  • the driver circuit 30 is a circuit for driving the switching element 29.
  • the driver circuit 30 compares the output voltage of the secondary windings 27 and 28 with the reference voltage, and controls the duty ratio for driving the switching element 29 on and off.
  • the communication control circuit 25 is a circuit that communicates with the charge control device 9 and the drive control circuit 23 and instructs the drive and stop of the internal switching power supply 24.
  • the communication control circuit 25 controls the drive of the driver circuit 30.
  • the communication control circuit 25 is driven by electric power supplied from a power source different from that of the internal switching power supply 24.
  • the communication control circuit 25 is driven by the electric power supplied from the low voltage battery 7 without passing through the internal switching power supply 24.
  • the communication control circuit 25 instructs the driver circuit 30 to drive the driver circuit 30
  • a signal for driving the switching element 29 on / off is output from the driver circuit 30.
  • the switching element 29 is driven on and off according to the output signal of the driver circuit 30, the power supplied from the low-voltage battery 7 is converted into a voltage driven by the main circuit 22 and a voltage driven by the drive control circuit 23 by the transformer. To. Then, power is supplied from the internal switching power supply 24 to the main circuit 22 and the drive control circuit 23.
  • the drive control circuit 23 described above acquires the detected values related to the temperature and power consumption of the load 21, the information is transmitted to the communication control circuit 25.
  • the communication control circuit 25 transmits the information to an external electronic control device such as the charge control device 9.
  • the above-mentioned high-voltage auxiliary machine 1 (for example, high-voltage heater 20) and the charge control device 9 constitute a high-voltage auxiliary machine control system.
  • the high-voltage auxiliary equipment control system is configured to suppress the outflow of noise from the high-voltage auxiliary equipment 1 to the quick charging equipment 3 at the time of quick charging of the high-voltage battery 6.
  • step S10 the charge control device 9 determines whether or not the charging connector is connected, that is, whether or not the vehicle connector 4 of the electric vehicle 2 and the external connector 10 of the quick charging facility 3 are connected.
  • step S30 the charge control device 9 shifts the process to step S30.
  • step S30 the charge control device 9 outputs a mode switching flag for transitioning the high voltage heater 20 to the sleep mode to the communication control circuit 25 of the high voltage heater 20.
  • the communication control circuit 25 receives the mode switching flag, the communication control circuit 25 transmits the information to the drive control circuit 23. Then, the communication control circuit 25 shifts the high voltage heater 20 to the sleep mode.
  • the sleep mode is a state in which the power consumption of the high voltage heater 20 is small. Specifically, the power supply from the internal switching power supply 24 to the main circuit 22 and the drive control circuit 23 is stopped, and communication control is performed. The state in which the circuit 25 is activated.
  • step S40 the communication control circuit 25 of the high voltage heater 20 stops driving the internal switching power supply 24. Specifically, the communication control circuit 25 stops the output of the drive signal from the driver circuit 30 to the switching element 29. As a result, the switching element 29 stops the on / off drive. Therefore, the power supply from the internal switching power supply 24 to the main circuit 22 and the drive control circuit 23 is stopped. Since the internal switching power supply 24 stops driving, noise generated by driving the internal switching power supply 24 is eliminated.
  • step S50 the charge control device 9 connects the quick charge relay 12.
  • the main power supply control device 8 connects the system main relay 11.
  • the vehicle connector 4 and the high-voltage battery 6 are electrically connected via the power supply line 5.
  • step S60 the quick charging equipment 3 quickly charges the high voltage battery 6.
  • the charge control device 9 communicates with the quick charging equipment 3 to control the charging state from the quick charging equipment 3 to the high voltage battery 6.
  • step S70 the charge control device 9 determines whether or not the charging of the high voltage battery 6 is completed.
  • the process proceeds to step S80.
  • step S80 the charge control device 9 shuts off the quick charge relay 12. As a result, the electrical connection between the vehicle connector 4 and the power supply line 5 is cut off. Then, the process proceeds to step S10 again. Then, the processes of steps S10 and S20 described above are performed again.
  • step S20 When it is detected in step S20 that the charging connector is disconnected, the electric control device shifts the process to step S90.
  • step S90 the charge control device 9 releases the mode switching flag described above with respect to the communication control circuit 25 of the high voltage heater 20. Upon receiving the release of the mode switching flag, the communication control circuit 25 releases the high voltage heater 20 from the sleep mode.
  • step S100 the communication control circuit 25 drives the internal switching power supply 24. Specifically, the communication control circuit 25 causes the driver circuit 30 to output a drive signal to the switching element 29. As a result, the switching element 29 restarts the on / off drive. Therefore, power is supplied from the internal switching power supply 24 to the main circuit 22 and the drive control circuit 23, and the high voltage heater 20 shifts to the start mode. After that, the process proceeds to step S10 again, and the above-mentioned process is repeated.
  • FIG. 3 shows an example of noise generation in the high-voltage auxiliary machine 1 in a state where the internal switching power supply 24 of the high-voltage auxiliary machine 1 is driven and the power supply from the main circuit 22 to the load 21 is stopped. It is a thing.
  • FIG. 4 shows an example of noise generation of the high-voltage auxiliary machine 1 in a state where the internal switching power supply 24 of the high-voltage auxiliary machine 1 is stopped (that is, in sleep mode). Note that FIGS. 3 and 4 are fast Fourier transforms of noise measured for a predetermined time, and the horizontal axis shows the frequency and the vertical axis shows the noise level.
  • the switching element 29 of the internal switching power supply 24 is driven.
  • a plurality of harmonics are generated with the frequency as the fundamental wave.
  • the noise levels of the plurality of harmonics exceed a predetermined threshold value Th.
  • the predetermined threshold value Th corresponds to an international standard or a standard line of a vehicle manufacturer or the like.
  • the noise generated from the high voltage auxiliary machine 1 is extremely small.
  • the noise generated from the high voltage auxiliary machine 1 has an extremely small value with respect to a predetermined threshold value Th. From this, it can be read that noise can be reliably reduced by stopping the internal switching power supply 24 of the high voltage auxiliary machine 1.
  • the high-voltage auxiliary machine 1 and the high-voltage auxiliary machine control system of the present embodiment described above have the following effects.
  • the high-voltage auxiliary machine 1 of the present embodiment is configured so that the internal switching power supply 24 stops operating when the external connector 10 of the quick charging facility 3 and the vehicle connector 4 are connected. According to this, when the high-voltage battery 6 is charged, the internal switching power supply 24 stops operating. Therefore, it is possible to prevent noise caused by the operation of the internal switching power supply 24 from flowing out to the quick charging facility 3 via the main circuit 22, the auxiliary wiring 16, the power supply line 5, the vehicle connector 4, and the external connector 10. .. Therefore, the high-voltage auxiliary machine 1 can suppress the outflow of noise to the quick charging facility 3 with a simpler configuration without increasing the physique, the weight, and the manufacturing cost.
  • the high-voltage auxiliary machine 1 of the present embodiment has a communication control circuit 25 that communicates with the outside and controls the operation of the internal switching power supply 24.
  • the communication control circuit 25 is driven by a power source different from the internal switching power supply 24 (for example, the electric power supplied from the low voltage battery 7).
  • the communication control circuit 25 stops the operation of the internal switching power supply 24 when the connection of the charging connector is detected. Further, the communication control circuit 25 operates the internal switching power supply 24 when it is detected that the charging connector is disconnected. According to this, even if the operation of the internal switching power supply 24 is stopped when the high voltage battery 6 is charged, the communication control circuit 25 can be continuously activated to communicate with the outside. Therefore, when the charging of the high-voltage battery 6 is completed, the internal switching power supply 24 can be operated by the communication control circuit 25.
  • the high-voltage auxiliary machine 1 of the present embodiment enters the sleep mode when the external connector 10 of the quick charging facility 3 and the vehicle connector 4 are connected.
  • the start mode is set. According to this, when the high voltage battery 6 is charged, the operation of the internal switching power supply 24 can be stopped by entering the sleep mode.
  • the high-voltage auxiliary equipment control system of the present embodiment includes the high-voltage auxiliary equipment 1 and the charge control device 9.
  • the charging control device 9 When the connection of the charging connector is detected, the charging control device 9 outputs a mode switching flag to the communication control circuit 25 of the high voltage auxiliary machine 1.
  • the mode switching flag is a signal for stopping the operation of the internal switching power supply 24 and putting the high voltage auxiliary machine 1 into the sleep mode. According to this, when the high voltage battery 6 is charged, the operation of the internal switching power supply 24 is stopped by the mode switching flag output from the charge control device 9. Therefore, the high voltage auxiliary machine 1 is in the sleep mode. Therefore, it is possible to prevent noise caused by the operation of the internal switching power supply 24 from flowing out to the quick charging facility 3.
  • the second embodiment will be described.
  • the second embodiment is different from the first embodiment because a part of the configuration of the high voltage auxiliary machine 1 is changed from the first embodiment and the other parts are the same as those of the first embodiment. Will be described only.
  • the primary winding 26 constituting the transformer of the internal switching power supply 24 is electrically connected to the high voltage battery 6. It is connected.
  • the internal switching power supply 24 can transform the electric power supplied from the high-voltage battery 6 to generate the electric power driven by the main circuit 22 and the drive control circuit 23. Therefore, even with the configuration of the second embodiment, the same effects as those of the first embodiment can be obtained.
  • the third embodiment is a modification of a part of the configuration of the high voltage auxiliary machine 1 with respect to the first embodiment and the like, and the other parts are the same as those of the first embodiment and the like. Only the parts that differ from the above will be described.
