WO2017065161A1 - 電源装置及び電池ユニット - Google Patents

電源装置及び電池ユニット Download PDF

Info

Publication number
WO2017065161A1
WO2017065161A1 PCT/JP2016/080223 JP2016080223W WO2017065161A1 WO 2017065161 A1 WO2017065161 A1 WO 2017065161A1 JP 2016080223 W JP2016080223 W JP 2016080223W WO 2017065161 A1 WO2017065161 A1 WO 2017065161A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
point
electric load
switch
power
Prior art date
Application number
PCT/JP2016/080223
Other languages
English (en)
French (fr)
Inventor
裕介 渡邉
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016187258A external-priority patent/JP6406328B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112016004681.2T priority Critical patent/DE112016004681T9/de
Priority to CN201680059677.XA priority patent/CN108352714B/zh
Publication of WO2017065161A1 publication Critical patent/WO2017065161A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a power supply device and a battery unit mounted on a vehicle or the like.
  • a configuration in which a plurality of storage batteries such as a lead storage battery and a lithium ion storage battery are used as an in-vehicle power supply system mounted on a vehicle, and power is supplied to various in-vehicle loads while using each storage battery properly for example, a patent) Reference 1.
  • a switch is provided in the energization path from the generator to each storage battery, and the corresponding switch is controlled based on the storage rate of each storage battery so that any one of the storage batteries is charged from the generator. is there.
  • various power supply targets are provided in the power supply system. For example, appropriate power supply is performed from each storage battery to a plurality of electric loads that are power supply targets, and each electric load is driven by a constant voltage that requires constant voltage driving or high power driving. A high power load may be included.
  • power is supplied from a plurality of storage batteries to an electrical load, either of the storage batteries is excessively stressed, or power supply to one electrical load adversely affects power supply to other electrical loads. Inconveniences such as being spread can be considered. Therefore, there is room for improvement in the above inequality.
  • the present disclosure has been made in view of the above-described problems, and a main purpose thereof is to provide a power supply device and a battery unit that can appropriately supply electric power from each storage battery to an electric load.
  • the power supply device includes a first storage battery and a second storage battery, and the first storage battery and the second storage battery are connected in parallel to the first electrical load, and the second It is a power supply device applied to a power supply system in which the first storage battery and the second storage battery are connected in parallel to an electric load.
  • the power supply device is provided in series with an energization path through which an energization current of each of the first and second electric loads flows, and a first switch, a second switch, and a third switch that conduct or block the energization path; A first point provided on a side opposite to the second switch among both sides of the first switch, a second point provided between the first switch and the second switch, and the second switch And a third point provided between the third switch and a fourth point provided on the opposite side of the second switch from both sides of the third switch; It has.
  • One of the first storage battery, the second storage battery, the first electrical load, and the second electrical load is connected to each of the first to fourth points.
  • the power supply device includes a control unit (30) for controlling opening and closing of the first to third switches.
  • the first switch, the second switch, and the third switch are connected in series on the energization path through which the energization currents of the first and second electric loads flow, respectively.
  • One of the first storage battery, the second storage battery, the first electrical load, and the second electrical load is connected to each of the first, second, third, and fourth points that are both ends of the switch. .
  • the form of mutual connection with respect to each of the first and second storage batteries and each of the first and second electric loads can be easily changed by opening / closing (ON / OFF) control of the first to third switches by the control unit. Is possible.
  • first and second storage batteries are used preferentially, and either one of the first and second storage batteries is used preferentially, In addition, it is possible to easily relieve stress in use of the second storage battery. As a result, it is possible to appropriately supply power from the first and second storage batteries to the first and second electric loads.
  • the configuration in which any of the first storage battery, the second storage battery, the first electrical load, and the second electrical load is connected to each of the first to fourth points is the first to fourth points. Any configuration may be used as long as the first storage battery, the second storage battery, the first electrical load, and the second electrical load are connected to each point. In this case, in addition to those in which the first to fourth points are directly connected to the first and second storage batteries and the first and second electric loads, those that are indirectly connected included.
  • the control unit opens and closes the first to third switches based on a parameter including at least one of a storage state and a temperature in the first storage battery and the second storage battery.
  • a parameter including at least one of a storage state and a temperature in the first storage battery and the second storage battery.
  • the first to third switches are provided in series on the energization path, and the first, second, third, and fourth points, which are the ends of the first to third switches, are first.
  • each of the first and second electric loads is switched by opening / closing the first to third switches.
  • the first or second storage battery can be selectively used as the storage battery of the power supply source.
  • a discharge state in which power is supplied from the first storage battery to the first electric load and the second electric load (2) A discharge state in which power is supplied from the first storage battery to one electrical load and power is supplied from the second storage battery to the other electrical load; (3) a discharge state in which power is supplied from the second storage battery to the first electric load and the second electric load; Can be switched. Further, the condition of which of the first and second storage batteries should be used as a power supply source can vary depending on the storage state and temperature of each of the first and second storage batteries.
  • each 1st and 2nd storage battery can be used, aiming at suppression of the stress on use of each 1st and 2nd storage battery.
  • one of the first storage battery and the second storage battery is a priority storage battery that is used preferentially, and the other is a non-priority storage battery, and the parameters are the first storage battery and the second storage battery.
  • the storage amount and temperature in each of the two storage batteries are included.
  • the control unit Any of the second cases where the priority storage battery is in a higher storage state and the storage amount of the priority storage battery is greater than a predetermined storage threshold or the temperature of the priority storage battery is lower than a predetermined temperature threshold In this case, a discharge state in which power is supplied from the priority storage battery to the first electric load and the second electric load is set.
  • control unit when comparing the priority storage battery and the non-priority storage battery, when the non-priority storage battery is in a higher power storage state, at least one of the storage amount of the priority storage battery and the temperature of the priority storage battery Based on the above, the power is supplied from the priority storage battery to one of the first electric load and the second electric load, and from the non-priority storage battery to the other of the first electric load and the second electric load. On the other hand, switching is performed between a discharge state in which electric power is supplied and a discharge state in which electric power is supplied from the non-priority storage battery to the first electric load and the second electric load.
  • a non-priority storage battery can be used as needed. Therefore, it is possible to suppress the stress in use of each of the first and second storage batteries while appropriately using the first and second storage batteries appropriately according to whether or not the first and second storage batteries are preferentially used.
  • a lead storage battery can be used as needed while preferentially using the lithium ion storage battery with higher energy efficiency. In this case, it is possible to reduce deterioration of the lead storage battery by reducing the stress of the lead storage battery.
  • the first storage battery and the second storage battery are respectively connected to the first point and the fourth point which are end points among the first to fourth points in the energization path.
  • the first electric load and the second electric load are connected to the second point and the third point, respectively.
  • the circuit configuration corresponding to the fourth mode is shown in FIGS. 1, 8A, and 9A, for example.
  • the series circuit unit including the first to third switches the first storage battery and the second storage battery are respectively connected to the first point and the fourth point that are the end points, and the second point and the intermediate point that are the intermediate points.
  • the states (1) to (3) are switched by turning on and off (opening and closing) the first to third switches. it can. Therefore, it is possible to supply power to the first and second electric loads as desired while simplifying the configuration of the power supply circuit.
  • each of the first and second storage batteries has first and second battery characteristics that indicate a relationship between a remaining capacity (State Of Charge, SOC) and an open circuit voltage thereof.
  • SOC State Of Charge
  • the open circuit voltage in the predetermined remaining capacity region in the second battery characteristic is higher than the open circuit voltage in the corresponding remaining capacity region in the first battery characteristic.
  • the second storage battery is connected to the first point or the fourth point which is the end point of the first to fourth points in the energization path, and the first storage battery and the first point are connected to each other point.
  • One electric load and the second electric load are connected to each other.
  • the circuit configuration corresponding to the fifth aspect is, for example, FIG. 1, FIG. 8 (a), FIG. 8 (b), FIG. 9 (a), FIG. 9 (b), FIG. 10 (a), FIG. Is shown in
  • the second storage battery is connected to either the first point or the fourth point, which is the end point thereof, and the first storage battery is connected to each other point.
  • the above (1) to (1) to (1) to (3) are determined by turning on and off (opening and closing) the first to third switches, together with the difference in battery characteristics of both storage batteries. The state of (3) can be switched. Therefore, it is possible to supply power to the first and second electric loads as desired while simplifying the configuration of the power supply circuit.
  • the first and second storage batteries have first and second battery characteristics indicating a relationship between a remaining capacity (State Of Charge, SOC) and an open circuit voltage, respectively.
  • SOC State Of Charge
  • the open circuit voltage in the predetermined remaining capacity region in the second battery characteristic is higher than the open circuit voltage in the corresponding remaining capacity region in the first battery characteristic.
  • One of the first electric load and the second electric load is connected to the first point or the fourth point which is an end point among the first to fourth points in the energization path, and the other points
  • the first storage battery is connected at a position sandwiching at least the point where the second storage battery is connected, and the other of the first electrical load and the second electrical load is connected to the remaining points, and the first A point to which the storage battery is connected and the end point are connected by a bypass path, and a bypass switch that can be controlled on and off by the control unit is provided in the bypass path.
  • FIGS. 8C and 8D The circuit configuration corresponding to the sixth aspect is shown in, for example, FIGS. 8C and 8D, FIGS. 9C and 9D, and FIGS. 10C and 10D.
  • the series circuit unit including the first to third switches one of the first and second electric loads is connected to either the first point or the fourth point, which is the end point, and the other points.
  • the connection with the second storage battery is disconnected. In this state, it becomes difficult to discharge the first storage battery to both the first and second electric loads.
  • the point to which the first storage battery is connected and the end point are connected by a bypass path, and a bypass switch that can be turned on and off by the control unit is provided in the bypass path. Therefore, the states (1) to (3) can be switched by turning on and off (opening and closing) the first to third switches and the bypass switch by the control unit. Therefore, it is possible to supply power to each of the first and second electric loads as desired.
  • the first point and the second point include the first storage battery, the first electric load, and the second electric load. One is connected, and the second storage battery and the other of the first electric load and the second electric load are connected to the third point and the fourth point, respectively.
  • the circuit configuration corresponding to the seventh mode is shown in, for example, FIGS. 1, 8A to 8D, and FIGS. 9A to 9D.
  • the first point and the second point are two nodes provided on one side across the second switch in the center in the energization path
  • the third point and the fourth point are the center nodes in the energization path.
  • Two nodes are provided on the other side across the two switches.
  • the first storage battery and one of the first and second electric loads are respectively connected to the first point and the second point
  • the second storage battery and the first and second electric loads are connected to the third point and the fourth point, respectively.
  • the other is connected to each other.
  • the first electric load is an electric load that is required to be stable so that the voltage of the power supplied to the first electric load fluctuates within a predetermined range or at least within a predetermined range
  • the second electric load is an electric load to which higher power or higher current is supplied than the first electric load.
  • the first electric load is a constant voltage required load and the second electric load is an electric load of high power or high current supply, depending on the storage state of each of the first and second storage batteries when the second electric load is driven It is considered that the power supply to the first electric load is affected by the power supply to the second electric load.
  • the first electric load is an electric load that is required to be stable so that the voltage of the power supplied to the first electric load is constant or at least fluctuates within a predetermined range, that is, It is a voltage load
  • the second electric load is a rotating electrical machine that is rotationally driven at a higher power or a higher current than the first electric load.
  • the second electric load is driven to the second electric load. It can be considered that the power supply to the first electrical load is affected by the power supply.
  • the first storage battery or the second storage battery is located at any one of the first point and the fourth point that are end points among the first to fourth points in the energization path.
  • the first storage battery and the second storage battery are connected to the first point and the fourth point, which are the end points, respectively, and the first storage battery and the second storage battery are
  • An abnormality determination unit is provided for determining whether or not there is an abnormality in one of the storage batteries connected to one of the first point and the fourth point.
  • the control unit disconnects one storage battery that is abnormal and disconnects the first and second storage batteries from the other storage battery.
  • the first to third switches are controlled so that power is supplied to the electrical load.
  • the one storage battery determined to be abnormal is energized. After being separated from the route, power is supplied from the other storage battery to the first and second electric loads. In this case, even in a situation where an abnormality has occurred in one storage battery, it is possible to continue supplying electrodes to the first and second electric loads using the other storage battery within a usable range. As a result, power supply failure countermeasures can be realized.
  • a battery unit including the power supply device described in any one of the first to tenth aspects.
  • the power supply unit includes the second storage battery, the first storage battery, the first electrical load, and the first terminal, the second terminal, and the third terminal to which the second electrical load is connected, respectively.
  • the first to third switches are provided in the energization path where the first storage battery, the first electrical load, and the second electrical load are connected to the second storage battery.
  • the battery unit including the second storage battery the first storage battery, the first electrical load, and the second electrical load are connected to the first to third terminals, respectively.
  • the optimization of power supply from the first and second storage batteries to the first and second electric loads can be realized.
  • the electric circuit diagram which shows the power supply system in embodiment of this indication The figure which shows SOC usage range of the lead acid battery shown in FIG. The figure which shows SOC use range of the lithium ion storage battery shown in FIG. The figure which shows a vehicle state and the state of each switch shown in FIG. The figure which shows a vehicle state and the state of each switch shown in FIG. The figure which shows four discharge states by each storage battery shown in FIG.
  • the time chart which shows the change of the voltage at the time of discharge of the lithium ion storage battery shown in FIG.
  • the flowchart which shows the process sequence of the switch switching control performed by the control part shown in FIG.
  • the electric circuit diagram which shows the other circuit structural example of the power supply system of this indication.
  • the electric circuit diagram which shows the other circuit structural example of the power supply system of this indication The electric circuit diagram which shows the other circuit structural example of the power supply system of this indication.
  • the electric circuit diagram which shows the other circuit structural example of the power supply system of this indication The electric circuit diagram which shows the other circuit structural example of the power supply system of this indication.
  • the electric circuit diagram which shows the other circuit structural example of the power supply system of this indication The electric circuit diagram which shows the other circuit structural example of the power supply system of this indication.
  • the electric circuit diagram which shows the other circuit structural example of the power supply system of this indication The electric circuit diagram which shows the other circuit structural example of the power supply system of this indication.
  • a vehicle on which the in-vehicle power supply device of this embodiment is mounted travels using an engine (internal combustion engine) as a drive source, and has a so-called idling stop function.
  • engine internal combustion engine
  • this power supply system is a dual power supply system having a lead storage battery 11 as a first storage battery and a lithium ion storage battery 12 as a second storage battery.
  • the power supply to various electric loads 14 and 15 is possible.
  • each of the storage batteries 11 and 12 can be charged by the rotating electrical machine 16.
  • the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the rotating electrical machine 16, and the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the electrical loads 14 and 15.
  • the lead storage battery 11 is a well-known general-purpose storage battery.
  • the lithium ion storage battery 12 is a high-density storage battery that has less power loss during charging / discharging than the lead storage battery 11, and has a high output density and energy density.
  • the lithium ion storage battery 12 may be a storage battery having higher energy efficiency during charging / discharging than the lead storage battery 11.
  • the electric loads 14 and 15 have different requirements for the voltage of the power supplied from the storage batteries 11 and 12.
  • the electric load 15 includes a constant voltage required load that is required to be stable so that the voltage of the supplied power is constant or at least fluctuates within a predetermined range.
  • the electric load 14 is a general electric load other than the constant voltage request load. It can be said that the electric load 15 is a protected load.
  • the electric load 15 is a load that does not allow a power supply failure
  • the electric load 14 is a load that allows a power supply failure compared to the electric load 15.
  • Specific examples of the electrical load 15 that is a constant voltage required load include various ECUs such as a navigation device, an audio device, a meter device, and an engine ECU. In this case, by suppressing the voltage fluctuation of the supplied power, it is possible to suppress an unnecessary reset or the like in each of the above devices, and to realize a stable operation.
  • Specific examples of the electric load 14 include seat heaters, rear windshield defroster heaters, headlights, wipers such as front windshields, and air blower fans for air conditioners.
  • the rotating shaft of the rotating electrical machine 16 is drivingly connected to an engine output shaft (not shown) by a belt or the like.
  • the rotating shaft of the rotating electrical machine 16 is rotated by the rotation of the engine output shaft, while the rotating shaft of the rotating electrical machine 16 is rotated.
  • the engine output shaft rotates.
  • the rotating electrical machine 16 has a power generation function for generating power (regenerative power generation) by rotation of the engine output shaft and the axle, and a power output function for applying rotational force to the engine output shaft.
  • the rotating electrical machine 16 is configured such that adjustment of generated current during power generation and torque adjustment during rotational driving are performed by an inverter as a power conversion device provided integrally or separately.
  • the rotating electrical machine 16 is an electric load from the viewpoint of adding power to the engine output shaft, and is a high power / high current load in comparison with the electric load 15.
  • the electric load 15 corresponds to a “first electric load”
  • the rotating electrical machine 16 corresponds to a “second electric load”.
  • the electric load 15 and the rotating electrical machine 16 are collectively referred to as electric loads 15 and 16.
  • an energization path L1 which is also a path connecting the lead storage battery 11 and the lithium ion storage battery 12 is provided as an energization path through which the energization current flowing into and out of the rotating electrical machine 16 and the energization current of the electric load 15 flows.
