JP6468138B2 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP6468138B2
JP6468138B2 JP2015178792A JP2015178792A JP6468138B2 JP 6468138 B2 JP6468138 B2 JP 6468138B2 JP 2015178792 A JP2015178792 A JP 2015178792A JP 2015178792 A JP2015178792 A JP 2015178792A JP 6468138 B2 JP6468138 B2 JP 6468138B2
Authority
JP
Japan
Prior art keywords
storage battery
switch
diode
power supply
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015178792A
Other languages
English (en)
Other versions
JP2017052446A5 (ja
JP2017052446A (ja
Inventor
大和 宇都宮
大和 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015178792A priority Critical patent/JP6468138B2/ja
Priority to PCT/JP2016/076661 priority patent/WO2017043641A1/ja
Publication of JP2017052446A publication Critical patent/JP2017052446A/ja
Publication of JP2017052446A5 publication Critical patent/JP2017052446A5/ja
Application granted granted Critical
Publication of JP6468138B2 publication Critical patent/JP6468138B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Description

本発明は、車両等に搭載される電源装置に関するものである。
例えば車両に搭載される車載電源システムとして、複数の蓄電池(例えば鉛蓄電池、リチウムイオン蓄電池)を用い、これら各蓄電池を使い分けながら車載の各種負荷に対して電力を供給する構成が知られている。例えば特許文献1に記載の技術では、発電機から各蓄電池への給電経路にスイッチをそれぞれ設け、各蓄電池の蓄電率に基づいて複数のスイッチのいずれかをオンにして、発電機からいずれかの蓄電池に対して充電を行うようにしている。また、各蓄電池に対して並列に第1負荷及び第2負荷を接続し、各蓄電池から第1負荷及び第2負荷に対して給電を可能としている。この場合、第1蓄電池及び第2蓄電池から第1負荷に対してはそれぞれスイッチを介して電力を供給する構成としている。また、第1蓄電池から第2負荷に対してはダイオードを介して電力を供給し、第2蓄電池から第2負荷に対してはスイッチ(保護スイッチ)と別のダイオードとを介して電力を供給する構成としている。
特開2015−76959号公報
しかしながら、上記従来の構成では、電気負荷に対して各蓄電池から電力を供給する場合に、一対のダイオードのいずれかを介していずれかの蓄電池から電力供給が行われるが、いずれの蓄電池から電力供給が行われるかを適正に管理することはできない。この場合、各蓄電池においては給電対象や蓄電状態に応じて各々に電気負荷に対する電力供給の状態を管理することが望ましく、かかる点において改善の余地があると考えられる。なお、特許文献1には、第2蓄電池の出力側にスイッチが設けられた構成が示されているが、このスイッチは、オフすることで第2蓄電池の電力の入出力を遮断する保護スイッチの役目を有するものであり、スイッチオフの状態では2つの電気負荷(第1負荷、第2負荷)のどちらにも電力供給を行うことができない。そのため、第1負荷及び第2負荷に対する電力供給を適正に行う上で改善の余地があると考えられる。
本発明は、上記課題に鑑みてなされたものであり、その主たる目的は、各蓄電池から電気負荷に対して適正な電力供給を実施することができる電源装置を提供することにある。
第1の構成の電源装置は、
第1蓄電池(11)と第2蓄電池(12)とを備え、第1電気負荷(15)と第2電気負荷(16)とに対して前記第1蓄電池及び前記第2蓄電池の少なくとも一方から電力を供給する電源システムに適用され、
前記第1蓄電池から前記第2電気負荷に電力供給する第1経路(L1)に設けられた第1スイッチ(21)と、
前記第2蓄電池から前記第2電気負荷に電力供給する第2経路(L2)に設けられた第2スイッチ(22)と、
前記第1蓄電池及び前記第1スイッチの間の第1分岐点(N1)と、前記第2蓄電池及び前記第2スイッチの間の第2分岐点(N2)とを接続する接続経路(L3,L4)において、順方向を向かい合わせにして直列に接続された第1ダイオード(D1)及び第2ダイオード(D2)と、
を備え、
前記第1ダイオード及び前記第2ダイオードの少なくともいずれかは、前記接続経路において半導体スイッチ(23,24)の入出力端子間に並列に接続されて設けられており、
前記第1ダイオード及び前記第2ダイオードの各カソードの間となる中間点(N3)に、前記第1電気負荷に電力供給する給電経路(L5)が接続される構成となっていることを特徴とする。
上記構成では、第2電気負荷に対して第1蓄電池からの電力供給と第2蓄電池からの電力供給とが選択的に実施可能となっている。この場合、第1スイッチをオン、第2スイッチをオフにすることで第1蓄電池から第2電気負荷への電力供給が可能となり、第1スイッチをオフ、第2スイッチをオンにすることで第2蓄電池から第2電気負荷への電力供給が可能となる。
また、第1電気負荷に対して各蓄電池から電力供給を行う接続経路においては、順方向を向かい合わせにして第1ダイオードと第2ダイオードとが直列に接続され、その第1ダイオード及び第2ダイオードの少なくともいずれかが半導体スイッチの入出力端子間に並列に接続されているため、第1電気負荷に対しては、第1ダイオードを通る経路を介しての第1蓄電池からの電力供給と、第2ダイオードを通る経路を介しての第2蓄電池からの電力供給とが可能となっている。この場合特に、第1ダイオード及び第2ダイオードの少なくともいずれかを半導体スイッチの入出力端子間に並列に設けたため、第1電気負荷に対する電源供給元の蓄電池の切り替え時にも電力供給を継続的に実施できる構成にしつつ、ダイオードを経由した電力供給と半導体スイッチを経由した電力供給とを選択的に実施できる。つまり、各蓄電池の状態や、第2電気負荷への電力供給元の蓄電池がいずれかであるかに基づいて、第1蓄電池からの電力供給と第2蓄電池からの電力供給とを選択的に実施することが可能となる。また、オン状態の半導体スイッチを経由して電力供給する場合に、ダイオードを経由して電力供給する場合に比べて電力損失を減らすことができる。以上により、各蓄電池から電気負荷に対して適正な電力供給を実施することができる。
第2の構成では、前記第1電気負荷は、供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される電気負荷であるとしている。
この場合、上記第1の構成を用いることにより、第1電気負荷に対して安定状態で電力供給を実施でき、第1電気負荷の定電圧駆動の要求を好適に満たすことができる。
第3の構成では、前記第1電気負荷への電力供給時に、前記第1蓄電池及び前記第2蓄電池における放電の優先度に基づいて前記半導体スイッチのオンオフを制御する制御部(30)を備えることを特徴とする。
