WO2018193782A1 - 回転電機制御装置、及び電源システム - Google Patents

回転電機制御装置、及び電源システム Download PDF

Info

Publication number
WO2018193782A1
WO2018193782A1 PCT/JP2018/011232 JP2018011232W WO2018193782A1 WO 2018193782 A1 WO2018193782 A1 WO 2018193782A1 JP 2018011232 W JP2018011232 W JP 2018011232W WO 2018193782 A1 WO2018193782 A1 WO 2018193782A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
switch
electrical machine
rotating electrical
storage battery
Prior art date
Application number
PCT/JP2018/011232
Other languages
English (en)
French (fr)
Inventor
猪熊 賢二
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018002059.2T priority Critical patent/DE112018002059T5/de
Priority to CN201880025707.4A priority patent/CN110546879B/zh
Publication of WO2018193782A1 publication Critical patent/WO2018193782A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator

Definitions

  • This disclosure relates to a rotating electrical machine control device and a power supply system applied to a vehicle or the like.
  • a configuration including a plurality of storage batteries for example, a lead storage battery and a lithium ion storage battery
  • a rotating electric machine connected in parallel to each of these storage batteries is known (for example, a patent) Reference 1).
  • a switch is provided between each storage battery and the rotating electrical machine, and in order to perform dark current supply or fail-safe processing in a power-off state, a bypass path that is parallel to the switch is always provided.
  • a closed relay is provided.
  • a rotating electrical machine control device that controls the operation of the rotating electrical machine and a host control device that comprehensively manages the rotating electrical machine control device are provided.
  • Signal transmission is performed via a communication line such as a CAN bus.
  • a power generation command is output from the host controller to the rotating electrical machine control device, and power generation is performed by the rotating electrical machine based on the power generation command.
  • the generated power generated by power generation is supplied to each storage battery and electric load.
  • a rotating electrical machine control device that performs autonomous power generation by a rotating electrical machine based on a predetermined target voltage is known, regardless of the power generation command of the host control device.
  • this autonomous power generation for example, even when a power generation command from the host control device is not acquired, it is possible to supply power necessary for the operation of the vehicle.
  • the present disclosure has been made in view of the above circumstances, and a main purpose thereof is to provide a rotating electrical machine control device that appropriately performs power generation by the rotating electrical machine.
  • a rotating electrical machine that is drivingly connected to the engine output shaft and has functions of power generation and power running;
  • a first storage battery and a second storage battery connected in parallel to the rotating electrical machine;
  • a first switch provided closer to the first storage battery than a connection point with the rotating electrical machine,
  • a second switch provided on the second storage battery side of the connection point in the electrical path;
  • a normally closed bypass switch provided in a bypass path connecting one end side and the other end side of the first switch in the electrical path;
  • a rotating electrical machine control device that is communicably connected to a host controller and receives power generation commands from the host controller, and performs power generation by the rotating electrical machine,
  • An autonomous power generation unit that performs autonomous power generation by the rotating electrical machine without relying on the power generation command from the host controller when the power generation command from the host controller is not acquired in the
  • a rotating electrical machine and a first storage battery and a second storage battery connected in parallel to the rotating electrical machine are provided, and a first switch and a second switch are provided in each electrical path of the first storage battery and the second storage battery, respectively.
  • each storage battery can be charged by closing (on) or opening (off) each switch while power is being generated by the rotating electrical machine.
  • the rotating electrical machine control device performs power generation by the rotating electrical machine based on the power generation command of the host controller when the start switch is turned on, and if the power generation command from the host controller is not acquired, Regardless of the situation, autonomous power generation (autonomous power generation) will be implemented by rotating electrical machines. Thereby, for example, even when a communication abnormality occurs, it is possible to supply electric power necessary for the operation of the vehicle.
  • bypass switch is switched from the closed state to the open state as the start switch is turned from the off state to the on state, if autonomous power generation is performed before the bypass switch is opened, the bypass path is not intended. Generated current flows. In such a case, the bypass switch may be damaged.
  • the bypass path is a path having a smaller allowable energization current than the electrical path
  • the predetermined time includes a time until the bypass switch is opened after the start switch is turned on.
  • the limiting unit stops the autonomous power generation in a period until the time determination unit determines that the predetermined time has elapsed.
  • the bypass switch may be damaged if a generated current flows unintentionally through the bypass path.
  • the autonomous power generation is stopped until a predetermined time including the time from when the start switch is turned on to when the bypass switch is opened, the bypass path is in a conductive state. Autonomous power generation can be prevented. Thereby, it is possible to prevent the bypass switch from being damaged by the generated current accompanying the autonomous power generation.
  • the bypass path is a path having a smaller allowable energization current than the electrical path
  • the predetermined time includes a time until the bypass switch is opened after the start switch is turned on.
  • the limiting unit limits the generated current of the autonomous power generation to be equal to or less than the allowable energization current of the bypass path until the time determination unit determines that the predetermined time has elapsed.
  • the power generation current of the autonomous power generation is limited to the allowable energization current of the bypass path or less until a predetermined time including the time from when the start switch is turned on to when the bypass switch is opened has elapsed. Since it did in this way, even if it is a case where autonomous power generation is implemented in the state in which the bypass path was conducted, it can prevent that a bypass switch breaks.
  • the second switch includes a plurality of semiconductor switches connected in series, and the plurality of semiconductor switches include semiconductor switches in which parasitic diodes are opposite to each other
  • the predetermined time includes a time until the failure diagnosis of the second switch is completed after the activation switch is turned on, and the limiting unit determines that the predetermined time has elapsed by the time determination unit. The autonomous power generation is stopped in a period until it is determined.
  • the second switch has a plurality of semiconductor switches connected in series, and the plurality of semiconductor switches include semiconductor switches in which parasitic diodes are opposite to each other. Then, after the start switch is turned on, failure diagnosis of the second switch is performed in a state where one of the semiconductor switches whose parasitic diodes are on one side and the other side is turned on. In this failure diagnosis, the second switch is temporarily turned on via the parasitic diode. However, when autonomous power generation is performed at the time of failure diagnosis of the second switch, a generated current flows unintentionally through the parasitic diode, which may cause damage to the semiconductor switch.
  • the autonomous power generation is stopped until a predetermined time including the time until the failure diagnosis of the second switch is completed after the start switch is turned on.
  • Current can be prevented from flowing through the parasitic diode of the semiconductor switch. Thereby, it is possible to prevent the semiconductor switch from being damaged by the generated current accompanying the autonomous power generation.
  • the rotating electrical machine is a wound field type rotating electrical machine including a field winding
  • the limiting unit is configured to determine that the predetermined time has elapsed by the time determining unit.
  • the autonomous power generation is limited by making the exciting current flowing through the field winding smaller than that during the autonomous power generation.
  • the autonomous power generation is performed by reducing the excitation current flowing in the field winding from the normal autonomous power generation during a period from when the start switch is turned on until it is determined that a predetermined time has elapsed. Therefore, the generated current associated with autonomous power generation can be appropriately limited.
  • the power supply system may have the following configuration. That is, in the sixth means, the rotating electrical machine that is drivingly connected to the engine output shaft and has functions of power generation and power running, the first storage battery and the second storage battery that are connected in parallel to the rotating electrical machine, and the first In the electrical path between the storage battery and the second storage battery, a first switch provided closer to the first storage battery than the connection point to the rotating electrical machine, and the second storage battery from the connection point in the electrical path.
  • a normally closed bypass switch provided in a bypass path connecting one end side and the other end side of the first switch in the electrical path, and the start switch is turned on from the off state
  • a power supply system in which the bypass switch is switched from a closed state to an open state as it enters a state, wherein the rotating electrical machine is turned on by the start switch. In the period from the time when the start switch is turned on until a predetermined time elapses. Autonomous power generation by is limited.
  • FIG. 1 is an electric circuit diagram showing the power supply system of the first embodiment.
  • FIG. 2 is a circuit diagram showing an electrical configuration of the rotating electrical machine unit.
  • FIG. 3 is a flowchart showing a processing procedure of autonomous power generation by the rotating electrical machine ECU
  • FIG. 4 is a time chart for explaining the process of autonomous power generation by the rotating electrical machine ECU.
  • FIG. 5 is a flowchart showing a processing procedure of autonomous power generation by the rotating electrical machine ECU of the modified example
  • FIG. 6 is a diagram showing an energization state after switching of the power feeding path immediately after the ignition is turned on.
  • FIG. 7 is a diagram showing an energized state at the time of switch failure diagnosis.
  • FIG. 8 is an electric circuit diagram showing another example of the power supply system.
  • an in-vehicle power supply system that supplies power to various devices of the vehicle in a vehicle that runs using an engine (internal combustion engine) as a drive source is embodied.
  • this power supply system is a two-power supply system having a lead storage battery 11 as a first storage battery and a lithium ion storage battery 12 as a second storage battery. Power can be supplied to the various electric loads 14 and 15 and the rotating electrical machine unit 16. In addition, each of the storage batteries 11 and 12 can be charged by the rotating electrical machine unit 16. In this system, the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the rotating electrical machine unit 16, and the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the electrical loads 14 and 15. .
  • the lead storage battery 11 is a well-known general-purpose storage battery.
  • the lithium ion storage battery 12 is a high-density storage battery that has less power loss during charging / discharging than the lead storage battery 11, and has a high output density and energy density.
  • the lithium ion storage battery 12 may be a storage battery having higher energy efficiency during charging / discharging than the lead storage battery 11.
  • the lithium ion storage battery 12 is comprised as an assembled battery which has a some single cell, respectively. These storage batteries 11 and 12 have the same rated voltage, for example, 12V.
  • the lithium ion storage battery 12 is housed in a housing case and configured as a battery unit U integrated with a substrate.
  • the battery unit U has output terminals P1, P2, P3, P4, of which the lead storage battery 11, the starter 13, and the electric load 14 are connected to the output terminals P1, P3, and the rotating electrical machine unit is connected to the output terminal P2. 16 is connected, and the electrical load 15 is connected to the output terminal P4.
  • the electric loads 14 and 15 have different requirements for the voltage of the power supplied from the storage batteries 11 and 12.
  • the electric load 15 includes a constant voltage required load that is required to be stable so that the voltage of the supplied power is constant or at least fluctuates within a predetermined range.
  • the electric load 14 is a general electric load other than the constant voltage request load. It can be said that the electric load 15 is a protected load.
