JP7207144B2 - 車両の電源システム - Google Patents

車両の電源システム Download PDF

Info

Publication number
JP7207144B2
JP7207144B2 JP2019089391A JP2019089391A JP7207144B2 JP 7207144 B2 JP7207144 B2 JP 7207144B2 JP 2019089391 A JP2019089391 A JP 2019089391A JP 2019089391 A JP2019089391 A JP 2019089391A JP 7207144 B2 JP7207144 B2 JP 7207144B2
Authority
JP
Japan
Prior art keywords
power generation
control device
ecu
battery
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019089391A
Other languages
English (en)
Other versions
JP2020185807A (ja
Inventor
明 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019089391A priority Critical patent/JP7207144B2/ja
Publication of JP2020185807A publication Critical patent/JP2020185807A/ja
Application granted granted Critical
Publication of JP7207144B2 publication Critical patent/JP7207144B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、車両に搭載される電源システムに関するものである。
従来、複数の蓄電池を有し、その複数の蓄電池と電気負荷や発電機との間で充放電を行わせる技術が知られている。例えば、特許文献1に記載の技術では、電気負荷と、その電気負荷に並列接続される複数の電池との接続状態を切替装置により切り替える車両の制御装置において、複数の電池のいずれかに異常が生じた場合に、異常電池を正常電池と電気負荷とから切り離す第1制御を実行するとともに、第1制御の実行中、正常電池の電圧と異常電池の電圧との差電圧が所定値を超えた場合に、異常電池に加えて正常電池を電気負荷から切り離す第2制御を実行するようにしている。
特開2012-228012号公報
ところで、発電機と、その発電機の発電電力により充電可能な蓄電池とを有する車両の電源システムでは、発電機と蓄電池とを接続する電気経路にスイッチが設けられ、スイッチがオン(閉鎖)された状態で、発電機の発電電力により蓄電池の充電が行われる。例えば、発電機に対して並列接続された複数の蓄電池を有する電源システムでは、発電機と蓄電池との間のスイッチをオン又はオフすることにより、発電電力の供給先となる蓄電池の切り替え、すなわち充電対象の蓄電池の切り替えが可能となっている。また、発電機の発電を制御する発電制御装置と、スイッチのオンオフを制御するスイッチ制御装置とを備え、それら各制御装置どうしを通信可能とする構成が知られている。
電源システムの起動時には、発電制御装置やスイッチ制御装置に対して電源電圧が供給され、その電源電圧の供給に伴い各制御装置が起動するとともに、各制御装置どうしで相互の通信が可能となった状態で、発電制御装置による発電制御が実施される。この場合、いずれかの制御装置で通信異常が生じることが考えられ、その通信異常時には、車両の退避走行を行わせるべく退避走行モードで発電機の発電制御が実施される。例えばスイッチ制御装置において通信異常が生じている場合、通信異常は生じているものの各スイッチのオンオフ制御は実施されているとして、蓄電池の充電を行うべく発電機の発電が行われる。
しかしながら、スイッチ制御装置において通信異常が生じている場合、その原因が、スイッチ制御装置に対して電源電圧が供給されていないことによる起動不良であることが考えられる。例えば、スイッチ制御装置に対して電源電圧を供給する電源ラインが断線している場合、スイッチ制御装置が起動できないことが生じうる。かかる場合、発電機と蓄電池との間のスイッチがオフされた状態で発電機の発電が行われると、発電電力を蓄電池等に供給できないことに起因して、過電圧が生じることが懸念される。なお、過電圧が生じると、発電が一旦停止されることにより電圧が低下するが、発電の再開により再び過電圧が生じ、以降、発電停止と再開が繰り返されることが考えられる。
本発明は、上記課題に鑑みてなされたものであり、車両の電源システムにおいて、スイッチ制御装置の起動不良時にも発電制御装置による適正な発電制御を実施することを目的とする。
以下、上記課題を解決するための手段、及びその作用効果について説明する。
第1の手段は、発電機と、前記発電機の発電電力により充電可能な蓄電池と、前記発電機と前記蓄電池との間の電気経路に設けられたスイッチと、前記発電機の発電を制御する発電制御装置と、前記スイッチの開閉を制御するスイッチ制御装置と、備え、前記発電制御装置及び前記スイッチ制御装置は、電源電圧の供給開始に伴い起動するとともに、起動後において前記発電制御装置と前記スイッチ制御装置との間の通信を可能とする車両の電源システムであって、前記発電制御装置と、前記スイッチ制御装置又は当該スイッチ制御装置の電源ラインとを接続し、前記スイッチ制御装置が起動状態であることを示す起動信号が出力される接続線を有し、前記発電制御装置は、前記スイッチ制御装置との通信が正常でない場合において、前記接続線から入力される前記起動信号の有無に基づいて、前記発電機の発電制限を実施する。