半導体スイッチの入出力端子間に並列にダイオードを設けた構成では、半導体スイッチのオンオフにかかわらず接続経路に継続的に電流を流すことが可能であるが、半導体スイッチのオン状態とオフ状態とで接続経路の経路抵抗値が相違する。つまり、半導体スイッチのオフ状態では、ダイオードの抵抗分だけ経路抵抗値が大きくなる。この場合、半導体スイッチのオンオフ制御により経路抵抗値に差を付けることで、第1蓄電池及び第2蓄電池についていずれかを優先して第1電気負荷に対する放電を行わせることができる。例えば各蓄電池の状態に応じて、選択的にいずれかの蓄電池から放電を実施させることができる。
第4の構成では、前記第1ダイオードは、前記中間点に対して前記第1蓄電池の側において第1半導体スイッチ(23)の入出力端子間に並列に接続されて設けられ、前記第2ダイオードは、前記中間点に対して前記第2蓄電池の側において第2半導体スイッチ(24)の入出力端子間に並列に接続されて設けられており、前記制御部は、前記第1スイッチがオン、前記第2スイッチがオフの場合に、前記第1半導体スイッチをオフ、前記第2半導体スイッチをオンに制御し、前記第1スイッチがオフ、前記第2スイッチがオンの場合に、前記第1半導体スイッチをオン、前記第2半導体スイッチをオフに制御することを特徴とする。
上記構成によれば、第1スイッチ及び第2スイッチのオンオフが互い違いに切り替えられることに合わせて、第1半導体スイッチ及び第2半導体スイッチのオンオフが制御され、第1電気負荷に対して第1蓄電池から優先的に電力供給が行われる状態と、第1電気負荷に対して第2蓄電池から優先的に電力供給が行われる状態とが切り替えられる。例えば第2電気負荷の駆動要求の有無に応じて第1,第2スイッチのオンオフが切り替えられる場合に、それに対応させつつ、第1電気負荷に対していずれかの蓄電池を優先して放電させることができる。この場合、第2電気負荷に対する電力供給によりその供給元の蓄電池の電圧が変動しても、その電圧変動の影響を受けることなく、第1電気負荷(定電圧要求負荷)への電力供給を行うことができる。また、上記のように各スイッチが切り替えられる際に、各ダイオードにより、第1電気負荷に対して途切れること無く継続的に電力供給を実施できる。
第5の構成では、前記第1ダイオードは、前記中間点に対して前記第1蓄電池の側において第1半導体スイッチ(23)の入出力端子間に並列に接続されて設けられ、前記第2ダイオードは、前記中間点に対して前記第2蓄電池の側において第2半導体スイッチ(24)の入出力端子間に並列に接続されて設けられており、前記第1蓄電池と前記第2蓄電池とは蓄電状態に対する開放電圧の相関が相違しており、前記制御部は、前記各蓄電池における開放電圧の差に基づいて、前記第1半導体スイッチ及び前記第2半導体スイッチのオンオフを制御することを特徴とする。
各蓄電池においては蓄電状態に対する開放電圧の相関を有しており、それぞれの開放電圧に応じて充放電が管理されることが望ましい。この点、上記構成によれば、各蓄電池における開放電圧の差に基づいて、第1半導体スイッチ及び第2半導体スイッチのオンオフが制御されるため、各蓄電池の蓄電状態の違いを加味しつつ、第1電気負荷に対していずれの蓄電池から電力供給すべきかを好適に判断できる。また、各蓄電池の開放電圧の高低が逆転する等して各電気負荷への電力供給元が切り替えられる際には、各ダイオードにより、第1電気負荷に対して途切れること無く継続的に電力供給を実施できる。
第6の構成では、前記第2蓄電池は、前記第1蓄電池に比べて充放電時のエネルギ効率が高い蓄電池であり、前記第1ダイオード及び前記第2ダイオードのうち前記中間点に対して前記第2蓄電池の側の前記第2ダイオードのみが、前記半導体スイッチの入出力端子間に並列に接続されて設けられていることを特徴とする。
上記構成によれば、第2ダイオードの側(第2蓄電池の側)において、半導体スイッチのオンにより第1ダイオードの側よりも経路抵抗を小さくすることができる。これにより、エネルギ効率の高い方の第2蓄電池を優先的に用いて、第1電気負荷に対する電力供給を行うことができる。この場合、第1ダイオード及び第2ダイオードのうち半導体スイッチが並列接続されるのは一方のみであり、構成の簡素化を図る上で有利となる。
第7の構成では、前記給電経路に給電スイッチ(25)が設けられていることを特徴とする。
上記のとおり接続経路(第1分岐点〜第2分岐点の経路)に第1ダイオードと第2ダイオードとを設けた構成では、それらダイオードに並列接続された半導体スイッチの状態にかかわらず第1電気負荷に対する継続的な電力供給が可能となる。そしてかかる構成において給電経路(第1,第2ダイオードの中間点〜第1電気負荷の経路)に給電スイッチを設けることで、例えば第1電気負荷を使用しない場合において接続経路を介しての第1電気負荷への電力供給(暗電流供給)を停止させることが可能となる。したがって、蓄電池における無駄な放電を抑制できる。例えば車両の停車時において意に反する蓄電池の放電を抑制できる。
第8の構成では、前記接続経路において前記中間点を挟んで一方の側には、各々に入出力端子間に並列に接続されたダイオード(D3,D4)を有し、そのダイオードの向きが互いに逆向きとされた状態で直列接続された一対の半導体スイッチ(51,52)が設けられており、前記一対の半導体スイッチのうちいずれかの半導体スイッチの側の前記ダイオードにより、前記第1ダイオード及び前記第2ダイオードのいずれかが構成されていることを特徴とする。
上記構成では、接続経路において中間点を挟んで一方の側に、一対の半導体スイッチの直列接続体が設けられており、その一対の半導体スイッチでは、各入出力端子間に並列に、順方向を互いに逆にしてダイオードが設けられている。この場合、一対の半導体スイッチをいずれもオンにすれば、上記と同様に、第1電気負荷に対してダイオードを介しての電力供給と半導体スイッチ(一対の半導体スイッチ)を介しての電力供給とが可能となる。また、一対の半導体スイッチをいずれもオフにすれば、その一対の半導体スイッチの側の接続経路において電流の流れを完全遮断することができる。そのため、一対の半導体スイッチの側に接続された蓄電池について、例えば長期放置時における意図しない放電を抑制できる。
第9の構成では、前記第2蓄電池は、前記第1蓄電池に比べて充放電時のエネルギ効率が高い蓄電池であり、前記接続経路において前記中間点を挟んで両側のうち前記第2蓄電池の側に、前記一対の半導体スイッチが設けられていることを特徴とする。
上記構成によれば、接続経路の第2蓄電池の側において、一対の半導体スイッチのオンにより第1蓄電池の側よりも経路抵抗を小さくすることができる。これにより、エネルギ効率の高い方の第2蓄電池を優先的に用いて、第1電気負荷に対する電力供給を行うことができる。
第10の構成では、前記第1蓄電池及び前記第2蓄電池に対して充電用の電力を供給する発電機(17)を備え、前記第1経路を介して前記発電機から前記第1蓄電池への充電を可能とし、前記第2経路を介して前記発電機から前記第2蓄電池への充電を可能とするものであり、前記第1経路及び前記第2経路は、前記発電機からの発電電力を流す大電力経路であり、前記接続経路及び前記給電経路は、前記第1経路及び前記第2経路よりも最大許容電力の小さい小電力経路であることを特徴とする。
上記構成では、第2電気負荷に対しては大電力経路である第1経路及び第2経路を介して電力供給が行われ、第1電気負荷に対しては小電力経路である接続経路及び給電経路を介して電力供給が行われる。この場合、第1電気負荷及び第2電気負荷に対して同じ蓄電池から電力供給が行われると、第1電気負荷において供給電力の電圧変動の懸念が大きくなるが、上記のごとく第1,第2ダイオードや半導体スイッチを備える構成を採用することで、第1電気負荷における電圧変動の懸念を回避できる。