  • the electric load 15 is a load that does not allow a power supply failure
  • the electric load 14 is a load that allows a power supply failure compared to the electric load 15.
  • the electrical load 15 that is a constant voltage required load include various ECUs such as a navigation device, an audio device, a meter device, and an engine ECU. In this case, by suppressing the voltage fluctuation of the supplied power, it is possible to suppress an unnecessary reset or the like in each of the above devices, and to realize a stable operation.
  • the electric load 15 may include a travel system actuator such as an electric steering device or a brake device.
  • Specific examples of the electric load 14 include a seat heater, a heater for a defroster for a rear window, a headlight, a wiper for a front window, and a blower fan for an air conditioner.
  • the rotating electrical machine unit 16 includes a rotating electrical machine 21 as a three-phase AC motor, an inverter 22 as a power converter, and a rotating electrical machine ECU 23 that controls the operation of the rotating electrical machine 21.
  • the rotating electrical machine 21 is a generator with a motor function, and is configured as an electromechanically integrated ISG (Integrated Starter Generator).
  • the rotating electrical machine 21 includes U-phase, V-phase, and W-phase phase windings 24U, 24V, and 24W and a field winding 25 as three-phase stator windings.
  • the rotating shaft of the rotating electrical machine 21 is drivingly connected to an engine output shaft (not shown) by a belt, and the rotating shaft of the rotating electrical machine 21 is rotated by the rotation of the engine output shaft.
  • the engine output shaft rotates. That is, the rotating electrical machine unit 16 includes a power generation function that generates power (regenerative power generation) by rotating the engine output shaft and the axle, and a power running function that applies rotational force to the engine output shaft.
  • the inverter 22 converts the AC voltage output from each phase winding 24U, 24V, 24W into a DC voltage and outputs it to the battery unit U.
  • the inverter 22 converts the DC voltage input from the battery unit U into an AC voltage and outputs the AC voltage to the phase windings 24U, 24V, and 24W.
  • the inverter 22 is a bridge circuit having the same number of upper and lower arms as the number of phases of the phase winding, and constitutes a three-phase full-wave rectifier circuit.
  • the inverter 22 constitutes a drive circuit that drives the rotating electrical machine 21 by adjusting the electric power supplied to the rotating electrical machine 21.
  • the inverter 22 includes an upper arm switch Sp and a lower arm switch Sn for each phase.
  • voltage controlled semiconductor switching elements are used as the switches Sp and Sn, and specifically, N-channel MOSFETs are used.
  • An upper arm diode Dp is connected in antiparallel to the upper arm switch Sp, and a lower arm diode Dn is connected in antiparallel to the lower arm switch Sn.
  • the field winding 25 constitutes a rotor, and is wound around a field pole (not shown) disposed opposite to the inner peripheral side of the stator core.
  • a field pole (not shown) disposed opposite to the inner peripheral side of the stator core.
  • An AC voltage is output from each phase winding 24U, 24V, 24W by the rotating magnetic field generated when the field pole is magnetized.
  • the intermediate connection point of the series connection body of the switches Sp and Sn in each phase is connected to one end of each phase winding 24U, 24V, 24W.
  • a voltage sensor 26 that detects the input / output voltage of the inverter 22 is provided between the high-voltage side path and the low-voltage side path of the inverter 22.
  • the rotating electrical machine unit 16 is provided with a current sensor 27 that detects a current flowing through each phase winding 24U, 24V, 24W, and a current sensor 28 that detects a current flowing through the field winding 25. Detection signals from the sensors 26 to 28 are appropriately input to the rotating electrical machine ECU 23.
  • the rotating electrical machine 21 is provided with a rotation angle sensor that detects angle information of the rotor
  • the inverter 22 is provided with a signal processing circuit that processes a signal from the rotation angle sensor. Yes.
  • the rotating electrical machine ECU 23 is constituted by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like.
  • the rotating electrical machine ECU 23 includes an IC regulator 23a, and adjusts the excitation current flowing through the field winding 25 by the IC regulator 23a.
  • the IC regulator 23a is configured to include a field switch (not shown) (for example, an N-channel MOSFET), and controls the field switch on and off. Specifically, the excitation current is adjusted by changing the duty value indicating the ratio of the energization period in one control cycle (a fixed period) of the field switch.
  • the field switch is on / off controlled so that the voltage of the output terminal B detected by the voltage sensor 26 becomes the target voltage Vtg.
  • the exciting current flowing through the field winding 25 is adjusted, and the power generation voltage of the rotating electrical machine unit 16 (the output voltage for the battery unit U) is controlled.
  • the rotating electrical machine ECU 23 assists the driving force of the engine by controlling the inverter 22 to drive the rotating electrical machine 21 after the vehicle starts running.
  • the rotating electrical machine ECU 23 may drive the rotating electrical machine 21 when starting the engine to apply initial rotation to the engine output shaft.
  • the lead storage battery 11 may be connected to the rotating electrical machine ECU 23.
  • the battery unit U has an energization path L1 that connects the output terminals P1 and P2 and an energization path that connects the connection point N1 on the energization path L1 and the lithium ion storage battery 12 as an in-unit electrical path.
  • L2 is provided.
  • the switch 31 is provided in the energization path L1
  • the switch 32 is provided in the energization path L2.
  • a switch 31 is provided on the lead storage battery 11 side of the connection point N1 to the rotating electrical machine unit 16, and the lithium ion is connected to the connection point N1.
  • a switch 32 is provided on the storage battery 12 side.
  • the switch 31 corresponds to a “first switch”, and the switch 32 corresponds to a “second switch”.
  • Each of the switches 31 and 32 includes 2 ⁇ n MOSFETs (semiconductor switching elements), and the parasitic diodes of the pair of MOSFETs are connected in series so that they are opposite to each other.
  • the parasitic diodes of the MOSFETs are connected to each other at the anodes.
  • the parasitic diode completely cuts off the current flowing through the path where the switches are provided.
  • the parasitic diodes of the MOSFETs may be connected to each other at the cathodes.
  • branch path L3 One end of the branch path L3 is connected to the connection point N2 between the output terminal P1 and the switch 31 in the energization path L1, and at the connection point N3 between the lithium ion storage battery 12 and the switch 32 in the energization path L2.
  • One end of the branch path L4 is connected, and the other ends of the branch paths L3 and L4 are connected at an intermediate point N4. Further, the intermediate point N4 and the output terminal P4 are connected by the energization path L5.
  • a switch 33 and a switch 34 are provided on the branch paths L3 and L4, respectively. These switches 33 and 34 are configured in the same manner as the switches 31 and 32. That is, each of the switches 33 and 34 is connected in series with two MOSFETs in which the directions of the parasitic diodes are opposite to each other. Power can be supplied from the storage batteries 11 and 12 to the electric load 15 through the paths L3 to L5.
  • the battery unit U is provided with bypass paths L6 and L7 that can be connected to the lead storage battery 11, the electric load 15, and the rotating electrical machine unit 16 without using the switches 31 to 34 in the unit.
  • the battery unit U is provided with a bypass path L6 that connects the output terminal P3 and the connection point N1 on the energization path L1, and has a bypass path L7 that connects the connection point N1 and the output terminal P4. Is provided.
  • the output terminal P3 is connected to the lead storage battery 11 via the fuse 51.
  • a bypass switch 35 is provided on the bypass path L6, and a bypass switch 36 is provided on the bypass path L7.
  • Each bypass switch 35, 36 is a normally closed relay switch.
  • bypass switch 35 By closing the bypass switch 35, the lead storage battery 11 and the rotating electrical machine unit 16 are electrically connected even when the switch 31 is off (open). Also, by closing both bypass switches 35 and 36, the lead storage battery 11 and the electrical load 15 are electrically connected even when all the switches 31 to 34 are off (open). Note that the bypass path L6 and the bypass switch 35 may be provided outside the battery unit U.
  • the battery unit U includes a battery ECU 37 that controls on / off (opening / closing) of the switches 31 to 34 and the bypass switches 35 and 36.
  • the battery ECU 37 is constituted by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like.
  • the battery ECU 37 controls the on / off of each of the switches 31 to 34 based on the storage state of each of the storage batteries 11 and 12 and the command value from the engine ECU 40 that is the host controller. Thereby, charging / discharging is implemented using the lead storage battery 11 and the lithium ion storage battery 12 selectively.
  • the battery ECU 37 calculates the SOC (remaining capacity: State Of Charge) of the lithium ion storage battery 12, and controls the charge amount and discharge amount of the lithium ion storage battery 12 so that the SOC is maintained within a predetermined use range. To do.
  • SOC main capacity: State Of Charge
  • the rotating electrical machine ECU 23 of the rotating electrical machine unit 16 and the battery ECU 37 of the battery unit U are connected to an engine ECU 40 as a host controller that manages these ECUs 23 and 37 in an integrated manner.
  • the engine ECU 40 is configured by a microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and controls the operation of the engine 42 based on each engine operation state and vehicle running state.
  • ECUs 23, 37, and 40 are connected by a communication line 41 that constructs a communication network such as CAN and can communicate with each other, and bidirectional communication is performed at a predetermined cycle. Thereby, the various data memorize
  • the power generation by the rotating electrical machine unit 16 is basically performed based on a power generation command from the engine ECU 40. For example, when the engine ECU 40 determines that the SOC of the lithium ion storage battery 12 is equal to or less than a predetermined value through signal transmission with the battery ECU 37, the engine ECU 40 transmits a power generation command to the rotating electrical machine ECU 23. Then, the rotating electrical machine ECU 23 sets the target voltage Vtg based on the power generation command, and controls the excitation current flowing through the field winding 25 so that the power generation voltage becomes the target voltage Vtg.
  • the rotating electrical machine unit 16 has an autonomous power generation function that performs autonomous power generation regardless of the power generation command from the engine ECU 40. Specifically, when the electric power generation command from the engine ECU 40 is not acquired in a state where the ignition switch (start switch) of the vehicle is turned on, the rotating electrical machine ECU 23 has a communication abnormality between the rotating electrical machine ECU 23 and the engine ECU 40, for example. When it occurs, autonomous power generation by the rotating electrical machine unit 16 is performed. As a result, electric power necessary for operation of the vehicle is supplied even when an abnormality occurs.
  • Autonomous power generation is performed such that the voltage at the output terminal B of the rotating electrical machine unit 16 (the output voltage with respect to the battery unit U) maintains a predetermined voltage VA (for example, 14 V).
  • a predetermined voltage VA for example, 14 V
  • the exciting current flowing in the field winding 25 is controlled to a predetermined current IA corresponding to the predetermined voltage VA.
  • a predetermined generated voltage is generated regardless of the conduction state outside the rotating electrical machine unit 16, that is, the conduction state of each of the paths L1 to L7 in the power supply system.
  • the switches 31 and 33 are turned on (closed), and the bypass switches 35 and 36 are switched from the closed state to the open state. That is, immediately after the ignition switch of the vehicle is turned on, a normal power supply path is not established, and a conduction state is established through the bypass paths L6 and L7. Therefore, for example, when autonomous power generation is performed by the rotating electrical machine unit 16 at the time of switching the power supply path to the electric load 15 immediately after the ignition is turned on, the generated current flows unintentionally to the bypass paths L6 and L7, and the bypass switches 35 and 36 Damage to the fuse 51 or the fuse 51 may be blown.
  • the rotating electrical machine ECU 23 stops the autonomous power generation by the rotating electrical machine unit 16 by controlling the excitation current. That is, immediately after the ignition is turned on, the generated current accompanying the autonomous power generation is prevented from flowing through the bypass paths L6 and L7.
  • the predetermined time T1 is set to include the time until the bypass switches 35 and 36 are opened after the ignition switch is turned on.