上記構成の電源システムでは、電源電圧の供給開始に伴い発電制御装置とスイッチ制御装置とがそれぞれ起動し、起動後において発電制御装置とスイッチ制御装置との間の通信が可能となっている。この場合、スイッチ制御装置によりスイッチがオン(閉鎖)された状態で、発電制御装置により発電制御が実施され、発電電力により蓄電池が充電される。また、発電制御装置と、スイッチ制御装置又はその電源ラインとが接続線により接続されており、その接続線を介して、スイッチ制御装置が起動状態であることを示す起動信号が出力されるようになっている。そして、発電制御装置は、スイッチ制御装置との通信が正常でない場合に、接続線から入力される起動信号の有無に基づいて、発電機の発電制限を実施する。
スイッチ制御装置で通信異常が生じている場合には、通信系の故障が生じていること以外に、スイッチ制御装置が正常に起動していない起動不良が生じていることが考えられる。具体的には、電源ラインの断線に起因して起動不良が生じることが考えられる。この点、上記構成によれば、発電制御装置では、スイッチ制御装置との通信が正常であるか否かが認識されることに加え、接続線から起動信号が適正に入力されているか否かが認識され、それらの認識結果に基づいて発電機の発電制限が実施される。これにより、接続線から起動信号が適正に入力されていないと認識される場合において、スイッチ制御装置で起動不良が生じており、それによりスイッチがオフ状態のままであることを把握でき、発電機の発電制限を適正に実施できる。例えば、スイッチがオフされた状態で発電が行われても過電圧が生じないように、発電制限を実施することが可能となる。その結果、車両の電源システムにおいて、スイッチ制御装置の起動不良時にも発電制御装置による適正な発電制御を実施することができる。
第2の手段では、前記電気経路には、前記スイッチを迂回するようにしてバイパス経路が並列に設けられ、前記スイッチのオフ時において前記バイパス経路を通じて前記蓄電池と前記発電機との導通が可能となっており、前記発電制御装置は、前記スイッチ制御装置との通信が正常でなく、かつ前記接続線から前記起動信号が入力されていない場合に、前記バイパス経路を流れる電流が当該バイパス経路における電流制限範囲内で制限されるように、前記発電機の発電制限を実施する。
上記構成によれば、電気経路に並列にバイパス経路が設けられており、スイッチのオフ時には、バイパス経路を通じて蓄電池と発電機との導通が可能となっている。また、発電制御装置において接続線からの起動信号が入力されておらず、スイッチ制御装置の起動不良が生じている状態では、発電電力がバイパス経路を通じて流れることを加味して、発電による通電電流が、バイパス経路における電流制限範囲内で制限される。これにより、スイッチ制御装置の起動不良時において、バイパス経路の保護を図りつつ発電を実施することが可能となる。
第3の手段では、前記発電制御装置は、前記スイッチ制御装置との通信が正常でなく、かつ前記接続線から前記起動信号が入力されている場合に、前記発電機の発電制限を含む第1フェイルセーフ処理を実施し、前記スイッチ制御装置との通信が正常でなく、かつ前記接続線から前記起動信号が入力されていない場合に、前記第1フェイルセーフ処理よりも前記発電機の発電制限の程度の大きい第2フェイルセーフ処理を実施する。
スイッチ制御装置との通信が正常でなく、かつ接続線から起動信号が入力されている場合には、スイッチ制御装置は起動しているものの通信異常が生じていると把握できる。また、スイッチ制御装置との通信が正常でなく、かつ接続線から起動信号が入力されていない場合には、スイッチ制御装置が正しく起動していない(起動不良が生じている)と把握できる。この場合、スイッチ制御装置の起動状態に応じて第1,第2フェイルセーフ処理が適宜実施されることにより、スイッチの状態を推測しつつ、発電機の発電制限を適正に実施できる。
実施形態における電源システムを示す構成図。 電池ECUの起動時処理を示すフローチャート。 エンジンECUの起動時処理を示すフローチャート。 回転電機ECUの起動時処理を示すフローチャート。 第2実施形態における電源システムを示す構成図。 第2実施形態におけるエンジンECUの起動時処理を示すフローチャート。 第2実施形態における回転電機ECUの起動時処理を示すフローチャート。
以下、本発明を具体化した実施形態を図面に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付している。各実施形態の電源システムは車両に搭載される車載電源システムであり、車両はエンジン(内燃機関)を駆動源として走行するものである。
<第1実施形態>
図1に示すように、本電源システムは、鉛蓄電池11とリチウムイオン蓄電池12とを有する2電源システムである。各蓄電池11,12からはスタータ13や、各種の電気負荷14,15、回転電機31への給電が可能になっている。鉛蓄電池11及びリチウムイオン蓄電池12は、回転電機31に対して並列に接続されている。
鉛蓄電池11は周知の汎用蓄電池である。これに対し、リチウムイオン蓄電池12は鉛蓄電池11に比べて、充放電における電力損失が少なく、出力密度及びエネルギ密度の高い高密度蓄電池である。リチウムイオン蓄電池12は、鉛蓄電池11に比べてエネルギ効率が高い蓄電池であるとよい。また、リチウムイオン蓄電池12は、それぞれ複数の単電池を有してなる組電池として構成されている。これら鉛蓄電池11、リチウムイオン蓄電池12の定格電圧はいずれも同じであり、例えば12Vである。