  • the high-voltage heater 20 as the high-voltage auxiliary machine 1 can block the drive signal output from the driver circuit 30 of the internal switching power supply 24 to the switching element 29. It has a signal cutoff switch 32. One end of the signal cutoff switch 32 is electrically connected to a signal line 31 that electrically connects the switching element 29 and the driver circuit 30. The other end of the signal cutoff switch 32 is electrically connected to the ground. By turning on the signal cutoff switch 32, the drive signal output from the driver circuit 30 to the switching element 29 is cut off. On the other hand, by turning off the signal cutoff switch 32, it is allowed that the drive signal is output from the driver circuit 30 to the switching element 29.
  • the charge control device 9 outputs a signal for turning on the signal cutoff switch 32 when the connection of the charge connector is detected.
  • the drive signal output from the driver circuit 30 to the switching element 29 is cut off, so that the internal switching power supply 24 stops operating. Therefore, it is possible to suppress the outflow of noise to the quick charging facility 3 when the high voltage battery 6 is charged.
  • the charging control device 9 when it is detected that the charging connector is disconnected, the charging control device 9 outputs a signal for turning off the signal cutoff switch 32. As a result, a drive signal is output from the driver circuit 30 to the switching element 29, and the internal switching power supply 24 resumes operation. Even with the configuration of the third embodiment described above, the same effects as those of the first embodiment can be obtained.
  • the fourth embodiment is a modification of a part of the configuration of the high voltage auxiliary machine 1 with respect to the third embodiment and the like, and the other parts are the same as those of the third embodiment and the like. Only the parts that differ from the above will be described.
  • the high-voltage heater 20 as the high-voltage auxiliary machine 1 of the fourth embodiment is also driven to be output to the switching element 29 from the driver circuit 30 of the internal switching power supply 24 as in the third embodiment. It has a signal blocking switch 32 capable of blocking the signal.
  • the charge control device 9 transmits a signal for turning on the signal cutoff switch 32 of the high voltage heater 20 to the communication control circuit 25 of the high voltage heater 20. Output.
  • the communication control circuit 25 turns on the signal cutoff switch 32.
  • the charge control device 9 transmits a signal for turning off the signal cutoff switch 32 of the high voltage heater 20 to the communication control circuit 25 of the high voltage heater 20. Output.
  • the communication control circuit 25 receives the signal, the communication control circuit 25 turns off the signal cutoff switch 32.
  • a drive signal is output from the driver circuit 30 to the switching element 29, and the internal switching power supply 24 resumes operation.
  • Each control circuit, each control device and its method described in the above-described embodiment is provided by configuring a processor and a memory programmed to perform one or more functions embodied by a computer program. It may be realized by a dedicated computer. Alternatively, each control circuit, each control device, and a method thereof described in the above-described embodiment may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, each control circuit, each control device, and a method thereof described in the above-described embodiment is composed of a processor and a memory programmed to perform one or a plurality of functions and one or more hardware logic circuits. It may be realized by one or more dedicated computers configured in combination with a processor. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • the high-voltage auxiliary machine 1 has been described by taking the high-voltage heater 20 as an example, but the high-voltage auxiliary machine 1 is not limited to this, and may be a device that is driven by being supplied with electric power from the high-voltage battery 6. Just do it.
  • the high voltage auxiliary machine 1 may be an electric compressor 13, a DC / DC converter 14, an external power supply device 15, or the like.
  • the high-voltage auxiliary machine to be driven by being supplied with electric power from the high-voltage battery mounted on the electric vehicle is a main circuit, a drive control circuit. And equipped with an internal switching power supply.
  • the main circuit switches the electrical connection and disconnection between the high voltage battery and the load.
  • the drive control circuit controls the drive of the main circuit.
  • the internal switching power supply converts the electric power supplied from the low-voltage battery or the high-voltage battery mounted on the electric vehicle into the voltage driven by the main circuit and the drive control circuit, and supplies the electric power to the main circuit and the drive control circuit.
  • the high-voltage auxiliary machine is configured so that the internal switching power supply stops operating when the vehicle connector that is electrically connected to the high-voltage battery via the power supply line and the external connector of the quick charging equipment are connected. Has been done.
  • the high voltage auxiliary machine further includes a communication control circuit that is driven by a power supply different from the internal switching power supply, communicates with the outside, and controls the operation of the internal switching power supply.
  • This communication control circuit stops the operation of the internal switching power supply when the connection between the external connector of the quick charging equipment and the vehicle connector is detected. Further, the communication control circuit operates the internal switching power supply when it is detected that the connection between the external connector of the quick charging facility and the vehicle connector is disconnected. According to this, even if the operation of the internal switching power supply is stopped when the high voltage battery is charged, the communication control circuit can be continuously activated to communicate with the outside. Therefore, when the charging of the high-voltage battery is completed, the internal switching power supply can be operated by the communication control circuit.
  • the power supply from the internal switching power supply to the main circuit and the drive control circuit is stopped, and the communication control circuit is started. It goes into sleep mode, which is a state.
  • the connection between the external connector of the quick charging equipment and the vehicle connector is disconnected, power is supplied from the internal switching power supply to the main circuit and the drive control circuit, and the start mode is set in which the communication control circuit is activated. .. According to this, when the high-voltage battery is charged, the high-voltage auxiliary machine goes into sleep mode, and the operation of the internal switching power supply can be stopped.
  • the fourth aspect it relates to a high voltage auxiliary equipment control system mounted on an electric vehicle.
  • the high voltage auxiliary control system is installed in an electric vehicle equipped with a vehicle connector, a high voltage battery, and a low voltage battery.
  • the vehicle connector is to which an external connector of the quick charging equipment is connected.
  • the high voltage battery stores electric power supplied from the vehicle connector via the power supply line.
  • a low voltage battery stores electric power having a lower voltage than a high voltage battery.
  • the high-voltage auxiliary equipment control system includes the high-voltage auxiliary equipment described in the first aspect and the charge control device.
  • the charge control device When the connection between the external connector of the quick charging equipment and the vehicle connector is detected, the charge control device sends a high voltage signal (that is, a mode switching flag) for stopping the operation of the internal switching power supply of the high voltage auxiliary machine. Output to auxiliary equipment.
  • a high voltage signal that is, a mode switching flag
  • the high voltage auxiliary machine includes a communication control circuit that is driven by a power supply different from the internal switching power supply, communicates with the outside, and controls the operation of the internal switching power supply.
  • the charge control device When the connection between the external connector of the quick charging equipment and the vehicle connector is detected, the charge control device outputs a signal for stopping the operation of the internal switching power supply to the communication control circuit of the high voltage auxiliary machine.
  • the charge control device outputs a signal for operating the internal switching power supply to the communication control circuit of the high voltage auxiliary machine when it is detected that the connection between the external connector of the quick charging facility and the vehicle connector is disconnected. To do. According to this, when the high voltage battery is charged, the internal switching power supply is stopped by the output signal of the charge control device. Therefore, the high-voltage auxiliary machine goes into sleep mode. Therefore, it is possible to prevent noise caused by the operation of the internal switching power supply from flowing out to the quick charging facility.
  • the internal switching power supply included in the high voltage auxiliary machine includes a primary winding, a plurality of secondary windings, a switching element, a driver circuit, a signal line, and a signal cutoff switch.
  • the primary winding is electrically connected to a high or low voltage battery.
  • the plurality of secondary windings form a transformer together with the primary windings, and are electrically connected to the main circuit and the drive control circuit, respectively.
  • the switching element turns on and off the electric power flowing through the primary winding at high speed.
  • the driver circuit drives the switching element.
  • the signal line electrically connects the switching element and the driver circuit.
  • One end of the signal cutoff switch is electrically connected to the signal line and the other end is electrically connected to the ground.
  • the internal switching power supply is configured to block the drive signal output from the driver circuit to the switching element by turning on the signal cutoff switch when the external connector of the quick charging equipment and the vehicle connector are connected. ing.
  • the internal switching power supply allows the driver circuit to output a drive signal to the switching element by turning off the signal cutoff switch when the connection between the external connector of the quick charging equipment and the vehicle connector is disconnected. It is configured in. According to this, when the high-voltage battery is charged, the drive signal output from the driver circuit to the switching element is cut off, so that the internal switching power supply stops operating. On the other hand, when the charging of the high-voltage battery is completed, a drive signal is output from the driver circuit to the switching element, so that the internal switching power supply operates.
  • the charge control device when the connection between the external connector of the quick charging facility and the vehicle connector is detected, the charge control device outputs a signal for turning on the signal cutoff switch included in the high voltage auxiliary machine. On the other hand, when it is detected that the connection between the external connector of the quick charging facility and the vehicle connector is disconnected, the charge control device outputs a signal for turning off the signal cutoff switch of the high voltage auxiliary machine. According to this, when the high-voltage battery is charged, the drive signal output from the driver circuit to the switching element is cut off, so that the internal switching power supply stops operating. On the other hand, when the charging of the high-voltage battery is completed, a drive signal is output from the driver circuit to the switching element, so that the internal switching power supply operates.
  • the high voltage auxiliary machine is at least one of a high voltage heater, an electric compressor, a DC / DC converter, or an external power feeder. These are exemplified as high voltage auxiliary machines.