  • a first switch 21, a second switch 22, and a third switch 23 are provided in series in the energization path L1.
  • Each of these switches 21 to 23 is an open / close section constituted by a semiconductor switch element such as a MOSFET. It is preferable that each of the switches 21 to 23 has a set of two MOSFETs, and the parasitic diodes of each set of MOSFETs are connected in series so as to be opposite to each other.
  • each of the switches 21 to 23 may be composed of a plurality of semiconductor switch elements that are connected in series or parallel to each other.
  • a first point N ⁇ b> 1 is provided on the opposite side of the first switch 21 from the second switch 22, and a second point N ⁇ b> 2 is provided between the first switch 21 and the second switch 22.
  • a third point N3 is provided between the second switch 22 and the third switch 23, and a fourth point N4 is provided on both sides of the third switch 23 on the opposite side of the second switch 22.
  • a lead storage battery 11, a starter motor 13, and an electric load 14 are connected to the first point N1.
  • the rotating electrical machine 16 is connected to the second point N2 via the path L2.
  • An electrical load 15 is connected to the third point N3 via a path L3.
  • a lithium ion storage battery 12 is connected to the fourth point N4.
  • the present system has a control unit 30 that constitutes a battery control means.
  • the control unit 30 is mainly configured by a computer having a CPU, a memory, an input / output interface, and the like connected to each other.
  • the control unit 30 switches on / off (opening / closing) the switches 21 to 23.
  • the control unit 30 monitors the running state of the vehicle and the storage state of each of the storage batteries 11, 12, and based on the monitored running state of the vehicle and the storage state of each of the storage batteries 11, 12, the switches 21 to 23 is controlled. Thereby, charge / discharge with respect to the lead storage battery 11 and the lithium ion storage battery 12 is implemented selectively using the lead storage battery 11 and the lithium ion storage battery 12.
  • the control unit 30 sequentially acquires terminal voltage detection values of the lead storage battery 11 and the lithium ion storage battery 12 by the voltage sensor VS, and the input / output currents of the lead storage battery 11 and the lithium ion storage battery 12 detected by the current detection unit CS. (Charge / discharge current) is acquired sequentially.
  • the control unit 30 calculates the OCV (open voltage: Open ⁇ ⁇ Circuit Voltage) and SOC (residual capacity: State Of Charge) of the lead storage battery 11 and the lithium ion storage battery 12, and the lead storage battery. 11.
  • the charge amount and the discharge amount to the lead storage battery 11 and the lithium ion storage battery 12 are controlled so that the OCV and SOC of the lithium ion storage battery 12 are maintained within a predetermined use range.
  • At least one of OCV and SOC corresponds to a storage state parameter indicating the storage state of each of the storage batteries 11 and 12.
  • the temperature information of each storage battery 11 and 12 is input into the control part 30 from the temperature sensor TS provided in each storage battery 11 and 12.
  • the lithium ion storage battery 12 is configured as a battery unit U by being accommodated in a housing (accommodating case) (not shown).
  • the switches 21 to 23 and the control unit 30 are preferably housed in the casing in a state of being mounted on the same substrate.
  • each of the switches 21 to 23 and the control unit 30 may be mounted on different parts (for example, different boards).
  • the battery unit U is connected to the first electric terminal P1 to which the lead storage battery 11, the starter motor 13, and the electric load 14 are connected, and the rotating electrical machine 16 as terminals that allow external connection.
  • a fourth terminal P4 and a fifth terminal P5 to which bypass paths L4 and L5 described later are connected are provided.
  • An ECU (Electronic Control Unit) 40 is connected to the control unit 30.
  • the control unit 30 and the ECU 40 are connected by a communication network such as a CAN (Controller Area Network) and can communicate with each other.
  • the control unit 30 and the ECU 40 can share various stored data with each other. It has become.
  • the ECU 40 is an electronic control device having a function of performing idling stop control. As is well known, the idling stop control automatically stops the engine when a predetermined automatic stop condition is satisfied, and restarts the engine when the predetermined restart condition is satisfied under the automatic stop state.
  • the engine is started by the first manual start or automatic restart.
  • the engine is started by the starter motor 13 at the first start, and the engine is started by the rotating electrical machine 16 at the automatic restart.
  • the rotating electrical machine 16 is more frequent than the starter motor 13.
  • FIG. 2A and 2B show the correlation between the open-circuit voltage (OCV) and the storage state (SOC) of the lead storage battery 11 and the lithium ion storage battery 12.
  • FIG. 2A shows the correlation between the open circuit voltage of the lead storage battery (Pb) 11 and the storage state, and the SOC usage range of the lead storage battery 11 is W1.
  • FIG. 2B shows the correlation between the open circuit voltage of the lithium ion storage battery (Li) 12 and the storage state, and the SOC usage range of the lithium ion storage battery 12 is W2.
  • 2B is also an enlarged view of an alternate long and short dash line portion (portion showing the SOC usage range W1 (Pb)) in FIG.
  • FIG. 2A shows the SOC of the lead storage battery 11, and the solid line A1 in the figure is a voltage characteristic line showing the relationship between the SOC of the lead storage battery 11 and the open circuit voltage V0 (Pb).
  • the open circuit voltage V0 (Pb) also increases in proportion to the increase in the amount of charge and the increase in SOC.
  • the horizontal axis in FIG. 2B shows the SOC of the lithium ion storage battery 12, and the solid line A2 in the figure is a voltage characteristic line showing the relationship between the SOC of the lithium ion storage battery 12 and the open circuit voltage V0 (Li). As the amount of charge increases and the SOC increases, the open circuit voltage V0 (Li) also increases.
  • the lead storage battery 11 and the lithium ion storage battery 12 are different in the correlation of the open circuit voltage with respect to the SOC, and the open circuit voltage of the lithium ion storage battery 12 is within the SOC usage range W2 (Li). It is determined to be higher than the open circuit voltage of the lead storage battery 11.
  • the lithium ion storage battery 12 corresponds to a “priority storage battery”
  • the lead storage battery 11 corresponds to a “non-priority storage battery”.
  • the charge / discharge amounts of the storage batteries 11 and 12 are regulated so that the SOC of each of the storage batteries 11 and 12 falls within a range (SOC usage range) between a lower limit value and an upper limit value of a predetermined SOC that does not cause overcharge / discharge.
  • the control unit 30 limits the amount of charge to each of the storage batteries 11 and 12 in order to control the SOC of the lead storage battery 11 within the SOC usage range W1 and the SOC of the lithium ion storage battery 12 within the SOC usage range W2. Protection control is performed so that overcharge protection is performed while limiting the discharge amount from the lead storage battery 11 and the lithium ion storage battery 12 as well as overcharge protection.
  • this system is provided with bypass paths L4 and L5 that allow the lead storage battery 11 to be connected to the electric load 15 and the rotating electrical machine 16 without passing through the first switch 21 and the second switch 22.
  • a first bypass switch 24 is provided in the bypass path L4, and a second bypass switch 25 is provided in the bypass path L5.
  • Each bypass switch 24, 25 is a normally closed relay switch, for example.
  • FIGS. 3 and 4 show the power-on state (ignition switch (IG) on state) of the vehicle system, and the bypass switches 24 and 25 are off.
  • IG ignition switch
  • FIGS. 3 and 4 show the power-on state (ignition switch (IG) on state) of the vehicle system, and the bypass switches 24 and 25 are off.
  • FIGS. 3 and 4 show the power-on state (ignition switch (IG) on state) of the vehicle system, and the bypass switches 24 and 25 are off.
  • IG ignition switch
  • FIG. 3A shows the state during deceleration regeneration by the rotating electrical machine 16
  • FIG. 3B shows the state when the engine is automatically stopped under idling stop control
  • FIG. 3C shows the state when the engine is restarted after automatic engine stop.
  • 4A shows a state during power assist by the rotating electrical machine 16
  • FIG. 4B shows a state when the use of the lithium ion storage battery 12 is stopped.
  • the controller 30 controls the first switch 21 to be on, the second switch 22 to be on, and the third switch 23 to be on.
  • the electric power generated by the regenerative power generation of the rotating electrical machine 16 is supplied to the storage batteries 11 and 12, and the storage batteries 11 and 12 are appropriately charged. Further, the electric power generated by the rotating electrical machine 16 is supplied to the electric loads 14 and 15.
  • the first switch 21 is turned on, the second switch 22 is turned off, and the third switch 23 is turned on.
  • electric power is supplied from the lead storage battery 11 to the electric load 14. Further, electric power is supplied from the lithium ion storage battery 12 to the electric load 15.
  • the first switch 21 When the engine is restarted as shown in FIG. 3C, the first switch 21 is on, the second switch 22 is off, and the third switch 23 is on. That is, the switches 21 to 23 are controlled in the same state as in FIG. In this case, electric power is supplied from the lead storage battery 11 to the electric load 14 and the rotating electrical machine 16, and the engine is started by the rotating electrical machine 16. Further, electric power is supplied from the lithium ion storage battery 12 to the electric load 15. At this time, since the power supply path to the rotating electrical machine 16 and the power supply path to the electric load 15 are separated by the second switch 22 in the OFF state, the voltage in the power supplied to the electric load 15 that is a constant voltage request load There is no fluctuation.
  • the first switch 21 is turned off, the second switch 22 is turned on, and the third switch 23 is turned on during the power assist shown in FIG.
  • electric power is supplied from the lead storage battery 11 to the electric load 14.
  • electric power is supplied from the lithium ion storage battery 12 to the electric load 15 and the rotating electrical machine 16, respectively.
  • the states of the switches 21 to 23 are appropriately controlled based on the storage state of the lead storage battery 11, and the details will be described later.
  • the first switch 21 is turned on, the second switch 22 is turned on, and the third switch 23 is turned off.
  • the first switch 21 is turned on, the second switch 22 is turned on, and the third switch 23 is turned off.
  • control unit 30 is configured to supply power to the rotating electrical machine 16 during power assist, that is, when discharging for high-voltage driving or when supplying power to the other electric loads 14 and 15.
  • the on / off of each of the switches 21 to 23 is controlled based on the storage state of the lead storage battery 11 and the lithium ion storage battery 12, and details thereof will be described below.
  • FIG. 5 shows four discharge states in the case where the electrical loads 14 and 15 and the rotating electrical machine 16 are power supply targets.
  • the control unit 30 compares the storage state of the lead storage battery 11 with the storage state of the lithium ion storage battery 12 to determine which storage battery to discharge, and discharges from the lithium ion storage battery 12. When performing, it is supposed to determine which discharge object discharges from the lithium ion storage battery 12.
  • the controller 30 uses, for example, OCV (or SOC) as the storage state parameter of each of the storage batteries 11 and 12, and controls the opening and closing of the switches 21 to 23 based on the parameter.
  • the control unit 30 sets the switches 21 to 23 in the first state of FIG. 5A, that is, the first switch 21 is on, The switch 22 is controlled to be on and the third switch 23 is controlled to be on. In this case, there is sufficient electrical capacity of the lithium ion storage battery 12, and power is supplied from the lithium ion storage battery 12 to the electric loads 14 and 15 and the rotating electrical machine 16, respectively. At this time, the discharge from the lead storage battery 11 is stopped.
  • control unit 30 compares the storage states of the priority storage battery (Li) and the non-priority storage battery (Pb) by comparing the OCV of the storage batteries 11 and 12, and the priority storage battery (Li) is in the higher storage state. In this case, the control unit 30 is in a discharge state in which power is supplied from the priority storage battery to all the electrical loads 14 to 16.
  • the control unit 30 causes the switches 21 to 23 to be in the second state of FIG. 5B, that is, the first switch 21 is turned off and the second switch 22 is turned on. On, the third switch 23 is switched on.
  • the voltage threshold value TH1 may be determined with reference to the discharge lower limit voltage of the lithium ion storage battery 12, and may be set near the discharge lower limit voltage and higher than the lower limit voltage, for example.
  • the temperature threshold value TH2 may be set to a lower temperature side than the upper limit allowable temperature of the lithium ion storage battery 12.
  • the controller 30 continues the discharge of the lithium ion storage battery 12 by limiting the power supply target, that is, the lithium ion storage battery.
  • the non-priority storage battery (Pb) is in a higher power storage state, and the open-circuit voltage OCV representing the storage amount of the priority storage battery further corresponds.
  • the control unit 30 Based on the fact that the temperature of the priority storage battery is lower than the temperature threshold value (TH2) and is larger than the voltage threshold value (TH1) representing the threshold value of the power, the control unit 30 supplies power to the electric loads 15 and 16 from the priority storage battery. It is set as the discharge state which supplies.
  • the control unit 30 causes the switches 21 to 23 to be in the third state shown in FIG.
  • the switch 21 is turned on, the second switch 22 is turned off, and the third switch 23 is turned on.
  • the discharge target from the lithium ion storage battery 12 is limited to only the electric load 15, and power is supplied from the lead storage battery 11 to the electric load 14 and the rotating electrical machine 16. Thereby, the further temperature rise by continuing discharge of the lithium ion storage battery 12 is suppressed.
  • the control unit 30 causes the open circuit voltage OCV representing the storage amount of the priority storage battery. Is greater than the voltage threshold value (TH1) representing the threshold value of the corresponding storage amount, and the temperature of the priority storage battery is higher than the temperature threshold value (TH2), from the priority storage battery to one of the electric loads 15, 16 While supplying electric power, it is set as the discharge state which supplies electric power with respect to the other of the electric loads 15 and 16 from a non-priority storage battery.
  • TH1 the voltage threshold value representing the threshold value of the corresponding storage amount
  • the open-circuit voltage OCV representing the storage amount of the priority storage battery corresponds to the storage amount.
  • the control unit 30 is in a discharge state in which power is supplied from the non-priority storage battery to the electric loads 15 and 16.
  • the control unit 30 performs discharge control from the storage batteries 11 and 12 to various electric loads by switching and controlling the first to fourth states of the first switch 21 and the second switch 322. Moreover, the power supply to each electric load can be suitably performed while using the lithium ion storage battery 12 preferentially among the two storage batteries 11 and 12. Moreover, the control part 30 can implement stable electric power supply, without dropping a drive voltage with respect to each electric load, when switching the electric power supply burden with respect to each electric load between the storage batteries 11 and 12. FIG. Furthermore, since the control unit 30 can limit the situation (scene) in which the storage batteries 11 and 12 are discharged, it is possible to reduce the stress caused by the use of the storage batteries 11 and 12.
  • the discharge target from the lithium ion storage battery 12 is gradually reduced. It is done. In this case, the discharge voltage of the lithium ion storage battery 12 decreases stepwise each time the discharge target is reduced, so that the battery voltage (OCV) increases at the time of state switching. Therefore, the use period of the lithium ion storage battery 12 can be extended.
  • the battery voltage (OCV) of the lithium ion storage battery 12 decreases with time in the discharge state of the lithium ion storage battery 12, but at the timings t ⁇ b> 1 and t ⁇ b> 2 when the state is switched. Voltage rises.
  • the battery voltage of the lithium ion storage battery 12 is increased by disconnecting the load from the lithium ion storage battery 12 as compared to before disconnection. Therefore, the lithium ion storage battery 12 can be fully used up to the usable lower limit voltage.
  • switch switching control routine of switch switching control performed by the control unit 30 will be described with reference to the flowchart of FIG. This routine is executed in the control unit 30 at a predetermined cycle.
  • switch switching control when the rotating electrical machine 16 is driven will be described.
  • step S ⁇ b> 11 the control unit 30 determines whether or not there is a drive request for the rotating electrical machine 16. When there is a drive request, the switch switching control routine proceeds to step S12. In step S12, the control unit 30 determines whether or not the OCV of the lithium ion storage battery 12 (referred to as Li_OCV in FIG. 7) is larger than the OCV of the lead storage battery 11 (referred to as Pb_OCV in FIG. 7).
  • Li_OCV the OCV of the lithium ion storage battery 12
  • Pb_OCV the OCV of the lead storage battery 11
  • the switch switching control routine proceeds to a step S13, and the control unit 30 controls the switches 21 to 23 in the first state. That is, the control unit 30 turns on the first switch 21, turns on the second switch 22, and turns on the third switch 23.
  • step S12 determines whether or not the OCV of the lithium ion storage battery 12 is equal to or lower than the voltage threshold value TH1
  • step S15 the control unit 30 determines the battery temperature of the lithium ion storage battery 12 (see FIG. In Step 7, it is determined whether Temp is equal to or higher than the temperature threshold value TH2.
  • step S16 the switch switching control routine proceeds to step S16, and the control unit 30 controls the switches 21 to 23 in the second state. That is, the control unit 30 turns off the first switch 21, turns on the second switch 22, and turns on the third switch 23.
  • step S14 is NO and step S15 is YES, the switch switching control routine proceeds to step S17, and the control unit 30 controls the switches 21 to 23 in the third state. That is, the control unit 30 turns on the first switch 21, turns off the second switch 22, and turns on the third switch 23.
  • step S14 the switch switching control routine proceeds to step S18, and the control unit 30 controls the switches 21 to 23 in the fourth state. That is, the control unit 30 turns on the first switch 21, turns on the second switch 22, and turns off the third switch 23.
  • the power supply system according to this embodiment described in detail above can obtain the following excellent effects.
  • the first switch 21, the second switch 22, and the third switch 23 are provided in series on the energization path L1 through which the energization current of the electric loads 15 and 16 flows.
  • Any one of corresponding points in the lead storage battery 11, the lithium ion storage battery 12, and the electric loads 15 and 16 is connected to each point on both ends of the switch.
  • it is possible to easily change the form of mutual connection with respect to the storage batteries 11 and 12 and the electric loads 15 and 16.
  • the power supply system is based on the storage state and temperature in each of the storage batteries 11 and 12.
  • control unit 30 particularly A first state in which the electric loads 14 to 16 are discharged from the lithium ion storage battery 12; A second state in which discharge from the lithium ion storage battery 12 to the electric loads 15 and 16 and discharge from the lead storage battery 11 to the electric load 14; A third state in which discharge from the lithium ion storage battery 12 to the electric load 15 (or the electric load 16 is possible) and discharge from the lead storage battery 11 to the electric loads 14, 16; A fourth state in which the lead storage battery 11 discharges to the electrical loads 14 to 16; Can be switched.
  • the power supply system uses the lithium ion storage battery 12 preferentially, and then the lithium ion storage battery
  • the lead storage battery 11 can be used as needed while taking into account changes in the amount of electricity stored in the storage battery 12 and the temperature. Accordingly, it is possible to suppress the stress in use while appropriately using the storage batteries 11 and 12 depending on whether or not the storage batteries 11 and 12 are preferentially used. In this case, the lead storage battery 11 can be used as needed while preferentially using the lithium ion storage battery 12 with higher energy efficiency. And the reduction of the stress of the lead storage battery 11 can be achieved, so that the deterioration of the lead storage battery 11 can be suppressed.
  • the lead storage battery 11 and the lithium ion storage battery 12 are connected to the first point N1 and the fourth point N4, which are end points, respectively, and are the intermediate points.
  • the electric load 15 and the rotating electrical machine 16 are connected to the two points N2 and the third point N3, respectively.
  • the desired three discharge states above (1) to (3)
  • the desired three discharge states can be switched by turning on and off (opening and closing) the three switches 21 to 23 based on the control unit 30. Therefore, it is possible to supply power to the electric loads 15 and 16 at a desired timing while simplifying the configuration of the battery system.
  • the lithium ion storage battery 12 is connected to the fourth point N4 which is the end point among the first to fourth points, and the lead storage battery 11 and the electric load 15 are connected to each other point. And the rotating electrical machine 16 are individually connected.
  • the lithium ion storage battery 12 has a region where the battery characteristics indicating the relationship between the SOC and the open circuit voltage are higher than those of the lead storage battery 11, the above (1) to (3 ) Can be suitably switched.
  • the lead storage battery 11 and the rotating electrical machine 16 are connected to the first point N1 and the second point N2, respectively, and the lithium ion storage battery 12 and the electric power are connected to the third point N3 and the fourth point N4.
  • a load 15 is connected to each other. In this case, in the state where the electric load 15 that is a constant voltage required load and the rotating electrical machine 16 are driven together, the influence of the voltage fluctuation of the storage batteries 11 and 12 due to the driving of the rotating electrical machine 16 does not affect the driving of the electrical load 15. Can be.