図示による具体的な説明は割愛するが、リチウムイオン蓄電池12は、収容ケースに収容されて基板一体の電池ユニット20の一部として構成されている。電池ユニット20は、出力端子P1,P2,P3を有しており、このうち出力端子P1に鉛蓄電池11とスタータ13と電気負荷14とが接続され、出力端子P2に回転電機31が接続され、出力端子P3に電気負荷15が接続されている。
各電気負荷14,15は、鉛蓄電池11及びリチウムイオン蓄電池12から供給される供給電力の電圧について要求が相違するものである。このうち電気負荷15には、供給電力の電圧が、一定又は少なくとも所定範囲内で変動するよう安定であることが要求される定電圧要求負荷が含まれる。これに対し、電気負荷14は、定電圧要求負荷以外の一般的な電気負荷である。電気負荷15は被保護負荷とも言える。また、電気負荷15は電源失陥が許容されない負荷であり、電気負荷14は、電気負荷15に比べて電源失陥が許容される負荷であるともいえる。
定電圧要求負荷である電気負荷15の具体例としては、ナビゲーション装置やオーディオ装置、メータ装置、及び各種ECUが挙げられる。この場合、供給電力の電圧変動が抑えられることで、上記各装置において不要なリセット等が生じることが抑制され、安定動作が実現可能となっている。電気負荷15として、電動ステアリング装置やブレーキ装置等の走行系アクチュエータが含まれていてもよい。また、電気負荷14の具体例としては、シートヒータやリアウインドウのデフロスタ用ヒータ、ヘッドライト、フロントウインドウのワイパ、空調装置の空調ファン等が挙げられる。
回転電機31は、例えば界磁電流式の3相交流モータであり、力行機能と発電機能とを有している。より具体的には、回転電機31は、その回転軸がベルト及びプーリからなる連結部材によりエンジンの出力軸(クランク軸)に駆動連結されており、回転電機31が力行駆動されることによりエンジン出力軸に力行トルクが付与される。これにより、アイドリングストップ制御におけるエンジン再始動や、エンジン運転時のトルクアシストが可能となっている。また、エンジン出力軸の回転によって回転電機31の回転軸が回転することによる、発電(回生発電)が可能となっている。
本実施形態では、回転電機31は、機電一体型のISG(Integrated Starter Generator)として構成されており、回転電機31と回転電機ECU32とにより回転電機ユニット30が構成されている。周知構成であるため詳細な説明は割愛するが、電力変換装置としてのインバータを有しており、インバータにおける複数の相巻線の通電制御により回転電機31の作動を制御する。回転電機31が発電機に相当する。回転電機CU32は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンを有している。例えば、回転電機ECU32は、各蓄電池11,12のSOC等に基づいて設定される目標電圧に基づいて、回転電機31による発電制御を実施する。
次に、電池ユニット20の電気的構成について説明する。
電池ユニット20には、ユニット内電気経路として、出力端子P1とリチウムイオン蓄電池12とを繋ぐ第1電気経路L1が設けられており、その第1電気経路L1上の点N1に出力端子P2が接続されている。第1電気経路L1において、点N1よりも鉛蓄電池11の側に第1スイッチSW1が設けられ、点N1よりもリチウムイオン蓄電池12の側に第2スイッチSW2が設けられている。第1電気経路L1とN1-P2間の電気経路は、回転電機31に対する入出力電流を流すことを想定した大電流経路であり、この経路を介して、鉛蓄電池11、リチウムイオン蓄電池12及び回転電機31における相互の通電が行われる。
また、第1電気経路L1には、出力端子P1及び第1スイッチSW1の間の点N2と、第2スイッチSW2及びリチウムイオン蓄電池12の間の点N3との間に、第2電気経路L2が並列に設けられており、第2電気経路L2上の点N4に出力端子P3が接続されている。第2電気経路L2において、点N4よりも鉛蓄電池11の側に第3スイッチSW3が設けられ、点N4よりもリチウムイオン蓄電池12の側に第4スイッチSW4が設けられている。第2電気経路L2とN2-P3間の電気経路とは、第1電気経路L1側と比べて小電流を流すことを想定した小電流経路(すなわち、第1電気経路L1に比べて許容電流が小さい小電流経路)であり、この経路を介して、鉛蓄電池11及びリチウムイオン蓄電池12から電気負荷15への通電が行われる。
各スイッチSW1~SW4は、それぞれMOSFET等の半導体スイッチング素子を用いて構成されており、言うなればノーマリオープン式のスイッチである。より具体的には、各スイッチSW1~SW4は、寄生ダイオードの向きを互いに逆にして直列接続された半導体スイッチング素子の直列接続体として構成されている。
また、電池ユニット20には、第1スイッチSW1を迂回するようにして、第1電気経路L1に並列となるバイパス経路L3が設けられており、そのバイパス経路L3には抵抗体17が設けられている。つまり、抵抗体17は、第1スイッチSW1に並列に設けられている。鉛蓄電池11と回転電機ユニット30とは、バイパス経路L3の抵抗体17を介して常時接続される構成となっている。これにより、第1スイッチSW1のオフ時において、バイパス経路L3を通じて鉛蓄電池11と回転電機31との導通が可能となっている。抵抗体17の抵抗値(合成抵抗の値)は、数10Ω~数100Ωであり、本実施形態では例えば200Ωである。抵抗体17を介して鉛蓄電池11と回転電機31とが常時接続されることで、バイパス経路L3を介する通電の電流制限がなされつつ、鉛蓄電池11から回転電機31への常時通電が可能となる。そのため、回転電機ユニット30の平滑コンデンサが充電状態で保持されるようになっている。