発明の実施の形態における電源システムを示す電気回路図。 鉛蓄電池、リチウムイオン蓄電池のSOC使用範囲を示す図。 車両状態と電池ユニットにおける各スイッチの状態とを示す図。 車両状態と電池ユニットにおける各スイッチの状態とを示す図。 スイッチ切替制御の処理手順を示すフローチャート。 別例の電源システムを示す電気回路図。 別例の電源システムを示す電気回路図。 別例の電源システムを示す電気回路図。 別例の電源システムを示す電気回路図。
以下、本発明を具体化した実施形態を図面に基づいて説明する。本実施形態の車載電源装置が搭載される車両は、エンジン(内燃機関)を駆動源として走行するものであり、いわゆるアイドリングストップ機能を有している。
図1に示すように、本電源システムは、第1電源としての鉛蓄電池11と第2電源としてのリチウムイオン蓄電池12とを有する2電源システムであり、各蓄電池11,12からはスタータモータ13や、各種の電気負荷14〜16への給電が可能となっている。また、各蓄電池11,12に対しては発電機17による充電が可能となっている。両蓄電池11,12のうちリチウムイオン蓄電池12は、図示しない筐体(収容ケース)に収容されることで電池ユニットUとして構成されている。電池ユニットUの詳細な構成につては後述する。
鉛蓄電池11は周知の汎用蓄電池である。これに対し、リチウムイオン蓄電池12は、鉛蓄電池11に比べて、充放電における電力損失が少なく、出力密度、及びエネルギ密度の高い高密度蓄電池である。リチウムイオン蓄電池12は、鉛蓄電池11に比べて充放電時のエネルギ効率が高い蓄電池であるとよい。
電池ユニットUには外部端子として第1端子T1、第2端子T2、第3端子T3が設けられており、第1端子T1には鉛蓄電池11とスタータモータ13と電気負荷14とが接続され、第2端子T2には電気負荷16と発電機17とが接続され、第3端子T3には電気負荷15が接続されている。
各電気負荷14〜16は、各蓄電池11,12から供給される供給電力の電圧について要求が相違するものである。このうち第3端子T3に接続される電気負荷15には、供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される定電圧要求負荷が含まれる。これに対し、第1,第2端子T1,T2に接続される電気負荷14,16は、定電圧要求負荷以外の一般的な電気負荷である。電気負荷15は被保護負荷とも言える。また、電気負荷15は電源失陥が許容されない負荷であり、電気負荷16は電源失陥が許容される負荷であるとも言える。
定電圧要求負荷である電気負荷15の具体例としては、ナビゲーション装置やオーディオ装置、メータ装置、エンジンECU等の各種ECUが挙げられる。この場合、供給電力の電圧変動が抑えられることで、上記各装置において不要なリセット等が生じることが抑制され、安定動作が実現可能となっている。また、電気負荷16の具体例としては、シートヒータやリヤウインドシールドのデフロスタ用ヒータ等が挙げられ、電気負荷14の具体例としては、ヘッドライト、フロントウインドシールド等のワイパ、空調装置の送風ファン等が挙げられる。なお、電気負荷15が「第1電気負荷」に相当し、電気負荷16が「第2電気負荷」に相当する。以下、電気負荷15を第1負荷15、電気負荷16を第2負荷16とも言う。
発電機17は、エンジンの出力軸に駆動連結されたオルタネータ(交流発電機)であり、エンジン出力軸の回転を動力として発電する。発電機17の発電電力により各蓄電池11,12が充電される。
次に、電池ユニットU内の回路構成を説明する。
電池ユニットUには、ユニット内電気経路として、各端子T1,T2及びリチウムイオン蓄電池12を相互に接続する電気経路L1,L2が設けられている。この電気経路L1,L2により、鉛蓄電池11から第2負荷16に電力供給する第1経路と、リチウムイオン蓄電池12から第2負荷16に電力供給する第2経路とが構成されている。このうち第1端子T1と第2端子T2とを接続する第1経路L1に第1スイッチ21が設けられ、第1経路L1上の接続点N0とリチウムイオン蓄電池12とを接続する第2経路L2に第2スイッチ22が設けられている。これら各スイッチ21,22は、MOSFET等の半導体スイッチにより構成されている。なお、各スイッチ21,22をそれぞれ2つ一組のMOSFETで構成し、各一組のMOSFETの寄生ダイオードが互いに逆向きになるように直列に接続されているとよい。この互いに逆向きの寄生ダイオードによって、各スイッチ21,22をオフ状態とした場合にそのスイッチが設けられた経路に流れる電流が完全に遮断される。
上記構成では、第2負荷16に対して鉛蓄電池11からの電力供給とリチウムイオン蓄電池12からの電力供給とが選択的に実施可能となっている。この場合、第1スイッチ21をオン、第2スイッチ22をオフにすることで鉛蓄電池11から第2負荷16への電力供給が可能となり、第1スイッチ21をオフ、第2スイッチ22をオンにすることでリチウムイオン蓄電池12から第2負荷16への電力供給が可能となる。
また、第1経路L1において第1端子T1と第1スイッチ21との間の分岐点N1(第1分岐点)には分岐経路L3の一端が接続されるとともに、第2経路L2においてリチウムイオン蓄電池12と第2スイッチ22との間の分岐点N2(第2分岐点)には分岐経路L4の一端が接続されており、これら分岐経路L3,L4の他端同士が中間点N3で接続されている。分岐経路L3,L4が、分岐点N1,N2を接続する接続経路に相当する。また、中間点N3と第3端子T3とが給電経路L5により接続されている。
分岐経路L3,L4にはそれぞれ第3スイッチ23と第4スイッチ24とが設けられている。第3スイッチ23と第4スイッチ24はそれぞれMOSFET等の半導体スイッチを有しており、その入出力端子間に並列にダイオードD1,D2が接続されている。ダイオードD1,D2は、順方向を向かい合わせにして、換言すれば、中間点N3をそれぞれカソード側にして直列に接続されている。なお、ダイオードD1が「第1ダイオード」に相当し、ダイオードD2が「第2ダイオード」に相当し、第3スイッチ23が「第1半導体スイッチ」に相当し、第4スイッチ24が「第2半導体スイッチ」に相当する。
各スイッチ23,24においては、鉛蓄電池11側から第1負荷15側を順方向にしてダイオードD1が設けられているとともに、リチウムイオン蓄電池12側から第1負荷15側を順方向にしてダイオードD2が設けられているため、各スイッチ23,24がオフ状態にあっても、いずれかの蓄電池から第1負荷15への電力供給が可能となっている。また、各スイッチ23,24のうちいずれかがオンされた状態では、そのスイッチオン側の分岐経路の経路抵抗が、スイッチオフ側の分岐経路の経路抵抗よりも小さくなる。つまり、一方の分岐経路では経路抵抗が半導体スイッチのオン抵抗に依存したものとなり、他方の分岐経路では経路抵抗がダイオードの抵抗に依存したものとなる。この場合、経路抵抗の違いにより、各蓄電池11,12から第1負荷15への放電のし易さが相違し、各蓄電池11,12のうちいずれかから選択的に第1負荷15への電力供給を行わせることができる。
また、給電経路L5には給電スイッチとしてのリレースイッチ25が設けられている。リレースイッチ25は、例えば常開式のラッチリレー回路よりなり、車両システムへの電源オン(IGオン)に伴う通電によりオン、すなわち閉状態となり、電源オフ(IGオフ)までその状態が維持されるようになっている。上記構成では、リレースイッチ25をオンした状態で、第3スイッチ23及び第4スイッチ24のいずれか一方をオンして、いずれかの蓄電池11,12から第1負荷15への電力供給が行われる。