  • the control unit 30 determines whether or not there is an abnormality (power failure) in the lead storage battery 11 in the configuration in which the lead storage battery 11 is connected to the first point N1 which is the end point among the first to fourth points. It is also possible to have a determination unit 30a. Then, when the determination unit 30a determines that an abnormality has occurred, the control unit 30 disconnects the lead storage battery 11 from the energization path and then supplies power from the lithium ion storage battery 12 to the electric loads 15 and 16.
  • the switches 21 to 23 may be controlled so that The determination unit 30a in the control unit 30 monitors, for example, the terminal voltage of the lead storage battery 11 detected by the voltage sensor VS, and determines that there is an abnormality if the terminal voltage is below a predetermined value.
  • the electrode supply to the electric loads 15 and 16 can be continued using the other lithium ion storage battery 12 within a usable range. As a result, power supply failure countermeasures can be realized.
  • the lithium ion storage battery 12 connected to the fourth point can be determined as an abnormality determination target.
  • the first switch 21, the second switch 22, and the third switch 23 are provided in series in the energization path L1, and the first switch 21, the second switch 22, and the third switch 23 are provided at positions on both ends of each switch.
  • One point N1, a second point N2, a third point N3, and a fourth point N4 are provided.
  • the lithium ion storage battery 12 has a region where the voltage is higher than that of the lead storage battery 11 in the battery characteristics indicating the relationship between the SOC and the open circuit voltage.
  • the arrangement order of the storage batteries 11, 12, the electric load 15, and the rotating electrical machine 16 with respect to the points N1 to N4 can be reversed left and right.
  • FIGS. 8A and 8B will be described.
  • the lithium ion storage battery 12 is connected to the fourth point N4, which is the end point, and the electric load 15 is connected to the third point N3 adjacent thereto.
  • FIG. 8A has substantially the same circuit configuration as FIG.
  • the lead storage battery 11 and the rotating electrical machine 16 are interchangeably connected to the remaining first point N1 and second point N2, respectively.
  • 8A the lead storage battery 11 and the rotating electrical machine 16 are connected to the first point N1 and the second point N2, respectively.
  • the first point N1 and the second point N2 are connected.
  • the rotating electrical machine 16 and the lead storage battery 11 are connected to each other.
  • the control unit 30 switches the switches 21 to 23 on and off based on parameters including at least one of the storage state and temperature of the storage batteries 11 and 12.
  • Discharge state for supplying power (3) A discharge state in which power is supplied from the lithium ion storage battery 12 to the electric load 15 and the rotating electrical machine 16; Can be switched.
  • the control unit 30 (3) ⁇ (2) ⁇ (1) as the storage amount of the lithium ion storage battery 12 gradually decreases from a large state.
  • the discharge state is switched in this order.
  • the control unit 30 is switched by the control unit 30 in the order of (3) ⁇ (2) ⁇ (1).
  • each storage battery 11 and 12 can be used appropriately while suppressing stress in use.
  • the lithium ion storage battery 12 is connected to the fourth point N4, which is an end point, and the lead storage battery 11, the electrical load 15, the rotating electrical machine 16 and the other points are connected to each other.
  • the lithium ion storage battery 12 has a region where the battery characteristics indicating the relationship between the SOC and the open circuit voltage are higher than those of the lead storage battery 11, the above (1) to (3 ) Can be suitably switched.
  • FIGS. 8C and 8D will be described.
  • the electric load 15 is connected to the fourth point N4 that is the end point, and the lithium ion storage battery 12 is connected to the third point N3 adjacent thereto.
  • the lead storage battery 11 and the rotating electrical machine 16 are interchangeably connected to the remaining first point N1 and second point N2, respectively. That is, in FIG. 8C, the lead storage battery 11 and the rotating electrical machine 16 are connected to the first point N1 and the second point N2, respectively, and in FIG. 8B, the first point N1 and the second point N2 are connected.
  • the rotating electrical machine 16 and the lead storage battery 11 are connected to each other.
  • the electric load 15 is connected to the fourth point N4 that is the end point, and at each of the other points, the lead storage battery 11 is connected at a position sandwiching at least the point where the lithium ion storage battery 12 is connected, and the remaining points A rotating electrical machine 16 is connected. Further, in this configuration, since it becomes difficult to supply power from the lead storage battery 11 to the electric load 15 in a state where the lithium ion storage battery 12 is disconnected, the point where the lead storage battery 11 is connected and the end point (N4) are bypassed. Connected by a path 51, a bypass switch 52 is provided in the bypass path 51.
  • the bypass switch 52 may be a semiconductor switch element or an electromagnetic relay switch, for example.
  • the control unit 30 performs the above (1) to (3).
  • the discharge state can be switched.
  • dark current can be supplied from the lead storage battery 11 to the electrical load 15 by turning on the bypass switch 52 based on the control of the control unit 30.
  • FIGS. 9A and 9B will be described.
  • the lithium ion storage battery 12 is connected to the fourth point N4 that is the end point, and the rotating electrical machine 16 is connected to the third point N3 adjacent thereto.
  • the lead storage battery 11 and the electric load 15 are interchangeably connected to the remaining first point N1 and second point N2.
  • 9A the lead storage battery 11 and the electrical load 15 are connected to the first point N1 and the second point N2, respectively.
  • the first point N1 and the second point N2 are connected.
  • An electric load 15 and a lead storage battery 11 are connected to each other.
  • control unit 30 performs the above (1) to (3) based on parameters including at least one of the storage state and temperature of each storage battery 11, 12.
  • the discharge state can be switched.
  • the control unit 30 (3) ⁇ (2) ⁇ (1) as the storage amount of the lithium ion storage battery 12 gradually decreases from a large state.
  • the discharge state is switched in this order.
  • the control unit 30 is switched by the control unit 30 in the order of (3) ⁇ (2) ⁇ (1).
  • each of the storage batteries 11 and 12 can be used appropriately while suppressing the stress in use of each of the storage batteries 11 and 12.
  • the lithium ion storage battery 12 is connected to the fourth point N4, which is the end point, and the lead storage battery 11, the electrical load 15, the rotating electrical machine 16 and the other points are connected to each other.
  • the lithium ion storage battery 12 has a region where the battery characteristics indicating the relationship between the SOC and the open circuit voltage are higher than those of the lead storage battery 11, the above (1) to (3 ) Can be suitably switched.
  • FIGS. 9C and 9D will be described.
  • the rotating electrical machine 16 is connected to the fourth point N4 that is the end point, and the lithium ion storage battery 12 is connected to the third point N3 that is adjacent thereto.
  • the lead storage battery 11 and the electrical load 15 are interchangeably connected to the remaining first point N1 and second point N2, respectively.
  • 9C the lead storage battery 11 and the electric load 15 are connected to the first point N1 and the second point N2, respectively.
  • FIG. 9D the first point N1 and the second point N2 are connected.
  • An electric load 15 and a lead storage battery 11 are connected to each other.
  • the rotating electrical machine 16 is connected to the fourth point N4, which is the end point, and at each other point, the lead storage battery 11 is connected at a position sandwiching at least the point where the lithium ion storage battery 12 is connected, and the remaining points An electrical load 15 is connected. Further, in this configuration, since it becomes difficult to supply power from the lead storage battery 11 to the rotating electrical machine 16 with the lithium ion storage battery 12 disconnected, the point where the lead storage battery 11 is connected and the end point (N4) are bypassed. Connected by a path 51, a bypass switch 52 is provided in the bypass path 51.
  • control unit 30 also performs the above-described (1) to (3) based on parameters including at least one of the storage state and temperature in each of the storage batteries 11 and 12.
  • the discharge state can be switched. Further, when the vehicle is powered off, dark current can be supplied from the lead storage battery 11 to the electrical load 15 through the first switch 21 or the bypass switch 52 under the control of the control unit 30.
  • FIGS. 10A and 10B will be described. 10A and 10B, among the first to fourth points, the lithium ion storage battery 12 is connected to the first point N1, which is the end point, and the lead storage battery is connected to the second point N2 adjacent thereto. 11 is connected. Moreover, the electric load 15 and the rotary electric machine 16 are interchangeably connected to the remaining third point N3 and fourth point N4, respectively. That is, in FIG. 10A, the electric load 15 and the rotating electrical machine 16 are connected to the third point N3 and the fourth point N4, respectively, and in FIG. 10B, the third point N3 and the fourth point N4 are connected. The rotary electric machine 16 and the electric load 15 are connected to each other. A starter motor 13 is connected to the first point N1.
  • the energizing path for driving the starter motor 13 by the lithium ion storage battery 12 and the rotating electrical machine 16 by the lead storage battery 11 are used. Separation from the driving path becomes possible. Thereby, the influence of mutual voltage fluctuation can be suppressed.
  • a storage battery as a power supply source can be selectively used between the lead storage battery 11 and the lithium ion storage battery 12 for each of the electric loads 15 and 16. .
  • FIGS. 10C and 10D will be described. 10C and 10D, among the first to fourth points, the lead storage battery 11 is connected to the first point N1, which is the end point, and the lithium ion storage battery is connected to the second point N2 adjacent thereto. 12 is connected.
  • the electric load 15 and the rotating electrical machine 16 are interchangeably connected to the remaining third point N3 and fourth point N4, respectively. That is, in FIG. 10C, the electric load 15 and the rotating electrical machine 16 are connected to the third point N3 and the fourth point N4, respectively, and in FIG. 10D, the third point N3 and the fourth point N4 are connected.
  • the rotary electric machine 16 and the electric load 15 are connected to each other.
  • a starter motor 13 is connected to the first point N1.
  • the energization path for driving the starter motor 13 by the lead storage battery 11 and the rotating electrical machine 16 by the lithium ion storage battery 12 are controlled by the first switch 21 in the control unit 30. Separation from the route becomes possible. Thereby, the influence of mutual voltage fluctuation can be suppressed.
  • a storage battery as a power supply source can be selectively used between the lead storage battery 11 and the lithium ion storage battery 12 for each of the electric loads 15 and 16. .
  • bypass path 51 and the bypass switch 52 are provided between the point where the lead storage battery 11 is connected and the end point (N4), the power supply of the vehicle is stopped by the control of the bypass switch 52 by the control unit 30. In the state, the dark current can be supplied from the lead storage battery 11 to the electric load 15.
  • FIG. 11A The configuration of FIG. 11A is basically the same circuit configuration as that of FIG. 1 or FIG. 8A, and the lead storage battery 11 is connected to the first point N1 on the energization path L1, and the second point.
  • An electrical load 16 (rotating electrical machine 16) is connected to N2
  • an electrical load 15 is connected to the third point N3
  • a lithium ion storage battery 12 is connected to the fourth point N4.
  • the switch 61 is provided between the third point N3 and the electric load 15.
  • the switch 61 is preferably composed of a semiconductor switch element, like the first to third switches 21 to 23.
  • an electromagnetic relay switch or a DCDC conversion circuit as a power conversion means can be used as the switch 61.
  • the switch 61 may be provided inside the battery unit U (the path L3 inside the unit) or may be provided outside the battery unit U. In the configuration of FIG. 11A, a switch is provided in each of four predetermined parts of the power supply system.
  • the switch 61 is added to the configuration of FIG. 1 or FIG. 8A, and the electrical load 15 is connected to the third point N3 via the switch 61.
  • the lead storage battery 11, the lithium ion storage battery 12, and the electric loads 15 and 16 are distributed and connected to the points N1 to N4 on the energization path L1, as in the configuration described above. Also in this configuration, it is possible to appropriately supply power from the storage batteries 11 and 12 to the electric loads 15 and 16 based on the control of the switches 21 to 23 and 61 by the control unit 30.
  • FIGS. 12 (a) and 12 (b) are modified configurations obtained by partially changing the configuration of FIG. 11 (a).
  • switches 61 and 62 are provided in series between the third point N3 and the electric load 15. That is, a switch 62 is added as a difference from FIG. Similarly to the switch 61, the switch 62 may be any one of a semiconductor switch element, an electromagnetic relay switch, a DCDC conversion circuit, and the like, and may be configured differently from the switch 61. It should be noted that both the switches 61 and 62 are provided inside the battery unit U (route L3 inside the unit), only the switch 61 is provided inside the unit, or both the switches 61 and 62 are provided outside the unit. Configuration is conceivable. In the configuration of FIG. 11 (b), switches are respectively provided at predetermined five parts in the power supply system (FIGS. 11 (c), (d), FIGS. 12 (a), (b) described later). The same).
  • a switch 63 is provided in series between the second point N2 and the electric load 16 (the rotating electrical machine 16).
  • the configuration of the switch 63 is the same as that of the switch 62.
  • the switch 63 may be provided inside the battery unit U or may be provided outside the battery unit U.
  • a switch 64 is provided in series with the second switch 22 between the second point N2 and the third point N3.
  • the configuration of the switch 64 is the same as that of the switch 62.
  • a bypass path 65 and a bypass switch 66 are provided between the first point N1 and a point N5 between the switch 61 and the electric load 15. It has been.
  • the bypass switch 66 may be a semiconductor switch element or an electromagnetic relay switch, for example.
  • bypass path 67 and a bypass switch 68 are provided between the second point N2 and a point N5 between the switch 61 and the electric load 15. It has been.
  • the bypass switch 68 may be, for example, a semiconductor switch element or an electromagnetic relay switch.
  • 13A to 13D is basically a modified example in which a part of the configuration shown in FIG. 8C is changed.
  • the lead storage battery 11 is connected to the first point N1 on the energization path L1, and the electric load 16 (rotary electric machine 16) is connected to the second point N2.
  • the lithium ion storage battery 12 is connected to the third point N3, and the electric load 15 is connected to the fourth point N4.
  • a switch 71 is provided between the fourth point N4 and the electrical load 15 as a difference from FIG. 8C.
  • the switch 71 may be composed of a semiconductor switch element, like the first to third switches 21 to 23. However, in addition to this, an electromagnetic relay switch or a DCDC conversion circuit as a power conversion means can be used as the switch 71. In short, the communication between the fourth point N4 and the electric load 15 is essential. Or what can be intercepted is sufficient.
  • the switch 71 may be provided inside the battery unit U or may be provided outside the battery unit U. Note that the bypass path 51 and the bypass switch 52 in FIG. 8C are arbitrary.
  • the switch 71 is added to the configuration of FIG. 8C, and the electrical load 15 is connected to the fourth point N4 via the switch 71.
  • the lead storage battery 11, the lithium ion storage battery 12, and the electric loads 15 and 16 are distributed and connected to the points N1 to N4 on the energization path L1. Also in this configuration, it is possible to appropriately supply power from the storage batteries 11 and 12 to the electric loads 15 and 16 based on the control of the switches 21 to 23, 52, and 71 by the control unit 30.
  • bypass switches 52 and 72 are provided in series on the bypass path 51 between the first point N1 and the fourth point N4.
  • the bypass switch 72 may be, for example, a semiconductor switch element or an electromagnetic relay switch (the same applies to bypass switches 74 and 76 described later).
  • a bypass switch 74 is provided in the bypass path 73 between the second point N2 and the fourth point N4.
  • a bypass switch 76 is provided in the bypass path 75 between the first point N1 and the third point N3.
  • FIG. 14A is a modified example in which a part of the configuration of FIG. 8B is changed, and the configuration of FIG. 14B is the configuration of FIG. 9A. It is the structure as a modification which changed a part with respect to.
  • a switch 81 is provided between the third point N3 and the electric load 15, and the second point N2, the switch 81, and the electric load 15
  • a bypass path 82 and a bypass switch 83 are provided between the point N6.
  • the switch 81 and the bypass switch 83 may be, for example, a semiconductor switch element or an electromagnetic relay switch.
  • a switch 84 is provided between the second point N2 and the electric load 15, and a point N7 between the switch 84 and the electric load 15 is provided.
  • a bypass path 85 and a bypass switch 86 are provided between the fourth point N4.
  • the switch 84 and the bypass switch 86 may be, for example, a semiconductor switch element or an electromagnetic relay switch.
  • step S12 when step S12 is NO and S14 is NO, the control unit 30 controls the switches 21 to 23 in the third state if the battery temperature Temp of the lithium ion storage battery 12 is lower than the temperature threshold value TH2. If the temperature is equal to or higher than the temperature threshold TH2, the switches 21 to 23 may be controlled in the second state.
  • TH11 on the higher voltage side than TH1 is determined as the OCV voltage threshold value of the lithium ion storage battery 12.
  • the application control unit 30 determines that the OCV of the lithium ion storage battery 12 is equal to the voltage threshold value TH11 as the process of step S14. It may be determined whether it is within the range.
  • the control unit 30 controls the switches 21 to 23 in the second state, and the OCV of the lithium ion storage battery 12 is TH1 to TH11. If within the range, the control unit 30 may be configured to control the switches 21 to 23 in the third state.
  • step S12 is YES
  • the control is performed if the battery temperature of the lithium ion storage battery 12 is equal to or higher than the temperature threshold TH2.
  • the unit 30 may be configured to control the processing in step S17, that is, the switches 21 to 23 in the third state.
  • the control unit 30 controls the switches 21 to 23 in the second state based on step S16 instead of the process for controlling the switches 21 to 23 in the third state, which is the process in step S17.
  • the switches 21 to 23 may be controlled in the fourth state based on step S18.
  • the control unit 30 switches the on / off states of the switches 21 to 23 between the first to fourth states on the condition that there is a drive request for the rotating electrical machine 16. However, by changing this, the control unit 30 switches the on / off state of the switches 21 to 23 between the first to fourth states regardless of whether or not the rotating electrical machine 16 is requested to be driven. Also good.
  • the control unit 30 may monitor the storage state of each of the storage batteries 11 and 12 based on the charging and discharging history of each of the storage batteries 11 and 12. In this case, the control unit 30 grasps the charging history from at least one of the number of times of charging and the time of each of the storage batteries 11, 12, and calculates the discharging history from at least one of the number of times of discharging of each of the storage batteries 11, 12. To grasp. For example, when the lithium ion storage battery 12 is discharged, the control unit 30 starts from the state in which the electric load 15 and the rotating electrical machine 16 are discharged as discharge targets based on the discharge history of the lithium ion storage battery 12. Switching to a state in which one of the rotating electrical machines 16 is discharged is performed.
  • the lithium ion storage battery 12 is a priority storage battery and the lead storage battery 11 is a non-priority storage battery, but this may be reversed.
  • An electrical load other than the rotating electrical machine 16 may be used as the second electrical load.
  • an electric load that requires high power or high current, such as a heater as the second electric load.
  • the first electric load 15 may not include a constant voltage request load.
  • the power supply system is not limited to one including the lead storage battery 11 as the first storage battery and the lithium ion storage battery 12 as the second storage battery.
  • another secondary battery such as a nickel hydride storage battery may be used as the second storage battery.
  • both the first storage battery and the second storage battery can be lead storage batteries or lithium ion storage batteries.
  • the first to third switches 21 to 23 that conduct or cut off the energization path L1 through which the energization current of the electric loads 15 and 16 flows may be configured to use other than semiconductor switch elements such as MOSFETs.
  • MOSFETs semiconductor switch elements
  • the conduction path L ⁇ b> 1 may be turned on and off by the opening / closing control of the opening / closing section included in the DCDC conversion circuit and the inverter by the control section 30.
  • the power supply device of the present disclosure does not necessarily have to be integrally configured as the battery unit U.
  • a power supply device may be configured by a unit in which the lithium ion storage battery 12 and the switches 21 to 23 are integrated by a casing and a control unit 30 provided outside the unit.
  • the power supply apparatus according to the present disclosure can be applied to a power supply apparatus other than the vehicle-mounted power supply apparatus.
  • This application claims priority based on Japanese Patent Applications 2015-202367 and 2016-187258, and the disclosure of the Japanese patent application that is the basis of this priority is incorporated into this application as a reference document. It is.
  • SYMBOLS 11 Lead storage battery (1st storage battery), 12 ... Lithium ion storage battery (2nd storage battery), 15 ... Electrical load (1st electrical load), 16 ... Rotary electric machine (2nd electrical load), 21 ... 1st switch, 22 ... 2nd switch, 23 ... 3rd switch, 30 ... control part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