なお、電池ユニット20には、第3スイッチSW3を迂回し、鉛蓄電池11と電気負荷15とを接続するバイパス経路が設けられていてもよい。このバイパス経路には、常閉式リレーが設けられているとよい。
電池ユニット20は、各スイッチSW1~SW4のオンオフ(開閉)を制御する電池ECU21を備えている。電池ECU21は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。電池ECU21は、IGスイッチ63がオンされたシステム作動状態において、各蓄電池11,12の蓄電状態や、エンジンECU50等からの指令に基づいて、各スイッチSW1~SW4のオンオフを制御する。これにより、鉛蓄電池11とリチウムイオン蓄電池12とを選択的に用いて充放電が実施される。例えば、電池ECU21は、リチウムイオン蓄電池12のSOC(残存容量:State Of Charge)を算出し、そのSOCが所定の使用範囲内に保持されるようにリチウムイオン蓄電池12への充電量及び放電量を制御する。
本システムでは、CAN等による通信ネットワークが構築されており、その通信ネットワークにより各種ECU間の相互の通信が可能になっている。具体的には、電池ECU21、回転電機ECU32及びエンジンECU50は、通信線51により相互に通信可能に接続されている。エンジンECU50は、電池ECU21や回転電機ECU32を統括的に管理する上位ECU(上位制御装置)であり、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。エンジンECU50は、例えば都度のエンジン運転状態や車両走行状態に基づいて、エンジンの燃料噴射制御や点火時期制御等を実施する。また、エンジンECU50は、エンジン運転状態や車両走行状態に基づいて、電池ECU21に対してスイッチ切替指令を適宜送信するとともに、回転電機ECU32に対して力行指令と発電指令とを含む駆動信号を適宜送信する。本実施形態では、電池ECU21がスイッチ制御装置に相当し、回転電機ECU32が発電制御装置に相当する。
ところで、電池ECU21、回転電機ECU32及びエンジンECU50は、それぞれIGスイッチ63(起動スイッチ)のオンに伴う電源電圧の投入によりそれぞれ起動される。その電源電圧の投入に伴う起動に際し、エンジンECU50は、イニシャル処理やエンジンの完爆判定処理を実施するとともに、電池ECU21との通信が正常であるか否かを判定した後に、回転電機ECU32に対して発電指令信号を送信する。この場合、エンジンECU50は、電池ECU21との通信が正常であると確認できれば、通常の発電制御を実施する旨を回転電機ECU32に対して指令する。一方、電池ECU21との通信が正常であると確認できなければ、車両の退避走行を行わせるべく退避走行モードで発電を実施する旨を回転電機ECU32に対して指令する。回転電機ECU32は、エンジンECU50からの発電指令に基づいて、回転電機31による発電を制御する。そして、電池ECU21によりスイッチSW1,SW2がオンされた状態で、回転電機31の発電電力により各蓄電池11,12が充電される。
ここで、エンジンECU50と電池ECU21との間の通信が正常でない場合としては、起動後の電池ECU21において通信系の故障等により通信異常が生じている場合が考えられる。ただしこれ以外に、電池ECU21に対して電源電圧が供給されず、その電源失陥により電池ECU21が起動できないことに起因して、正常な通信が実施されていない場合が考えられる。
既存の技術では、エンジンECU50と電池ECU21との間の通信が正常でない場合において、起動状態の電池ECU21で通信系の故障等が生じているとみなされた上で、回転電機31による発電が実施される。かかる場合、電池ECU21自体は起動状態にある、すなわち電池ECU21による各スイッチSW1~SW4の制御は実施されているとみなした上で、回転電機31の発電が実施される。しかしながら、電池ECU21が起動していない、すなわち各スイッチSW1~SW4がオフ状態のままであると、発電電力を蓄電池等に供給できないことに起因して過電圧が生じることが懸念される。
電池ECU21の電源系の構成としては、図1に示すように、鉛蓄電池11からリレー61を介して電源電圧が供給される構成となっている。より詳しくは、リレー61は、スイッチ61aと励磁コイル61bとを有しており、スイッチ61aは、鉛蓄電池11と電池ECU21とを接続する電源ライン62に設けられ、励磁コイル61bは、IGスイッチ63を有するコイル通電ライン64に設けられている。本構成では、ドライバの始動操作に伴いIGスイッチ63がオンすると、励磁コイル61bの励磁に伴いスイッチ61aが閉じ、それに伴い電源ライン62を介して電源電圧が電池ECU21に対して供給される。この場合、例えば電源ライン62で断線が生じると、電池ECU21に対して電源電圧が供給されず、電池ECU21において起動不良が生じることとなる。
本実施形態では、電池ECU21と回転電機ECU32とを、通信線51とは異なる接続線65(じか線)により接続し、その接続線65を介して、電池ECU21が起動状態であることを示す起動信号が出力される構成としている。例えば、電池ECU21が起動していれば、電池ECU21から起動信号としてハイレベル信号が出力され、電池ECU21が起動していなければ、起動信号(ハイレベル信号)が出力されない構成となっている。そして、回転電機ECU32は、電池ECU21との通信が正常でない場合において、接続線65から入力される起動信号の有無に基づいて、回転電機31の発電制限を実施する。