  • the predetermined time T1 may be set, for example, by adding an extra time to the time until the switching of the bypass switches 35 and 36 from the closed state to the open state is completed. That is, in this case, the rotating electrical machine ECU 23 stops the autonomous power generation at least until the switching of the power supply path to the electric load 15 immediately after the ignition is turned on.
  • the autonomous power generation process performed by the rotating electrical machine ECU 23 will be described using the flowchart of FIG. This process is repeatedly performed by the rotating electrical machine ECU 23 at a predetermined cycle.
  • step S11 it is determined whether or not the ignition switch is on. If step S11 is YES, the process proceeds to step S12. If step S11 is NO, the process is terminated.
  • step S12 it is determined whether or not a communication abnormality has occurred with the engine ECU 40.
  • a known method can be used to determine the communication abnormality. For example, the rotating electrical machine ECU 23 determines that a communication abnormality has occurred when a confirmation signal from the engine ECU 40 cannot be received. If step S12 is YES, it proceeds to step S13 because it is necessary to perform autonomous power generation. On the other hand, if step S12 is NO, this process is ended as it is.
  • step S13 it is determined whether or not a predetermined time T1 has elapsed since the ignition switch was turned on.
  • the predetermined time T1 is set so as to include, for example, a time required for switching the bypass switches 35 and 36 from the closed state to the open state. If step S13 is YES, it will progress to step S14 and will implement the autonomous electric power generation by the rotary electric machine unit 16. In this case, power generation is performed so that the output voltage of the rotating electrical machine unit 16 becomes the predetermined voltage VA. On the other hand, if step S13 is NO, it will progress to step S15 and will stop autonomous power generation. For example, the rotating electrical machine ECU 23 stops the autonomous power generation by turning off (opening) the field switch so that no exciting current flows through the field winding 25. At this time, autonomous power generation by the rotating electrical machine unit 16 is stopped until a predetermined time T1 elapses after the ignition switch is turned on.
  • step S13 corresponds to a “time determination unit”
  • step S14 corresponds to an “autonomous power generation unit”
  • step S15 corresponds to a “restriction unit”.
  • FIG. 4 shows a timing chart showing the processing of FIG. 3 more specifically. First, the state of each switch in the battery unit U will be described.
  • the ignition switch Before the timing t11, the ignition switch is turned off. During this time, the bypass switches 35 and 36 are closed, and power is supplied from the lead storage battery 11 to the electric load 15 via the bypass paths L6 and L7.
  • the ignition switch When the ignition switch is turned on at timing t11, an on command for the switches 31 and 33 is generated, and the switches 31 and 33 are turned on (closed) at timing t13. Then, after the switches 31, 33 and the bypass switches 35, 36 are closed, the bypass switches 35, 36 are opened at timing t14. In order to prevent power supply to the electric load 15 from being interrupted, a period (timing t13 to t14) in which the closed states of the switches are overlapped is provided.
  • the rotating electrical machine ECU 23 determines whether there is an abnormality in communication with the engine ECU 40. And if it determines with communication abnormality having arisen at the timing t12, autonomous electric power generation will be implemented. However, at time t12, since the predetermined time T1 has not elapsed since the ignition was turned on, autonomous power generation is stopped (prohibited). And autonomous power generation is implemented after timing t15 after predetermined time T1 progress. At timing t15, the switching of the power supply path to the electrical load 15 has already been completed. Note that timings t14 to t15 correspond to a margin time.
  • the autonomous power generation is limited in a period until it is determined that the predetermined time T1 has elapsed.
  • the autonomous power generation is limited in a period until it is determined that the predetermined time T1 has elapsed.
  • the electric power generation by the rotary electric machine unit 16 can be implemented appropriately.
  • the autonomous power generation by the rotating electrical machine unit 16 is stopped until a predetermined time T1 including the time from when the ignition switch is turned on to when the bypass switches 35 and 36 are opened has elapsed.
  • a predetermined time T1 including the time from when the ignition switch is turned on to when the bypass switches 35 and 36 are opened has elapsed.
  • the generated current does not flow through the bypass paths L6 and L7. This can prevent the bypass switches 35 and 36 from being damaged and the fuse 51 from being blown by the generated current.
  • the autonomous power generation is stopped by interrupting the excitation current flowing in the field winding 25 by the field switch, it is preferable that the generated current accompanying the autonomous power generation flows unintentionally to the bypass paths L6 and L7. Can be prevented.
  • the configuration is such that the autonomous power generation by the rotating electrical machine unit 16 is stopped until the switching of the power supply path to the electric load 15 is completed after the ignition switch is turned on. Also good. For example, it is good also as a structure which restrict
  • step S16 when it is determined that the ignition switch is turned on and a communication abnormality has occurred (when both steps S11 and S12 are YES), and the predetermined time T1 has not elapsed since the ignition was turned on (step If S13 is NO), the process proceeds to step S16.
  • step S ⁇ b> 16 the power generation voltage is limited so as to be equal to or less than the allowable energization current of the bypass paths L ⁇ b> 6 and L ⁇ b> 7, and autonomous power generation by the rotating electrical machine unit 16 is performed.
  • the generated voltage in this case is set based on, for example, the allowable energization current (for example, 30 A) of the fuse 51, and is a value smaller than the predetermined voltage VA during normal autonomous power generation.
  • the rotating electrical machine ECU 23 limits the generated voltage by making the excitation current smaller than the predetermined current IA during normal autonomous power generation.
  • step S16 corresponds to a “limiter”.
  • the power generation current of the autonomous power generation by the rotating electrical machine unit 16 is bypassed by the bypass path L6 until the predetermined time T1 including the time from when the ignition switch is turned on to when the bypass switches 35 and 36 are opened elapses. Since the electric current is generated by the rotating electrical machine unit 16, the bypass switches 35 and 36 can be prevented from being damaged because the electric current is limited to the allowable energization current of L7.
  • the exciting current flowing through the field winding 25 is made smaller than the predetermined current IA during autonomous power generation to limit autonomous power generation. Therefore, a power generation current larger than the allowable energization current is not intended. It can prevent suitably flowing into the bypass paths L6 and L7.
  • FIG. 6 shows an energized state of the power supply system after the switching of the power feeding path is completed.
  • the switches 31 and 33 are turned on (closed), and power is supplied from the lead storage battery 11 to the electric load 15 via the switch 33.
  • the switches 32 and 34 that control charging and discharging of the lithium ion storage battery 12 are turned off (opened), and the bypass switches 35 and 36 are opened.
  • a failure diagnosis of the switches 32 and 34 is performed. The failure diagnosis of the switches 32 and 34 will be described below.
  • the switches 32 and 34 are each connected in series with two MOSFETs in which the directions of the parasitic diodes are opposite to each other. That is, the switch 32 includes a switch unit 32a and a switch unit 32b, and the switch 34 includes a switch unit 34a and a switch unit 34b.
  • the switch 32 and 34 is simultaneously turned on (closed).
  • the switch parts of the switches are simultaneously turned on in a combination in which the directions of the parasitic diodes of the switch parts are the same.
  • FIG. 7 shows failure diagnosis when the switch unit 32a and the switch unit 34a are simultaneously turned on.
  • a current flows through the lithium ion storage battery 12 through the switch part 32 a and the parasitic diode of the switch part 32 b.
  • a current flows through the lithium ion storage battery 12 via the switch unit 34a and the parasitic diode of the switch unit 34b.
  • the switch unit 32a and the switch unit 34a are operating normally.
  • one of the switch portions is simultaneously turned on in each switch.
  • the failure diagnosis of the switch 32 and the failure diagnosis of the switch 34 may be performed separately.
  • the switch unit 32a and the switch unit 32b are turned on one by one.
  • the switch units 32 a and 34 a are turned on in the failure diagnosis, when the rotating electrical machine unit 16 performs autonomous power generation, the generated current flows to the lithium ion storage battery 12 via the switch 32. In such a case, the generated current may unintentionally flow through the parasitic diode of the switch unit 32b, possibly causing damage to the switch unit 32b. The same applies to the switch unit 34b.
  • the predetermined time T2 including the time from when the ignition switch is turned on until the failure diagnosis of the switches 32 and 34 is completed has passed, and the predetermined time T2 has passed.
  • the autonomous power generation by the rotating electrical machine unit 16 is limited during the period until it is determined that Specifically, the rotating electrical machine ECU 23 stops autonomous power generation by the rotating electrical machine unit 16. That is, immediately after the ignition is turned on, the generated current accompanying the autonomous power generation is prevented from flowing through the parasitic diodes of the switch portions 32b and 34b.
  • the autonomous power generation processing of the rotating electrical machine ECU 23 in the second embodiment is performed based on the flowchart of FIG.
  • a change from the first embodiment is a change in the processing content of step S13.
  • the predetermined time T2 is set so as to include the time until the failure diagnosis of the switches 32 and 34 is completed after the ignition switch is turned on.
  • the predetermined time T2 may be set by adding an extra time to the time until the failure diagnosis of the switches 32 and 34 is completed.
  • the rotating electrical machine ECU 23 performs step S13 using this predetermined time T2.
  • the predetermined time T2 in the second embodiment is the same as that in the first embodiment. Longer than the predetermined time T1 (T2> T1). The other processes are as described above.
  • the autonomous electric power generation by the rotating electrical machine unit 16 is stopped until a predetermined time T2 including the time from when the ignition switch is turned on until the failure diagnosis of the switches 32 and 34 is completed.
  • the autonomous power generation since the autonomous power generation is not performed in a state where the switch parts 32a and 34a are turned on, the generated current does not flow through the parasitic diodes of the switch parts 32b and 34b. Thereby, damage to switch parts 32b and 34b by generated current can be prevented.
  • the lead storage battery 11, the starter 13, and the electric load 14 are connected to the output terminals P1 and P3
  • the rotating electrical machine unit 16 is connected to the output terminal P2
  • the electric load 15 is connected to the output terminal P4.
  • the rotating electrical machine ECU 23 is applied to the power supply system, it may be applied to other power supply systems.
  • the rotary electric machine ECU 23 may be applied to a power supply system in which the electric load 15 and the rotary electric machine unit 16 are connected to the output terminal P2 without providing the output terminal P4 in the power supply system.
  • the lead storage battery 11, the starter 13, and the electric load 14 are connected to the output terminals P1, P3, and the rotating electrical machine unit 16 and the electric load 15 are connected to the output terminal P2.
  • a switch 31 is provided in the energization path L1
  • a switch 32 is provided in the energization path L2.
  • the configuration of each of the switches 31 and 32 is as described above.
  • a bypass switch 35 is provided in the bypass path L6. In this case, by closing the bypass switch 35, the lead storage battery 11 and the electrical load 15 are electrically connected even if the switch 31 is off (open).
  • the branch paths L3 and L4 and the energization path L5 in the power supply system of FIG. 1 are omitted, and accordingly, the switches 33 and 34 and the bypass switch 36 are also omitted.
  • the fuse 51 can be blown out or the switch 32 can be prevented from being broken by restricting the autonomous power generation by the rotating electrical machine unit 16 until a predetermined time has passed immediately after the ignition is turned on.
  • the lead storage battery 11 is provided as the storage battery and the lithium ion storage battery 12 is provided.
  • the lithium ion storage battery 12 instead of the lithium ion storage battery 12, other high-density storage batteries such as nickel-hydrogen batteries may be used.
  • a capacitor can be used as at least one of the storage batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