第1および第2の電気負荷の通電電流が流れる通電経路に直列に設けられ、当該通電経路を導通又は遮断する第1~第3スイッチと、第1スイッチの両側のうち前記第2スイッチとは逆側に設けられた第1点と、前記第1スイッチと前記第2スイッチとの間に設けられた第2点と、前記第2スイッチと前記第3スイッチとの間に設けられた第3点と、前記第3スイッチの両側のうち前記第2スイッチとは逆側に設けられた第4点と、を備えた電源装置である。前記第1~第4の各点に、第1蓄電池、第2蓄電池、第1電気負荷、及び第2電気負荷のいずれかがそれぞれ接続されている。そして、電源装置は、第1~第3の各スイッチの開閉を制御する制御部を備えている。

Description

電源装置及び電池ユニット
 本開示は、車両等に搭載される電源装置及び電池ユニットに関するものである。
 例えば車両に搭載される車載電源システムとして、鉛蓄電池やリチウムイオン蓄電池といった複数の蓄電池を用い、これら各蓄電池を使い分けながら車載の各種負荷に対して電力を供給する構成が知られている(例えば特許文献1参照)。例えば、発電機から各蓄電池への通電経路にスイッチを設け、各蓄電池の蓄電率に基づいて対応するスイッチを制御して、発電機からいずれかの蓄電池に対して充電を行うようにするものがある。
特開2011-15516号公報
 ところで、電源システムにおいては、種々の給電対象が設けられている。例えば、各蓄電池から給電対象である複数の電気負荷に対して適宜の電力供給が行われること、各電気負荷には、一定電圧の駆動が要求される定電圧要求負荷や、高電力駆動される高電力負荷が含まれることが考えられる。この場合、複数の蓄電池から電気負荷に対して電力供給を行う際に、いずれかの蓄電池において過剰にストレスがかかったり、一の電気負荷への電力供給により他の電気負荷への電力供給に悪影響が及んだりすること等の不都合が考えられる。それゆえ、上記不等号な点において改善の余地があると考えられる。
 本開示は、上記課題に鑑みてなされたものであり、その主たる目的は、各蓄電池から電気負荷に対して適正な電力供給を実施することができる電源装置及び電池ユニットを提供することにある。
 本開示の第1の態様に関わる電源装置は、第1蓄電池と第2蓄電池とを備え、第1電気負荷に対して並列に前記第1蓄電池及び前記第2蓄電池が接続されるとともに、第2電気負荷に対して並列に前記第1蓄電池及び前記第2蓄電池が接続される電源システムに適用される電源装置である。この電源装置は、前記各第1および第2の電気負荷の通電電流が流れる通電経路に直列に設けられ、当該通電経路を導通又は遮断する第1スイッチ、第2スイッチ、及び第3スイッチと、前記第1スイッチの両側のうち前記第2スイッチとは逆側に設けられた第1点と、前記第1スイッチと前記第2スイッチとの間に設けられた第2点と、前記第2スイッチと前記第3スイッチとの間に設けられた第3点と、前記第3スイッチの両側のうち前記第2スイッチとは逆側に設けられた第4点と、
を備えている。前記第1~第4の各点に、前記第1蓄電池、前記第2蓄電池、前記第1電気負荷、及び前記第2電気負荷のいずれかがそれぞれ接続されている。この電源装置は、前記第1~第3の各スイッチの開閉を制御する制御部(30)を備えている。
 上記第1の態様に関わる電源装置では、各第1および第2の電気負荷の通電電流が流れる通電経路上に、第1スイッチ、第2スイッチ及び第3スイッチが直列接続されて設けられ、それぞれのスイッチの両端の点である第1、第2、第3、および第4の点それぞれに第1蓄電池、第2蓄電池、第1電気負荷、及び第2電気負荷のいずれかが接続されている。このため、制御部による第1~第3のスイッチの開閉(オンオフ)制御により、各第1および第2蓄電池と各第1および第2電気負荷とに関して相互の接続の形態を容易に変更することが可能となる。この場合、各電気負荷に対して給電元の蓄電池(第1あるいは第2蓄電池)を選択的に用いることが容易となり、第1および第2蓄電池のいずれかを優先的に用いたり、各第1および第2蓄電池の使用上のストレスを緩和したりすることを容易に実施できる。その結果、各第1および第2蓄電池から各第1および第2電気負荷に対する電力供給を適正に実施することができる。
 なお、第1~第4の各点に、第1蓄電池、第2蓄電池、第1電気負荷、及び第2電気負荷のいずれかがそれぞれ接続されている構成とは、上記第1~第4の各点に振り分けられて第1蓄電池、第2蓄電池、第1電気負荷、及び第2電気負荷がそれぞれ接続されている構成であればよい。この場合、上記第1~第4の各点と、各第1および第2蓄電池や各第1および第2電気負荷とが直接的に接続されるもの以外に、間接的に接続されるものが含まれる。
 本開示の第2の態様において、前記制御部は、前記第1蓄電池及び前記第2蓄電池における蓄電状態及び温度の少なくともいずれかを含むパラメータに基づいて、前記第1~第3のスイッチの開閉を制御することにより、
 前記第1蓄電池から前記第1電気負荷及び前記第2電気負荷に対して電力供給を行う放電状態と、
 前記第1蓄電池から前記第1電気負荷及び前記第2電気負荷の一方に対して電力供給を行うとともに、前記第2蓄電池から前記第1電気負荷及び前記第2電気負荷の他方に対して電力供給を行う放電状態と、
 前記第2蓄電池から前記第1電気負荷及び前記第2電気負荷に対して電力供給を行う放電状態と、の切り替えを実施することを特徴とする。
 上記のごとく通電経路上に第1~第3のスイッチを直列に設けるとともに、第1~第3のスイッチ両端の点である第1、第2、第3、および第4の点それぞれに第1蓄電池、第2蓄電池、第1電気負荷、及び第2電気負荷のいずれかを個々に接続した構成では、第1~第3のスイッチの開閉の切り替えにより、各第1および第2電気負荷に対して給電元の蓄電池として第1あるいは第2蓄電池を選択的に用いることが可能となる。そのため、
(1)第1蓄電池から第1電気負荷及び第2電気負荷に対して電力供給を行う放電状態と、
(2)第1蓄電池から一方の電気負荷に対して電力供給を行うとともに、第2蓄電池から他方の電気負荷に対して電力供給を行う放電状態と、
(3)第2蓄電池から第1電気負荷及び第2電気負荷に対して電力供給を行う放電状態と、
の切り替えが可能となっている。また、第1および第2蓄電池の内のいずれの蓄電池を給電元にすべきかといった条件は、各第1および第2蓄電池の蓄電状態や温度に応じて変わりうる。ここで、第1蓄電池及び第2蓄電池における蓄電状態及び温度の少なくともいずれかを含むパラメータに基づいて、上記(1)~(3)の切り替えを実施する構成にしたため、蓄電量や温度の条件が第1および第2蓄電池の一方で過剰に悪化することを抑制できる。そのため、各第1および第2蓄電池の使用上のストレスの抑制を図りつつ各第1および第2蓄電池を使用することができる。
 本開示の第3の態様において、前記第1蓄電池と前記第2蓄電池とのうち一方を、優先的に使用する優先蓄電池、他方を非優先蓄電池としており、前記パラメータは前記第1蓄電池及び前記第2蓄電池それぞれにおける蓄電量及び温度を含んでいる。
 また、前記制御部は、前記優先蓄電池と前記非優先蓄電池との比較において前記優先蓄電池の方が高蓄電状態である第1の場合、および前記優先蓄電池と前記非優先蓄電池との比較において前記非優先蓄電池の方が高蓄電状態であって、さらに前記優先蓄電池の蓄電量が所定の蓄電閾値よりも大きいか又は前記優先蓄電池の温度が所定の温度閾値よりも低い第2の場合の何れかの場合に、前記優先蓄電池から前記第1電気負荷及び前記第2電気負荷に対して電力供給を行う放電状態とする。
 さらに、前記制御部は、前記優先蓄電池と前記非優先蓄電池との比較において前記非優先蓄電池の方が高蓄電状態である場合に、前記優先蓄電池の蓄電量と前記優先蓄電池の温度との少なくともいずれかに基づいて、前記優先蓄電池から前記第1電気負荷及び前記第2電気負荷の一方に対して電力供給を行うとともに、前記非優先蓄電池から前記第1電気負荷及び前記第2電気負荷の他方に対して電力供給を行う放電状態と、前記非優先蓄電池から前記第1電気負荷及び前記第2電気負荷に対して電力供給を行う放電状態との切り替えを実施する。
 上記第3の態様によれば、第1蓄電池と第2蓄電池とのうち一方の優先蓄電池を優先的に用いつつ、その上で、優先蓄電池の蓄電量や温度の変化を考慮しながら非優先蓄電池を必要に応じて用いることができる。したがって、各第1および第2蓄電池について優先使用するか否かに応じて適正に使い分けをしつつ、各第1および第2蓄電池の使用上のストレスの抑制等を図ることができる。
 例えば、リチウムイオン蓄電池を優先蓄電池、鉛蓄電池を非優先蓄電池とする場合において、エネルギ効率の高い方のリチウムイオン蓄電池を優先使用しつつ、鉛蓄電池を必要に応じて用いることができる。この場合、鉛蓄電池のストレス軽減が図られることで、鉛蓄電池の劣化抑制を実現できる。
 本開示の第4の態様においては、前記通電経路における前記第1~第4の各点のうち端点である前記第1点及び前記第4点に前記第1蓄電池と前記第2蓄電池とがそれぞれ接続され、前記第2点及び前記第3点に前記第1電気負荷と前記第2電気負荷とがそれぞれ接続されていることを特徴とする。
 第4の態様に相当する回路構成は、例えば図1、図8(a)、図9(a)に示されている。この場合、第1~第3のスイッチを含む直列回路部において、その端点である第1点及び第4点に第1蓄電池と第2蓄電池とがそれぞれ接続され、中間点である第2点及び第3点に第1電気負荷と第2電気負荷とがそれぞれ接続された構成では、第1~第3のスイッチのオンオフ(開閉)によって、上記(1)~(3)の状態の切り替えを実施できる。したがって、電源回路の構成の簡素化を図りつつ、所望のとおり各第1および第2電気負荷への電力供給を実施できる。
 本開示の第5の態様においては、前記第1および第2の蓄電池は、その残存容量(State Of Charge、SOC)とその開放電圧との関係を示す第1および第2の電池特性をそれぞれ有しており、前記第2の電池特性における所定の残存容量の領域における開放電圧が、前記第1の電池特性における対応する残存容量の領域における開放電圧よりも高電圧となっている。前記通電経路における前記第1~第4の各点のうち端点である前記第1点又は前記第4点に前記第2蓄電池が接続され、それ以外の各点に、前記第1蓄電池と前記第1電気負荷と前記第2電気負荷とがそれぞれ接続されている。
 第5の態様に相当する回路構成は、例えば図1、図8(a)、図8(b)、図9(a)、図9(b)、図10(a)、図10(b)に示されている。この場合、第1~第3のスイッチを含む直列回路部において、その端点である第1点又は第4点のいずれかに第2蓄電池が接続され、その以外の各点に、第1蓄電池と第1電気負荷と第2電気負荷とがそれぞれ接続された構成では、両蓄電池の電池特性の違いも相俟って、第1~第3のスイッチのオンオフ(開閉)によって、上記(1)~(3)の状態の切り替えを実施できる。したがって、電源回路の構成の簡素化を図りつつ、所望のとおり各第1および第2電気負荷への電力供給を実施できる。
 本開示の第6の態様においては、前記第1および第2の蓄電池は、その残存容量(State Of Charge、SOC)とその開放電圧との関係を示す第1および第2の電池特性をそれぞれ有しており、前記第2の電池特性における所定の残存容量の領域における開放電圧が、前記第1の電池特性における対応する残存容量の領域における開放電圧よりも高電圧となっている。前記通電経路における前記第1~第4の各点のうち端点である前記第1点又は前記第4点に前記第1電気負荷及び前記第2電気負荷の一方が接続され、それ以外の各点において、少なくとも前記第2蓄電池が接続された点を挟む位置に前記第1蓄電池が接続され、残りの点に前記第1電気負荷及び前記第2電気負荷の他方が接続されており、前記第1蓄電池が接続された点と前記端点とがバイパス経路により接続され、そのバイパス経路に、前記制御部によりオンオフ制御可能なバイパススイッチが設けられている。
 第6の態様に相当する回路構成は、例えば図8(c)および(d)、図9(c)および(d)、図10(c)および(d)に示されている。この場合、第1~第3のスイッチを含む直列回路部において、その端点である第1点又は第4点のいずれかに第1および第2電気負荷の一方が接続され、それ以外の各点において、少なくとも第2蓄電池が接続された点を挟む位置に第1蓄電池が接続され、残りの点に第1および第2電気負荷の他方が接続された構成では、第2蓄電池との接続を切り離した状態で第1蓄電池から両第1および第2電気負荷へ放電を行うことが困難となる。この不都合に対して、第1蓄電池が接続された点と端点とがバイパス経路により接続され、そのバイパス経路に、制御部によりオンオフ制御可能なバイパススイッチが設けられている。そのため、制御部による第1~第3のスイッチとバイパススイッチとのオンオフ(開閉)によって、上記(1)~(3)の状態の切り替えを実施できる。したがって、所望のとおり各第1および第2電気負荷への電力供給を実施できる。
 本開示の第7の態様においては、前記第1~第4の各点のうち、前記第1点及び前記第2点に、前記第1蓄電池と前記第1電気負荷及び前記第2電気負荷の一方とがそれぞれ接続され、前記第3点及び前記第4点に、前記第2蓄電池と前記第1電気負荷及び前記第2電気負荷の他方とがそれぞれ接続されている。
 第7の態様に相当する回路構成は、例えば図1、図8(a)~(d)、図9(a)~(d)に示されている。ここで、第1点及び第2点は、通電経路において中央の第2スイッチを挟んで一方の側に設けられる2つのノードであり、第3点及び第4点は、通電経路において中央の第2スイッチを挟んで他方の側に設けられる2つのノードである。この場合、第1点及び第2点に第1蓄電池と第1および第2電気負荷の一方とがそれぞれ接続され、第3点及び第4点に第2蓄電池と第1および第2電気負荷の他方とがそれぞれ接続される構成にする。この構成により、第1電気負荷及び第2電気負荷を共に駆動する状態において、第1および第2電気負荷の一方の駆動による第1蓄電池の電圧変動の影響が、第1および第2電気負荷の他方の駆動に及ばないようにすることができる。
 本開示の第8の態様においては、前記第1電気負荷は、該第1電気負荷に対する供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される電気負荷、すなわち、定電圧要求負荷であり、前記第2電気負荷は、前記第1電気負荷よりも高電力又は高電流が供給される電気負荷である。
 第1電気負荷が定電圧要求負荷、第2電気負荷が高電力又は高電流供給の電気負荷である場合には、第2電気負荷の駆動時において、各第1および第2蓄電池の蓄電状態によっては第2電気負荷への電力供給に伴い第1電気負荷への電力供給に影響が及ぶことが考えられる。この点、上記のとおり各第1および第2電気負荷に対して給電元の蓄電池を、第1蓄電池および第2蓄電器間で選択的に用いることが容易となることで、各第1および第2電気負荷の通電の相互の影響を抑制することが可能となる。
 本開示の第9の態様では、前記第1電気負荷は、該第1電気負荷に対する供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される電気負荷、すなわち定電圧負荷であり、前記第2電気負荷は、前記第1電気負荷よりも高電力又は高電流で回転駆動される回転電機である。
 第1電気負荷が定電圧要求負荷、第2電気負荷が回転電機である場合には、第2電気負荷の駆動時において、各第1および第2蓄電池の蓄電状態によっては第2電気負荷への電力供給に伴い第1電気負荷への電力供給に影響が及ぶことが考えられる。この点、上記のとおり各第1および第2電気負荷に対して給電元の蓄電池を第1蓄電池および第2蓄電器間で選択的に用いることが容易となることで、各第1および第2電気負荷の通電の相互の影響を抑制することが可能となる。
 本開示の第10の態様では、前記通電経路における前記第1~第4の各点のうち端点である前記第1点及び前記第4点のいずれかに前記第1蓄電池又は前記第2蓄電池が接続されるか、あるいは、前記端点である前記第1点及び前記第4点に前記第1蓄電池と前記第2蓄電池とがそれぞれ接続されており、前記第1蓄電池及び前記第2蓄電池のうち前記第1点および第4点の一方に接続された一方の蓄電池について異常の有無を判定する異常判定部を備えている。前記制御部は、前記異常判定部により異常発生の旨が判定された場合に、異常有りとされた一方の蓄電池を前記通電経路から切り離した上で、他方の蓄電池から前記各第1および第2の電気負荷への電力供給が行われるよう前記第1~第3スイッチを制御する。
 上記第10の態様では、第1~第4の各点のうち端点に接続された第1蓄電池および第2蓄電池の一方において異常が生じていれば、その異常有りとされた一方の蓄電池を通電経路から切り離した上で、他方の蓄電池から各第1および第2電気負荷への電力供給が行われる。この場合、一方の蓄電池で異常が生じた状況であっても、他方の蓄電池を使用可能な範囲内で用いて各第1および第2電気負荷への電極供給を継続できる。これにより、電源失陥対策を実現できる。
 本開示の第11の態様においては、第1~第10の態様のいずれか1つに記載された電源装置を備える電池ユニットである。この電源ユニットは、前記第2蓄電池と、前記第1蓄電池、前記第1電気負荷、及び前記第2電気負荷がそれぞれ接続される第1端子、第2端子及び第3端子とを備えている。前記第2蓄電池に対して前記第1蓄電池、前記第1電気負荷、及び前記第2電気負荷が接続される前記通電経路に、前記第1~第3の各スイッチが設けられている。
 上記構成によれば、第2蓄電池を具備する電池ユニットにおいて、第1~第3の各端子に第1蓄電池、第1電気負荷、及び第2電気負荷をそれぞれ接続することで、上記のとおり各第1および第2蓄電池から各第1および第2電気負荷に対する電力供給の適正化を実現できる。