Abstract

高電圧補機は、主回路(22)、駆動制御回路(23)および内部スイッチング電源(24)を備える。主回路(22)は、高電圧バッテリ(6)と負荷(21)との電気的な接続および遮断を切り替える。駆動制御回路(23)は、主回路(22)の駆動を制御する。内部スイッチング電源(24)は、電動車両(2)に搭載される低電圧バッテリ(7)または高電圧バッテリ(6)から供給される電力を主回路(22)および駆動制御回路(23)が駆動する電圧に変換し、主回路(22)および駆動制御回路(23)に電力を供給する。そして、この高電圧補機は、高電圧バッテリ(6)に電源ライン(5)を介して電気的に接続する車両コネクタ(4)と急速充電設備(3)の外部コネクタ(10)とが接続された場合、内部スイッチング電源(24)が動作を停止するように構成されている。

Description

高電圧補機および高電圧補機制御システム 関連出願への相互参照
 本出願は、2019年3月14日に出願された日本特許出願番号2019-47354号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、電動車両に搭載される高電圧補機、および、その高電圧補機の駆動を制御する高電圧補機制御システムに関するものである。
 従来、車外に設置される急速充電設備(以下、単に「急速充電設備」という)により急速充電を行うことが可能な電動車両が知られている。電動車両は、高電圧を蓄電する高電圧バッテリ、その高電圧バッテリから供給される電力により駆動する主機(すなわち、走行用モータ)および種々の高電圧補機などを搭載している。
 特許文献1に記載の電動車両は、急速充電設備の外部コネクタが接続される車両コネクタと高電圧バッテリとを接続するバッテリ回路に第1遮断器を設置し、高電圧バッテリと所定の高電圧補機とを接続する機器回路に第2遮断器を設置した構成である。この電動車両は、急速充電設備から高電圧バッテリに充電が行われる際に第1遮断器をオンし、第2遮断器をオフする。これにより、高電圧バッテリの充電時に、高電圧補機が発生するノイズが電源ライン、車両コネクタ、外部コネクタなどを経由して急速充電設備に流出することを防いでいる。
特開2017-11904号公報
 上述した特許文献1に記載の電動車両は、高電圧バッテリと所定の高電圧補機とを接続する機器回路に第2遮断器を設置しているので、体格の大型化、重量の増加、製造コストの増加を招くといった問題がある。また、その遮断器を保護するために遮断器の開閉時の突入電流を抑制する手段や、アーク放電を抑制する手段が必要となり、構成が複雑になるといった問題がある。そのため、高電圧バッテリと高電圧補機とを接続する機器回路に遮断器を設置することなく、より簡素な構成で、高電圧補機から発生するノイズが急速充電設備に流出することを防ぐことが望ましい。
 その方法として、電動車両に適用される高電圧補機は、高電圧バッテリの充電中に必ずしも作動することを求められないため、高電圧補機の負荷への通電を停止することが考えられる。
 しかしながら、電動車両に搭載される高電圧補機の多くは、内部スイッチング電源を有している。内部スイッチング電源は、高電圧バッテリまたは低電圧バッテリから供給される電力を変圧し、自身の有するマイコン、センサ、ドライバIC等へ電力を供給するものである。そして、一般に、その内部スイッチング電源は、高電圧バッテリまたは低電圧バッテリから電力が供給されると自動的に起動する構成とされている。そのため、高電圧バッテリの充電時に内部スイッチング電源が駆動し、そこから発生するノイズが機器回路、バッテリ回路、車両コネクタ、外部コネクタなどを経由して急速充電設備に流出すると、急速充電設備の電源系統に不具合を発生させるおそれがある。これを防ぐため、EMC(electromagnetic compatibilityの略)対策部品を追加すれば、電気回路の構成が複雑になり、体格の大型化、重量の増加、製造コストの増加を招くことになる。
 本開示は、急速充電設備に対するノイズの流出を簡素な構成で抑制することの可能な高電圧補機および高電圧補機制御システムを提供することを目的とする。
 本開示の1つの観点によれば、電動車両(2)に搭載される高電圧バッテリ(6)から電力を供給されて駆動する高電圧補機に関するものである。高電圧補機は、主回路(22)、駆動制御回路(23)および内部スイッチング電源(24)を備える。主回路は、高電圧バッテリと負荷(21)との電気的な接続および遮断を切り替える。駆動制御回路は、主回路の駆動を制御する。内部スイッチング電源は、電動車両に搭載される低電圧バッテリ(7)または高電圧バッテリから供給される電力を主回路および駆動制御回路が駆動する電圧に変換し、主回路および駆動制御回路に電力を供給する。そして、この高電圧補機は、高電圧バッテリに電源ライン(5)を介して電気的に接続する車両コネクタ(4)と急速充電設備(3)の外部コネクタ(10)とが接続された場合、内部スイッチング電源が動作を停止するように構成されている。
 これによれば、高電圧バッテリの充電時、内部スイッチング電源が動作を停止するので、内部スイッチング電源の動作に起因するノイズが、主回路、電源ライン、車両コネクタおよび外部コネクタを経由して急速充電設備に流出することが防がれる。したがって、この高電圧補機は、体格の大型化、重量の増加、製造コストを増加することなく、より簡素な構成で、急速充電設備にノイズが流出することを抑制することができる。
 また、別の観点によれば、電動車両(2)に搭載される高電圧補機制御システムに関するものである。高電圧補機制御システムは、車外に設置される急速充電設備(3)の外部コネクタ(10)が接続される車両コネクタ(4)、その車両コネクタから電源ライン(5)を介して供給される電力を蓄電する高電圧バッテリ(6)、および、高電圧バッテリよりも低電圧の電力を蓄電する低電圧バッテリ(7)を備える電動車両に搭載される。高電圧補機制御システムは、本開示の1つの観点に記載した高電圧補機、および、充電制御装置(9)を備える。充電制御装置は、急速充電設備の外部コネクタと車両コネクタとの接続が検出された場合、高電圧補機が有する内部スイッチング電源の動作を停止するための信号を高電圧補機に出力する。
 これによれば、高電圧バッテリの充電時、充電制御装置から高電圧補機に出力される信号により、内部スイッチング電源が動作を停止する。そのため、内部スイッチング電源の動作に起因するノイズが急速充電設備に流出することを防ぐことができる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態に係る高電圧補機および高電圧補機制御システムが搭載される電動車両の電気回路図である。 高電圧補機制御システムの動作を説明するためのフローチャートである。 内部スイッチング電源の駆動時のノイズ発生例を示す実験結果である。 内部スイッチング電源の停止時のノイズ発生例を示す実験結果である。 第2実施形態に係る高電圧補機および高電圧補機制御システムが搭載される電動車両の電気回路図である。 第3実施形態に係る高電圧補機および高電圧補機制御システムが搭載される電動車両の電気回路図である。 第4実施形態に係る高電圧補機および高電圧補機制御システムが搭載される電動車両の電気回路図である。
 以下、本開示の複数の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。
 (第1実施形態)
 第1実施形態について図面を参照しつつ説明する。図1に示すように、本実施形態の高電圧補機1は、電動車両2に搭載されるものである。この電動車両2は、車外に設置される急速充電設備3による急速充電が可能に構成されている。
 まず、本実施形態の高電圧補機1が搭載される電動車両2について説明する。
 電動車両2は、車両コネクタ4、電源ライン5、高電圧バッテリ6、低電圧バッテリ7、メイン電源制御装置8、充電制御装置9および複数の高電圧補機1などを備えている。
 車両コネクタ4は、急速充電設備3の外部コネクタ10が着脱可能に構成されている。
 高電圧バッテリ6は、車両コネクタ4から電源ライン5を介して供給される電力を蓄電する電源装置である。高電圧バッテリ6は、例えば、リチウムイオン二次電池により構成される。
 低電圧バッテリ7は、高電圧バッテリ6よりも低電圧の電力を蓄電する電源装置である。低電圧バッテリ7は、高電圧バッテリ6からDC/DCコンバータ14により電圧変換された電力を蓄電する。
 車両コネクタ4と高電圧バッテリ6とは、電源ライン5により電気的に接続される。この電源ライン5には、システムメインリレー11および急速充電リレー12が設けられている。