回転電機制御装置(23)は、起動スイッチがオフ状態からオン状態になることに伴ってバイパススイッチが閉鎖状態から開放状態に切り替えられる電源システムに適用される。回転電機制御装置は、上位制御装置(40)と通信可能に接続され、上位制御装置から発電指令を受信することで、回転電機による発電を実施する。回転電機制御装置は、前記起動スイッチのオン状態において上位制御装置からの発電指令が取得されていない場合に、上位制御装置からの発電指令によらず回転電機による自律的な発電を実施する自律発電部と、起動スイッチがオン状態となってから所定時間が経過したか否かを判定する時間判定部と、時間判定部により所定時間が経過したと判定されるまでの期間で、自律発電部による自律的な発電を制限する制限部と、を備える。

Description

回転電機制御装置、及び電源システム 関連出願の相互参照
 本出願は、2017年4月18日に出願された日本出願番号2017-081901号に基づくもので、ここにその記載内容を援用する。
 本開示は、車両等に適用される回転電機制御装置、及び電源システムに関するものである。
 従来、例えば車両用の電源システムとして、複数の蓄電池(例えば鉛蓄電池、リチウムイオン蓄電池)を備えるとともに、これら各蓄電池に対して並列接続された回転電機を備える構成が知られている(例えば、特許文献1)。このような電源システムでは、各蓄電池と回転電機との間にスイッチが設けられるとともに、電源オフ状態での暗電流供給やフェールセーフ処理等を実施するために、スイッチに並列となるバイパス経路に常閉式のリレーが設けられている。
 また、このような電源システムでは、回転電機の作動を制御する回転電機制御装置と、これを統括的に管理する上位制御装置とが設けられており、回転電機制御装置と上位制御装置との間においてCANバス等の通信線を介した信号伝達が行われる。例えば、上記電源システムにおいて回転電機による発電を実施する際には、上位制御装置から回転電機制御装置に対して発電指令が出力され、その発電指令に基づいて回転電機により発電が実施される。なお、発電によって生じた発電電力は、各蓄電池や電気負荷に供給される。
 また、上位制御装置の発電指令によらず、所定の目標電圧に基づいて回転電機による自律的な発電を実施する回転電機制御装置が知られている。この自律発電により、例えば上位制御装置からの発電指令が取得されない場合であっても、車両の動作に必要な電力を供給することができる。
特開2011-234479号公報
 ところで、上記回転電機制御装置による自律発電では、回転電機と各蓄電池とを繋ぐ電気経路の導通状態によらず所定の発電量が生成されることが考えられる。この場合、電気経路の導通状態に対して過剰な発電が行われることで不都合が生じると考えられる。特に、車両のイグニッションスイッチがオンされた直後には、通常の発電電流経路が確立されておらず、バイパス経路を通じての導通状態となっている。そのため、例えば、イグニッションオン直後の給電経路の切り替え時において自律発電が行われると、発電電流が意図せずバイパス経路に流れ、バイパス経路が破断されるおそれがある。
 本開示は上記事情を鑑みてなされたものであり、その主たる目的は、回転電機による発電を適正に実施する回転電機制御装置を提供することにある。
 第1の手段では、
 エンジン出力軸に駆動連結され、発電及び力行の各機能を有する回転電機と、
 前記回転電機に対して並列接続される第1蓄電池及び第2蓄電池と、
 前記第1蓄電池及び前記第2蓄電池の間の電気経路において、前記回転電機との接続点よりも前記第1蓄電池の側に設けられる第1スイッチと、
 当該電気経路において前記接続点よりも前記第2蓄電池の側に設けられる第2スイッチと、
 前記電気経路における前記第1スイッチの一端側と他端側とを接続するバイパス経路に設けられる常閉式のバイパススイッチと、
を備え、
 起動スイッチがオフ状態からオン状態になることに伴って前記バイパススイッチが閉鎖状態から開放状態に切り替えられる電源システムに適用され、
 上位制御装置と通信可能に接続され、前記上位制御装置から発電指令を受信することで、前記回転電機による発電を実施する回転電機制御装置であって、
 前記起動スイッチのオン状態において前記上位制御装置からの前記発電指令が取得されていない場合に、前記上位制御装置からの前記発電指令によらず前記回転電機による自律的な発電を実施する自律発電部と、
 前記起動スイッチがオン状態となってから所定時間が経過したか否かを判定する時間判定部と、
 前記時間判定部により前記所定時間が経過したと判定されるまでの期間で、前記自律発電部による自律的な発電を制限する制限部と、
を備える。
 回転電機と、その回転電機に対して並列接続される第1蓄電池及び第2蓄電池とを備え、第1蓄電池及び第2蓄電池の各電気経路にそれぞれ第1スイッチ及び第2スイッチが設けられている電源システムでは、回転電機による発電が行われている状態下において、各スイッチを閉鎖(オン)又は開放(オフ)することで各蓄電池の充電が可能となる。また、回転電機制御装置は、起動スイッチがオン状態において上位制御装置の発電指令に基づいて回転電機による発電を行う一方、上位制御装置からの発電指令が取得されていない場合には、発電指令によらず回転電機による自律的な発電(自律発電)を実施する。これにより、例えば通信異常が生じた場合であっても、車両の動作に必要な電力を供給することが可能となる。
 しかしながら、自律発電は、回転電機外部の電気経路の導通状態にかかわらず発電が実施される。そのため、起動スイッチがオフ状態からオン状態になることに伴ってバイパススイッチが閉鎖状態から開放状態に切り替えられる構成では、バイパススイッチの開放前に自律発電が実施されると、バイパス経路に意図せず発電電流が流れる。かかる場合、バイパススイッチの破損等を招くおそれがある。
 この点上記構成では、起動スイッチがオン状態となってから所定時間が経過したか否かを判定し、所定時間が経過したと判定されるまでの期間で自律発電を制限するようにした。この場合、所定時間が経過するまで自律発電を制限することで、例えばバイパススイッチの切り替えが完了してから通常の自律発電が実施されることになる。そのため、バイパス経路に意図せず発電電流が流れることを抑制しつつ、自律発電によって電力を供給することができる。これにより、回転電機による発電を適正に実施することができる。
 第2の手段では、前記バイパス経路は、前記電気経路よりも許容通電電流が小さい経路であり、前記所定時間は、前記起動スイッチのオン後において前記バイパススイッチが開放されるまでの時間を含んでおり、前記制限部は、前記時間判定部により前記所定時間が経過したと判定されるまでの期間で、前記自律的な発電を停止する。
 バイパス経路の許容通電電流が、電気経路よりも小さい構成では、バイパス経路に意図せず発電電流が流れるとバイパススイッチの破損等を招くおそれがある。この点、上記構成では、起動スイッチがオン状態となってからバイパススイッチが開放されるまでの時間を含む所定時間が経過するまで、自律発電を停止するようにしたため、バイパス経路が導通した状態で自律発電が実施されることを防ぐことができる。これにより、自律発電に伴う発電電流によりバイパススイッチが破損することを防ぐことができる。
 第3の手段では、前記バイパス経路は、前記電気経路よりも許容通電電流が小さい経路であり、前記所定時間は、前記起動スイッチのオン後において前記バイパススイッチが開放されるまでの時間を含んでおり、前記制限部は、前記時間判定部により前記所定時間が経過したと判定されるまでの期間で、前記自律的な発電の発電電流を前記バイパス経路の許容通電電流以下に制限する。
 バイパス経路の許容通電電流が、電気経路よりも小さい構成では、バイパス経路に意図せず発電電流が流れるとバイパススイッチの破損等を招くおそれがある。この点、上記構成では、起動スイッチがオン状態となってからバイパススイッチが開放されるまでの時間を含む所定時間が経過するまで、自律発電の発電電流をバイパス経路の許容通電電流以下に制限するようにしたため、バイパス経路が導通した状態で自律発電が実施された場合であっても、バイパススイッチが破損することを防ぐことができる。
 第4の手段では、前記第2スイッチは、直列に接続される複数の半導体スイッチを有しており、前記複数の半導体スイッチは、寄生ダイオードが互いに逆向きとなる半導体スイッチを含んでおり、前記起動スイッチがオン状態にされた後において、前記寄生ダイオードの向きが一方側及び他方側となる前記半導体スイッチのうち一方をオンさせた状態で前記第2スイッチの故障診断が実施される電源システムに適用され、前記所定時間は、前記起動スイッチのオン後において前記第2スイッチの故障診断が完了するまでの時間を含んでおり、前記制限部は、前記時間判定部により前記所定時間が経過したと判定されるまでの期間で、前記自律的な発電を停止する。
 上記電源システムでは、第2スイッチは、直列に接続される複数の半導体スイッチを有しており、複数の半導体スイッチは、寄生ダイオードが互いに逆向きとなる半導体スイッチを含んでいる。そして、起動スイッチがオン状態にされた後において、寄生ダイオードの向きが一方側及び他方側となる半導体スイッチのうち一方をオンさせた状態で第2スイッチの故障診断が実施される。この故障診断では、寄生ダイオードを介して一時的に第2スイッチが導通状態となる。しかしながら、第2スイッチの故障診断時において、自律発電が実施されると寄生ダイオードに意図せず発電電流が流れることになり、半導体スイッチの破損を招くおそれがある。
 この点上記構成では、起動スイッチがオン状態となってから第2スイッチの故障診断が完了するまでの時間を含む所定時間が経過するまで、自律発電を停止するようにしたため、自律発電に伴う発電電流が半導体スイッチの寄生ダイオードに流れることを防ぐことができる。これにより、自律発電に伴う発電電流により半導体スイッチが破損することを防ぐことができる。
 第5の手段では、前記回転電機は、界磁巻線を備える巻線界磁型回転電機であって、前記制限部は、前記時間判定部により前記所定時間が経過したと判定されるまでの期間において、前記界磁巻線に流れる励磁電流を前記自律的な発電時よりも小さくすることで、前記自律的な発電を制限する。
 上記構成では、起動スイッチがオン状態となってから所定時間が経過したと判定されるまでの期間において、界磁巻線に流れる励磁電流を通常の自律発電時よりも小さくすることで、自律発電を制限するようにしたため、自律発電に伴う発電電流を適切に制限することができる。
 電源システムとして、以下の構成を備えるものであってもよい。すなわち、第6の手段では、エンジン出力軸に駆動連結され、発電及び力行の各機能を有する回転電機と、前記回転電機に対して並列接続される第1蓄電池及び第2蓄電池と、前記第1蓄電池及び前記第2蓄電池の間の電気経路において、前記回転電機との接続点よりも前記第1蓄電池の側に設けられる第1スイッチと、当該電気経路において前記接続点よりも前記第2蓄電池の側に設けられる第2スイッチと、前記電気経路における前記第1スイッチの一端側と他端側とを接続するバイパス経路に設けられる常閉式のバイパススイッチと、を備え、起動スイッチがオフ状態からオン状態になることに伴って前記バイパススイッチが閉鎖状態から開放状態に切り替えられる電源システムであって、前記回転電機は、前記起動スイッチのオン状態において上位制御装置からの発電指令によらず自律的な発電を実施する自律発電機能を有しており、前記起動スイッチがオン状態となってから所定時間が経過するまでの期間で、前記回転電機による自律的な発電が制限される。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の電源システムを示す電気回路図であり、 図2は、回転電機ユニットの電気的構成を示す回路図であり、 図3は、回転電機ECUによる自律発電の処理手順を示すフローチャートであり、 図4は、回転電機ECUによる自律発電の処理を説明するためのタイムチャートであり、 図5は、変形例の回転電機ECUによる自律発電の処理手順を示すフローチャートであり、 図6は、イグニッションオン直後の給電経路の切り替え後の通電状態を示す図であり、 図7は、スイッチの故障診断時における通電状態を示す図であり、 図8は、別例の電源システムを示す電気回路図である。
 (第1実施形態)
 以下、本開示を具体化した実施形態を図面に基づいて説明する。本実施形態では、エンジン(内燃機関)を駆動源として走行する車両において当該車両の各種機器に電力を供給する車載電源システムを具体化するものとしている。
 図1に示すように、本電源システムは、第1蓄電池としての鉛蓄電池11と第2蓄電池としてのリチウムイオン蓄電池12とを有する2電源システムであり、各蓄電池11,12からはスタータ13や、各種の電気負荷14,15、回転電機ユニット16への給電が可能となっている。また、各蓄電池11,12に対しては回転電機ユニット16による充電が可能となっている。本システムでは、回転電機ユニット16に対して並列に鉛蓄電池11及びリチウムイオン蓄電池12が接続されるとともに、電気負荷14,15に対して並列に鉛蓄電池11及びリチウムイオン蓄電池12が接続されている。
 鉛蓄電池11は周知の汎用蓄電池である。これに対し、リチウムイオン蓄電池12は、鉛蓄電池11に比べて、充放電における電力損失が少なく、出力密度、及びエネルギ密度の高い高密度蓄電池である。リチウムイオン蓄電池12は、鉛蓄電池11に比べて充放電時のエネルギ効率が高い蓄電池であるとよい。また、リチウムイオン蓄電池12は、それぞれ複数の単電池を有してなる組電池として構成されている。これら各蓄電池11,12の定格電圧はいずれも同じであり、例えば12Vである。
 図示による具体的な説明は割愛するが、リチウムイオン蓄電池12は、収容ケースに収容されて基板一体の電池ユニットUとして構成されている。電池ユニットUは、出力端子P1,P2,P3,P4を有しており、このうち出力端子P1,P3に鉛蓄電池11とスタータ13と電気負荷14とが接続され、出力端子P2に回転電機ユニット16が接続され、出力端子P4に電気負荷15が接続されている。
 各電気負荷14,15は、各蓄電池11,12から供給される供給電力の電圧について要求が相違するものである。このうち電気負荷15には、供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される定電圧要求負荷が含まれる。これに対し、電気負荷14は、定電圧要求負荷以外の一般的な電気負荷である。電気負荷15は被保護負荷とも言える。また、電気負荷15は電源失陥が許容されない負荷であり、電気負荷14は、電気負荷15に比べて電源失陥が許容される負荷であるとも言える。