つまり、回転電機ECU32は、接続線65から起動信号が入力されることにより電池ECU21が起動状態にあることを認識し、電池ECU21が正常に起動していない場合には、接続線65から起動信号が入力されないことにより電池ECU21が起動不良にあることを認識する。そして、接続線65から起動信号が入力されない場合に、発電制限を含むフェイルセーフ処理を実施する。
フェイルセーフ処理として、具体的には、回転電機ECU32は、電池ECU21との通信が正常でなく、かつ接続線65から起動信号が入力されている場合に、第1フェイルセーフ処理を実施し、電池ECU21との通信が正常でなく、かつ接続線65から起動信号が入力されていない場合に、第1フェイルセーフ処理よりも発電制限の程度の大きい第2フェイルセーフ処理を実施する。
以下に、各ECU21,32,50において、電源電圧の供給開始に伴う起動時に実施される起動時処理を説明する。
図2は、電池ECU21の起動時処理を示すフローチャートであり、本処理は、電池ECU21に対する電源電圧の給電開始に伴い実施される。なお、断線等により電源電圧が供給されない場合には、本処理は実行されない。
図2において、ステップS11では、電池ECU21を起動するためのイニシャル処理を実施する。ステップS12では、接続線65に出力する起動信号をオンにする。その後、ステップS13では、電池ECU21を停止するか否かを判定する。そして、電池ECU21を停止しないのであれば、そのまま本処理を終了し、電池ECU21を停止するのであれば、ステップS14で起動信号をオフする。
図3は、エンジンECU50の起動時処理を示すフローチャートであり、本処理は、エンジンECU50に対する電源電圧の給電開始に伴い実施される。
図3において、ステップS21では、エンジンECU50を起動するためのイニシャル処理を実施する。続くステップS22では、周知の方法で、エンジンの完爆判定を実施する。例えば、エンジンECU50は、スタータ13の駆動に伴いエンジンの自立回転が開始された場合に、エンジン回転速度が所定回転速度まで上昇したことに基づいて、エンジンが完爆状態になったことを判定する。そして、完爆したことを示す完爆判定信号を回転電機ECU32に対して送信する。
その後、ステップS23では、電池ECU21との通信が正常であるか否かを判定する。そして、電池ECU21との通信が正常であれば、ステップS24に進み、回転電機ECU32に対して、通常状態での発電を実施する旨の通常発電指令を送信する。また、電池ECU21との通信が正常でなければ、ステップS25に進み、回転電機ECU32に対して、制限状態での発電を実施する旨の発電制限指令を送信する。
図4は、回転電機ECU32の起動時処理を示すフローチャートであり、本処理は、回転電機ECU32に対する電源電圧の給電開始に伴い実施される。
図4において、ステップS31では、回転電機ECU32を起動するためのイニシャル処理を実施する。ステップS32では、エンジンECU50から完爆判定信号を受信したか否かを判定する。この場合、回転電機ECU32は、エンジンECU50から完爆判定信号を受信していなければ、完爆判定信号を受信するまで、ステップS32の判定を繰り返す。エンジンECU50から完爆判定信号を受信していれば、後続のステップS33に進む。ステップS33では、回転電機31を駆動許可状態とする。
その後、ステップS34では、エンジンECU50から回転電機31の発電に関する指令信号を受信したか否かを判定する。この場合、回転電機ECU32は、エンジンECU50から発電指令信号を受信していなければ、発電指令信号を受信するまで、ステップS34の判定を繰り返す。エンジンECU50から発電指令信号を受信していれば、後続のステップS35に進む。ステップS35では、電池ECU21から接続線65を介して入力される起動信号を取得する。
その後、ステップS36では、エンジンECU50からの発電指令として、発電制限指令を受信しているか否かを判定する。そして、発電制限指令を受信していなければ、発電指令が通常発電指令であるとして、ステップS37に進み、回転電機31の通常発電制御を実施する。
また、発電制限指令を受信していれば、ステップS38に進み、電池ECU21から起動信号が入力されているか否か(すなわち起動信号がオンであるか否か)を判定する。なお、ステップS38では、回転電機ECU32は、起動信号がオンであれば、電源ライン62が断線していないと判定し、起動信号がオフであれば、電源ライン62が断線していると判定してもよい。
そして、起動信号が入力されていれば(すなわち電源ライン62が断線していなければ)、ステップS39に進み、起動信号が入力されていなければ(すなわち電源ライン62が断線していれば)、ステップS40に進む。ステップS39では、第1フェイルセーフ処理による発電制限を実施し、ステップS40では、第2フェイルセーフ処理による発電制限を実施する。
第1フェイルセーフ処理では、電池ECU21との通信異常が生じており、電池ユニット20の各スイッチSW1~SW4のオンオフが未知となっているが、退避走行を可能とすべく、所定の制限範囲で回転電機31の発電が実施される。
また、第2フェイルセーフ処理では、第1フェイルセーフ処理よりも発電制限の程度の大きい制限範囲で回転電機31の発電が実施される。例えば、第1フェイルセーフ処理での上限発電電圧V1は、第2フェイルセーフ処理での上限発電電圧V2より大きくなっている(V1>V2)とよい。第2フェイルセーフ処理は、電池ECU21の起動不良により各スイッチSW1~SW4がオフとなり、バイパス経路L3による通電が可能となる際の発電制限処理である。第2フェイルセーフ処理では、バイパス経路L3を流れる電流がバイパス経路L3における電流制限範囲内で制限されるように、回転電機31の発電制限が実施されるとよい。また、第2フェイルセーフ処理での発電制限として、回転電機31の発電が停止されてもよい。