なお、第1経路L1及び第2経路L2は、発電機17の発電電力をはじめ比較的大きな電力が流れる大電力経路となり、分岐経路L3,L4及び給電経路L5は、経路L1,L2に比べて小さい電力が流れる小電力経路となっている。
また、電池ユニットUは、電池制御手段を構成する制御部30を有しており、各スイッチ21〜25や制御部30は同一の基板に実装された状態で筐体内に収容されている。制御部30には、電池ユニットU外のECU40が接続されている。つまり、これら制御部30及びECU40は、CAN等の通信ネットワークにより接続されて相互に通信可能となっており、制御部30及びECU40に記憶される各種データが互いに共有できるものとなっている。ECU40は、アイドリングストップ制御を実施する機能を有する電子制御装置である。アイドリングストップ制御は、周知のとおり所定の自動停止条件の成立によりエンジンを自動停止させ、かつその自動停止状態下で所定の再始動条件の成立によりエンジンを再始動させるものである。
制御部30は、各スイッチ21〜25のオンオフ(開閉)の切り替えを実施する。この場合、制御部30は、車両の走行状態や各蓄電池11,12の蓄電状態に基づいて、各スイッチ21〜25のオンオフを制御する。これにより、鉛蓄電池11とリチウムイオン蓄電池12とを選択的に用いて充放電が実施される。各蓄電池11,12の蓄電状態に基づく充放電制御について簡単に説明する。制御部30は、鉛蓄電池11及びリチウムイオン蓄電池12の端子電圧又は開放電圧の検出値を逐次取得するとともに、図示しない電流検出手段により検出される鉛蓄電池11、リチウムイオン蓄電池12の通電電流を逐次取得する。そして、これらの取得値に基づいて鉛蓄電池11、リチウムイオン蓄電池12のSOC(残存容量)を算出するとともに、そのSOCが所定の使用範囲内に保持されるようにリチウムイオン蓄電池12への充電量及び放電量を制御する。
ここで、各蓄電池11,12のSOC使用範囲について説明する。図2に鉛蓄電池11及びリチウムイオン蓄電池12の開放電圧(OCV)と蓄電状態(SOC)との相関関係を示す。図2(a)には、鉛蓄電池11の開放電圧と蓄電状態との相関関係が示されており、鉛蓄電池11のSOC使用範囲をW1としている。図2(b)には、リチウムイオン蓄電池12の開放電圧と蓄電状態との相関関係が示されており、リチウムイオン蓄電池12のSOC使用範囲をW2としている。また、図2(b)は、図2(a)の一点鎖線部分(SOC使用範囲W1(Pb)を示す部分)の拡大図でもあり、図2(b)の横軸に示されるリチウムイオン蓄電池12のSOC=0%の位置と、SOC使用範囲W1(Pb)のSOCaの値とが対応している。両図において、各電圧Va,Vbは同じ電圧値である。
図2(a)中の横軸は鉛蓄電池11のSOCを示し、図中の実線A1は、鉛蓄電池11のSOCと開放電圧V0(Pb)との関係を示す電圧特性線である。充電量が増加してSOCが上昇することに比例して開放電圧V0(Pb)も上昇する。図2(b)中の横軸はリチウムイオン蓄電池12のSOCを示し、図中の実線A2は、リチウムイオン蓄電池12のSOCと開放電圧V0(Li)との関係を示す電圧特性線であり、充電量が増加してSOCが上昇することに伴い開放電圧V0(Li)も上昇する。
図2(b)に示すように、鉛蓄電池11とリチウムイオン蓄電池12とはSOCに対する開放電圧の相関が相違するものとなっており、SOC使用範囲W2(Li)においては、リチウムイオン蓄電池12の開放電圧が鉛蓄電池11の開放電圧よりも高くなるように定められている。
蓄電池11,12が過充電や過放電の状態になると早期劣化が懸念される。したがって、各蓄電池11,12のSOCが、過充放電とならない所定のSOCの下限値と上限値との範囲(SOC使用範囲)となるように、蓄電池11,12の充放電量が規制される。この場合、制御部30は、鉛蓄電池11のSOCをSOC使用範囲W1内、リチウムイオン蓄電池12のSOCをSOC使用範囲W2内に制御すべく、各蓄電池11,12への充電量を制限して過充電保護するとともに鉛蓄電池11、リチウムイオン蓄電池12からの放電量を制限して過放電保護するよう保護制御を実施する。
また、電池ユニットUには、ユニット内のスイッチ21〜25を介さずに、鉛蓄電池11を電気負荷15,16に対して接続可能とするバイパス経路L6,L7が設けられている。具体的には、電池ユニットUには第4端子T4が設けられており、第4端子T4には鉛蓄電池11が接続されている。電池ユニットUには、第4端子T4と第1経路L1上の接続点N0とを接続するバイパス経路L6が設けられるとともに、接続点N0と第3端子T3とを接続するバイパス経路L7が設けられている。そして、バイパス経路L6上には第1バイパススイッチ26が設けられ、バイパス経路L7上には第2バイパススイッチ27が設けられている。各バイパススイッチ26,27は例えば常閉式のリレースイッチである。
第1バイパススイッチ26をオン(閉鎖)することで、第1スイッチ21がオフであっても鉛蓄電池11と第2負荷16とが電気的に接続される。また、両方のバイパススイッチ26,27をオン(閉鎖)することで、リレースイッチ25がオフであっても鉛蓄電池11と第1負荷15とが電気的に接続される。
次に、車両状態と電池ユニットUにおける各スイッチの状態とについて、図3及び図4を用いて説明する。なおここでは、電気負荷14〜16のうち定電圧要求負荷である第1負荷15と、スイッチ21,22を介して各蓄電池11,12に接続されている第2負荷16とへの電力供給について詳しく説明する。
図3において(a)は回生状態を、(b)は通常走行、及びアイドリングストップ制御のエンジン自動停止の状態を、(c)はエンジン再始動状態をそれぞれ示し、図4において(a)は第2負荷16の駆動状態を、(b)はリチウムイオン蓄電池12の使用停止状態を、(c)は停車状態をそれぞれ示している。なお図3及び図4において、図4(c)以外は、車両システムの電源オン状態(IGオン状態)を示しており、バイパススイッチ26,27がオフになっている。
車両の減速時には、発電機17による回生発電が行われる。この場合、図3(a)に示すように、スイッチ21,22が共にオンになり、発電機17の回生発電による電力が鉛蓄電池11及びリチウムイオン蓄電池12に供給される。これにより、各蓄電池11,12が適宜充電される。また、第3スイッチ23がオフ、第4スイッチ24とリレースイッチ25とがオンになっており、第1負荷15に対しては発電機17又はリチウムイオン蓄電池12から電力供給が行われる。
車両の通常走行時には、図3(b)に示すように、第1スイッチ21がオン、第2スイッチ22がオフになっており、鉛蓄電池11の蓄電状態に応じて発電機17の発電電力が鉛蓄電池11に供給される。また、第3スイッチ23がオフ、第4スイッチ24とリレースイッチ25とがオンになっており、第1負荷15に対してはリチウムイオン蓄電池12から電力供給が行われる。この場合、第2負荷16に対してリチウムイオン蓄電池12から電力供給が行われない状態であり、第1負荷15に対してリチウムイオン蓄電池12から優先的に電力供給が行われる。
なお、アイドリングストップ制御においてエンジンが自動停止された状態にあっても、図3(b)と同じ状態で各スイッチ21〜25が制御される。
エンジン自動停止後のエンジン再始動時には、図3(c)に示すように、図3(b)と同じ状態で各スイッチ21〜25が制御される。また図3(c)では、鉛蓄電池11からスタータモータ13に対して電力が供給され、スタータモータ13によるエンジン始動が行われる。このとき、スタータモータ13に対しては鉛蓄電池11から電力が供給され、第1負荷15に対してはリチウムイオン蓄電池12から電力が供給されるため、第1負荷15への供給電力において電圧変動が生じないものとなっている。