 システムメインリレー11は、高電圧バッテリ6と電源ライン5との電気的な接続状態と遮断状態とを切り替える。システムメインリレー11の動作は、メイン電源制御装置8により制御される。
 メイン電源制御装置8の制御信号によりシステムメインリレー11が接続状態となると、高電圧バッテリ6から電源ライン5および各補機配線16~19を介して複数の高電圧補機1に電力が供給される。なお、高電圧補機1として、高電圧ヒータ20、電動コンプレッサ13、DC/DCコンバータ14、外部給電機15などが例示される。
 急速充電リレー12は、車両コネクタ4と電源ライン5との電気的な接続状態と遮断状態とを切り替える。急速充電リレー12の動作は、充電制御装置9により制御される。
 充電制御装置9は、急速充電設備3の外部コネクタ10と車両コネクタ4との接続(以下、「充電コネクタの接続」という)が検出されると、急速充電設備3と通信を行いつつ、急速充電設備3から高電圧バッテリ6への充電状態を制御する。具体的には、充電制御装置9は、充電コネクタの接続が検出されると、急速充電リレー12を接続状態とし、且つ、その情報をメイン電源制御装置8に伝送する。メイン電源制御装置8は、充電制御装置9からその情報を受信すると、システムメインリレー11を接続状態とする。これにより、車両コネクタ4と高電圧バッテリ6とが電源ライン5を介して電気的に接続される。この状態で、急速充電設備3から高電圧バッテリ6に対し急速充電を行うことが可能となる。
 高電圧補機1は、高電圧バッテリ6から電力を供給されて駆動する装置である。本実施形態では、高電圧補機1について、高電圧ヒータ20を例として説明する。高電圧ヒータ20は、例えば、図示しない車室内空調装置が生成する空調風の加熱、または、高電圧バッテリ6の暖機などに用いられる。
 高電圧ヒータ20は、負荷21、主回路22、駆動制御回路23、内部スイッチング電源24および通信制御回路25などを備えている。高電圧ヒータ20の負荷21は、例えば電熱線である。主回路22、駆動制御回路23、内部スイッチング電源24および通信制御回路25は、単一の基板に形成されていてもよく、または、複数の基板に形成されていてもよい。
 主回路22は、高電圧バッテリ6と負荷21との電気的な接続および遮断を切り替えるための電子制御回路である。主回路22は、補機配線16と負荷21とを電気的に接続する回路の途中に、図示しない高電圧スイッチング素子を有している。高電圧スイッチング素子として、例えば、IGBT(Insulated Gate Bipolar Transistorの略)が用いられる。高電圧スイッチング素子がオンすると、補機配線16と負荷21とが電気的に接続され、高電圧バッテリ6から電源ライン5および補機配線16を経由して負荷21に電流が流れる。高電圧スイッチング素子がオフすると、補機配線16と負荷21との電気的接続が遮断される。
 駆動制御回路23は、マイコン、センサなどから構成される電子制御回路である。駆動制御回路23は、主回路22の制御を担当する。駆動制御回路23は、負荷21の温度および消費電力などに関する検出値を取得する。そして、駆動制御回路23は、負荷21としての電熱線に要求される熱量などに応じて、主回路22の有する高電圧スイッチング素子の駆動を制御する。
 内部スイッチング電源24は、低電圧バッテリ7から供給される電力を主回路22および駆動制御回路23が駆動する電圧に変換し、主回路22および駆動制御回路23に電力を供給するための電源装置である。内部スイッチング電源24は、スイッチング方式直流安定化電源とも呼ばれる。
 内部スイッチング電源24は、1次巻線26、複数の2次巻線27、28、スイッチング素子29およびドライバ回路30などを備えている。
 1次巻線26と複数の2次巻線27、28は、トランスを構成している。1次巻線26は、低電圧バッテリ7に電気的に接続されている。複数の2次巻線のうち、一方の2次巻線27は、主回路22に電気的に接続されている。複数の2次巻線のうち、他方の2次巻線28は、駆動制御回路23に電気的に接続されている。
 スイッチング素子29は、1次巻線26に流れる電力を高速で繰り返しオンオフするための半導体スイッチング素子である。
 ドライバ回路30は、スイッチング素子29を駆動するための回路である。ドライバ回路30は、2次巻線27、28の出力電圧と基準電圧とを比較し、スイッチング素子29がオンオフ駆動するデューティ比を制御する。
 通信制御回路25は、充電制御装置9および駆動制御回路23と通信を行うと共に、内部スイッチング電源24の駆動および停止を指示する回路である。通信制御回路25は、ドライバ回路30の駆動を制御する。通信制御回路25は、内部スイッチング電源24とは異なる電源から供給される電力により駆動する。例えば、通信制御回路25は、低電圧バッテリ7から内部スイッチング電源24を経由することなく供給される電力により駆動する。
 通信制御回路25がドライバ回路30に対して駆動を指示すると、ドライバ回路30からスイッチング素子29をオンオフ駆動させるための信号が出力する。ドライバ回路30の出力信号に応じてスイッチング素子29がオンオフ駆動すると、低電圧バッテリ7から供給される電力がトランスにより主回路22が駆動する電圧と駆動制御回路23が駆動する電圧にそれぞれ電圧変換される。そして、内部スイッチング電源24から主回路22と駆動制御回路23に電力が供給される。
 また、上述した駆動制御回路23は、負荷21の温度および消費電力などに関する検出値を取得すると、その情報を通信制御回路25に伝送する。通信制御回路25は、それらの情報を、充電制御装置9などの外部の電子制御装置に伝送する。
 上述した高電圧補機1(例えば高電圧ヒータ20)と充電制御装置9とは、高電圧補機制御システムを構成する。高電圧補機制御システムは、高電圧バッテリ6の急速充電時に、高電圧補機1から急速充電設備3へのノイズの流出を抑制するように構成されたものである。
 上述した高電圧補機制御システムが実行する制御処理を図2のフローチャートを参照して説明する。
 この処理が開始されると、ステップS10で充電制御装置9は、充電コネクタの接続に関する情報を取得する。
 次に、ステップS20で充電制御装置9は、充電コネクタの接続の有無、すなわち、電動車両2の車両コネクタ4と急速充電設備3の外部コネクタ10とが接続されているか否かを判定する。充電制御装置9は、充電コネクタの接続が検出された場合、処理をステップS30に移行する。
 ステップS30で充電制御装置9は、高電圧ヒータ20の通信制御回路25に対し、高電圧ヒータ20をスリープモードに遷移させるためのモード切り替えフラグを出力する。通信制御回路25は、モード切り替えフラグを受信すると、その情報を駆動制御回路23に伝送する。そして、通信制御回路25は、高電圧ヒータ20をスリープモードに遷移する。ここで、スリープモードとは、高電圧ヒータ20の電力消費量が少ない状態であり、具体的には、内部スイッチング電源24から主回路22と駆動制御回路23への電力供給が停止し、通信制御回路25が起動している状態をいう。
 続いて、ステップS40で高電圧ヒータ20の通信制御回路25は、内部スイッチング電源24の駆動を停止する。具体的には、通信制御回路25は、ドライバ回路30からスイッチング素子29への駆動信号の出力を停止させる。これにより、スイッチング素子29がオンオフ駆動を停止する。したがって、内部スイッチング電源24から主回路22と駆動制御回路23への電力供給が停止する。なお、内部スイッチング電源24が駆動を停止するので、内部スイッチング電源24の駆動に起因するノイズの発生が無くなる。
 続いて、ステップS50で充電制御装置9は、急速充電リレー12を接続状態とする。なお、このとき、メイン電源制御装置8はシステムメインリレー11を接続状態とする。これにより、車両コネクタ4と高電圧バッテリ6とが電源ライン5を介して電気的に接続される。
 次に、ステップS60で、急速充電設備3から高電圧バッテリ6へ急速充電が行われる。その際、充電制御装置9は急速充電設備3と通信を行い、急速充電設備3から高電圧バッテリ6への充電状態を制御する。
 ステップS70で充電制御装置9は、高電圧バッテリ6の充電が完了したか否かを判定する。充電制御装置9は、高電圧バッテリ6の充電が完了したことを判定した場合、処理をステップS80に移行する。
 ステップS80で充電制御装置9は、急速充電リレー12を遮断状態とする。これにより、車両コネクタ4と電源ライン5との電気的接続が遮断される。