以上詳述した本実施形態によれば、以下の優れた効果が得られる。
電池ECU21で通信異常が生じている場合には、通信系の故障が生じていること以外に、電池ECU21が正常に起動していない起動不良が生じていることが考えられる。具体的には、電源ライン62の断線に起因して起動不良が生じることが考えられる。この点、上記構成によれば、回転電機ECU32では、電池ECU21との通信が正常であるか否かが認識されることに加え、回転電機ECU32と電池ECU21とを接続する接続線65から起動信号が適正に入力されているか否かが認識され、それらの認識結果に基づいて発電機の発電制限が実施される。これにより、接続線65から起動信号が適正に入力されていないと認識される場合において、電池ECU21で起動不良が生じており、それによりスイッチSW1,SW2がオフ状態のままであることを把握でき、回転電機31の発電制限を適正に実施できる。例えば、スイッチSW1,SW2がオフされた状態で発電が行われても過電圧が生じないように、発電制限を実施することが可能となる。その結果、車両の電源システムにおいて、電池ECU21の起動不良時にも回転電機ECU32による適正な発電制御を実施することができる。
回転電機ECU32において、電池ECU21との通信が正常でなく、かつ接続線65から起動信号が入力されていない場合に、発電制限(第2フェイルセーフ処理)として、バイパス経路L3を流れる電流がバイパス経路L3における電流制限範囲内で制限されるように、回転電機31の発電制限を実施するようにした。これにより、電池ECU21の起動不良時において、バイパス経路L3の保護を図りつつ発電を実施することが可能となる。
回転電機ECU32において、電池ECU21との通信が正常でなく、かつ接続線65から起動信号が入力されている場合に第1フェイルセーフ処理を実施し、電池ECU21との通信が正常でなく、かつ接続線65から起動信号が入力されていない場合に、第1フェイルセーフ処理よりも発電制限の程度の大きい第2フェイルセーフ処理を実施するようにした。これにより、電池ユニット20における各スイッチSW1~SW4の状態を推測しつつ、回転電機31の発電制限を適正に実施できる。
<第2実施形態>
第2実施形態では、電池ECU21とエンジンECU50とが接続線65により接続されており、エンジンECU50の指令に基づいて、回転電機ECU32が第1フェイルセーフ処理及び第2フェイルセーフ処理を行う。以下、第2実施形態について、第1実施形態との相違点を中心に説明する。
図5は、第2実施形態における電源システムを示す構成図である。図5では、図1の構成との相違点として、電池ECU21とエンジンECU50とが接続線65(じか線)により接続されている。この場合、電池ECU21が起動状態であることを示す起動信号が、接続線65を介してエンジンECU50に出力される。つまり、エンジンECU50は、回転電機ECU32及び電池ECU21の上位ECUであり、その上位ECUと電池ECU21とが接続線65により接続される構成となっている。なお、エンジンECU50は、回転電機31の発電の実施を指令する制御装置であり、本実施形態では、エンジンECU50と回転電機ECU32とが発電制御装置に相当する。
以下に、各ECU21,32,50において電源投入に伴う起動時に実施される起動時処理を説明する。なお、電池ECU21の起動時処理は既述の図2と同じ処理であり、その説明は割愛する。
図6は、エンジンECU50の起動時処理を示すフローチャートであり、本処理は、図3に書き換えて、実施される。
図6において、ステップS51では、エンジンECU50を起動するためのイニシャル処理を実施し、続くステップS52では、エンジンの完爆判定を実施する。また、ステップS53では、電池ECU21から接続線65を介して入力される起動信号を取得する。
その後、ステップS54では、電池ECU21との通信が正常であるか否かを判定する。そして、電池ECU21との通信が正常であれば、ステップS55に進み、回転電機ECU32に対して、通常状態での発電を実施する旨の通常発電指令を送信する。また、電池ECU21との通信が正常でなければ、ステップS56に進み、電池ECU21から起動信号が入力されているか否か(すなわち起動信号がオンであるか否か)を判定する。
起動信号が入力されていれば、ステップS57に進み、起動信号が入力されていなければ、ステップS58に進む。ステップS57では、回転電機ECU32に対して、第1フェイルセーフ処理による発電制限を実施する旨を指令し、ステップS58では、回転電機ECU32に対して、第2フェイルセーフ処理による発電制限を実施する旨を指令する。
図7は、回転電機ECU32の起動時処理を示すフローチャートであり、本処理は、図4に置き換えて実施される。
図7において、ステップS61では、回転電機ECU32を起動するためのイニシャル処理を実施する。ステップS62では、エンジンECU50から完爆判定信号を受信したか否かを判定する。そして、完爆判定信号を受信すると、ステップS63に進み、回転電機31を駆動許可状態とする。また、ステップS64において、エンジンECU50から発電指令信号を受信したと判定されると、後続のステップS65に進む。
ステップS65では、エンジンECU50からの発電指令が通常発電指令であるか否かを判定する。そして、通常発電指令であれば、ステップS66に進み、回転電機31の通常発電制御を実施する。