 定電圧要求負荷である電気負荷15の具体例としては、ナビゲーション装置やオーディオ装置、メータ装置、エンジンECU等の各種ECUが挙げられる。この場合、供給電力の電圧変動が抑えられることで、上記各装置において不要なリセット等が生じることが抑制され、安定動作が実現可能となっている。電気負荷15として、電動ステアリング装置やブレーキ装置等の走行系アクチュエータが含まれていてもよい。また、電気負荷14の具体例としては、シートヒータやリヤウインドウのデフロスタ用ヒータ、ヘッドライト、フロントウインドウのワイパ、空調装置の送風ファン等が挙げられる。
 回転電機ユニット16は、3相交流モータとしての回転電機21と、電力変換装置としてのインバータ22と、回転電機21の作動を制御する回転電機ECU23とを備えている。回転電機ユニット16において回転電機21は、モータ機能付き発電機であり、機電一体型のISG(Integrated Starter Generator)として構成されている。
 ここで、回転電機ユニット16の電気的構成について図2を用いて説明する。回転電機21は、3相の固定子巻線としてU相、V相、W相の相巻線24U,24V,24Wと、界磁巻線25とを備えている。回転電機21の回転軸は、図示しないエンジン出力軸に対してベルトにより駆動連結されており、エンジン出力軸の回転によって回転電機21の回転軸が回転する一方、回転電機21の回転軸の回転によってエンジン出力軸が回転する。つまり、回転電機ユニット16は、エンジン出力軸や車軸の回転により発電(回生発電)を行う発電機能と、エンジン出力軸に回転力を付与する力行機能とを備えている。
 インバータ22は、各相巻線24U,24V,24Wから出力される交流電圧を直流電圧に変換して電池ユニットUに対して出力する。また、インバータ22は、電池ユニットUから入力される直流電圧を交流電圧に変換して各相巻線24U,24V,24Wへ出力する。インバータ22は、相巻線の相数と同数の上下アームを有するブリッジ回路であり、3相全波整流回路を構成している。また、インバータ22は、回転電機21に供給される電力を調節することで回転電機21を駆動する駆動回路を構成している。
 インバータ22は、相ごとに上アームスイッチSp及び下アームスイッチSnを備えている。本実施形態では、各スイッチSp,Snとして、電圧制御形の半導体スイッチング素子を用いており、具体的には、NチャネルMOSFETを用いている。上アームスイッチSpには、上アームダイオードDpが逆並列に接続され、下アームスイッチSnには、下アームダイオードDnが逆並列に接続されている。
 界磁巻線25は、回転子を構成しており、固定子鉄心の内周側に対向配置された図示しない界磁極に巻回されている。界磁巻線25に励磁電流が流れることにより、界磁極が磁化される。界磁極が磁化された場合に発生する回転磁界により、各相巻線24U,24V,24Wから交流電圧が出力される。
 各相におけるスイッチSp,Snの直列接続体の中間接続点は、各相巻線24U,24V,24Wの一端にそれぞれ接続されている。また、インバータ22の高圧側経路と低圧側経路との間には、インバータ22の入出力の電圧を検出する電圧センサ26が設けられている。その他、回転電機ユニット16には、各相巻線24U,24V,24Wを流れる電流を検出する電流センサ27と、界磁巻線25に流れる電流を検出する電流センサ28が設けられている。上記各センサ26~28の検出信号は回転電機ECU23に適宜入力される。また、図示は略すが、回転電機21には、回転子の角度情報を検出する回転角度センサが設けられ、インバータ22には、その回転角度センサからの信号を処理する信号処理回路が設けられている。
 回転電機ECU23は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。また、回転電機ECU23は、ICレギュレータ23aを備えており、ICレギュレータ23aによって界磁巻線25に流れる励磁電流を調整する。ICレギュレータ23aは、図示しない界磁スイッチ(例えばNチャネルMOSFET)を含んで構成されており、その界磁スイッチをオンオフ制御する。具体的には、界磁スイッチの1制御周期(一定期間)における通電期間の割合を示すDuty値を変化させることで、励磁電流を調整する。例えば、回転電機ユニット16による発電では、電圧センサ26により検出された出力端子Bの電圧が目標電圧Vtgとなるように界磁スイッチをオンオフ制御する。これにより、界磁巻線25に流れる励磁電流が調整され、回転電機ユニット16の発電電圧(電池ユニットUに対する出力電圧)が制御される。
 また、回転電機ECU23は、車両の走行開始後にインバータ22を制御して回転電機21を駆動させて、エンジンの駆動力をアシストする。また、回転電機ECU23は、エンジン始動時に回転電機21を駆動させて、エンジン出力軸に初期回転を付与するようにしてもよい。なお、図1において、回転電機ECU23に鉛蓄電池11が接続されているとよい。
 次に、電池ユニットUにおける電気的構成を説明する。図1に示すように、電池ユニットUには、ユニット内電気経路として、各出力端子P1,P2を繋ぐ通電経路L1と、通電経路L1上の接続点N1とリチウムイオン蓄電池12とを繋ぐ通電経路L2とが設けられている。このうち通電経路L1にスイッチ31が設けられ、通電経路L2にスイッチ32が設けられている。なお、鉛蓄電池11とリチウムイオン蓄電池12とを接続する電気経路で言えば、回転電機ユニット16との接続点N1よりも鉛蓄電池11の側にスイッチ31が設けられ、接続点N1よりもリチウムイオン蓄電池12の側にスイッチ32が設けられている。スイッチ31が「第1スイッチ」に相当し、スイッチ32が「第2スイッチ」に相当する。
 これら各スイッチ31,32は、2×n個のMOSFET(半導体スイッチング素子)を備え、その2つ一組のMOSFETの寄生ダイオードが互いに逆向きになるように直列に接続されている。図1では、各MOSFETの寄生ダイオードが互いにアノード同士で接続されている。この寄生ダイオードによって、各スイッチ31,32をオフ状態とした場合にそのスイッチが設けられた経路に流れる電流が完全に遮断される。なお、各スイッチ31,32において、各MOSFETの寄生ダイオードが互いにカソード同士で接続されるようにしてもよい。
 通電経路L1において出力端子P1とスイッチ31との間の接続点N2には分岐経路L3の一端が接続されるとともに、通電経路L2においてリチウムイオン蓄電池12とスイッチ32との間の接続点N3には分岐経路L4の一端が接続されており、これら分岐経路L3,L4の他端同士が中間点N4で接続されている。また、中間点N4と出力端子P4とが通電経路L5により接続されている。分岐経路L3,L4にはそれぞれスイッチ33、スイッチ34が設けられている。これらスイッチ33,34は、スイッチ31,32と同様に構成されている。つまり、スイッチ33,34はそれぞれ、寄生ダイオードの向きが互いに逆向きになっている2個のMOSFETが直列に接続されている。そして、各経路L3~L5を通じて、各蓄電池11,12からそれぞれ電気負荷15への給電が可能となっている。
 電池ユニットUには、ユニット内のスイッチ31~34を介さずに、鉛蓄電池11と電気負荷15及び回転電機ユニット16とに対して接続可能とするバイパス経路L6,L7が設けられている。具体的には、電池ユニットUには、出力端子P3と通電経路L1上の接続点N1とを接続するバイパス経路L6が設けられるとともに、接続点N1と出力端子P4とを接続するバイパス経路L7が設けられている。出力端子P3は、ヒューズ51を介して鉛蓄電池11に接続されている。そして、バイパス経路L6上にはバイパススイッチ35が設けられ、バイパス経路L7上にはバイパススイッチ36が設けられている。各バイパススイッチ35,36は常閉式のリレースイッチである。
 バイパススイッチ35を閉鎖することで、スイッチ31がオフ(開放)であっても鉛蓄電池11と回転電機ユニット16とが電気的に接続される。また、両方のバイパススイッチ35,36を閉鎖することで、スイッチ31~34が全てオフ(開放)であっても鉛蓄電池11と電気負荷15とが電気的に接続される。なお、バイパス経路L6及びバイパススイッチ35を、電池ユニットU外に設けることも可能である。
 電池ユニットUは、各スイッチ31~34、及びバイパススイッチ35,36のオンオフ(開閉)を制御する電池ECU37を備えている。電池ECU37は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。電池ECU37は、各蓄電池11,12の蓄電状態や、上位制御装置であるエンジンECU40からの指令値に基づいて、各スイッチ31~34のオンオフを制御する。これにより、鉛蓄電池11とリチウムイオン蓄電池12とを選択的に用いて充放電が実施される。例えば、電池ECU37は、リチウムイオン蓄電池12のSOC(残存容量:State Of Charge)を算出し、そのSOCが所定の使用範囲内に保持されるようにリチウムイオン蓄電池12の充電量及び放電量を制御する。
 回転電機ユニット16の回転電機ECU23や電池ユニットUの電池ECU37には、これら各ECU23,37を統括的に管理する上位制御装置としてのエンジンECU40が接続されている。エンジンECU40は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されており、都度のエンジン運転状態や車両走行状態に基づいて、エンジン42の運転を制御する。
 これら各ECU23,37,40は、CAN等の通信ネットワークを構築する通信線41により接続されて相互に通信可能となっており、所定周期で双方向の通信が実施される。これにより、各ECU23,37,40に記憶される各種データが互いに共有できるものとなっている。
 回転電機ユニット16による発電は、基本的にエンジンECU40からの発電指令に基づいて実施される。例えば、エンジンECU40は、電池ECU37との信号伝達を介してリチウムイオン蓄電池12のSOCが所定値以下であると判定すると、回転電機ECU23に発電指令を送信する。そして、回転電機ECU23は、その発電指令に基づいて目標電圧Vtgを設定し、発電電圧が目標電圧Vtgとなるように界磁巻線25に流れる励磁電流を制御する。
 また、回転電機ユニット16は、エンジンECU40からの発電指令によらずに自律的な発電を実施する自律発電機能を有している。具体的には、回転電機ECU23は、車両のイグニッションスイッチ(起動スイッチ)がオンされている状態においてエンジンECU40からの発電指令が取得されない場合、例えば回転電機ECU23とエンジンECU40との間で通信異常が生じた場合に、回転電機ユニット16による自律発電を実施する。これにより、異常発生時においても車両の動作に必要な電力が供給される。
 自律発電は、回転電機ユニット16の出力端子Bの電圧(電池ユニットUに対する出力電圧)が、所定電圧VA(例えば、14V)を維持するように実施される。かかる場合、界磁巻線25に流れる励磁電流は、所定電圧VAに対応する所定電流IAに制御される。なお、この自律発電では、回転電機ユニット16外部の導通状態、すなわち電源システムにおける各経路L1~L7の導通状態にかかわらず所定の発電電圧が生成される。
 ところで、上記電源システムにおいて、車両のイグニッションスイッチがオフされている状態では、各スイッチ31~34はオフ(開放)されており、バイパススイッチ35,36が閉鎖されている。かかる状態では、バイパス経路L6,L7を介して鉛蓄電池11から電気負荷15へ電力が供給される。なお、バイパス経路L6,L7の許容通電電流は、通電経路L1,L2に比べて小さくなっている。
 そして、イグニッションスイッチがオフ状態からオン状態になると、鉛蓄電池11から電気負荷15への給電経路が変更される。このとき、各スイッチ31,33がオン(閉鎖)されるとともに、バイパススイッチ35,36が閉鎖状態から開放状態へ切り替えられる。つまり、車両のイグニッションスイッチがオンされた直後には、通常の給電経路が確立されておらず、バイパス経路L6,L7を通じての導通状態となっている。そのため、例えば、イグニッションオン直後の電気負荷15への給電経路の切り替え時において回転電機ユニット16により自律発電が行われると、発電電流が意図せずバイパス経路L6,L7に流れ、バイパススイッチ35,36の破損やヒューズ51の溶断を招くおそれがある。
 そこで、本実施形態では、イグニッションスイッチがオン状態となってから所定時間T1が経過したか否かを判定し、所定時間T1が経過したと判定されるまでの期間で回転電機ユニット16による自律発電を制限するようにした。具体的には、回転電機ECU23は、励磁電流を制御することで、回転電機ユニット16による自律発電を停止する。つまり、イグニッションオン直後において、自律発電に伴う発電電流がバイパス経路L6,L7に流れないようにしている。
 所定時間T1は、イグニッションスイッチのオン後においてバイパススイッチ35,36が開放されるまでの時間を含むように設定される。所定時間T1は、例えば、バイパススイッチ35,36の閉鎖状態から開放状態への切り替えが完了するまでの時間に、さらに余裕時間を加えて設定されてもよい。つまりこの場合、回転電機ECU23は、少なくともイグニッションオン直後における電気負荷15への給電経路の切り替えが完了するまでは、自律発電を停止する。
 図3のフローチャートを用いて、回転電機ECU23により実施される自律発電処理について説明する。この処理は、回転電機ECU23により所定周期で繰り返し実施される。
 ステップS11では、イグニッションスイッチがオン状態であるか否かを判定する。ステップS11がYESであればステップS12に進み、ステップS11がNOであればそのまま本処理を終了する。ステップS12では、エンジンECU40との間で通信異常が発生したか否かを判定する。通信異常の判定には、周知の方法を用いることができる。例えば、回転電機ECU23は、エンジンECU40からの確認信号が受信できない場合に通信異常が生じたと判定する。ステップS12がYESであれば、自律発電を実施する必要があるとしてステップS13に進む。一方、ステップS12がNOであれば、そのまま本処理を終了する。