 そして、処理は、再びステップS10に移行する。そして再び上述したステップS10およびS20の処理が行われる。
 ステップS20で電制御装置は、充電コネクタの接続が外れたことが検出された場合、処理をステップS90に移行する。
 ステップS90で充電制御装置9は、高電圧ヒータ20の通信制御回路25に対し、上述したモード切り替えフラグを解除する。通信制御回路25は、モード切り替えフラグの解除を受信すると、高電圧ヒータ20をスリープモードから解除する。
 続いて、ステップS100で通信制御回路25は、内部スイッチング電源24を駆動する。具体的には、通信制御回路25は、ドライバ回路30からスイッチング素子29へ駆動信号を出力させる。これにより、スイッチング素子29がオンオフ駆動を再開する。したがって、内部スイッチング電源24から主回路22と駆動制御回路23へ電力が供給され、高電圧ヒータ20は起動モードに遷移する。
 その後、処理は、再びステップS10に移行し、上述した処理が繰り返し行われる。
 次に、本実施形態の高電圧補機1および高電圧補機制御システムによるノイズ低減効果について、図3および図4を参照して説明する。
 図3は、高電圧補機1の内部スイッチング電源24が駆動し、且つ、主回路22から負荷21への電力供給が停止している状態において、高電圧補機1のノイズ発生例を示したものである。
 これに対し、図4は、高電圧補機1の内部スイッチング電源24が停止している状態(すなわち、スリープモード)において、高電圧補機1のノイズ発生例を示したものである。
 なお、図3および図4は、所定の時間測定したノイズを高速フーリエ変換したものであり、横軸に周波数を示し、縦軸にノイズレベルを示している。
 図3に示すように、高電圧補機1の内部スイッチング電源24が駆動し、且つ、主回路22から負荷21への電力供給が停止している場合、内部スイッチング電源24のスイッチング素子29が駆動する周波数を基本波として、複数の高調波が発生している。図3では、その複数の高調波のノイズレベルが所定の閾値Thを超えている。なお、所定の閾値Thは、国際規格または車両メーカ等の規格ラインに相当する。
 これに対し、図4に示すように、高電圧補機1の内部スイッチング電源24が停止している場合、高電圧補機1から発生するノイズは極めて小さいものとなっている。図4では、高電圧補機1から発生するノイズは、所定の閾値Thに対し極めて小さい値となっている。このことから、高電圧補機1の内部スイッチング電源24を停止することで、ノイズを確実に低減可能であることが読み取れる。
 以上説明した本実施形態の高電圧補機1および高電圧補機制御システムは、次の作用効果を奏するものである。
 (1)本実施形態の高電圧補機1は、急速充電設備3の外部コネクタ10と車両コネクタ4とが接続された場合、内部スイッチング電源24が動作を停止するように構成されている。
 これによれば、高電圧バッテリ6の充電時、内部スイッチング電源24が動作を停止する。そのため、内部スイッチング電源24の動作に起因するノイズが、主回路22、補機配線16、電源ライン5、車両コネクタ4および外部コネクタ10を経由して急速充電設備3に流出することが防がれる。したがって、この高電圧補機1は、体格の大型化、重量の増加、製造コストを増加することなく、より簡素な構成で、急速充電設備3にノイズが流出することを抑制することができる。
 (2)本実施形態の高電圧補機1は、外部との通信を行うと共に内部スイッチング電源24の動作を制御する通信制御回路25を有する。通信制御回路25は、内部スイッチング電源24とは異なる電源(例えば、低電圧バッテリ7から供給される電力)により駆動する。通信制御回路25は、充電コネクタの接続が検出された場合、内部スイッチング電源24の動作を停止する。また、通信制御回路25は、充電コネクタの接続が外れたことが検出された場合、内部スイッチング電源24を動作させる。
 これによれば、高電圧バッテリ6の充電時、内部スイッチング電源24の動作が停止した場合でも、通信制御回路25は継続して起動し、外部との通信を行うことが可能である。そのため、高電圧バッテリ6の充電が終了した際、通信制御回路25により内部スイッチング電源24を動作させることができる。
 (3)本実施形態の高電圧補機1は、急速充電設備3の外部コネクタ10と車両コネクタ4とが接続された場合、スリープモードとなる。一方、急速充電設備3の外部コネクタ10と車両コネクタ4との接続が外れた場合、起動モードとなる。
 これによれば、高電圧バッテリ6の充電時、スリープモードとなることで、内部スイッチング電源24の動作を停止することができる。
 (4)本実施形態の高電圧補機制御システムは、高電圧補機1と充電制御装置9を備える。充電制御装置9は、充電コネクタの接続が検出された場合、高電圧補機1の通信制御回路25に対しモード切り替えフラグを出力する。なお、モード切り替えフラグは、内部スイッチング電源24の動作を停止し、高電圧補機1をスリープモードにするための信号である。
 これによれば、高電圧バッテリ6の充電時、充電制御装置9から出力されるモード切り替えフラグにより、内部スイッチング電源24が動作を停止する。そのため、高電圧補機1はスリープモードとなる。したがって、内部スイッチング電源24の動作に起因するノイズが急速充電設備3に流出することを防ぐことができる。
 (第2実施形態)
 第2実施形態について説明する。第2実施形態は、第1実施形態に対して高電圧補機1の構成の一部を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図5に示すように、第2実施形態では、高電圧補機1としての高電圧ヒータ20は、内部スイッチング電源24のトランスを構成する1次巻線26が、高電圧バッテリ6に電気的に接続されている。この構成によっても、内部スイッチング電源24は、高電圧バッテリ6から供給される電力を変圧し、主回路22および駆動制御回路23が駆動する電力を生成することが可能である。したがって、第2実施形態の構成によっても、第1実施形態と同様の作用効果を奏することができる。
 (第3実施形態)
 第3実施形態について説明する。第3実施形態は、第1実施形態等に対して高電圧補機1の構成の一部を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
 図6に示すように、第3実施形態では、高電圧補機1としての高電圧ヒータ20は、内部スイッチング電源24のドライバ回路30からスイッチング素子29に出力される駆動信号を遮断することの可能な信号遮断スイッチ32を有している。信号遮断スイッチ32の一端は、スイッチング素子29とドライバ回路30とを電気的に接続する信号線31に電気的に接続されている。信号遮断スイッチ32の他端は、グランドに電気的に接続されている。
 この信号遮断スイッチ32をオンすることで、ドライバ回路30からスイッチング素子29に出力される駆動信号が遮断される。一方、この信号遮断スイッチ32をオフすることで、ドライバ回路30からスイッチング素子29に駆動信号が出力されることが許容される。
 第3実施形態では、充電制御装置9は、充電コネクタの接続が検出された場合、信号遮断スイッチ32をオンするための信号を出力する。これにより、高電圧バッテリ6の充電時、ドライバ回路30からスイッチング素子29に出力される駆動信号が遮断されるので、内部スイッチング電源24が動作を停止する。したがって、高電圧バッテリ6の充電時、急速充電設備3にノイズが流出することを抑制することができる。
 一方、充電制御装置9は、充電コネクタの接続が外れたことが検出された場合、信号遮断スイッチ32をオフするための信号を出力する。これにより、ドライバ回路30からスイッチング素子29に駆動信号が出力され、内部スイッチング電源24が動作を再開する。
 以上説明した第3実施形態の構成によっても、第1実施形態等と同様の作用効果を奏することができる。
 (第4実施形態)
 第4実施形態について説明する。第4実施形態は、第3実施形態等に対して高電圧補機1の構成の一部を変更したものであり、その他については第3実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
 図7に示すように、第4実施形態の高電圧補機1としての高電圧ヒータ20も、第3実施形態と同様に、内部スイッチング電源24のドライバ回路30からスイッチング素子29に出力される駆動信号を遮断することの可能な信号遮断スイッチ32を有している。