また、通常発電指令でなければ、ステップS67に進み、エンジンECU50からの発電指令が第1フェイルセーフ指令であるか否かを判定する。そして、第1フェイルセーフ指令であれば、ステップS68に進み、第1フェイルセーフ指令でなければ(すなわち第2フェイルセーフ指令であれば)、ステップS69に進む。ステップS68では、第1フェイルセーフ処理による発電制限を実施し、ステップS69では、第2フェイルセーフ処理による発電制限を実施する。
本実施形態においても、第1実施形態と同様に、電池ECU21の起動不良時に回転電機ECU32による適正な発電制御を実施することができる。
<他の実施形態>
上記実施形態を例えば次のように変更してもよい。
・図1に破線で示すように、電池ECU21の電源ライン62と回転電機ECU32とを接続するように接続線65Aを設けてもよい。この構成であっても、電池ECU21の起動状態に応じて、接続線65Aを介して回転電機ECU32に起動信号が出力される。つまり、電源ライン62を通じて電池ECU21に電源電圧が供給される状態では、接続線65Aを介して、電池ECU21が起動状態であることを示す起動信号(ハイレベル信号)が回転電機ECU32に入力され、電源ライン62が断線している状態では、起動信号が回転電機ECU32に入力されない。
・上記実施形態では、回転電機ECU32において、電池ECU21との通信が正常でなく、かつ接続線65から起動信号が入力されている場合に第1フェイルセーフ処理を実施し、電池ECU21との通信が正常でなく、かつ接続線65から起動信号が入力されていない場合に第2フェイルセーフ処理を実施するようにしたが、これを変更してもよい。例えば、電池ECU21との通信が正常でない場合において、接続線65から起動信号が入力されていない場合にのみフェイルセーフ処理としての発電制限を実施するようにしてもよい。
・回転電機ECU32において、電池ECU21との通信が正常でなく、かつ接続線65から起動信号が入力されていない場合に、バイパス経路L3を介して接続されている鉛蓄電池11の蓄電状態(端子電圧やSOC等)に応じて、発電制限として回転電機31の発電を停止する処理と回転電機31の発電を制限状態で実施する処理とのいずれかを実施するようにしてもよい。この場合、電池ECU21の起動不良時において、鉛蓄電池11の蓄電状態を加味しつつ、回転電機31の発電停止と制限状態での発電実施とが選択的に実施される。これにより、フェイルセーフ処理としての発電制限を適正に実施できる。
・上記実施形態では、発電機として、力行及び発電の機能を有する回転電機31を用いる構成としたが、これを変更し、発電機能のみを有する発電機を用いる構成であってもよい。
・上記実施形態では、電池ユニット20において、第1電気経路L1に並列となるバイパス経路L3に抵抗体17を設ける構成としたが、この構成を変更してもよい。例えば、バイパス経路L3に、抵抗体17に代えて常閉式リレーを設けてもよい。また、バイパス経路L3にヒューズを設け、バイパス経路L3にこの経路の電流制限範囲を超える電流が流れる場合に、ヒューズを溶断させる構成としてもよい。
・上記実施形態では、電源システムを、鉛蓄電池11とリチウムイオン蓄電池12とを有する2電源システムとしたが、これを変更してもよい。例えば、鉛蓄電池11及びリチウムイオン蓄電池12のいずれかの代わりに、ニッケル水素蓄電池など他の二次電池を用いる構成としてもよい。また、2つの蓄電池をいずれも鉛蓄電池又はリチウムイオン蓄電池にすることも可能である。さらに、電源システムにおいて1つの蓄電池を用いる構成や3つ以上の蓄電池を用いる構成とすることも可能である。
11…鉛蓄電池、12…リチウムイオン蓄電池、21…電池ECU、31…回転電機、32…回転電機ECU、50…エンジンECU、62…電源ライン、65…接続線、SW1,SW2…スイッチ。

Claims (2)

  1. 発電機(31)と、
    前記発電機の発電電力により充電可能な蓄電池(11,12)と、
    前記発電機と前記蓄電池との間の電気経路(L1)に設けられたスイッチ(SW1,SW2)と、
    前記発電機の発電を制御する発電制御装置(32,50)と、
    前記スイッチの開閉を制御するスイッチ制御装置(21)と、
    を備え、
    前記発電制御装置及び前記スイッチ制御装置は、電源電圧の供給開始に伴い起動するとともに、起動後において前記発電制御装置と前記スイッチ制御装置との間の通信を可能とする車両の電源システムであって、
    前記発電制御装置と、前記スイッチ制御装置又は当該スイッチ制御装置の電源ライン(62)とを接続し、前記スイッチ制御装置が起動状態であることを示す起動信号が出力される接続線(65)を有し、
    前記発電制御装置は、
    記スイッチ制御装置との通信が正常でない場合において、前記接続線から入力される前記起動信号の有無に基づいて、前記発電機の発電制限を実施するものであり、
    前記スイッチ制御装置との通信が正常でなく、かつ前記接続線から前記起動信号が入力されている場合に、前記発電機の発電制限を含む第1フェイルセーフ処理を実施し、
    前記スイッチ制御装置との通信が正常でなく、かつ前記接続線から前記起動信号が入力されていない場合に、前記第1フェイルセーフ処理よりも前記発電機の発電制限の程度の大きい第2フェイルセーフ処理を実施する、車両の電源システム。
  2. 前記発電制御装置は、
    前記第1フェイルセーフ処理として、発電制限した状態で前記発電機の発電を実施し、
    前記第2フェイルセーフ処理として、前記発電機の発電を停止する、請求項1に記載の車両の電源システム。