第2負荷16(例えば車両のシートヒータ)がオンされる場合には、図4(a)に示すように、第1スイッチ21がオフ、第2スイッチ22がオンに切り替えられ、第2負荷16に対してリチウムイオン蓄電池12からの電力供給が行われる。また、スイッチ21,22のオンオフの反転に合わせて、スイッチ23,24のオンオフも反転され、第3スイッチ23がオン、第4スイッチ24がオフに切り替えられる。これにより、第1負荷15に対しては鉛蓄電池11から電力供給が行われる。この場合、第2負荷16に対してリチウムイオン蓄電池12から電力供給が行われる状態であり、第1負荷15に対して鉛蓄電池11から優先的に電力供給が行われる。
車両システムの起動直後においてリチウムイオン蓄電池12のSOCの算出が完了していない場合や、低SOC時、低温時には、リチウムイオン蓄電池12の充放電が停止される。この場合、図4(b)に示すように、第1スイッチ21がオン、第2スイッチ22がオフになっているとともに、第3スイッチ23がオン、第4スイッチ24がオフになっており、第1負荷15に対して鉛蓄電池11から電力供給が行われる。
車両の運転状態下においては、上記の各状態が適宜切り替えられる。この際、例えば図3(b)に示す通常走行状態から、図4(a)に示す第2負荷16の駆動状態への切り替えが行われる場合、又はその逆の切り替えが行われる場合には、スイッチ21,22のオンオフの反転と、スイッチ23,24のオンオフの反転とが実施されるが、定電圧要求負荷である第1負荷15に対しては、供給電力が中断されることなく継続的に安定供給される必要がある。
この点、各蓄電池11,12から第1負荷15への電力供給経路である分岐経路L3,L4には、順方向を向かい合わせにしてダイオードD1,D2が設けられているため、そのダイオードD1,D2を介しての第1負荷15への電力供給が可能となっている。したがって、仮に各スイッチ21〜24の反転切替時にスイッチ23,24が共に一時的にオフになったとしても、第1負荷15への電力供給が途絶えることなく継続できる。そのため、例えばスイッチ23,24が共にオフになることを回避すべくスイッチ23,24が共にオンになる期間を設ける必要がなく、ひいては第2負荷16の駆動要求に対する遅れを抑制できる。
また、車両の停車時、すなわち車両システムの電源オフ時(IGオフ時)には、図4(c)に示すように、スイッチ21〜25がいずれもオフになっているとともに、バイパススイッチ26,27オンになっている。これにより、第1負荷15に対して鉛蓄電池11から電力供給が行われる。この場合、車両の停車中において第1負荷15に対して暗電流やバックアップ電流が鉛蓄電池11から供給されるため、リチウムイオン蓄電池12が過剰放電状態になることを回避できる。
ここで、制御部30により実施されるスイッチ切替制御の処理手順を図5により説明する。本処理は、制御部30において所定周期で実施される。なお、図5では、電源オン状態においてリレースイッチ25がオンになっていることを前提にしており、特に図3(b)と図4(a)に相当する状態に関するものとなっている。
図5において、ステップS11では、今現在、第2負荷16が駆動される状態であるか否かを判定する。また、ステップS12では、リチウムイオン蓄電池12のSOCが使用範囲W2内に入っているか否か、換言すればリチウムイオン蓄電池12の開放電圧が鉛蓄電池11の開放電圧よりも高い状態であるか否かを判定する。そして、ステップS11,S12のいずれかがNOであればステップS13に進み、第1スイッチ21をオン、第2スイッチ22をオフ、第3スイッチ23をオフ、第4スイッチ24をオンに制御する。これにより、図3(b)に示すように、第1スイッチ21がオン、第2スイッチ22がオフであって、第2負荷16に対してリチウムイオン蓄電池12から電力供給が行われない状態において、第3スイッチ23をオフ、第4スイッチ24をオンに制御することで、第1負荷15に対してリチウムイオン蓄電池12から電力供給が行われる。
また、ステップS11,S12が共にYESであればステップS14に進み、第1スイッチ21をオフ、第2スイッチ22をオン、第3スイッチ23をオン、第4スイッチ24をオフに制御する。これにより、図4(a)に示すように、第1スイッチ21がオフ、第2スイッチ22がオンであって、第2負荷16に対してリチウムイオン蓄電池12から電力供給が行われる状態において、第3スイッチ23をオン、第4スイッチ24をオフに制御することで、第1負荷15に対して鉛蓄電池11から電力供給が行われる。
上記処理では、第2負荷16の駆動要求があり、かつリチウムイオン蓄電池12のSOCが使用範囲W2内に入っていることを条件に、リチウムイオン蓄電池12から第2負荷16(補足すると大電力経路の電気負荷)への電力供給が行われる。また、第2負荷16の駆動要求があり、かつリチウムイオン蓄電池12のSOCがW2未満であれば、鉛蓄電池11から第2負荷16への電力供給が行われる。
以上詳述した本実施形態によれば、以下の優れた効果が得られる。
第1負荷15(定電圧要求負荷)に対して各蓄電池11,12から電力供給を行う分岐経路L3,L4において、順方向を向かい合わせにしてダイオードD1,D2が直列に接続され、そのうちダイオードD2が第4スイッチ24の入出力端子間に並列に接続されて構成されている。そのため、第1負荷15に対しては、ダイオードD1を通る経路を介しての鉛蓄電池11からの電力供給と、ダイオードD2を通る経路を介してのリチウムイオン蓄電池12からの電力供給とが可能となっている。この場合特に、ダイオードD2を第4スイッチ24の入出力端子間に並列に設けたため、第1負荷15に対する電源供給元の蓄電池の切り替え時にも電力供給を継続的に実施できる構成にしつつ、ダイオードを経由した電力供給と半導体スイッチを経由した電力供給とを選択的に実施できる。つまり、各蓄電池11,12の状態や、第2負荷16への電力供給元の蓄電池がいずれであるかに基づいて、鉛蓄電池11からの電力供給とリチウムイオン蓄電池12からの電力供給とを選択的に実施することが可能となる。第1負荷15は定電圧要求負荷であり、その第1負荷15に対して安定状態で電力供給を実施できる。また、オン状態の半導体スイッチを経由して電力供給することで、ダイオードを経由して電力供給する場合に比べて電力損失を減らすことができる。以上により、各蓄電池11,12から電気負荷15,16に対して適正な電力供給を実施することができる。
制御部30が、第1負荷15への電力供給時において各蓄電池11,12の放電の優先度に基づいてスイッチ23,24のオンオフを制御する構成とした。これにより、各蓄電池11,12についていずれかを優先して第1負荷15に対する放電を行わせることができる。
具体的には、制御部30は、第1負荷15に対する電力供給元の蓄電池と第2負荷16に対する電力供給元の蓄電池とが相違するよう各スイッチ21〜24のオンオフを制御する構成とした。つまりこの場合、第2負荷16に対する電力供給の状況を加味しつつ、第1負荷15に対していずれかの蓄電池を優先して放電させることができる。これにより、第2負荷16に対する電力供給によりその供給元の蓄電池の電圧が変動しても、その電圧変動の影響を受けることなく、第1負荷15(定電圧要求負荷)への電力供給を行うことができる。また、上記のように各スイッチが切り替えられる際に、各ダイオードD1,D2により、第1負荷15に対して途切れること無く継続的に電力供給を実施できる。
また、制御部30は、各蓄電池11,12における開放電圧の差(高低)に基づいて、各スイッチ21〜24のオンオフを制御する構成とした。これにより、各蓄電池11,12の蓄電状態の違いを加味しつつ、第1負荷15に対していずれの蓄電池から電力供給すべきかを好適に判断できる。また、各蓄電池11,12の開放電圧の高低が逆転する等して各電気負荷15,16への電力供給元が切り替えられる際には、各ダイオードD1,D2により、第1負荷15に対して途切れること無く継続的に電力供給を実施できる。