 第4実施形態では、充電制御装置9は、充電コネクタの接続が検出された場合、高電圧ヒータ20が有する信号遮断スイッチ32をオンするための信号を、高電圧ヒータ20の通信制御回路25に出力する。通信制御回路25は、その信号を受信すると、信号遮断スイッチ32をオンする。これにより、高電圧バッテリ6の充電時、ドライバ回路30からスイッチング素子29に出力される駆動信号が遮断されるので、内部スイッチング電源24が動作を停止する。したがって、高電圧バッテリ6の充電時、急速充電設備3にノイズが流出することを抑制することができる。
 一方、充電制御装置9は、充電コネクタの接続が外れたことが検出された場合、高電圧ヒータ20が有する信号遮断スイッチ32をオフするための信号を、高電圧ヒータ20の通信制御回路25に出力する。通信制御回路25は、その信号を受信すると、信号遮断スイッチ32をオフする。これにより、ドライバ回路30からスイッチング素子29に駆動信号が出力され、内部スイッチング電源24が動作を再開する。
 以上説明した第4実施形態の構成によっても、第1実施形態等と同様の作用効果を奏することができる。
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
 上記実施形態に記載した各制御回路、各制御装置およびその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーを構成することによって提供された専用コンピュータにより実現されてもよい。あるいは、上記実施形態に記載した各制御回路、各制御装置およびその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより実現されてもよい。もしくは、上記実施形態に記載した各制御回路、各制御装置およびその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 上記各実施形態では、高電圧補機1について、高電圧ヒータ20を例として説明したが、高電圧補機1はこれに限らず、高電圧バッテリ6から電力を供給されて駆動する装置であればよい。例えば、高電圧補機1は、電動コンプレッサ13、DC/DCコンバータ14、外部給電機15などであってもよい。
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、電動車両に搭載される高電圧バッテリから電力を供給されて駆動する高電圧補機は、主回路、駆動制御回路および内部スイッチング電源を備える。主回路は、高電圧バッテリと負荷との電気的な接続および遮断を切り替える。駆動制御回路は、主回路の駆動を制御する。内部スイッチング電源は、電動車両に搭載される低電圧バッテリまたは高電圧バッテリから供給される電力を主回路および駆動制御回路が駆動する電圧に変換し、主回路および駆動制御回路に電力を供給する。そして、この高電圧補機は、高電圧バッテリに電源ラインを介して電気的に接続する車両コネクタと急速充電設備の外部コネクタとが接続された場合、内部スイッチング電源が動作を停止するように構成されている。
 第2の観点によれば、高電圧補機は、内部スイッチング電源とは異なる電源により駆動し、外部との通信を行うと共に内部スイッチング電源の動作を制御する通信制御回路をさらに備える。この通信制御回路は、急速充電設備の外部コネクタと車両コネクタとの接続が検出された場合、内部スイッチング電源の動作を停止する。また、通信制御回路は、急速充電設備の外部コネクタと車両コネクタとの接続が外れたことが検出された場合、内部スイッチング電源を動作させる。
 これによれば、高電圧バッテリの充電時、内部スイッチング電源の動作が停止する場合でも、通信制御回路は継続して起動し、外部との通信を行うことが可能である。したがって、高電圧バッテリの充電が終了した際、通信制御回路により内部スイッチング電源を動作させることができる。
 第3の観点によれば、急速充電設備の外部コネクタと車両コネクタとが接続された場合、内部スイッチング電源から主回路と駆動制御回路への電力供給が停止し、通信制御回路が起動している状態であるスリープモードとなる。一方、急速充電設備の外部コネクタと車両コネクタとの接続が外れた場合、内部スイッチング電源から主回路と駆動制御回路へ電力が供給され、通信制御回路が起動している状態である起動モードとなる。
 これによれば、高電圧バッテリの充電時、高電圧補機はスリープモードとなり、内部スイッチング電源の動作を停止することができる。
 第4の観点によれば、電動車両に搭載される高電圧補機制御システムに関するものである。高電圧補機制御システムは、車両コネクタ、高電圧バッテリ、および、低電圧バッテリを備える電動車両に搭載される。車両コネクタは、急速充電設備の外部コネクタが接続されるものである。高電圧バッテリは、車両コネクタから電源ラインを介して供給される電力を蓄電するものである。低電圧バッテリは、高電圧バッテリよりも低電圧の電力を蓄電するものである。
 高電圧補機制御システムは、第1の観点に記載した高電圧補機、および、充電制御装置を備える。充電制御装置は、急速充電設備の外部コネクタと車両コネクタとの接続が検出された場合、高電圧補機が有する内部スイッチング電源の動作を停止するための信号(すなわち、モード切り替えフラグ)を高電圧補機に出力する。
 第5の観点によれば、高電圧補機は、内部スイッチング電源とは異なる電源により駆動し、外部との通信を行うと共に内部スイッチング電源の動作を制御する通信制御回路を備える。
 充電制御装置は、急速充電設備の外部コネクタと車両コネクタとの接続が検出された場合、高電圧補機の通信制御回路に対し内部スイッチング電源の動作を停止するための信号を出力する。
 一方、充電制御装置は、急速充電設備の外部コネクタと車両コネクタとの接続が外れたことが検出された場合、高電圧補機の通信制御回路に対し内部スイッチング電源を動作させるための信号を出力する。
 これによれば、高電圧バッテリの充電時、充電制御装置の出力信号により、内部スイッチング電源が動作を停止する。そのため、高電圧補機はスリープモードとなる。したがって、内部スイッチング電源の動作に起因するノイズが急速充電設備に流出することを防ぐことができる。
 第6の観点によれば、高電圧補機が有する内部スイッチング電源は、1次巻線、複数の2次巻線、スイッチング素子、ドライバ回路、信号線および信号遮断スイッチを備える。1次巻線は、高電圧バッテリまたは低電圧バッテリに電気的に接続される。複数の2次巻線は、1次巻線と共にトランスを構成し、主回路および駆動制御回路にそれぞれ電気的に接続される。スイッチング素子は、1次巻線に流れる電力を高速でオンオフする。ドライバ回路は、スイッチング素子を駆動する。信号線は、スイッチング素子とドライバ回路とを電気的に接続する。信号遮断スイッチは、一端が信号線に電気的に接続され、他端がグランドに電気的に接続される。そして、内部スイッチング電源は、急速充電設備の外部コネクタと車両コネクタとが接続された場合、信号遮断スイッチをオンすることで、ドライバ回路からスイッチング素子に出力される駆動信号を遮断するように構成されている。また、内部スイッチング電源は、急速充電設備の外部コネクタと車両コネクタとの接続が外れた場合、信号遮断スイッチをオフすることで、ドライバ回路からスイッチング素子に駆動信号が出力されることを許容するように構成されている。
 これによれば、高電圧バッテリの充電時、ドライバ回路からスイッチング素子に出力される駆動信号が遮断されるので、内部スイッチング電源が動作を停止する。一方、高電圧バッテリの充電が終了すると、ドライバ回路からスイッチング素子に駆動信号が出力されるので、内部スイッチング電源が動作する。
 第7の観点によれば、充電制御装置は、急速充電設備の外部コネクタと車両コネクタとの接続が検出された場合、高電圧補機が有する信号遮断スイッチをオンするための信号を出力する。一方、充電制御装置は、急速充電設備の外部コネクタと車両コネクタとの接続が外れたことが検出された場合、高電圧補機が有する信号遮断スイッチをオフするための信号を出力する。
 これによれば、高電圧バッテリの充電時、ドライバ回路からスイッチング素子に出力される駆動信号が遮断されるので、内部スイッチング電源が動作を停止する。一方、高電圧バッテリの充電が終了すると、ドライバ回路からスイッチング素子に駆動信号が出力されるので、内部スイッチング電源が動作する。
 第8の観点によれば、高電圧補機は、高電圧ヒータ、電動コンプレッサ、DC/DCコンバータ、または、外部給電機の少なくとも1つである。高電圧補機として、これらのものが例示される。