本開示の実施の形態における電源システムを示す電気回路図。 図1に示す鉛蓄電池のSOC使用範囲を示す図。 図1に示すリチウムイオン蓄電池のSOC使用範囲を示す図。 車両状態と図1に示す各スイッチの状態とを示す図。 車両状態と図1に示す各スイッチの状態とを示す図。 図1に示す各蓄電池による4つの放電状態を示す図。 図1に示すリチウムイオン蓄電池の放電時における電圧の変化を示すタイムチャート。 図1に示す制御部により実行されるスイッチ切替制御の処理手順を示すフローチャート。 本開示の電源システムの他の回路構成例を示す電気回路図。 本開示の電源システムの他の回路構成例を示す電気回路図。 本開示の電源システムの他の回路構成例を示す電気回路図。 本開示の電源システムの他の回路構成例を示す電気回路図。 本開示の電源システムの他の回路構成例を示す電気回路図。 本開示の電源システムの他の回路構成例を示す電気回路図。 本開示の電源システムの他の回路構成例を示す電気回路図。
 以下、本発明を具体化した実施形態を図面に基づいて説明する。本実施形態の車載電源装置が搭載される車両は、エンジン(内燃機関)を駆動源として走行するものであり、いわゆるアイドリングストップ機能を有している。
 図1に示すように、本電源システムは、第1蓄電池としての鉛蓄電池11と第2蓄電池としてのリチウムイオン蓄電池12とを有する2電源システムであり、各蓄電池11,12からはスタータモータ13や、各種の電気負荷14,15への給電が可能となっている。また、各蓄電池11,12に対しては回転電機16による充電が可能となっている。本システムでは、回転電機16に対して並列に鉛蓄電池11及びリチウムイオン蓄電池12が接続されるとともに、電気負荷14,15に対して並列に鉛蓄電池11及びリチウムイオン蓄電池12が接続されている。
 鉛蓄電池11は周知の汎用蓄電池である。これに対し、リチウムイオン蓄電池12は、鉛蓄電池11に比べて、充放電における電力損失が少なく、出力密度、及びエネルギ密度の高い高密度蓄電池である。リチウムイオン蓄電池12は、鉛蓄電池11に比べて充放電時のエネルギ効率が高い蓄電池であるとよい。
 各電気負荷14,15は、各蓄電池11,12から供給される供給電力の電圧について要求が相違するものである。このうち電気負荷15には、供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される定電圧要求負荷が含まれる。これに対し、電気負荷14は、定電圧要求負荷以外の一般的な電気負荷である。電気負荷15は被保護負荷とも言える。また、電気負荷15は電源失陥が許容されない負荷であり、電気負荷14は、電気負荷15に比べて電源失陥が許容される負荷であるとも言える。
 定電圧要求負荷である電気負荷15の具体例としては、ナビゲーション装置やオーディオ装置、メータ装置、エンジンECU等の各種ECUが挙げられる。この場合、供給電力の電圧変動が抑えられることで、上記各装置において不要なリセット等が生じることが抑制され、安定動作が実現可能となっている。また、電気負荷14の具体例としては、シートヒータやリヤウインドシールドのデフロスタ用ヒータ等、ヘッドライト、フロントウインドシールド等のワイパ、空調装置の送風ファン等が挙げられる。
 回転電機16の回転軸は、図示しないエンジン出力軸に対してベルト等により駆動連結されており、エンジン出力軸の回転によって回転電機16の回転軸が回転する一方、回転電機16の回転軸の回転によってエンジン出力軸が回転する。この場合、回転電機16は、エンジン出力軸や車軸の回転により発電(回生発電)を行う発電機能と、エンジン出力軸に回転力を付与する動力出力機能とを備えている。回転電機16は、一体又は別体に設けられた電力変換装置としてのインバータにより、発電時の発電電流の調整や回転駆動時のトルク調整が行われるものとなっている。
 回転電機16は、エンジン出力軸に対して動力を付加する観点から言えば電気負荷であり、しかも電気負荷15との比較で言えば高電力/高電流負荷である。なお、電気負荷15が「第1電気負荷」に相当し、回転電機16が「第2電気負荷」に相当する。以下には説明の便宜上、電気負荷15及び回転電機16をまとめて電気負荷15,16とも言うこととする。
 次に、本システムの回路構成について詳しく説明する。
 本システムでは、回転電機16に出入りする通電電流と電気負荷15の通電電流とが流れる通電経路として、鉛蓄電池11とリチウムイオン蓄電池12とを繋ぐ経路でもある通電経路L1が設けられており、その通電経路L1において直列に第1スイッチ21と第2スイッチ22と第3スイッチ23とが設けられている。これら各スイッチ21~23は、MOSFET等の半導体スイッチ素子により構成される開閉部である。なお、各スイッチ21~23をそれぞれ2つ一組のMOSFETを有する構成とし、各一組のMOSFETの寄生ダイオードが互いに逆向きになるように直列に接続されているとよい。この互いに逆向きの寄生ダイオードによって、各スイッチ21~23をオフ状態とした場合にそのスイッチが設けられた経路に流れる電流が遮断される。ただし、各スイッチ21~23において半導体スイッチ素子を用いた構成は任意でよく、例えばMOSFETの寄生ダイオードが互いに逆向きに配置されていない構成であってもよい。ここで、各スイッチ21~23は、それぞれ互いに直列接続及び並列接続の少なくともいずれかがなされた複数の半導体スイッチ素子により構成されていてもよい。
 通電経路L1において、第1スイッチ21の両端のうち第2スイッチ22とは逆側に第1点N1が設けられ、第1スイッチ21と第2スイッチ22との間に第2点N2が設けられ、第2スイッチ22と第3スイッチ23との間に第3点N3が設けられ、第3スイッチ23の両端のうち第2スイッチ22とは逆側に第4点N4が設けられている。第1点N1には、鉛蓄電池11とスタータモータ13と電気負荷14とが接続されている。第2点N2には、経路L2を介して回転電機16が接続されている。第3点N3には、経路L3を介して電気負荷15が接続されている。第4点N4にはリチウムイオン蓄電池12が接続されている。
 また、本システムは、電池制御手段を構成する制御部30を有している。制御部30は、例えば、互いに接続されたCPU、メモリ、および入出力インタフェース等を有するコンピュータを中心に構成されている。制御部30は、各スイッチ21~23のオンオフ(開閉)の切り替えを実施する。この場合、制御部30は、車両の走行状態および各蓄電池11,12の蓄電状態をモニタし、このモニタされた車両の走行状態および各蓄電池11,12の蓄電状態に基づいて、各スイッチ21~23のオンオフを制御する。これにより、鉛蓄電池11とリチウムイオン蓄電池12とを選択的に用いて、その鉛蓄電池11とリチウムイオン蓄電池12に対する充放電が実施される。
 ここで、制御部30により実行される各蓄電池11,12の蓄電状態に基づく充放電制御について簡単に説明する。
 制御部30は、例えば電圧センサVSによる鉛蓄電池11及びリチウムイオン蓄電池12の端子電圧の検出値を逐次取得するとともに、電流検出部CSにより検出される鉛蓄電池11、リチウムイオン蓄電池12の入出力電流(充放電電流)を逐次取得する。
 そして、これらの取得値に基づいて、制御部30は、鉛蓄電池11、リチウムイオン蓄電池12のOCV(開放電圧:Open Circuit Voltage)およびSOC(残存容量:State Of Charge)を算出するとともに、鉛蓄電池11、リチウムイオン蓄電池12のOCVおよびSOCが所定の使用範囲内に保持されるように、鉛蓄電池11、リチウムイオン蓄電池12への充電量及び放電量を制御する。OCVおよびSOCの少なくとも一方が、各蓄電池11,12の蓄電状態を示す蓄電状態パラメータに相当する。また、制御部30には、各蓄電池11,12に設けられた温度センサTSから各蓄電池11,12の温度情報が入力される。
 両蓄電池11,12のうちリチウムイオン蓄電池12は、図示しない筐体(収容ケース)に収容されることで電池ユニットUとして構成されている。この場合、電池ユニットUにおいて、各スイッチ21~23と制御部30とが同一の基板に実装された状態で筐体内に収容されているとよい。ただし、各スイッチ21~23と制御部30とは、互いに異なる部位(例えば異なる基板)に実装されていてもよい。
 電池ユニットUの構成について補足すると、電池ユニットUは、外部接続を可能とする端子として、鉛蓄電池11、スタータモータ13及び電気負荷14が接続される第1端子P1と、回転電機16が接続される第2端子P2と、電気負荷15が接続される第3端子P3とを備えている。またこれ以外に、後述するバイパス経路L4,L5が接続される第4端子P4,第5端子P5を備えている。
 制御部30にはECU(Electronic Control Unit)40が接続されている。これら制御部30及びECU40は、CAN(Controller Area Network)等の通信ネットワークにより接続されて相互に通信可能となっており、制御部30及びECU40は、それぞれ記憶される各種データを互いに共有できるものとなっている。ECU40は、アイドリングストップ制御を実施する機能を有する電子制御装置である。アイドリングストップ制御は、周知のとおり所定の自動停止条件の成立によりエンジンを自動停止させ、かつその自動停止状態下で所定の再始動条件の成立によりエンジンを再始動させるものである。
 車両においては、初回の手動始動又は自動再始動によりエンジンが始動される。本実施形態では、初回始動時にはスタータモータ13によりエンジンが始動され、自動再始動時には回転電機16によりエンジンが始動されるようになっている。駆動の頻度で言えば、スタータモータ13よりも回転電機16の方が高頻度となっている。
 ここで、各蓄電池11,12のSOC使用範囲について説明する。
 図2Aおよび図2Bに鉛蓄電池11及びリチウムイオン蓄電池12の開放電圧(OCV)と蓄電状態(SOC)との相関関係を示す。
 図2Aには、鉛蓄電池(Pb)11の開放電圧と蓄電状態との相関関係が示されており、鉛蓄電池11のSOC使用範囲をW1としている。図2Bには、リチウムイオン蓄電池(Li)12の開放電圧と蓄電状態との相関関係が示されており、リチウムイオン蓄電池12のSOC使用範囲をW2としている。また、図2Bは、図2Aの一点鎖線部分(SOC使用範囲W1(Pb)を示す部分)の拡大図でもあり、図2Bの横軸に示されるリチウムイオン蓄電池12のSOC=0%の位置と、SOC使用範囲W1(Pb)のSOCaの値とが対応している。両図において、各電圧Va,Vbは同じ電圧値である。
 図2A中の横軸は鉛蓄電池11のSOCを示し、図中の実線A1は、鉛蓄電池11のSOCと開放電圧V0(Pb)との関係を示す電圧特性線である。充電量が増加してSOCが上昇することに比例して開放電圧V0(Pb)も上昇する。図2B中の横軸はリチウムイオン蓄電池12のSOCを示し、図中の実線A2は、リチウムイオン蓄電池12のSOCと開放電圧V0(Li)との関係を示す電圧特性線である。充電量が増加してSOCが上昇することに伴い開放電圧V0(Li)も上昇する。
 図2Bに示すように、鉛蓄電池11とリチウムイオン蓄電池12とはSOCに対する開放電圧の相関が相違するものとなっており、SOC使用範囲W2(Li)においては、リチウムイオン蓄電池12の開放電圧が鉛蓄電池11の開放電圧よりも高くなるように定められている。本実施形態では、リチウムイオン蓄電池12が「優先蓄電池」に相当し、鉛蓄電池11が「非優先蓄電池」に相当する。
 蓄電池11,12が過充電や過放電の状態になると早期劣化が懸念される。したがって、各蓄電池11,12のSOCが、過充放電とならない所定のSOCの下限値と上限値との範囲(SOC使用範囲)となるように、蓄電池11,12の充放電量が規制される。この場合、制御部30は、鉛蓄電池11のSOCをSOC使用範囲W1内、リチウムイオン蓄電池12のSOCをSOC使用範囲W2内に制御すべく、各蓄電池11,12への充電量を制限して過充電保護するとともに鉛蓄電池11、リチウムイオン蓄電池12からの放電量を制限して過放電保護するよう保護制御を実施する。
 また、本システムは、第1スイッチ21及び第2スイッチ22を介さずに、鉛蓄電池11を電気負荷15及び回転電機16に対して接続可能とするバイパス経路L4,L5が設けられている。バイパス経路L4には第1バイパススイッチ24が設けられ、バイパス経路L5には第2バイパススイッチ25が設けられている。各バイパススイッチ24,25は例えば常閉式のリレースイッチである。第1バイパススイッチ24をオン(閉鎖)することで、第1スイッチ21がオフであっても鉛蓄電池11と回転電機16とが電気的に接続される。また、第2バイパススイッチ25をオン(閉鎖)することで、スイッチ21,22がオフであっても鉛蓄電池11と電気負荷15とが電気的に接続される。
 次に、車両状態と各スイッチ21~23の状態とについて、図3及び図4を用いて説明する。図3及び図4では、車両システムの電源オン状態(イグニッションスイッチ(IG)オン状態)を示しており、バイパススイッチ24,25がオフになっている。なお、図3及び図4をはじめ以下に示す各回路図においては、便宜上、電池ユニットUにおけるバイパス経路L4,L5や、制御部30、各端子P1~P5の図示を適宜省略している。
 図3において(a)は回転電機16による減速回生時の状態を、(b)はアイドリングストップ制御のエンジン自動停止時の状態を、(c)はエンジン自動停止後における再始動時の状態をそれぞれ示し、図4において(a)は回転電機16による動力アシスト時の状態を、(b)はリチウムイオン蓄電池12の使用停止時の状態をそれぞれ示している。
 図3(a)に示す減速回生時には、制御部30により、第1スイッチ21がオン、第2スイッチ22がオン、第3スイッチ23がオンの状態で制御される。この場合、回転電機16の回生発電による電力が各蓄電池11,12に供給され、これら各蓄電池11,12が適宜充電される。また、回転電機16の発電電力が各電気負荷14,15に対して供給される。
 また、図3(b)に示すエンジン自動停止時には、第1スイッチ21がオン、第2スイッチ22がオフ、第3スイッチ23がオンの状態で制御される。この場合、鉛蓄電池11から電気負荷14に電力が供給される。また、リチウムイオン蓄電池12から電気負荷15に電力が供給される。
 図3(c)に示すエンジン再始動時には、第1スイッチ21がオン、第2スイッチ22がオフ、第3スイッチ23がオンの状態で制御される。つまり、図3(b)と同じ状態で各スイッチ21~23が制御される。この場合、鉛蓄電池11から電気負荷14および回転電機16に対して電力が供給され、回転電機16によるエンジン始動が行われる。また、リチウムイオン蓄電池12から電気負荷15に電力が供給される。このとき、回転電機16への給電経路と、電気負荷15への給電経路とがオフ状態の第2スイッチ22により分断されているため、定電圧要求負荷である電気負荷15への供給電力において電圧変動が生じないものとなっている。
 図4(a)に示す動力アシスト時には、第1スイッチ21がオフ、第2スイッチ22がオン、第3スイッチ23がオンの状態で制御される。この場合、鉛蓄電池11から電気負荷14に電力が供給される。また、リチウムイオン蓄電池12から電気負荷15及び回転電機16にそれぞれ電力が供給される。なお、回転電機16による動力アシスト時には、鉛蓄電池11の蓄電状態等に基づいて各スイッチ21~23の状態が適宜制御されるが、その詳細は後述する。
 図4(b)に示すリチウムイオン蓄電池12の使用停止時には、第1スイッチ21がオン、第2スイッチ22がオン、第3スイッチ23がオフの状態で制御される。例えば、車両システムの起動直後においてリチウムイオン蓄電池12のSOCの算出が完了していない場合や、リチウムイオン蓄電池12の低SOC時、低温時、フェイルセーフ時には、リチウムイオン蓄電池12の充放電が停止される。この場合、各電気負荷14,15や回転電機16に対して鉛蓄電池11から電力供給が行われる。
 また本実施形態では、制御部30は、動力アシスト時のような回転電機16への電力供給時、すなわち高電圧駆動のための放電時や、その他の電気負荷14,15への電力供給時に、鉛蓄電池11及びリチウムイオン蓄電池12における蓄電状態に基づいて各スイッチ21~23のオンオフを制御することとしており、その詳細を以下に説明する。図5には、電気負荷14,15及び回転電機16を給電対象とする場合において4つの放電状態を示している。
 本実施形態では、制御部30が、鉛蓄電池11の蓄電状態とリチウムイオン蓄電池12の蓄電状態とを対比していずれの蓄電池から放電を行うかを決定するとともに、リチウムイオン蓄電池12からの放電を行う場合に、いずれの放電対象にリチウムイオン蓄電池12から放電を行うかを決定することとしている。なお、本実施形態では、制御部30は、例えば各蓄電池11,12の蓄電状態パラメータとしてOCV(又はSOC)を用い、そのパラメータに基づいて各スイッチ21~23の開閉を制御することとしている。
 リチウムイオン蓄電池12のOCVが鉛蓄電池11のOCVよりも大きい場合には、制御部30により、各スイッチ21~23が図5(a)の第1状態、すなわち第1スイッチ21がオン、第2スイッチ22がオン、第3スイッチ23がオンの状態に制御される。この場合、リチウムイオン蓄電池12の電気的な余力が十分あり、リチウムイオン蓄電池12から電気負荷14,15及び回転電機16にそれぞれ電力が供給される。このとき、鉛蓄電池11からの放電は停止されている。
 要するに、制御部30により、各蓄電池11,12のOCVの比較により優先蓄電池(Li)と非優先蓄電池(Pb)との蓄電状態が比較され、優先蓄電池(Li)の方が高蓄電状態である場合には、制御部30により、優先蓄電池から全ての電気負荷14~16に対して電力供給を行う放電状態とされる。