 ステップS13では、イグニッションスイッチがオン状態となってから所定時間T1が経過しているか否かを判定する。所定時間T1は、例えば、バイパススイッチ35,36の閉鎖状態から開放状態への切り替えに要する時間を含むように設定される。ステップS13がYESであれば、ステップS14に進み、回転電機ユニット16による自律発電を実施する。この場合、回転電機ユニット16の出力電圧が所定電圧VAとなるように発電が実施される。一方、ステップS13がNOであれば、ステップS15に進み、自律発電を停止する。例えば、回転電機ECU23は、界磁スイッチをオフ(開放)にして、界磁巻線25に励磁電流が流れないようにすることで自律発電を停止する。このとき、イグニッションスイッチがオンされてから所定時間T1が経過するまで、回転電機ユニット16による自律発電が停止される。
 なお、図3において、ステップS13が「時間判定部」に相当し、ステップS14が「自律発電部」に相当し、ステップS15が「制限部」に相当する。
 続いて、図4には、図3の処理をより具体的に示すタイミングチャートを示す。まず、電池ユニットUにおける各スイッチの状態について説明する。
 タイミングt11以前では、イグニッションスイッチがオフされている。この間は、バイパススイッチ35,36が閉鎖されており、バイパス経路L6,L7を介して鉛蓄電池11から電気負荷15へ電力供給が行われている。そして、タイミングt11にてイグニッションスイッチがオンされると、スイッチ31,33のオン指令が生成され、タイミングt13にてスイッチ31,33がオン(閉鎖)される。そして、スイッチ31,33とバイパススイッチ35,36とが閉鎖された状態を経て、タイミングt14でバイパススイッチ35,36が開放される。なお、電気負荷15への給電が途絶えるのを防ぐため、スイッチの閉鎖状態をオーバーラップさせた期間(タイミングt13~t14)を設けている。
 続いて、回転電機ユニット16における処理について説明する。イグニッションスイッチのオン状態において、回転電機ECU23によりエンジンECU40との通信異常の有無が判定される。そして、タイミングt12にて通信異常が生じたと判定されると、自律発電が実施される。ただし、タイミングt12の時点においては、イグニッションオンから所定時間T1が経過していないため、自律発電が停止(禁止)される。そして、所定時間T1経過後のタイミングt15以降において自律発電が実施される。タイミングt15の時点では電気負荷15への給電経路の切り替えはすでに完了している。なお、タイミングt14~t15が余裕時間に相当する。
 仮に、通信異常が発生したと判定されるタイミングt12において自律発電が開始されるとすると、バイパススイッチ35,36がまだ閉鎖状態であるため、バイパス経路L6,L7に対し過剰な電流が流れるおそれがある。かかる場合、ヒューズ51が溶断する等の懸念があるが、上記のとおり、電気負荷15への給電経路の切り替えが完了するまで自律発電が停止されることで、ヒューズ51の溶断が回避される。
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。
 上記構成では、イグニッションスイッチがオン状態となってから所定時間T1が経過したか否かを判定し、所定時間T1が経過したと判定されるまでの期間で自律発電を制限するようにした。この場合、所定時間T1が経過するまで自律発電を制限することで、発電電流が意図せずバイパス経路L6,L7に流れることを抑制しつつ、自律発電によって電力を供給することができる。これにより、回転電機ユニット16による発電を適正に実施することができる。
 具体的には、イグニッションスイッチがオン状態となってからバイパススイッチ35,36が開放されるまでの時間を含む所定時間T1が経過するまで、回転電機ユニット16による自律発電を停止するようにした。この場合、バイパス経路L6,L7が導通した状態で自律発電が実施されないため、発電電流がバイパス経路L6,L7に流れることはない。これにより、発電電流によるバイパススイッチ35,36の破損やヒューズ51の溶断を防ぐことができる。
 また、界磁巻線25に流れる励磁電流を界磁スイッチによって遮断することで、自律発電を停止するようにしたため、自律発電に伴う発電電流が意図せずバイパス経路L6,L7に流れることを好適に防ぐことができる。
 (第1実施系形態の別例)
 ・上記実施形態では、イグニションスイッチがオン状態となってから電気負荷15への給電経路の切り替えが完了するまでは、回転電機ユニット16による自律発電を停止する構成としたが、これを変更してもよい。例えば、回転電機ユニット16による自律発電の発電電流をバイパス経路L6,L7の許容通電電流以下に制限する構成としてもよい。
 かかる構成について、図5のフローチャートを用いて説明する。本処理は、上述の図3に置き換えて回転電機ECU23により所定周期で繰り返し実施される。なお図5では、図3と同様の処理について同一のステップ番号を付して説明を簡略にする。図3の処理からの変更点は、ステップS15からステップS16への置換である。
 図5において、イグニッションスイッチがオンされ、かつ通信異常が発生したと判定された場合(ステップS11,S12が共にYESの場合)であって、イグニッションオンから所定時間T1が経過していない場合(ステップS13がNOの場合)に、ステップS16に進む。ステップS16では、バイパス経路L6,L7の許容通電電流以下となるように発電電圧を制限して、回転電機ユニット16による自律発電を実施する。かかる場合の発電電圧は、例えばヒューズ51の許容通電電流(例えば30A)に基づいて設定され、通常の自律発電時での所定電圧VAよりも小さい値である。このとき、回転電機ECU23は、励磁電流を、通常の自律発電時での所定電流IAよりも小さくすることで発電電圧を制限する。かかる構成において、ステップS16が「制限部」に相当する。
 上記構成では、イグニションスイッチがオン状態となってからバイパススイッチ35,36が開放されるまでの時間を含む所定時間T1が経過するまで、回転電機ユニット16による自律発電の発電電流をバイパス経路L6,L7の許容通電電流以下に制限するようにしたため、回転電機ユニット16による発電を行いつつ、バイパススイッチ35,36が破損することを防ぐことができる。
 上記構成では、界磁巻線25に流れる励磁電流を自律発電時での所定電流IAよりも小さくすることで自律発電を制限するようにしたため、許容通電電流よりも大きな発電電流が意図せずにバイパス経路L6,L7に流れることを好適に防ぐことができる。
 (第2実施形態)
 上述のとおり、車両のイグニッションスイッチがオンされた直後には、電気負荷15への給電経路が切り替えられる。ここで、図6には、給電経路の切り替えが完了した後の電源システムの通電状態を示す。図6では、スイッチ31,33がオン(閉鎖)されており、鉛蓄電池11からスイッチ33を介して電気負荷15に電力が供給されている。一方、リチウムイオン蓄電池12の充放電を制御するスイッチ32,34はオフ(開放)されており、また、バイパススイッチ35,36は開放されている。そして、イグニッションオン直後のかかる状態において、スイッチ32,34の故障診断が実施される。以下に、スイッチ32,34の故障診断について説明する。
 上述の図1に示したように、スイッチ32,34はそれぞれ、寄生ダイオードの向きが互いに逆向きとなっている2個のMOSFETが直列に接続されている。すなわち、スイッチ32は、スイッチ部32a及びスイッチ部32bから構成され、スイッチ34は、スイッチ部34a及びスイッチ部34bから構成されている。故障診断では、各スイッチ32,34において片方のスイッチ部をそれぞれ同時にオン(閉鎖)させる。具体的には、リチウムイオン蓄電池12に対して、各スイッチ部の寄生ダイオードの向きが同じとなる組み合わせで各スイッチのスイッチ部を同時にオンさせる。
 例えば、図7には、スイッチ部32aとスイッチ部34aを同時にオンさせた場合の故障診断を示す。図7において、鉛蓄電池11の端子電圧の方がリチウムイオン蓄電池12の端子電圧よりも大きい場合には、スイッチ部32aとスイッチ部32bの寄生ダイオードとを介してリチウムイオン蓄電池12に電流が流れる。同様に、スイッチ部34aとスイッチ部34bの寄生ダイオードとを介してリチウムイオン蓄電池12に電流が流れる。かかる場合には、リチウムイオン蓄電池12へ流入する電流を検出することで、スイッチ部32aとスイッチ部34aが正常に動作していることを把握する。
 一方、リチウムイオン蓄電池12の端子電圧の方が鉛蓄電池11の端子電圧よりも大きい場合には、スイッチ部32bとスイッチ部34bを同時にオンさせると、リチウムイオン蓄電池12から電流が流れ出る。すなわち、スイッチ部32bとスイッチ部32aの寄生ダイオードとを介してリチウムイオン蓄電池12から電流が流れ、スイッチ部34bとスイッチ部34aの寄生ダイオードとを介してリチウムイオン蓄電池12から電流が流れる。かかる場合には、リチウムイオン蓄電池12から流出する電流を検出することで、スイッチ部32bとスイッチ部34bが正常に動作していることを把握する。
 このように、スイッチ32,34の故障診断では、各スイッチにおいて片方のスイッチ部を同時にオンさせている。なお、スイッチ32の故障診断とスイッチ34の故障診断とを別々に実施してもよい。例えばスイッチ32の故障診断では、スイッチ部32a、スイッチ部32bが1つずつオンされる。
 例えば、故障診断においてスイッチ部32a,34aをオンさせた場合において、回転電機ユニット16により自律発電が実施されると、スイッチ32を介して発電電流がリチウムイオン蓄電池12へ流れる。かかる場合、発電電流が意図せずスイッチ部32bの寄生ダイオードに流れ、スイッチ部32bの破損を招くおそれがある。なお、スイッチ部34bについても同様である。
 そこで、本実施形態では、イグニッションスイッチがオン状態となってからスイッチ32,34の故障診断が完了するまでの時間を含む所定時間T2が経過したか否かを判定し、所定時間T2が経過したと判定されるまでの期間で回転電機ユニット16による自律発電を制限するようにした。具体的には、回転電機ECU23は、回転電機ユニット16による自律発電を停止する。つまり、イグニッションオン直後において、自律発電に伴う発電電流が、スイッチ部32b,34bの寄生ダイオードに流れないようにしている。
 第2実施形態における回転電機ECU23の自律発電処理は、上述の図3のフローチャートに基づいて実施される。第1実施形態からの変更点は、ステップS13の処理内容の変更である。第2実施形態では、所定時間T2は、イグニッションスイッチのオン後においてスイッチ32,34の故障診断が完了するまでの時間を含むように設定される。所定時間T2は、例えば、スイッチ32,34の故障診断が完了するまでの時間に、さらに余裕時間を加えて設定されてもよい。回転電機ECU23は、この所定時間T2を用いてステップS13を実施する。ここで、スイッチ32,34の故障診断は、イグニッションオン直後の電気負荷15への給電経路の切り替えよりも後に実施されることから、第2実施形態での所定時間T2は、第1実施形態での所定時間T1よりも長く設定される(T2>T1)。なお、その他の処理については上述のとおりである。
 上記構成では、イグニッションスイッチがオン状態となってからスイッチ32,34の故障診断が完了するまでの時間を含む所定時間T2が経過するまで、回転電機ユニット16による自律発電を停止するようにした。この場合、スイッチ部32a,34aがオンされた状態で自律発電が実施されないため、発電電流がスイッチ部32b,34bの寄生ダイオードに流れることはない。これにより、発電電流によるスイッチ部32b,34bの破損を防ぐことができる。
 (他の実施形態)
 ・上記実施形態では、出力端子P1,P3に鉛蓄電池11とスタータ13と電気負荷14とが接続され、出力端子P2に回転電機ユニット16が接続され、出力端子P4に電気負荷15が接続された電源システムに、回転電機ECU23を適用したが、その他の電源システムに適用してもよい。例えば、上記電源システムにおいて出力端子P4を設けずに、出力端子P2に電気負荷15と回転電機ユニット16とを接続させた電源システムに、回転電機ECU23を適用してもよい。
 かかる電源システムについて、図8を用いて説明する。図8においては、説明の便宜上、上述の図1に準ずる構成については同じ符号を付すとともに説明を適宜割愛する。
 図8に示す電池ユニットUでは、出力端子P1,P3に鉛蓄電池11とスタータ13と電気負荷14とが接続され、出力端子P2に回転電機ユニット16と電気負荷15とが接続されている。電池ユニットUにおいて、通電経路L1にスイッチ31が設けられ、通電経路L2にスイッチ32が設けられている。なお、各スイッチ31,32の構成は上述のとおりである。また、バイパス経路L6にはバイパススイッチ35が設けられている。この場合、バイパススイッチ35を閉鎖することで、スイッチ31がオフ(開放)であっても鉛蓄電池11と電気負荷15とが電気的に接続される。なお、図8の電源システムでは、図1の電源システムにおける分岐経路L3,L4、通電経路L5が省略されており、それに伴ってスイッチ33,34、バイパススイッチ36も省略されている。
 上記電源システムにおいて、イグニッションスイッチがオフされた状態では、バイパス経路L6を介して鉛蓄電池11から電気負荷15へ電力が供給される。そして、イグニッションスイッチがオン状態になることに伴って、電気負荷15への給電経路が切り替えられる。このとき、スイッチ31がオン(閉鎖)されるとともに、バイパススイッチ35が閉鎖状態から開放状態へ切り替えられる。また、電気負荷15への給電経路の切り替え後においては、スイッチ32の故障診断が実施される。つまり、スイッチ32の各スイッチ部32a,32bがオン(閉鎖)される。このように上記電源システムにおいてもイグニッションオン直後には、電源システムの導通状態が大きく変化するため、かかる状態下で自律発電が行われると、発電電流に起因して不都合が生じるおそれがある。
 そのため、上記電源システムにおいてもイグニッションオン直後から所定時間が経過するまで回転電機ユニット16による自律発電を制限することで、ヒューズ51の溶断やスイッチ32の故障を防ぐことができる。
 ・上記実施形態では、蓄電池として鉛蓄電池11を設けるとともに、リチウムイオン蓄電池12を設ける構成としたが、これを変更してもよい。例えば、リチウムイオン蓄電池12に代えて、それ以外の高密度蓄電池、例えばニッケル-水素電池を用いてもよい。その他、少なくともいずれかの蓄電池としてキャパシタを用いることも可能である。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (6)