分岐経路L3,L4にダイオードD1,D2を設けた構成では、スイッチ23,24の状態にかかわらず第1負荷15に対する継続的な電力供給が可能となる。そしてかかる構成において給電経路L5リレースイッチ25を設けることで、停車時等、第1負荷15を使用しない場合において分岐経路L3,L4を介しての第1負荷15への電力供給(暗電流供給、バックアップ電流供給)を停止させることが可能となる。したがって、リチウムイオン蓄電池12における無駄な放電を抑制できる。これにより、リチウムイオン蓄電池12の劣化防止を図ることもできる。
第2負荷16に大電力経路(L1,L2)を介して電力供給が行われ、第1負荷15に小電力経路(L3〜L5)を介して電力供給が行われる場合には、第1負荷15及び第2負荷16に対して同じ蓄電池から電力供給が行われると、第1負荷15において供給電力の電圧変動の懸念が大きくなる。この点、上記のごとくスイッチ23,24やダイオードD1,D2を備える構成を採用することで、第1負荷15における電圧変動の懸念を回避できる。
(他の実施形態)
上記実施形態を例えば次のように変更してもよい。
・電源システムを図6に示す構成としてもよい。図6では、図1との相違点として、分岐経路L3の半導体スイッチを省略し、分岐経路L3にダイオードD1を設ける構成としている。つまり、ダイオードD1,D2のうち中間点N3に対してリチウムイオン蓄電池12の側のダイオードD2のみが、第4スイッチ24の入出力端子間に並列に接続されて設けられている。
上記構成によれば、分岐経路L4(ダイオードD2の側)において、第4スイッチ24のオンにより分岐経路L3(ダイオードD1の側)よりも経路抵抗を小さくすることができる。これにより、エネルギ効率の高い方のリチウムイオン蓄電池12を優先的に用いて、第1負荷15に対する電力供給を行うことができる。この場合、ダイオードD1及びダイオードD2のうち半導体スイッチが並列接続されるのは一方のみであり、構成の簡素化を図る上で有利となる。
・電源システムを図7に示す構成としてもよい。図7では、図1との相違点として、分岐経路L3の半導体スイッチを省略し、分岐経路L3にダイオードD1を設ける構成としている。また、分岐経路L4に、各々に入出力端子間に並列に接続されたダイオードD3,D4を有し、そのダイオードD3,D4の向きが互いに逆向きとされた状態で直列接続された一対の半導体スイッチ51,52が設けられている。つまり、分岐経路L4に一対の半導体スイッチ51,52の直列接続体が設けられており、その一対の半導体スイッチ51,52では、各入出力端子間に並列に、順方向を互いに逆にしてダイオードD3,D4が設けられている。なおこの場合、半導体スイッチ51のダイオードD3が「第2ダイオード」に相当する。また、給電経路L5のリレースイッチ25が省略されている。
上記構成では、一対の半導体スイッチ51,52をいずれもオンにすれば、上記と同様に、第1負荷15に対して、ダイオードD1を介しての電力供給と一対の半導体スイッチ51,52を介しての電力供給とが可能となる。また、一対の半導体スイッチ51,52をいずれもオフにすれば、分岐経路L4において電流の流れを完全遮断することができる。そのため、分岐経路L4(一対の半導体スイッチ51,52の側)に接続されたリチウムイオン蓄電池12について、例えば車両の長期放置時における意図しない放電を抑制できる。また、図1や図6の構成とは異なりリレースイッチ25を省略でき、構成を簡素化できる。
また、リチウムイオン蓄電池12側の分岐経路L4において、一対の半導体スイッチ51,52のオンにより鉛蓄電池11側の分岐経路L3よりも経路抵抗を小さくすることができる。これにより、エネルギ効率の高い方のリチウムイオン蓄電池12を優先的に用いて、第1負荷15に対する電力供給を行うことができる。
なお、一対の半導体スイッチ51,52は、各ダイオードD3,D4のアノード同士が接続される、いわゆるバックツーバック接続となっているが、これを変更し、各ダイオードD3,D4のカソード同士が接続されるように構成されていてもよい。
また、分岐経路L4に設けた一対の半導体スイッチの直列接続体を、分岐経路L3に設ける構成であってもよい。この場合、上記と同様に一対の半導体スイッチにおいて、各入出力端子間に並列に、順方向を互いに逆にしてダイオードが設けられているとよい。
・さらに、電源システムを図8、図9に示す構成としてもよい。これら図8、図9では、上記図7と比べて、分岐経路L3における構成のみが相違する。
図8では、分岐経路L3に、同じ向きで複数(図では2つ)のダイオードD11,D12が直列に設けられている。つまり、ダイオードD11,D12は分岐経路L4のダイオードD3と向かい合わせとなる向きで設けられており、これが「第1ダイオード」に相当する。この場合、分岐経路L3においてはダイオードD11,D12を介して通電が行われるため、単一のダイオードを設ける場合よりも電圧降下が大きくなり、リチウムイオン蓄電池12からの放電を優先的に行わせることができる。
また、図9では、分岐経路L3に、同じ向きのダイオードD11,D12を含む複数(図では2つ)の半導体スイッチ23a,23bが直列に設けられている。半導体スイッチ23a,23bが「第1半導体スイッチ」に相当する。そして、制御部30により半導体スイッチ23a,23bを個々に制御することとし、半導体スイッチ23a,23bの両方をオンすること、及びいずれか一方をオンすることを可能とする。この場合、半導体スイッチ23a,23bのオンオフのパターンにより、分岐経路L3における電圧降下量を変えることができ、リチウムイオン蓄電池12の放電をより細かく調整することができる。
その他、分岐経路L3に、分岐経路L4側のダイオードD3(又は図1のダイオードD2)と向かい合わせとなる向きのダイオードと、それと同じ向きのダイオードを含む半導体スイッチとが直列に設けられる構成であってもよい。図9の構成と併せ考えると、要するに、分岐経路L3に、同じ向きで複数のダイオード(第1ダイオードに相当)が直列に設けられ、そのうち少なくとも1つが半導体スイッチの入出力端子間に並列に接続されているとよい。
・各蓄電池11,12における開放電圧の差に基づいて各スイッチ21〜24のオンオフを制御する場合において、各蓄電池11,12のうちリチウムイオン蓄電池12の開放電圧が高い場合に、第1スイッチ21をオン、第2スイッチ22をオフ、第3スイッチ23をオフ、第4スイッチ24をオンに制御し(すなわち図3(b)の状態とし)、鉛蓄電池11の開放電圧が高い場合に、第1スイッチ21をオフ、第2スイッチ22をオン、第3スイッチ23をオン、第4スイッチ24をオフに制御する(すなわち図4(a)の状態とする)構成としてもよい。この場合、開放電圧の高い方の蓄電池を優先しながら、第1負荷15に対していずれかの蓄電池を放電させることができる。
・第2負荷16には、車両走行をアシストするアシスト動力を出力する駆動装置が含まれていてもよい。この場合、駆動装置の回転軸は、エンジン出力軸に対して駆動連結されており、駆動装置の回転軸の回転によってエンジン出力軸が回転する。なお、駆動装置として、発電機能と動力出力機能とを有するISG(Integrated Starter Generator)を採用することも可能である。
・第1負荷15と第2負荷との組み合わせは、上記以外であってもよい。例えば、第1負荷15は定電圧要求負荷を含まないものであってもよい。
・本発明は、電池ユニットUを備えて実現されるものに限られない。つまり、リチウムイオン蓄電池12や各スイッチ21〜25を一体にパック化した構成以外で実現されてもよい。