Claims (8)

  1.  電動車両(2)に搭載される高電圧バッテリ(6)から電力を供給されて駆動する高電圧補機において、
     前記高電圧バッテリと負荷(21)との電気的な接続および遮断を切り替える主回路(22)と、
     前記主回路の駆動を制御する駆動制御回路(23)と、
     前記電動車両に搭載される低電圧バッテリ(7)または前記高電圧バッテリから供給される電力を前記主回路および前記駆動制御回路が駆動する電圧に変換し、前記主回路および前記駆動制御回路に電力を供給する内部スイッチング電源(24)と、を備え、
     前記高電圧バッテリに電源ライン(5)を介して電気的に接続する車両コネクタ(4)と車外に設置される急速充電設備(3)の外部コネクタ(10)とが接続された場合、前記内部スイッチング電源が動作を停止するように構成されている、高電圧補機。
  2.  前記内部スイッチング電源とは異なる電源により駆動し、外部との通信を行うと共に前記内部スイッチング電源の動作を制御する通信制御回路(25)をさらに備え、
     前記通信制御回路は、
     前記急速充電設備の前記外部コネクタと前記車両コネクタとの接続が検出された場合、前記内部スイッチング電源の動作を停止し、
     前記急速充電設備の前記外部コネクタと前記車両コネクタとの接続が外れたことが検出された場合、前記内部スイッチング電源を動作させる、請求項1に記載の高電圧補機。
  3.  前記急速充電設備の前記外部コネクタと前記車両コネクタとが接続された場合、前記内部スイッチング電源から前記主回路と前記駆動制御回路への電力供給が停止し、前記通信制御回路が起動している状態であるスリープモードとなり、
     前記急速充電設備の前記外部コネクタと前記車両コネクタとの接続が外れた場合、前記内部スイッチング電源から前記主回路と前記駆動制御回路へ電力が供給され、前記通信制御回路が起動している状態である起動モードとなる、請求項2に記載の高電圧補機。
  4.  車外に設置される急速充電設備(3)の外部コネクタ(10)が接続される車両コネクタ(4)、前記車両コネクタから電源ライン(5)を介して供給される電力を蓄電する高電圧バッテリ(6)、および、前記高電圧バッテリよりも低電圧の電力を蓄電する低電圧バッテリ(7)を備える電動車両(2)に搭載される高電圧補機制御システムにおいて、
     前記高電圧バッテリと負荷(21)との電気的な接続および遮断を切り替える主回路(22)と、前記主回路の駆動を制御する駆動制御回路(23)と、前記低電圧バッテリまたは前記高電圧バッテリから供給される電力を前記主回路および前記駆動制御回路が駆動する電圧に変換し、前記主回路および前記駆動制御回路に電力を供給する内部スイッチング電源(24)とを有し、前記急速充電設備の前記外部コネクタと前記車両コネクタとが接続された場合、前記内部スイッチング電源が動作を停止するように構成されている高電圧補機(1)と、
     前記急速充電設備の前記外部コネクタと前記車両コネクタとの接続が検出された場合、前記高電圧補機が有する前記内部スイッチング電源の動作を停止するための信号を前記高電圧補機に出力する充電制御装置(9)と、を備える電圧補機制御システム。
  5.  前記高電圧補機は、前記内部スイッチング電源とは異なる電源により駆動し、外部との通信を行うと共に前記内部スイッチング電源の動作を制御する通信制御回路を備え、
     前記充電制御装置は、
     前記急速充電設備の前記外部コネクタと前記車両コネクタとの接続が検出された場合、前記高電圧補機の前記通信制御回路に対し前記内部スイッチング電源の動作を停止するための信号を出力し、
     前記急速充電設備の前記外部コネクタと前記車両コネクタとの接続が外れたことが検出された場合、前記高電圧補機の前記通信制御回路に対し前記内部スイッチング電源を動作させるための信号を出力する、請求項4に記載の高電圧補機制御システム。
  6.  前記高電圧補機が有する前記内部スイッチング電源は、
     前記高電圧バッテリまたは前記低電圧バッテリに電気的に接続される1次巻線(26)と、
     前記1次巻線と共にトランスを構成し、前記主回路および前記駆動制御回路にそれぞれ電気的に接続される複数の2次巻線(27、28)と、
     前記1次巻線に流れる電力を高速でオンオフするスイッチング素子(29)と、
     前記スイッチング素子を駆動するドライバ回路(30)と、
     前記スイッチング素子と前記ドライバ回路とを電気的に接続する信号線(31)と、
     一端が前記信号線に電気的に接続され、他端がグランドに電気的に接続される信号遮断スイッチ(32)と、を備え、
     前記急速充電設備の前記外部コネクタと前記車両コネクタとが接続された場合、前記信号遮断スイッチをオンすることで、前記ドライバ回路から前記スイッチング素子に出力される駆動信号を遮断し、
     前記急速充電設備の前記外部コネクタと前記車両コネクタとの接続が外れた場合、前記信号遮断スイッチをオフすることで、前記ドライバ回路から前記スイッチング素子に駆動信号が出力されることを許容するように構成されている、請求項5に記載の高電圧補機制御システム。
  7.  前記充電制御装置は、
     前記急速充電設備の前記外部コネクタと前記車両コネクタとの接続が検出された場合、前記高電圧補機が有する前記信号遮断スイッチをオンするための信号を出力し、
     前記急速充電設備の前記外部コネクタと前記車両コネクタとの接続が外れたことが検出された場合、前記高電圧補機が有する前記信号遮断スイッチをオフするための信号を出力する、請求項6に記載の高電圧補機制御システム。
  8.  前記高電圧補機は、高電圧ヒータ(20)、電動コンプレッサ(13)、DC/DCコンバータ(14)、または、外部給電機(15)の少なくとも1つである、請求項4ないし7のいずれか1つに記載の高電圧補機制御システム。
PCT/JP2020/004608 2019-03-14 2020-02-06 高電圧補機および高電圧補機制御システム WO2020184011A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080020310.3A CN113557161B (zh) 2019-03-14 2020-02-06 高电压辅机及高电压辅机控制系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019047354A JP7196702B2 (ja) 2019-03-14 2019-03-14 高電圧補機および高電圧補機制御システム
JP2019-047354 2019-03-14