JP2019089391A 2019-05-09 2019-05-09 車両の電源システム Active JP7207144B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019089391A JP7207144B2 (ja) 2019-05-09 2019-05-09 車両の電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019089391A JP7207144B2 (ja) 2019-05-09 2019-05-09 車両の電源システム

Publications (2)

Publication Number Publication Date
JP2020185807A JP2020185807A (ja) 2020-11-19
JP7207144B2 true JP7207144B2 (ja) 2023-01-18

Family

ID=73223223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019089391A Active JP7207144B2 (ja) 2019-05-09 2019-05-09 車両の電源システム

Country Status (1)

Country Link
JP (1) JP7207144B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068883A1 (ja) 2012-10-29 2014-05-08 三洋電機株式会社 車両用電源装置
JP2016193631A (ja) 2015-03-31 2016-11-17 富士重工業株式会社 車両用電源装置
JP2017196929A (ja) 2016-04-25 2017-11-02 トヨタ自動車株式会社 ハイブリッド車両
JP2018026996A (ja) 2016-07-27 2018-02-15 株式会社デンソー 制御システム
JP2018182949A (ja) 2017-04-18 2018-11-15 株式会社デンソー 回転電機制御装置、及び電源システム
JP2019013085A (ja) 2017-06-30 2019-01-24 株式会社デンソー 電源制御装置及び電池ユニット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068883A1 (ja) 2012-10-29 2014-05-08 三洋電機株式会社 車両用電源装置
JP2016193631A (ja) 2015-03-31 2016-11-17 富士重工業株式会社 車両用電源装置
JP2017196929A (ja) 2016-04-25 2017-11-02 トヨタ自動車株式会社 ハイブリッド車両
JP2018026996A (ja) 2016-07-27 2018-02-15 株式会社デンソー 制御システム
JP2018182949A (ja) 2017-04-18 2018-11-15 株式会社デンソー 回転電機制御装置、及び電源システム
JP2019013085A (ja) 2017-06-30 2019-01-24 株式会社デンソー 電源制御装置及び電池ユニット

Also Published As

Publication number Publication date
JP2020185807A (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
CN109923747B (zh) 电源控制装置以及电池单元
JP6221796B2 (ja) 電池ユニット及び電源システム
JP6260422B2 (ja) 電池ユニット
JP6043394B2 (ja) 車両用制御装置
JP6090195B2 (ja) 電池ユニット
JP6523747B2 (ja) 車両用電源装置
JP2016203969A (ja) 電源装置
CN110192320B (zh) 电源装置和电源系统
WO2017163959A1 (ja) 電源システム及びその制御方法
JP6646703B2 (ja) 車両用電源装置
WO2017043641A1 (ja) 電源装置
JP6406328B2 (ja) 電源装置及び電池ユニット
JP6543069B2 (ja) 車両用電源装置
JP2020100259A (ja) 車両用電源装置
JP2018139462A (ja) 電源装置
JP7207144B2 (ja) 車両の電源システム
JP6724675B2 (ja) スイッチ制御装置、電源ユニット及び電源システム
JP6683167B2 (ja) 回転電機制御装置、及び電源システム
WO2020189220A1 (ja) 車載電源装置の制御装置
WO2018074545A1 (ja) 電源装置
JP6549876B2 (ja) 車両用電源装置
US10742156B2 (en) Control apparatus of rotating electrical machine
JP2020156247A (ja) 車載電源システムの制御装置
WO2017065161A1 (ja) 電源装置及び電池ユニット
JP2015209126A (ja) 電源装置及びその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R151 Written notification of patent or utility model registration

Ref document number: 7207144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151