・電源システムは、第1蓄電池として鉛蓄電池11を備え、第2蓄電池としてリチウムイオン蓄電池12を備えるものに限られない。例えば、第2蓄電池として、ニッケル水素蓄電池など他の二次電池を用いる構成としてもよい。また、第1蓄電池及び第2蓄電池をいずれも鉛蓄電池又はリチウムイオン蓄電池にすることも可能である。
・車載電源装置に限定されず、車載以外の電源装置に本発明を適用することも可能である。
11…鉛蓄電池(第1蓄電池)、12…リチウムイオン蓄電池(第2蓄電池)、15,16…電気負荷、21…第1スイッチ、22…第2スイッチ、23…第3スイッチ、24…第4スイッチ、D1,D2…ダイオード、U…電池ユニット。

Claims (14)

  1. 第1蓄電池(11)と第2蓄電池(12)とを備え、第1電気負荷(15)と第2電気負荷(16)とに対して前記第1蓄電池及び前記第2蓄電池の少なくとも一方から電力を供給する電源システムに適用され、
    前記第1蓄電池から前記第2電気負荷に電力供給する第1経路(L1)に設けられた第1スイッチ(21)と、
    前記第2蓄電池から前記第2電気負荷に電力供給する第2経路(L2)に設けられた第2スイッチ(22)と、
    前記第1蓄電池及び前記第1スイッチの間の第1分岐点(N1)と、前記第2蓄電池及び前記第2スイッチの間の第2分岐点(N2)とを接続する接続経路(L3,L4)において、直列でかつ順方向が向き合うように互いに逆向きに接続された第1ダイオード(D1)及び第2ダイオード(D2)と、
    を備え、
    前記第1ダイオード及び前記第2ダイオードの少なくともいずれかは、前記接続経路において半導体スイッチ(23,24)の入出力端子間に並列に接続されて設けられており、
    前記第1ダイオード及び前記第2ダイオードのうち前記第1蓄電池の側の前記第1ダイオードのアノードが前記第1分岐点に接続された構成と、前記第2蓄電池の側の前記第2ダイオードのアノードが前記第2分岐点に接続された構成との少なくともいずれかを有し、
    前記第1ダイオード及び前記第2ダイオードの各カソードの間となる中間点(N3)に、前記第1電気負荷に電力供給する給電経路(L5)が接続される構成となっている電源装置。
  2. 前記第1電気負荷への電力供給時に、前記第1蓄電池及び前記第2蓄電池における放電の優先度に基づいて前記半導体スイッチのオンオフを制御する制御部(30)を備える請求項に記載の電源装置。
  3. 前記第1ダイオードは、前記中間点に対して前記第1蓄電池の側において第1半導体スイッチ(23)の入出力端子間に並列に接続されて設けられ、前記第2ダイオードは、前記中間点に対して前記第2蓄電池の側において第2半導体スイッチ(24)の入出力端子間に並列に接続されて設けられており、
    前記制御部は、前記第1スイッチがオン、前記第2スイッチがオフの場合に、前記第1半導体スイッチをオフ、前記第2半導体スイッチをオンに制御し、前記第1スイッチがオフ、前記第2スイッチがオンの場合に、前記第1半導体スイッチをオン、前記第2半導体スイッチをオフに制御する請求項に記載の電源装置。
  4. 前記第1ダイオードは、前記中間点に対して前記第1蓄電池の側において第1半導体スイッチ(23)の入出力端子間に並列に接続されて設けられ、前記第2ダイオードは、前記中間点に対して前記第2蓄電池の側において第2半導体スイッチ(24)の入出力端子間に並列に接続されて設けられており、
    前記第1蓄電池と前記第2蓄電池とは蓄電状態に対する開放電圧の相関が相違しており、
    前記制御部は、前記各蓄電池における開放電圧の差に基づいて、前記第1半導体スイッチ及び前記第2半導体スイッチのオンオフを制御する請求項2又は3に記載の電源装置。
  5. 前記第2蓄電池は、前記第1蓄電池に比べて充放電時のエネルギ効率が高い蓄電池であり、
    前記第1ダイオード及び前記第2ダイオードのうち前記中間点に対して前記第2蓄電池の側の前記第2ダイオードのみが、前記半導体スイッチの入出力端子間に並列に接続されて設けられている請求項1又は2に記載の電源装置。
  6. 前記接続経路において前記中間点を挟んで一方の側には、各々に入出力端子間に並列に接続されたダイオード(D3,D4)を有し、そのダイオードの向きが互いに逆向きとされた状態で直列接続された一対の半導体スイッチ(51,52)が設けられており、
    前記一対の半導体スイッチのうちいずれかの半導体スイッチの側の前記ダイオードにより、前記第1ダイオード及び前記第2ダイオードのいずれかが構成されている請求項1又は2に記載の電源装置。
  7. 前記第2蓄電池は、前記第1蓄電池に比べて充放電時のエネルギ効率が高い蓄電池であり、
    前記接続経路において前記中間点を挟んで両側のうち前記第2蓄電池の側に、前記一対の半導体スイッチが設けられている請求項に記載の電源装置。
  8. 第1蓄電池(11)と第2蓄電池(12)とを備え、前記第1蓄電池と前記第2蓄電池とは蓄電状態に対する開放電圧の相関が相違しており、第1電気負荷(15)と第2電気負荷(16)とに対して前記第1蓄電池及び前記第2蓄電池の少なくとも一方から電力を供給する電源システムに適用され、
    前記第1蓄電池から前記第2電気負荷に電力供給する第1経路(L1)に設けられた第1スイッチ(21)と、
    前記第2蓄電池から前記第2電気負荷に電力供給する第2経路(L2)に設けられた第2スイッチ(22)と、
    前記第1蓄電池及び前記第1スイッチの間の第1分岐点(N1)と、前記第2蓄電池及び前記第2スイッチの間の第2分岐点(N2)とを接続する接続経路(L3,L4)において、直列でかつ順方向が向き合うように互いに逆向きに接続された第1ダイオード(D1)及び第2ダイオード(D2)と、
    を備え、
    前記第1ダイオードは、前記第1ダイオード及び前記第2ダイオードの各カソードの間となる中間点(N3)に対して前記第1蓄電池の側において第1半導体スイッチ(23)の入出力端子間に並列に接続されて設けられ、前記第2ダイオードは、前記中間点に対して前記第2蓄電池の側において第2半導体スイッチ(24)の入出力端子間に並列に接続されて設けられており、
    記中間点に、前記第1電気負荷に電力供給する給電経路(L5)が接続される構成となっており、
    前記各蓄電池における開放電圧の差に基づいて、前記第1半導体スイッチ及び前記第2半導体スイッチのオンオフを制御する制御部(30)を備える電源装置。
  9. 前記制御部は、前記第1スイッチがオン、前記第2スイッチがオフの場合に、前記第1半導体スイッチをオフ、前記第2半導体スイッチをオンに制御し、前記第1スイッチがオフ、前記第2スイッチがオンの場合に、前記第1半導体スイッチをオン、前記第2半導体スイッチをオフに制御する請求項に記載の電源装置。
  10. 第1蓄電池(11)と第2蓄電池(12)とを備え、前記第2蓄電池は、前記第1蓄電池に比べて充放電時のエネルギ効率が高い蓄電池であり、第1電気負荷(15)と第2電気負荷(16)とに対して前記第1蓄電池及び前記第2蓄電池の少なくとも一方から電力を供給する電源システムに適用され、
    前記第1蓄電池から前記第2電気負荷に電力供給する第1経路(L1)に設けられた第1スイッチ(21)と、
    前記第2蓄電池から前記第2電気負荷に電力供給する第2経路(L2)に設けられた第2スイッチ(22)と、
    前記第1蓄電池及び前記第1スイッチの間の第1分岐点(N1)と、前記第2蓄電池及び前記第2スイッチの間の第2分岐点(N2)とを接続する接続経路(L3,L4)において、直列でかつ順方向が向き合うように互いに逆向きに接続された第1ダイオード(D1)及び第2ダイオード(D2)と、
    を備え、
    前記第1ダイオード及び前記第2ダイオードのうち前記第2蓄電池の側の前記第2ダイオードのみが、前記接続経路において半導体スイッチ(24)の入出力端子間に並列に接続されて設けられており、