Publications (1)

Publication Number Publication Date
WO2020184011A1 true WO2020184011A1 (ja) 2020-09-17

Family

ID=72426004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004608 WO2020184011A1 (ja) 2019-03-14 2020-02-06 高電圧補機および高電圧補機制御システム

Country Status (3)

Country Link
JP (1) JP7196702B2 (ja)
CN (1) CN113557161B (ja)
WO (1) WO2020184011A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112757963A (zh) * 2021-01-22 2021-05-07 北京机械设备研究所 动力电池低电压保护装置、方法及新能源车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011250670A (ja) * 2010-04-27 2011-12-08 Denso Corp 車両用電源装置
JP2013176251A (ja) * 2012-02-27 2013-09-05 Nissan Motor Co Ltd 電源装置
WO2014199630A1 (ja) * 2013-06-11 2014-12-18 パナソニックIpマネジメント株式会社 充電装置および車両
JP2017011904A (ja) * 2015-06-23 2017-01-12 三菱自動車工業株式会社 電動車両

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478469B2 (en) * 2009-08-07 2013-07-02 Toyota Jidosha Kabushiki Kaisha Power source system for electric powered vehicle and control method therefor
JP2011205840A (ja) * 2010-03-26 2011-10-13 Toyota Motor Corp 車両用充電装置
JP5683552B2 (ja) * 2012-10-15 2015-03-11 オムロンオートモーティブエレクトロニクス株式会社 車両用充電装置
JP2014131435A (ja) * 2012-12-28 2014-07-10 Daihatsu Motor Co Ltd 車両用充電制御装置
JP6222744B2 (ja) * 2015-01-16 2017-11-01 オムロンオートモーティブエレクトロニクス株式会社 電源制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011250670A (ja) * 2010-04-27 2011-12-08 Denso Corp 車両用電源装置
JP2013176251A (ja) * 2012-02-27 2013-09-05 Nissan Motor Co Ltd 電源装置
WO2014199630A1 (ja) * 2013-06-11 2014-12-18 パナソニックIpマネジメント株式会社 充電装置および車両
JP2017011904A (ja) * 2015-06-23 2017-01-12 三菱自動車工業株式会社 電動車両

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112757963A (zh) * 2021-01-22 2021-05-07 北京机械设备研究所 动力电池低电压保护装置、方法及新能源车

Also Published As

Publication number Publication date
CN113557161B (zh) 2024-01-16
JP7196702B2 (ja) 2022-12-27
JP2020150720A (ja) 2020-09-17
CN113557161A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
JP6291899B2 (ja) 回転電機制御装置
US7977900B2 (en) Inverter system for vehicle-mounted air conditioner
JP6252244B2 (ja) モータ駆動装置
JP2010288369A (ja) インバータ装置
CN110549890B (zh) Dc/dc转换单元
JP2008312342A (ja) 電動圧縮機の制御装置
US20160105092A1 (en) Discharge control device
WO2021161794A1 (ja) 電力変換器の制御回路
WO2020184011A1 (ja) 高電圧補機および高電圧補機制御システム
JP4771172B2 (ja) 車両用電力変換装置の平滑コンデンサ放電装置
JP6903951B2 (ja) 電源システム
CN115917959A (zh) 电力转换器的控制电路
JP2016213969A (ja) 電源供給装置
US9803608B2 (en) Apparatus and method for vehicle voltage stabilization
WO2018193782A1 (ja) 回転電機制御装置、及び電源システム
JP7354958B2 (ja) 電力変換器の制御回路
WO2021161798A1 (ja) 電力変換器の制御回路
WO2021230177A1 (ja) 電力変換器の制御回路
JP2000312488A (ja) 車両用インバータ装置
JP7294227B2 (ja) 電力変換器の制御回路
JP6372382B2 (ja) 電源装置
JP7009325B2 (ja) スイッチング電源装置及びそれを備えた車載用電動コンプレッサ
JP2002354878A (ja) モータ駆動電源装置
JP7359020B2 (ja) 電力変換器の制御回路
KR101304941B1 (ko) 스마트 정션박스를 이용한 엔진룸 냉각방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770058

Country of ref document: EP

Kind code of ref document: A1