  1.  エンジン出力軸に駆動連結され、発電及び力行の各機能を有する回転電機(16)と、
     前記回転電機に対して並列接続される第1蓄電池(11)及び第2蓄電池(12)と、
     前記第1蓄電池及び前記第2蓄電池の間の電気経路において、前記回転電機との接続点よりも前記第1蓄電池の側に設けられる第1スイッチ(31)と、
     当該電気経路において前記接続点よりも前記第2蓄電池の側に設けられる第2スイッチ(32)と、
     前記電気経路における前記第1スイッチの一端側と他端側とを接続するバイパス経路に設けられる常閉式のバイパススイッチ(35)と、
    を備え、
     起動スイッチがオフ状態からオン状態になることに伴って前記バイパススイッチが閉鎖状態から開放状態に切り替えられる電源システムに適用され、
     上位制御装置(40)と通信可能に接続され、前記上位制御装置から発電指令を受信することで、前記回転電機による発電を実施する回転電機制御装置(23)であって、
     前記起動スイッチのオン状態において前記上位制御装置からの前記発電指令が取得されていない場合に、前記上位制御装置からの前記発電指令によらず前記回転電機による自律的な発電を実施する自律発電部と、
     前記起動スイッチがオン状態となってから所定時間が経過したか否かを判定する時間判定部と、
     前記時間判定部により前記所定時間が経過したと判定されるまでの期間で、前記自律発電部による自律的な発電を制限する制限部と、
    を備える回転電機制御装置。
  2.  前記バイパス経路は、前記電気経路よりも許容通電電流が小さい経路であり、
     前記所定時間は、前記起動スイッチのオン後において前記バイパススイッチが開放されるまでの時間を含んでおり、
     前記制限部は、前記時間判定部により前記所定時間が経過したと判定されるまでの期間で、前記自律的な発電を停止する請求項1に記載の回転電機制御装置。
  3.  前記バイパス経路は、前記電気経路よりも許容通電電流が小さい経路であり、
     前記所定時間は、前記起動スイッチのオン後において前記バイパススイッチが開放されるまでの時間を含んでおり、
     前記制限部は、前記時間判定部により前記所定時間が経過したと判定されるまでの期間で、前記自律的な発電の発電電流を前記バイパス経路の許容通電電流以下に制限する請求項1に記載の回転電機制御装置。
  4.  前記第2スイッチは、直列に接続される複数の半導体スイッチ(32a,32b)を有しており、前記複数の半導体スイッチは、寄生ダイオードが互いに逆向きとなる半導体スイッチを含んでおり、
     前記起動スイッチがオン状態にされた後において、前記寄生ダイオードの向きが一方側及び他方側となる前記半導体スイッチのうち一方をオンさせた状態で前記第2スイッチの故障診断が実施される電源システムに適用され、
     前記所定時間は、前記起動スイッチのオン後において前記第2スイッチの故障診断が完了するまでの時間を含んでおり、
     前記制限部は、前記時間判定部により前記所定時間が経過したと判定されるまでの期間で、前記自律的な発電を停止する請求項1に記載の回転電機制御装置。
  5.  前記回転電機は、界磁巻線(25)を備える巻線界磁型回転電機であって、
     前記制限部は、前記時間判定部により前記所定時間が経過したと判定されるまでの期間において、前記界磁巻線に流れる励磁電流を前記自律的な発電時よりも小さくすることで、前記自律的な発電を制限する請求項1乃至4のいずれか1項に記載の回転電機制御装置。
  6.  エンジン出力軸に駆動連結され、発電及び力行の各機能を有する回転電機(16)と、
     前記回転電機に対して並列接続される第1蓄電池(11)及び第2蓄電池(12)と、
     前記第1蓄電池及び前記第2蓄電池の間の電気経路において、前記回転電機との接続点よりも前記第1蓄電池の側に設けられる第1スイッチ(31)と、
     当該電気経路において前記接続点よりも前記第2蓄電池の側に設けられる第2スイッチ(32)と、
     前記電気経路における前記第1スイッチの一端側と他端側とを接続するバイパス経路に設けられる常閉式のバイパススイッチ(35)と、を備え、
     起動スイッチがオフ状態からオン状態になることに伴って前記バイパススイッチが閉鎖状態から開放状態に切り替えられる電源システムであって、
     前記回転電機は、前記起動スイッチのオン状態において上位制御装置からの発電指令によらず自律的な発電を実施する自律発電機能を有しており、前記起動スイッチがオン状態となってから所定時間が経過するまでの期間で、前記回転電機による自律的な発電が制限される電源システム。
PCT/JP2018/011232 2017-04-18 2018-03-21 回転電機制御装置、及び電源システム WO2018193782A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018002059.2T DE112018002059T5 (de) 2017-04-18 2018-03-21 Rotierende-Elektrische-Maschinen-Steuerungsvorrichtung und Leistungsquellensystem
CN201880025707.4A CN110546879B (zh) 2017-04-18 2018-03-21 旋转电机控制装置及电源系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-081901 2017-04-18
JP2017081901A JP6683167B2 (ja) 2017-04-18 2017-04-18 回転電機制御装置、及び電源システム