 そして、電力消費に伴いリチウムイオン蓄電池12のOCVが低下して、鉛蓄電池11のOCVよりも小さくなった場合に、リチウムイオン蓄電池12のOCVが所定の電圧閾値TH1よりも大きく、かつリチウムイオン蓄電池12の温度が所定の温度閾値TH2よりも低温であれば、制御部30により、各スイッチ21~23が図5(b)の第2状態、すなわち第1スイッチ21がオフ、第2スイッチ22がオン、第3スイッチ23がオンの状態に切り替えられる。なお、電圧閾値TH1は、リチウムイオン蓄電池12の放電下限電圧を基準にして定められているとよく、例えば放電下限電圧付近であってその下限電圧よりも高電圧側に定められているとよい。温度閾値TH2は、リチウムイオン蓄電池12の上限許容温度よりも低温側に定められているとよい。
 第2状態では、リチウムイオン蓄電池12からの放電に加えて、鉛蓄電池11からの放電が開始される。この場合、リチウムイオン蓄電池12のOCVが鉛蓄電池11のOCVよりも小さくなってからも、制御部30により、給電対象を限定してリチウムイオン蓄電池12の放電を継続することで、すなわちリチウムイオン蓄電池12を優先的に用いて電気負荷15,16への放電を行うことで、鉛蓄電池11の温度上昇や使用ストレスが軽減されるようになっている。
 要するに、優先蓄電池(Li)と非優先蓄電池(Pb)との比較において非優先蓄電池(Pb)の方が高蓄電状態であって、さらに優先蓄電池の蓄電量を表す開放電圧OCVが対応する蓄電量の閾値を表す電圧閾値(TH1)よりも大きく、かつ優先蓄電池の温度が温度閾値(TH2)よりも低いことに基づいて、制御部30により、優先蓄電池から各電気負荷15,16に対して電力供給を行う放電状態とされる。
 また、リチウムイオン蓄電池12の使用に伴い電池温度が上昇して温度閾値TH2に到達した場合には、制御部30により、各スイッチ21~23が図5(c)の第3状態、すなわち第1スイッチ21がオン、第2スイッチ22がオフ、第3スイッチ23がオンの状態に切り替えられる。この場合、リチウムイオン蓄電池12からの放電対象が電気負荷15のみに限定され、電気負荷14および回転電機16に対しては、鉛蓄電池11から電力が供給される。これにより、リチウムイオン蓄電池12の放電を継続することによる更なる温度上昇が抑制される。
 要するに、優先蓄電池(Li)と非優先蓄電池(Pb)との比較において非優先蓄電池(Pb)の方が高蓄電状態である場合に、制御部30により、優先蓄電池の蓄電量を表す開放電圧OCVが対応する蓄電量の閾値を表す電圧閾値(TH1)よりも大きく、かつ優先蓄電池の温度が温度閾値(TH2)よりも高いことに基づいて、優先蓄電池から電気負荷15,16の一方に対して電力供給を行うとともに、非優先蓄電池から電気負荷15,16の他方に対して電力供給を行う放電状態とされる。
 要するに、優先蓄電池(Li)と非優先蓄電池(Pb)との比較において非優先蓄電池(Pb)の方が高蓄電状態である場合に、優先蓄電池の蓄電量を表す開放電圧OCVが対応する蓄電量の閾値を表す電圧閾値(TH1)よりも小さいことに基づいて、制御部30により、非優先蓄電池から各電気負荷15,16に対して電力供給を行う放電状態とされる。
 以上述べたように、制御部30は、第1スイッチ21および第2スイッチ322の第1状態~第4状態を切り替え制御することにより、各種電気負荷に対して蓄電池11,12から放電を行う場合に、2つの蓄電池11,12のうちリチウムイオン蓄電池12を優先的に用いつつ各電気負荷に対する電力供給を好適に実施することができる。また、制御部30は、各電気負荷に対する電力供給負担を蓄電池11および12間で切り替える際に、各電気負荷に対して駆動電圧を落とすこと無く、安定的な電力供給を実施することができる。さらに、制御部30により、各蓄電池11,12において放電が行われる状況(シーン)を限定することができるため、蓄電池11および12の使用に伴い生じるストレスの低減が可能となる。
 また、上記のように第1~第4状態間での切り替えが行われる場合、リチウムイオン蓄電池12のSOCが徐々に減少していく過程では、リチウムイオン蓄電池12からの放電対象が段階的に減じられる。この場合、放電対象が減じられる度にリチウムイオン蓄電池12の放電電流がステップ状に減少することで、状態切り替え時に電池電圧(OCV)が上昇する。そのため、リチウムイオン蓄電池12の使用期間の延長が可能となっている。
 つまり、図6に示すように、リチウムイオン蓄電池12の放電状態では時間の経過に伴い、リチウムイオン蓄電池12の電池電圧(OCV)の降下が生じるが、状態切り替え時であるタイミングt1,t2ではステップ状に電圧上昇が生じる。この場合、リチウムイオン蓄電池12に対する負荷切り離しによって、切り離し前に比べて、リチウムイオン蓄電池12の電池電圧が上昇する。したがって、リチウムイオン蓄電池12を、使用可能な下限電圧までフルに使うことが可能となる。
 次に、制御部30により実施されるスイッチ切替制御の処理手順(スイッチ切替制御ルーチン)を図7のフローチャートにより説明する。本ルーチンは、制御部30において所定周期で実施される。ここでは特に、回転電機16の駆動時におけるスイッチ切替制御について説明する。
 図7において、ステップS11では、制御部30は、回転電機16の駆動要求の有無を判定する。駆動要求有りの場合に、スイッチ切替制御ルーチンはステップS12に進む。ステップS12では、制御部30は、リチウムイオン蓄電池12のOCV(図7ではLi_OCVとする)が鉛蓄電池11のOCV(図7ではPb_OCVとする)よりも大きい状態にあるか否かを判定する。
 ステップS12の判断の結果YESであれば、スイッチ切替制御ルーチンは、ステップS13に進み、制御部30は、各スイッチ21~23を第1状態で制御する。すなわち、制御部30は、第1スイッチ21をオン、第2スイッチ22をオン、第3スイッチ23をオンにする。
 一方、ステップS12がNOであれば、スイッチ切替制御ルーチンはステップS14に進み、制御部30は、ステップS14,S15の判定結果に基づいて、状態の切り替えを実施する。詳しくは、ステップS14では、制御部30は、リチウムイオン蓄電池12のOCVが電圧閾値TH1以下であるか否かを判定し、ステップS15では、制御部30は、リチウムイオン蓄電池12の電池温度(図7ではTempとする)が温度閾値TH2以上であるか否かを判定する。
 そして、ステップS14,S15の判断が共にNOであれば、スイッチ切替制御ルーチンはステップS16に進み、制御部30は、各スイッチ21~23を第2状態で制御する。すなわち、制御部30は、第1スイッチ21をオフ、第2スイッチ22をオン、第3スイッチ23をオンにする。
 また、ステップS14がNOでかつステップS15がYESであれば、スイッチ切替制御ルーチンはステップS17に進み、制御部30は、各スイッチ21~23を第3状態で制御する。すなわち、制御部30は、第1スイッチ21をオン、第2スイッチ22をオフ、第3スイッチ23をオンにする。
 また、ステップS14がYESであれば、スイッチ切替制御ルーチンはステップS18に進み、制御部30は、各スイッチ21~23を第4状態で制御する。すなわち、制御部30は、第1スイッチ21をオン、第2スイッチ22をオン、第3スイッチ23をオフにする。
 以上詳述した本実施形態に関わる電源システムは、以下の優れた効果を得ることができる。
 すなわち、本実施形態に関わる電源システムにおいては、電気負荷15,16の通電電流が流れる通電経路L1上に、第1スイッチ21、第2スイッチ22及び第3スイッチ23が直列に設けられ、それぞれのスイッチの両端の各点に、鉛蓄電池11、リチウムイオン蓄電池12、各電気負荷15,16における対応する何れかが接続されて構成されている。この構成により、各蓄電池11,12と各電気負荷15,16とに関して相互の接続の形態を容易に変更することが可能となる。すなわち、この構成では、各電気負荷15,16に対して給電元の蓄電池を選択的に用いることが容易となり、いずれかの蓄電池を優先的に用いたり、各蓄電池の使用上のストレスを緩和したりすることを容易に実施できる。その結果、各蓄電池11,12から各電気負荷15,16に対する電力供給を適正に実施することができる。
 また、本実施形態に関わる電源システムは、各蓄電池11,12における蓄電状態及び温度に基づいて、
(1)鉛蓄電池11から両方の電気負荷15,16に対して電力供給を行う放電状態と、
(2)鉛蓄電池11から電気負荷15に対して電力供給を行うとともに、リチウムイオン蓄電池12から回転電機16に対して電力供給を行う放電状態と、
(3)リチウムイオン蓄電池12から両方の電気負荷15,16に対して電力供給を行う放電状態と、
の切り替えを実施する構成とした。これにより、蓄電量や温度の条件が一方の蓄電池で過剰に悪化することを抑制できる。そのため、蓄電池11、12の使用上のストレスの抑制を図りつつ各蓄電池11,12を使用することができる。各蓄電池11,12におけるストレス軽減により電池寿命の引き延ばしが可能となる。
 なお、本実施形態では、制御部30は、特に、
・リチウムイオン蓄電池12から電気負荷14~16に放電を行う第1状態、
・リチウムイオン蓄電池12から電気負荷15,16に放電を行うとともに、鉛蓄電池11から電気負荷14に放電を行う第2状態、
・リチウムイオン蓄電池12から電気負荷15(電気負荷16でも可)に放電を行うとともに、鉛蓄電池11から電気負荷14,16に放電を行う第3状態、
・鉛蓄電池11から電気負荷14~16に放電を行う第4状態、
の切り替えが可能となっている。
 また、各蓄電池11,12のうちリチウムイオン蓄電池12を優先蓄電池、鉛蓄電池11を非優先蓄電池とする場合において、電源システムは、リチウムイオン蓄電池12を優先的に用いつつ、その上で、リチウムイオン蓄電池12の蓄電量や温度の変化を考慮しながら鉛蓄電池11を必要に応じて用いることができる。したがって、各蓄電池11,12について優先使用するか否かに応じて適正に使い分けをしつつ、使用上のストレスの抑制等を図ることができる。この場合、エネルギ効率の高い方のリチウムイオン蓄電池12を優先使用しつつ、鉛蓄電池11を必要に応じて用いることができる。そして、鉛蓄電池11のストレス軽減が図られることで、鉛蓄電池11の劣化抑制を実現できる。
 図1の回路構成では、第1~第4の各点のうち、端点である第1点N1及び第4点N4に鉛蓄電池11とリチウムイオン蓄電池12とがそれぞれ接続され、中間点である第2点N2及び第3点N3に電気負荷15と回転電機16とがそれぞれ接続されている。この回路構成の場合、制御部30に基づく3つのスイッチ21~23のオンオフ(開閉)によって、所望の3つの放電状態(上記(1)~(3))の切り替えを実施できる。したがって、電池システムの構成の簡素化を図りつつ、各電気負荷15,16への電力供給を所望のタイミングで実施できる。
 また、図1の回路構成では、第1~第4の各点のうち、端点である第4点N4にリチウムイオン蓄電池12が接続され、それ以外の各点に、鉛蓄電池11と電気負荷15と回転電機16とがそれぞれ個々に接続されている。この場合、リチウムイオン蓄電池12が、SOCと開放電圧との関係を示す電池特性において鉛蓄電池11よりも高電圧となる領域を有するものであることも相俟って、上記(1)~(3)の状態の切り替えを好適に実施できる。
 さらに、図1の回路構成では、第1点N1及び第2点N2に、鉛蓄電池11と回転電機16とがそれぞれ接続され、第3点N3及び第4点N4に、リチウムイオン蓄電池12と電気負荷15とがそれぞれ接続されている。この場合、定電圧要求負荷である電気負荷15と回転電機16とを共に駆動する状態において、回転電機16の駆動による蓄電池11,12の電圧変動の影響が、電気負荷15の駆動に及ばないようにすることができる。
 制御部30は、第1~第4の各点のうち、端点である第1点N1に鉛蓄電池11が接続された構成において、その鉛蓄電池11について異常(電源失陥)の有無を判定する判定部30aを有することも可能である。そして、制御部30は、この判定部30aにより異常発生の旨が判定された場合に、鉛蓄電池11を通電経路から切り離した上で、リチウムイオン蓄電池12から各電気負荷15,16への電力供給が行われるよう、各スイッチ21~23を制御するとよい。制御部30における判定部30aは、例えば、電圧センサVSにより検出された鉛蓄電池11の端子電圧を監視し、その端子電圧が所定値以下になっていれば、異常有りと判定する。
 かかる構成によれば、鉛蓄電池11で異常が生じた状況であっても、他方のリチウムイオン蓄電池12を使用可能な範囲内で用いて各電気負荷15,16への電極供給を継続できる。これにより、電源失陥対策を実現できる。
 なお、鉛蓄電池11に代えて又は加えて、第4点に接続されたリチウムイオン蓄電池12を異常の判定対象とすることも可能である。
 電源システムとして実施可能な回路構成例を、図8~図10を用いて以下にまとめて説明する。
 図8~図10では、いずれも上記図1と同様に、通電経路L1に第1スイッチ21、第2スイッチ22及び第3スイッチ23が直列に設けられ、それぞれのスイッチの両端の位置それぞれに第1点N1、第2点N2、第3点N3、第4点N4が設けられている。なお、リチウムイオン蓄電池12を、SOCと開放電圧との関係を示す電池特性において鉛蓄電池11よりも高電圧となる領域を有するものとしている。各回路構成において、各点N1~N4に対する蓄電池11,12、電気負荷15、回転電機16の配置の順序は、左右逆にすることも可能となっている。
 まず図8(a)及び(b)について説明する。図8(a)及び(b)の構成では、端点である第4点N4にリチウムイオン蓄電池12が接続され、その隣の第3点N3に電気負荷15が接続されている。なお、図8(a)は、実質的には図1と同じ回路構成である。また、残りの第1点N1、第2点N2には、鉛蓄電池11と回転電機16とがそれぞれ入れ替え可能で接続されている。すなわち、図8(a)では、第1点N1、第2点N2には、鉛蓄電池11と回転電機16とがそれぞれ接続され、図8(b)では、第1点N1、第2点N2には、回転電機16と鉛蓄電池11とがそれぞれ接続されている。
 図8(a)及び(b)の構成では、制御部30により、各蓄電池11,12における蓄電状態及び温度の少なくともいずれかを含むパラメータに基づいて、各スイッチ21~23のオンオフが切り替えられる。これにより、
(1)鉛蓄電池11から電気負荷15及び回転電機16に対して電力供給を行う放電状態と、
(2)鉛蓄電池11から電気負荷15及び回転電機16の一方(例えば回転電機16)に対して電力供給を行うとともに、リチウムイオン蓄電池12から電気負荷15及び回転電機16の他方(例えば電気負荷15)に対して電力供給を行う放電状態と、
(3)リチウムイオン蓄電池12から電気負荷15及び回転電機16に対して電力供給を行う放電状態と、
の切り替えが可能となっている。例えば、リチウムイオン蓄電池12が優先蓄電池である場合に、リチウムイオン蓄電池12の蓄電量が多い状態から徐々に減っていくのに伴い、制御部30により、(3)→(2)→(1)の順に放電状態が切り替えられる。また、リチウムイオン蓄電池12の温度が上昇することに伴い、制御部30により、(3)→(2)→(1)の順に放電状態が切り替えられる。この場合、使用上のストレスの抑制を図りつつ各蓄電池11,12を適正に使用することができる。
 また、図8(a)及び(b)の構成では、端点である第4点N4にリチウムイオン蓄電池12が接続され、それ以外の各点に、鉛蓄電池11と電気負荷15と回転電機16とがそれぞれ個々に接続されている。この場合、リチウムイオン蓄電池12が、SOCと開放電圧との関係を示す電池特性において鉛蓄電池11よりも高電圧となる領域を有するものであることも相俟って、上記(1)~(3)の状態の切り替えを好適に実施できる。
 次に、図8(c)及び(d)について説明する。図8(c)及び(d)の構成では、端点である第4点N4に電気負荷15が接続され、その隣の第3点N3にリチウムイオン蓄電池12が接続されている。残りの第1点N1、第2点N2には、鉛蓄電池11と回転電機16とがそれぞれ入れ替え可能で接続されている。すなわち、図8(c)では、第1点N1、第2点N2には、鉛蓄電池11と回転電機16とがそれぞれ接続され、図8(b)では、第1点N1、第2点N2には、回転電機16と鉛蓄電池11とがそれぞれ接続されている。
 言い換えると、端点である第4点N4に電気負荷15が接続され、それ以外の各点において、少なくともリチウムイオン蓄電池12が接続された点を挟む位置に鉛蓄電池11が接続され、残りの点に回転電機16が接続されている。また、本構成では、リチウムイオン蓄電池12を切り離した状態での鉛蓄電池11から電気負荷15への電力供給が困難になることから、鉛蓄電池11が接続された点と端点(N4)とがバイパス経路51により接続され、そのバイパス経路51にバイパススイッチ52が設けられている。なお、バイパススイッチ52は、例えば半導体スイッチ素子又は電磁リレースイッチであるとよい。
 図8(c)及び(d)の構成においてもやはり、各蓄電池11,12における蓄電状態及び温度の少なくともいずれかを含むパラメータに基づいて、制御部30により、上記(1)~(3)の放電状態の切り替えが可能となっている。また、車両の電源停止状態において、制御部30の制御に基づくバイパススイッチ52のオン動作により、鉛蓄電池11から電気負荷15に対しての暗電流の供給が可能となっている。
 次に、図9(a)及び(b)について説明する。図9(a)及び(b)の構成では、端点である第4点N4にリチウムイオン蓄電池12が接続され、その隣の第3点N3に回転電機16が接続されている。また、残りの第1点N1、第2点N2には、鉛蓄電池11と電気負荷15とがそれぞれ入れ替え可能で接続されている。
 すなわち、図9(a)では、第1点N1、第2点N2には、鉛蓄電池11と電気負荷15とがそれぞれ接続され、図9(b)では、第1点N1、第2点N2には、電気負荷15と鉛蓄電池11とがそれぞれ接続されている。
 図9(a)及び(b)の構成においても上記同様、各蓄電池11,12における蓄電状態及び温度の少なくともいずれかを含むパラメータに基づいて、制御部30により、上記(1)~(3)の放電状態の切り替えが可能となっている。