    前記第1ダイオード及び前記第2ダイオードの各カソードの間となる中間点(N3)に、前記第1電気負荷に電力供給する給電経路(L5)が接続される構成となっている電源装置。
  11. 前記第1電気負荷への電力供給時に、前記第1蓄電池及び前記第2蓄電池における放電の優先度に基づいて前記半導体スイッチのオンオフを制御する制御部(30)を備える請求項10に記載の電源装置。
  12. 前記第1電気負荷は、供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される電気負荷である請求項1乃至11のいずれか1項に記載の電源装置。
  13. 前記給電経路に給電スイッチ(25)が設けられている請求項1乃至12のいずれか1項に記載の電源装置。
  14. 前記第1蓄電池及び前記第2蓄電池に対して充電用の電力を供給する発電機(17)を備え、前記第1経路を介して前記発電機から前記第1蓄電池への充電を可能とし、前記第2経路を介して前記発電機から前記第2蓄電池への充電を可能とするものであり、
    前記第1経路及び前記第2経路は、前記発電機からの発電電力を流す大電力経路であり、前記接続経路及び前記給電経路は、前記第1経路及び前記第2経路よりも最大許容電力の小さい小電力経路である請求項1乃至13のいずれか1項に記載の電源装置。
JP2015178792A 2015-09-10 2015-09-10 電源装置 Active JP6468138B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015178792A JP6468138B2 (ja) 2015-09-10 2015-09-10 電源装置
PCT/JP2016/076661 WO2017043641A1 (ja) 2015-09-10 2016-09-09 電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015178792A JP6468138B2 (ja) 2015-09-10 2015-09-10 電源装置

Publications (3)

Publication Number Publication Date
JP2017052446A JP2017052446A (ja) 2017-03-16
JP2017052446A5 JP2017052446A5 (ja) 2017-12-21
JP6468138B2 true JP6468138B2 (ja) 2019-02-13

Family

ID=58239987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015178792A Active JP6468138B2 (ja) 2015-09-10 2015-09-10 電源装置

Country Status (2)

Country Link
JP (1) JP6468138B2 (ja)
WO (1) WO2017043641A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6540565B2 (ja) * 2016-03-16 2019-07-10 株式会社オートネットワーク技術研究所 車両用電源供給システム、車両用駆動システム
JP6904051B2 (ja) 2017-05-17 2021-07-14 株式会社オートネットワーク技術研究所 車両用電源装置
JP7013745B2 (ja) * 2017-09-12 2022-02-15 株式会社デンソー 電池パック
JP7098911B2 (ja) * 2017-11-06 2022-07-12 株式会社デンソー 電源システム
EP3626505A1 (en) 2018-09-18 2020-03-25 KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH A system and method for providing redundant electric power
JP7067434B2 (ja) * 2018-11-15 2022-05-16 トヨタ自動車株式会社 充電装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007062955B4 (de) * 2007-12-21 2011-06-01 Catem Develec Gmbh & Co. Kg Schaltung zur Spannungsstabilisierung eines Bordnetzes
JP5488046B2 (ja) * 2010-02-25 2014-05-14 株式会社デンソー 車載電源装置
JP5488169B2 (ja) * 2010-04-27 2014-05-14 株式会社デンソー 電源装置
JP6111967B2 (ja) * 2013-10-08 2017-04-12 株式会社オートネットワーク技術研究所 電源システム
DE102014201348A1 (de) * 2014-01-27 2015-07-30 Robert Bosch Gmbh Verfahren zum Betrieb eines Bordnetzes
JP6090199B2 (ja) * 2014-02-14 2017-03-08 株式会社デンソー 電池ユニット

Also Published As

Publication number Publication date
WO2017043641A1 (ja) 2017-03-16
JP2017052446A (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6468138B2 (ja) 電源装置
JP6380171B2 (ja) 電源システム
JP6221796B2 (ja) 電池ユニット及び電源システム
WO2018088111A1 (ja) 電源制御装置、及び電池ユニット
JP6260422B2 (ja) 電池ユニット
JP6090195B2 (ja) 電池ユニット
JP6844611B2 (ja) 電源システム及びその制御方法
CN110192320B (zh) 电源装置和电源系统
JP6406328B2 (ja) 電源装置及び電池ユニット
JP6878782B2 (ja) 電源制御装置、及び電源システム
CN110832729B (zh) 电源控制装置和电池单元
WO2018061681A1 (ja) 電源システム、及び電池ユニット
JP2018139462A (ja) 電源装置
JP6724675B2 (ja) スイッチ制御装置、電源ユニット及び電源システム
JP6406205B2 (ja) 電源装置
WO2018074545A1 (ja) 電源装置
JP2019519191A (ja) バッテリー逆電圧防止システム及び方法
JP7098911B2 (ja) 電源システム
WO2017065161A1 (ja) 電源装置及び電池ユニット
JP7073619B2 (ja) 電源制御装置、電池ユニット及び電源システム
JP6260728B2 (ja) 電池ユニット
WO2018131367A1 (ja) 電源装置及び電源システム
JP2019068539A (ja) 車両用電源システム及び車両用電源システムの制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181231

R151 Written notification of patent or utility model registration

Ref document number: 6468138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250