Publications (1)

Publication Number Publication Date
WO2018193782A1 true WO2018193782A1 (ja) 2018-10-25

Family

ID=63856996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011232 WO2018193782A1 (ja) 2017-04-18 2018-03-21 回転電機制御装置、及び電源システム

Country Status (4)

Country Link
JP (1) JP6683167B2 (ja)
CN (1) CN110546879B (ja)
DE (1) DE112018002059T5 (ja)
WO (1) WO2018193782A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10505491B2 (en) * 2018-04-10 2019-12-10 Denso Corporation Electronic control apparatus for a power supply system with a rotating electrical machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7207144B2 (ja) * 2019-05-09 2023-01-18 株式会社デンソー 車両の電源システム
JP7567592B2 (ja) 2021-03-19 2024-10-16 トヨタ自動車株式会社 モータ制御システムおよびハイブリッド車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127280A (ja) * 2003-10-27 2005-05-19 Denso Corp 内燃機関始動装置
JP2014158399A (ja) * 2013-02-18 2014-08-28 Aisin Aw Co Ltd 回転電機駆動装置
JP2016181949A (ja) * 2015-03-23 2016-10-13 株式会社日本自動車部品総合研究所 電力変換装置
US20170001585A1 (en) * 2014-01-27 2017-01-05 Robert Bosch Gmbh Method for operating an on-board electrical system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2556726B2 (de) * 1975-12-17 1977-12-29 Danfoss A/S, Nordborg (Dänemark) Steuerschaltung fuer einen selbstanlaufenden elektromotor
US4948209A (en) * 1989-01-01 1990-08-14 Westinghouse Electric Corp. VSCF starter/generator systems
JP5104258B2 (ja) * 2007-06-25 2012-12-19 マツダ株式会社 ハイブリッド車両
JP5234052B2 (ja) 2010-04-27 2013-07-10 株式会社デンソー 電源装置
JP2015091145A (ja) * 2013-11-05 2015-05-11 日立オートモティブシステムズ株式会社 モータ制御装置
WO2016076429A1 (ja) * 2014-11-14 2016-05-19 アイシン・エィ・ダブリュ株式会社 インバータ制御装置及び車両用制御装置
CN104901385B (zh) * 2015-06-19 2018-02-27 北京纳米能源与系统研究所 发电机能量管理装置及发电系统
JP6921493B2 (ja) 2015-10-30 2021-08-18 小林製薬株式会社 水中油型乳化組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127280A (ja) * 2003-10-27 2005-05-19 Denso Corp 内燃機関始動装置
JP2014158399A (ja) * 2013-02-18 2014-08-28 Aisin Aw Co Ltd 回転電機駆動装置
US20170001585A1 (en) * 2014-01-27 2017-01-05 Robert Bosch Gmbh Method for operating an on-board electrical system
JP2016181949A (ja) * 2015-03-23 2016-10-13 株式会社日本自動車部品総合研究所 電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10505491B2 (en) * 2018-04-10 2019-12-10 Denso Corporation Electronic control apparatus for a power supply system with a rotating electrical machine

Also Published As

Publication number Publication date
DE112018002059T5 (de) 2019-12-24
JP2018182949A (ja) 2018-11-15
CN110546879B (zh) 2022-11-11
CN110546879A (zh) 2019-12-06
JP6683167B2 (ja) 2020-04-15

Similar Documents

Publication Publication Date Title
WO2018088111A1 (ja) 電源制御装置、及び電池ユニット
US10608575B2 (en) Abnormality diagnosis apparatus
JP6638616B2 (ja) 電源制御装置
CN109716614B (zh) 控制系统
JP6642496B2 (ja) 電源装置及び電源システム
WO2018193782A1 (ja) 回転電機制御装置、及び電源システム
WO2018139204A1 (ja) 回転電機制御装置
WO2018143046A1 (ja) 回転電機ユニット、車両
JP6708165B2 (ja) 回転電機装置の制御装置
JP7259563B2 (ja) 回転電機制御システム
JP7021661B2 (ja) 電源装置の制御装置
JP2018139462A (ja) 電源装置
JP6620769B2 (ja) 制御システム
CN110574285B (zh) 旋转电机控制装置和控制系统
JP7196710B2 (ja) 車載電源システムの制御装置
JP6589803B2 (ja) 回転電機制御装置
JP2019030198A (ja) 電源システム
JP7318286B2 (ja) 回転電機ユニット、及び回転電機システム
WO2024053424A1 (ja) 電力変換装置、プログラム
JP2020178522A (ja) 回転電機システム
WO2018142867A1 (ja) スイッチ制御装置
JP2024125824A (ja) 電動車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787103

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18787103

Country of ref document: EP

Kind code of ref document: A1