 例えば、リチウムイオン蓄電池12が優先蓄電池である場合に、リチウムイオン蓄電池12の蓄電量が多い状態から徐々に減っていくのに伴い、制御部30により、(3)→(2)→(1)の順に放電状態が切り替えられる。また、リチウムイオン蓄電池12の温度が上昇することに伴い、制御部30により、(3)→(2)→(1)の順に放電状態が切り替えられる。この場合やはり、各蓄電池11、12の使用上のストレスの抑制を図りつつ各蓄電池11,12を適正に使用することができる。
 また、図9(a)及び(b)の構成では、端点である第4点N4にリチウムイオン蓄電池12が接続され、それ以外の各点に、鉛蓄電池11と電気負荷15と回転電機16とがそれぞれ個々に接続されている。この場合、リチウムイオン蓄電池12が、SOCと開放電圧との関係を示す電池特性において鉛蓄電池11よりも高電圧となる領域を有するものであることも相俟って、上記(1)~(3)の状態の切り替えを好適に実施できる。
 次に、図9(c)及び(d)について説明する。図9(c)及び(d)の構成では、端点である第4点N4に回転電機16が接続され、その隣の第3点N3にリチウムイオン蓄電池12が接続されている。残りの第1点N1、第2点N2には、鉛蓄電池11と電気負荷15とがそれぞれ入れ替え可能で接続されている。すなわち、図9(c)では、第1点N1、第2点N2には、鉛蓄電池11と電気負荷15とがそれぞれ接続され、図9(d)では、第1点N1、第2点N2には、電気負荷15と鉛蓄電池11とがそれぞれ接続されている。
 言い換えると、端点である第4点N4に回転電機16が接続され、それ以外の各点において、少なくともリチウムイオン蓄電池12が接続された点を挟む位置に鉛蓄電池11が接続され、残りの点に電気負荷15が接続されている。また、本構成では、リチウムイオン蓄電池12を切り離した状態での鉛蓄電池11から回転電機16への電力供給が困難になることから、鉛蓄電池11が接続された点と端点(N4)とがバイパス経路51により接続され、そのバイパス経路51にバイパススイッチ52が設けられている。
 図9(c)及び(d)の構成においてもやはり、各蓄電池11,12における蓄電状態及び温度の少なくともいずれかを含むパラメータに基づいて、制御部30により、上記(1)~(3)の放電状態の切り替えが可能となっている。また、車両の電源停止状態において、制御部30の制御により、第1スイッチ21又はバイパススイッチ52を介して、鉛蓄電池11から電気負荷15に対しての暗電流の供給が可能となっている。
 次に、図10(a)及び(b)について説明する。図10(a)及び(b)の構成では、第1~第4の各点のうち、端点である第1点N1にリチウムイオン蓄電池12が接続され、その隣の第2点N2に鉛蓄電池11が接続されている。また、残りの第3点N3、第4点N4には、電気負荷15と回転電機16とがそれぞれ入れ替え可能で接続されている。すなわち、図10(a)では、第3点N3、第4点N4には、電気負荷15と回転電機16とがそれぞれ接続され、図10(b)では、第3点N3、第4点N4には、回転電機16と電気負荷15とがそれぞれ接続されている。
 また、第1点N1には、スタータモータ13が接続されている。
 図10(a)及び(b)の構成では、制御部30の第1スイッチ21の制御に基づいて、リチウムイオン蓄電池12によりスタータモータ13を駆動する通電経路と、鉛蓄電池11により回転電機16を駆動する経路との切り離しが可能となる。これにより、相互の電圧変動の影響を抑制できる。また、制御部30に基づく各スイッチ21~23のオンオフの切り替えにより、各電気負荷15,16に対して給電元の蓄電池を、鉛蓄電池11およびリチウムイオン蓄電池12間において選択的に用いることができる。
 次に、図10(c)及び(d)について説明する。図10(c)及び(d)の構成では、第1~第4の各点のうち、端点である第1点N1に鉛蓄電池11が接続され、その隣の第2点N2にリチウムイオン蓄電池12が接続されている。残りの第3点N3、第4点N4には、電気負荷15と回転電機16とがそれぞれ入れ替え可能で接続されている。すなわち、図10(c)では、第3点N3、第4点N4には、電気負荷15と回転電機16とがそれぞれ接続され、図10(d)では、第3点N3、第4点N4には、回転電機16と電気負荷15とがそれぞれ接続されている。
 また、第1点N1には、スタータモータ13が接続されている。
 図10(c)及び(d)の構成では、制御部30における第1スイッチ21の制御によって、鉛蓄電池11によりスタータモータ13を駆動する通電経路と、リチウムイオン蓄電池12により回転電機16を駆動する経路との切り離しが可能となる。これにより、相互の電圧変動の影響を抑制できる。また、制御部30に基づく各スイッチ21~23のオンオフの切り替えにより、各電気負荷15,16に対して給電元の蓄電池を、鉛蓄電池11およびリチウムイオン蓄電池12間において選択的に用いることができる。さらに、鉛蓄電池11が接続された点と端点(N4)との間に、バイパス経路51とバイパススイッチ52とが設けられているため、制御部30によるバイパススイッチ52の制御により、車両の電源停止状態において、鉛蓄電池11から電気負荷15に対しての暗電流の供給が可能となっている。
 以下には、通電経路L1上において直列接続された第1スイッチ21、第2スイッチ22及び第3スイッチ23と、これとは別のスイッチとを組み合わせて用いた構成例について説明する。
 図11(a)の構成は、基本的に図1や図8(a)と同様の回路構成となっており、通電経路L1上の第1点N1に鉛蓄電池11が接続され、第2点N2に電気負荷16(回転電機16)が接続され、第3点N3に電気負荷15が接続され、第4点N4にリチウムイオン蓄電池12が接続されている。そして、かかる構成において、第3点N3と電気負荷15との間にスイッチ61が設けられている。スイッチ61は、第1~第3の各スイッチ21~23と同様に、半導体スイッチ素子により構成されているとよい。ただしこれ以外に、スイッチ61として、電磁リレースイッチを用いたり、電力変換手段であるDCDC変換回路を用いたりすることが可能であり、要は、第3点N3と電気負荷15との間を連通又は遮断できるものであればよい。なお、スイッチ61は、電池ユニットUの内部(ユニット内部の経路L3)に設けられていてもよいし、電池ユニットUの外部に設けられていてもよい。図11(a)の構成では、電源システムにおける所定の4つの部位にそれぞれスイッチが設けられるものとなっている。
 要するに、図11(a)では、図1や図8(a)の構成に対してスイッチ61が付加され、スイッチ61を介して第3点N3に電気負荷15が接続されているが、かかる構成にあっても、既述の構成と同様に、通電経路L1上の各点N1~N4に、鉛蓄電池11、リチウムイオン蓄電池12、各電気負荷15,16が振り分けられて接続されている。この構成においても、制御部30によるスイッチ21~23および61の制御に基づいて、各蓄電池11,12から各電気負荷15,16に対する電力供給を適正に実施することができる。
 また、図11(b)~(d)と図12(a)、(b)の構成は、図11(a)の構成に対して一部を変更した変形例としての構成である。
 図11(b)では、第3点N3と電気負荷15との間に直列にスイッチ61,62が設けられている。つまり、図11(a)との相違点として、スイッチ62が付加されている。スイッチ62は、スイッチ61と同様に、半導体スイッチ素子や、電磁リレースイッチ、DCDC変換回路等のいずれかであればよく、スイッチ61とは異なる構成であってもよい。なお、スイッチ61,62の両方が電池ユニットUの内部(ユニット内部の経路L3)に設けられる構成、スイッチ61のみがユニット内部に設けられる構成、又はスイッチ61,62の両方がユニット外部に設けられる構成が考えられる。図11(b)の構成では、電源システムにおける所定の5つの部位にそれぞれスイッチが設けられるものとなっている(後述の図11(c)、(d)、図12(a)、(b)も同じ)。
 図11(c)では、図11(a)との相違点として、第2点N2と電気負荷16(回転電機16)との間に直列にスイッチ63が設けられている。スイッチ63の構成はスイッチ62と同様である。なお、スイッチ63は、電池ユニットUの内部に設けられていてもよいし、電池ユニットUの外部に設けられていてもよい。
 図11(d)では、図11(a)との相違点として、第2点N2と第3点N3との間に第2スイッチ22に直列にスイッチ64が設けられている。スイッチ64の構成はスイッチ62と同様である。
 図12(a)では、図11(a)との相違点として、第1点N1と、スイッチ61及び電気負荷15の間の点N5との間に、バイパス経路65とバイパススイッチ66とが設けられている。バイパススイッチ66は、例えば半導体スイッチ素子又は電磁リレースイッチであるとよい。
 図12(b)では、図11(a)との相違点として、第2点N2と、スイッチ61及び電気負荷15の間の点N5との間に、バイパス経路67とバイパススイッチ68とが設けられている。バイパススイッチ68は、例えば半導体スイッチ素子又は電磁リレースイッチであるとよい。
 また、図13(a)~(d)の構成は、基本的に図8(c)の構成に対して一部を変更した変形例としての構成である。図13(a)~(d)では、図8(c)と同様に、通電経路L1上の第1点N1に鉛蓄電池11が接続され、第2点N2に電気負荷16(回転電機16)が接続され、第3点N3にリチウムイオン蓄電池12が接続され、第4点N4に電気負荷15が接続されている。
 図13(a)では、図8(c)との相違点として、第4点N4と電気負荷15との間にスイッチ71が設けられている。スイッチ71は、第1~第3の各スイッチ21~23と同様に、半導体スイッチ素子により構成されているとよい。ただしこれ以外に、スイッチ71として、電磁リレースイッチを用いたり、電力変換手段であるDCDC変換回路を用いたりすることが可能であり、要は、第4点N4と電気負荷15との間を連通又は遮断できるものであればよい。なお、スイッチ71は、電池ユニットUの内部に設けられていてもよいし、電池ユニットUの外部に設けられていてもよい。なお、図8(c)におけるバイパス経路51及びバイパススイッチ52は任意である。
 要するに、図13(a)では、図8(c)の構成に対してスイッチ71が付加され、スイッチ71を介して第4点N4に電気負荷15が接続されているが、かかる構成にあっても、既述の構成と同様に、通電経路L1上の各点N1~N4に、鉛蓄電池11、リチウムイオン蓄電池12、各電気負荷15,16が振り分けられて接続されている。この構成においても、制御部30によるスイッチ21~23、52、および71の制御に基づいて、各蓄電池11,12から各電気負荷15,16に対する電力供給を適正に実施することができる。
 図13(b)では、図8(c)との相違点として、第1点N1と第4点N4との間のバイパス経路51にバイパススイッチ52,72が直列に設けられている。バイパススイッチ72は、例えば半導体スイッチ素子又は電磁リレースイッチであるとよい(後述のバイパススイッチ74,76も同様)。
 図13(c)では、図8(c)との相違点として、第2点N2と第4点N4との間のバイパス経路73にバイパススイッチ74が設けられている。
 図13(d)では、図8(c)との相違点として、第1点N1と第3点N3との間のバイパス経路75にバイパススイッチ76が設けられている。
 また、図14(a)の構成は、図8(b)の構成に対して一部を変更した変形例としての構成であり、図14(b)の構成は、図9(a)の構成に対して一部を変更した変形例としての構成である。
 図14(a)では、図8(b)との相違点として、第3点N3と電気負荷15との間にスイッチ81が設けられるとともに、第2点N2と、スイッチ81及び電気負荷15の間の点N6との間に、バイパス経路82とバイパススイッチ83とが設けられている。スイッチ81とバイパススイッチ83は、例えば半導体スイッチ素子又は電磁リレースイッチであるとよい。
 図14(b)では、図9(a)との相違点として、第2点N2と電気負荷15との間にスイッチ84が設けられるとともに、スイッチ84及び電気負荷15の間の点N7と、第4点N4との間に、バイパス経路85とバイパススイッチ86とが設けられている。スイッチ84とバイパススイッチ86は、例えば半導体スイッチ素子又は電磁リレースイッチであるとよい。
 (他の実施形態)
 上記実施形態を例えば次のように変更してもよい。
 図7のスイッチ切替制御ルーチンでは、リチウムイオン蓄電池12のOCVが鉛蓄電池11のOCVよりも小さく、かつリチウムイオン蓄電池12のOCVが電圧閾値TH1より大きい場合(ステップS12がNO、ステップS14がNOの場合)に、リチウムイオン蓄電池12の電池温度Tempが温度閾値TH2未満であれば各スイッチ21~23を第2状態で制御し、電池温度が温度閾値TH2以上であれば各スイッチ21~23を第3状態で制御する構成としたが、これを変更してもよい。
 例えば、制御部30は、ステップS12がNO、S14がNOの場合に、リチウムイオン蓄電池12の電池温度Tempが温度閾値TH2未満であれば各スイッチ21~23を第3状態で制御し、電池温度が温度閾値TH2以上であれば各スイッチ21~23を第2状態で制御する構成としてもよい。
 また、リチウムイオン蓄電池12のOCVの電圧閾値として、TH1よりも高電圧側のTH11を定めておく。そして、リチウムイオン蓄電池12のOCVが鉛蓄電池11のOCVよりも小さい場合(S12がNOの場合)に、請制御部30は、ステップS14の処理として、リチウムイオン蓄電池12のOCVが電圧閾値TH11の範囲内であるか否か判断してもよい。
 このステップS14の判断の結果、リチウムイオン蓄電池12のOCVが電圧閾値TH11より大きければ、制御部30は、各スイッチ21~23を第2状態で制御し、リチウムイオン蓄電池12のOCVがTH1~TH11の範囲内であれば、制御部30は、各スイッチ21~23を第3状態で制御する構成としてもよい。
 この変形例のように、電圧閾値を複数段階で規定しておくことにより、リチウムイオン蓄電池12の蓄電状態を細密に監視することができ、リチウムイオン蓄電池12の使用ストレスを軽減する上でより好適な構成を実現できる。
 図7のスイッチ切替制御ルーチンでは、リチウムイオン蓄電池12のOCVが鉛蓄電池11のOCVよりも大きくても(ステップS12がYES)、リチウムイオン蓄電池12の電池温度が温度閾値TH2以上であれば、制御部30は、ステップS17の処理、すなわち、各スイッチ21~23を第3状態で制御する構成としてもよい。また、このとき、制御部30は、ステップS17の処理である各スイッチ21~23を第3状態で制御する処理に代えて、ステップS16に基づいて各スイッチ21~23を第2状態で制御してもよく、また、ステップS18に基づいて各スイッチ21~23を第4状態で制御してもよい。
 図7のスイッチ切替制御ルーチンでは、回転電機16の駆動要求があることを条件に、制御部30は、スイッチ21~23のオンオフ状態を、第1~第4状態の間において切り替えを実施する構成としたが、これを変更し、制御部30は、回転電機16の駆動要求の有無にかかわらず、スイッチ21~23のオンオフ状態を、第1~第4状態の間において切り替えを実施する構成としてもよい。
 各蓄電池11,12における充電及び放電の履歴に基づいて、制御部30は、各蓄電池11,12の蓄電状態を監視する構成としてもよい。この場合、制御部30は、各蓄電池11,12の充電の回数及び時間の少なくともいずれかから充電履歴を把握し、該各蓄電池11,12の放電の回数及び時間の少なくともいずれかから放電履歴を把握する。そして、制御部30は、例えば、リチウムイオン蓄電池12の放電時において、そのリチウムイオン蓄電池12の放電履歴に基づいて、電気負荷15及び回転電機16を放電対象として放電する状態から、電気負荷15及び回転電機16の一方を放電対象として放電する状態への切り替えを実施する。
 上記実施形態では、リチウムイオン蓄電池12を優先蓄電池、鉛蓄電池11を非優先蓄電池としたが、これを逆にしてもよい。
 第2電気負荷として、回転電機16以外の電気負荷を用いてもよい。例えば、第2電気負荷としてヒータ類等、高電力又は高電流を要する電気負荷を用いることが考えられる。また、第1電気負荷15は定電圧要求負荷を含まないものであってもよい。
 電源システムは、第1蓄電池として鉛蓄電池11を備え、第2蓄電池としてリチウムイオン蓄電池12を備えるものに限られない。例えば、第2蓄電池として、ニッケル水素蓄電池など他の二次電池を用いる構成としてもよい。また、第1蓄電池及び第2蓄電池をいずれも鉛蓄電池又はリチウムイオン蓄電池にすることも可能である。
 電気負荷15,16の通電電流が流れる通電経路L1を導通又は遮断する第1~第3スイッチ21~23として、MOSFET等の半導体スイッチ素子以外を用いる構成であってもよい。例えば、第1~第3スイッチ21~23の少なくともいずれかとして、電磁リレースイッチを用いたり、電力変換手段であるDCDC変換回路やインバータを用いたりすることも可能である。この場合、制御部30によるDCDC変換回路やインバータに含まれる開閉部の開閉制御により、通電経路L1の導通及び遮断が行われるとよい。
 本開示の電源装置は、必ずしも電池ユニットUとして一体的に構成されていなくてもよい。例えば、リチウムイオン蓄電池12及び各スイッチ21~23が筐体により一体化されたユニットと、ユニット外に設けられた制御部30とにより電源装置が構成されていてもよい。
 車載電源装置に限定されず、車載以外の電源装置に本開示に関する電源装置を適用することも可能である。
 なお、本出願は、日本特許出願2015-202367および2016-187258を基礎として優先権を主張するものであり、この優先権の基礎となる日本特許出願の開示内容は、参照書類として本出願に組み込まれている。
 11…鉛蓄電池(第1蓄電池)、12…リチウムイオン蓄電池(第2蓄電池)、15…電気負荷(第1電気負荷)、16…回転電機(第2電気負荷)、21…第1スイッチ、22…第2スイッチ、23…第3スイッチ、30…制御部。

Claims (11)

  1.  第1蓄電池(11)と第2蓄電池(12)とを備え、第1電気負荷(15)に対して並列に前記第1蓄電池及び前記第2蓄電池が接続されるとともに、第2電気負荷(16)に対して並列に前記第1蓄電池及び前記第2蓄電池が接続される電源システムに適用される電源装置であって、
     前記各第1および第2の電気負荷の通電電流が流れる通電経路(L1)に直列に設けられ、当該通電経路を導通又は遮断する第1スイッチ(21)、第2スイッチ(22)及び第3スイッチ(23)と、
     前記第1スイッチの両側のうち前記第2スイッチとは逆側に設けられた第1点(N1)と、
     前記第1スイッチと前記第2スイッチとの間に設けられた第2点(N2)と、
     前記第2スイッチと前記第3スイッチとの間に設けられた第3点(N3)と、
     前記第3スイッチの両側のうち前記第2スイッチとは逆側に設けられた第4点(N4)と、
    を備え、
     前記第1~第4の各点に、前記第1蓄電池、前記第2蓄電池、前記第1電気負荷、及び前記第2電気負荷のいずれかがそれぞれ接続されており、
     前記第1~第3の各スイッチの開閉を制御する制御部(30)を備える電源装置。
  2.  前記制御部は、前記第1蓄電池及び前記第2蓄電池それぞれにおける蓄電状態及び温度の少なくともいずれかを含むパラメータに基づいて、前記第1~第3のスイッチの開閉を制御することにより、
     前記第1蓄電池から前記第1電気負荷及び前記第2電気負荷に対して電力供給を行う放電状態と、
     前記第1蓄電池から前記第1電気負荷及び前記第2電気負荷の一方に対して電力供給を行うとともに、前記第2蓄電池から前記第1電気負荷及び前記第2電気負荷の他方に対して電力供給を行う放電状態と、
     前記第2蓄電池から前記第1電気負荷及び前記第2電気負荷に対して電力供給を行う放電状態と、の切り替えを実施する請求項1に記載の電源装置。
  3.  前記第1蓄電池と前記第2蓄電池とのうち一方を、優先的に使用する優先蓄電池、他方を非優先蓄電池としており、
     前記パラメータは前記第1蓄電池及び前記第2蓄電池それぞれにおける蓄電量及び温度を含んでおり、
     前記制御部は、
     前記優先蓄電池と前記非優先蓄電池との比較において前記優先蓄電池の方が高蓄電状態である第1の場合、および前記優先蓄電池と前記非優先蓄電池との比較において前記非優先蓄電池の方が高蓄電状態であって、さらに前記優先蓄電池の蓄電量が所定の蓄電閾値よりも大きいか又は前記優先蓄電池の温度が所定の温度閾値よりも低い第2の場合の何れかの場合に、前記優先蓄電池から前記第1電気負荷及び前記第2電気負荷に対して電力供給を行う放電状態とし、
     前記優先蓄電池と前記非優先蓄電池との比較において前記非優先蓄電池の方が高蓄電状態である場合に、前記優先蓄電池の蓄電量と前記優先蓄電池の温度との少なくともいずれかに基づいて、前記優先蓄電池から前記第1電気負荷及び前記第2電気負荷の一方に対して電力供給を行うとともに、前記非優先蓄電池から前記第1電気負荷及び前記第2電気負荷の他方に対して電力供給を行う放電状態と、前記非優先蓄電池から前記第1電気負荷及び前記第2電気負荷に対して電力供給を行う放電状態との切り替えを実施する請求項2に記載の電源装置。
  4.  前記通電経路における前記第1~第4の各点のうち端点である前記第1点及び前記第4点に前記第1蓄電池と前記第2蓄電池とがそれぞれ接続され、前記第2点及び前記第3点に前記第1電気負荷と前記第2電気負荷とがそれぞれ接続されている請求項2又は3に記載の電源装置。
  5.  前記第1および第2の蓄電池は、その残存容量(State Of Charge、SOC)とその開放電圧との関係を示す第1および第2の電池特性をそれぞれ有しており、前記第2の電池特性における所定の残存容量の領域における開放電圧が、前記第1の電池特性における対応する残存容量の領域における開放電圧よりも高電圧となっており、
     前記通電経路における前記第1~第4の各点のうち端点である前記第1点又は前記第4点に前記第2蓄電池が接続され、それ以外の各点に、前記第1蓄電池と前記第1電気負荷と前記第2電気負荷とがそれぞれ接続されている請求項2又は3に記載の電源装置。
  6.  前記第1および第2の蓄電池は、その残存容量(State Of Charge、SOC)とその開放電圧との関係を示す第1および第2の電池特性をそれぞれ有しており、前記第2の電池特性における所定の残存容量の領域における開放電圧が、前記第1の電池特性における対応する残存容量の領域における開放電圧よりも高電圧となっており、
     前記通電経路における前記第1~第4の各点のうち端点である前記第1点又は前記第4点に前記第1電気負荷及び前記第2電気負荷の一方が接続され、それ以外の各点において、少なくとも前記第2蓄電池が接続された点を挟む位置に前記第1蓄電池が接続され、残りの点に前記第1電気負荷及び前記第2電気負荷の他方が接続されており、
     前記第1蓄電池が接続された点と前記端点と接続されたバイパス経路(51)と、
     このバイパス経路に設けられ、前記制御部によりオンオフ制御可能なバイパススイッチ(52)と、
    をさらに備えた請求項2又は3に記載の電源装置。
  7.  前記第1~第4の各点のうち、前記第1点及び前記第2点に、前記第1蓄電池と前記第1電気負荷及び前記第2電気負荷の一方とがそれぞれ接続され、前記第3点及び前記第4点に、前記第2蓄電池と前記第1電気負荷及び前記第2電気負荷の他方とがそれぞれ接続されている請求項1に記載の電源装置。
  8.  前記第1電気負荷は、該第1電気負荷に対する供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される電気負荷であり、前記第2電気負荷は、前記第1電気負荷よりも高電力又は高電流が供給される電気負荷(16)である請求項1乃至7のいずれか一項に記載の電源装置。
  9.  前記第1電気負荷は、該第1電気負荷に対する供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される電気負荷であり、前記第2電気負荷は、前記第1電気負荷よりも高電力又は高電流で回転駆動される回転電機(16)である請求項1乃至7のいずれか一項に記載の電源装置。
  10.  前記通電経路における前記第1~第4の各点のうち端点である前記第1点及び前記第4点のいずれかに前記第1蓄電池又は前記第2蓄電池が接続されるか、あるいは、前記端点である前記第1点及び前記第4点に前記第1蓄電池と前記第2蓄電池とがそれぞれ接続されており、
     前記第1蓄電池及び前記第2蓄電池のうち前記第1点および第4点の一方に接続された一方の蓄電池について異常の有無を判定する異常判定部(30a)を備え、
     前記制御部は、前記異常判定部により異常発生の旨が判定された場合に、異常有りとされた一方の蓄電池を前記通電経路から切り離した上で、他方の蓄電池から前記各第1および第2の電気負荷への電力供給が行われるよう前記第1~第3スイッチを制御する請求項1乃至9のいずれか一項に記載の電源装置。
  11.  請求項1乃至10のいずれか一項の電源装置を備える電池ユニット(U)であって、
     前記第2蓄電池と、
     前記第1蓄電池、前記第1電気負荷、及び前記第2電気負荷がそれぞれ接続される第1端子(P1)、第2端子(P2)及び第3端子(P3)と、
    を備え、
     前記第2蓄電池に対して前記第1蓄電池、前記第1電気負荷、及び前記第2電気負荷が接続される前記通電経路に、前記第1~第3の各スイッチが設けられている電池ユニット。
PCT/JP2016/080223 2015-10-13 2016-10-12 電源装置及び電池ユニット WO2017065161A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016004681.2T DE112016004681T9 (de) 2015-10-13 2016-10-12 Leistungszufuhrgerät und Batterieeinheit
CN201680059677.XA CN108352714B (zh) 2015-10-13 2016-10-12 电源装置及电池单元

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015202367 2015-10-13
JP2015-202367 2015-10-13
JP2016-187258 2016-09-26
JP2016187258A JP6406328B2 (ja) 2015-10-13 2016-09-26 電源装置及び電池ユニット

Publications (1)

Publication Number Publication Date
WO2017065161A1 true WO2017065161A1 (ja) 2017-04-20

Family

ID=58517182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080223 WO2017065161A1 (ja) 2015-10-13 2016-10-12 電源装置及び電池ユニット

Country Status (1)

Country Link
WO (1) WO2017065161A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11169215B2 (en) * 2018-06-29 2021-11-09 Subaru Corporation Vehicle power supply apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4028242A1 (de) * 1990-09-06 1992-03-12 Bayerische Motoren Werke Ag Zwei batteriensystem
WO2014068884A1 (ja) * 2012-10-29 2014-05-08 三洋電機株式会社 回生制動する車両の電源装置
JP2014177213A (ja) * 2013-03-15 2014-09-25 Denso Corp 車載電源システム
JP2015154618A (ja) * 2014-02-14 2015-08-24 株式会社デンソー 電池ユニット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4028242A1 (de) * 1990-09-06 1992-03-12 Bayerische Motoren Werke Ag Zwei batteriensystem
WO2014068884A1 (ja) * 2012-10-29 2014-05-08 三洋電機株式会社 回生制動する車両の電源装置
JP2014177213A (ja) * 2013-03-15 2014-09-25 Denso Corp 車載電源システム
JP2015154618A (ja) * 2014-02-14 2015-08-24 株式会社デンソー 電池ユニット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11169215B2 (en) * 2018-06-29 2021-11-09 Subaru Corporation Vehicle power supply apparatus

Similar Documents

Publication Publication Date Title
CN109923747B (zh) 电源控制装置以及电池单元
JP6221796B2 (ja) 電池ユニット及び電源システム
JP6613997B2 (ja) 電源装置
JP6406328B2 (ja) 電源装置及び電池ユニット
JP2016164015A (ja) 電源システム
JP6072466B2 (ja) 車両用電源システム
JP6878782B2 (ja) 電源制御装置、及び電源システム
JP5846073B2 (ja) 電源システム
JP6468138B2 (ja) 電源装置
CN110192320B (zh) 电源装置和电源系统
JP6481483B2 (ja) 電源装置
JP6794944B2 (ja) 電源制御装置及び電池ユニット
WO2018008567A1 (ja) 電源制御装置、及び電源システム
WO2017065161A1 (ja) 電源装置及び電池ユニット
JP6760313B2 (ja) 電源システム
JP6724675B2 (ja) スイッチ制御装置、電源ユニット及び電源システム
WO2018008566A1 (ja) 電源制御装置、及び電源システム
WO2020209132A1 (ja) 電源装置の制御装置
WO2017069096A1 (ja) 電源装置
JP6665719B2 (ja) 電源制御装置、及び電源システム
CN110167776B (zh) 电池单元及电源系统
JP6953737B2 (ja) 制御装置
JP7073619B2 (ja) 電源制御装置、電池ユニット及び電源システム
JP2020137297A (ja) 発電制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855415

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016004681

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855415

Country of ref document: EP

Kind code of ref document: A1