JP6620769B2 - 制御システム - Google Patents

制御システム Download PDF

Info

Publication number
JP6620769B2
JP6620769B2 JP2017020459A JP2017020459A JP6620769B2 JP 6620769 B2 JP6620769 B2 JP 6620769B2 JP 2017020459 A JP2017020459 A JP 2017020459A JP 2017020459 A JP2017020459 A JP 2017020459A JP 6620769 B2 JP6620769 B2 JP 6620769B2
Authority
JP
Japan
Prior art keywords
control device
current
electrical machine
rotating electrical
ecu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017020459A
Other languages
English (en)
Other versions
JP2018129917A (ja
Inventor
敏和 秋田
敏和 秋田
猪熊 賢二
賢二 猪熊
良紀 市原
良紀 市原
ガフン ジョン
ガフン ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017020459A priority Critical patent/JP6620769B2/ja
Priority to DE112018000715.4T priority patent/DE112018000715T5/de
Priority to PCT/JP2018/002890 priority patent/WO2018147127A1/ja
Publication of JP2018129917A publication Critical patent/JP2018129917A/ja
Application granted granted Critical
Publication of JP6620769B2 publication Critical patent/JP6620769B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/025Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a power interruption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、車両等に搭載される電源システムに適用され、電源システムに関する制御を実施する複数の制御装置を備える制御システムに関する。
従来、この種の制御システムとして、発電機の発電目標値を設定する目標設定部と、目標設定部に通信自在に接続され、発電目標値に基づいて発電機を制御する発電制御部とを備えるものがある(特許文献1参照)。特許文献1に記載のものでは、発電制御部は、目標設定部との通信異常が検出された場合に、メモリ部に記憶される電流上限値以下に発電機の発電電流を制御する自立発電制御を実行している。そして、特許文献1に記載のものでは、電流上限値として、共通の発電機を使用する車種に対応した第1電流上限値と、自車両に対応する第2電流上限値とを用いている。
特開2016−193631号公報
ところで、通電経路の各部に流すことが可能な電流の上限値は、通電経路の構成や、通電経路のスイッチの開閉状態に応じて異なる。特許文献1に記載のものは、自車両に対応する第2電流上限値しか考慮しておらず、未だ改善の余地を残すものとなっている。
本発明は、上記課題を解決するためになされたものであり、その主たる目的は、通電経路の構成や状態に応じて、電流上限値を適切に設定することのできる制御システムを提供することにある。
上記課題を解決するための第1の手段は、
回転電機(21)と、前記回転電機に対して並列接続された第1蓄電部(11)、第2蓄電部(12)、及び電気負荷(14、15)と、前記第1蓄電部、前記第2蓄電部、及び前記電気負荷の少なくとも1つと前記回転電機とを導通及び遮断するスイッチ(31、32、36、39)と、を備える電源システム(10)に適用される制御システムであって、
前記スイッチを制御する第1制御装置(37)と、
前記回転電機の発電及び力行の作動を制御する第2制御装置(23)と、
前記第1制御装置及び前記第2制御装置を統括的に管理する第3制御装置(40)と、を備え、
前記第1制御装置、前記第2制御装置、及び前記第3制御装置は、信号伝達経路(41)により相互に信号伝達が可能になっており、
前記第3制御装置は、前記スイッチの状態に基づいて、複数の電流制限フラグから選択した1つの電流制限フラグを前記第2制御装置に対して送信し、
前記第2制御装置は、前記第3制御装置から受信した前記電流制限フラグに基づいて、前記回転電機の前記発電における発電電流の上限値を設定する。
上記構成によれば、回転電機と、第1蓄電部、第2蓄電部、及び電気負荷とが、並列接続されている。スイッチにより、第1蓄電部、第2蓄電部、及び電気負荷の少なくとも1つと、回転電機とが導通及び遮断される。そして、第1制御装置によりスイッチが制御される。第2制御装置により、回転電機の発電及び力行の作動が制御される。第3制御装置により、第1制御装置及び第2制御装置が統括的に管理される。また、第1制御装置、第2制御装置、及び第3制御装置は、信号伝達経路により相互に信号伝達が可能になっている。
ここで、スイッチの状態に応じて、回転電機から第1蓄電部、第2蓄電部、及び電気負荷への通電経路が変化する。そして、各通電経路に流すことのできる電流の上限値は、必ずしも一致しない。このため、各通電経路に応じた電流上限値を適切に設定しなければ、各通電経路に設けられたスイッチやヒューズを破損するおそれがある。
この点、第3制御装置により、スイッチの状態に基づいて、複数の電流制限フラグから選択された1つの電流制限フラグが第2制御装置に対して送信される。そして、第2制御装置により、第3制御装置から受信した電流制限フラグに基づいて、回転電機の発電における発電電流の上限値が設定される。したがって、通電経路の構成や状態に応じて、電流上限値を適切に設定することができる。さらに、第2制御装置は、第3制御装置から電流制限フラグを受信するだけであり、信号伝達の負荷が増加することを抑制することができる。しかも、第2制御装置は、回転電機の発電における発電電流の上限値を設定するだけであり、発電における処理負荷が増加することを抑制することができる。
第2の手段では、前記第1制御装置は、前記スイッチが異常である場合に、前記スイッチの異常の状態に応じた異常信号を前記第3制御装置に対して送信し、前記第3制御装置は、前記第1制御装置から受信した前記異常信号に基づいて、複数の電流制限フラグから選択した1つの電流制限フラグを前記第2制御装置に対して送信する。
上記構成によれば、第1制御装置により、スイッチが異常である場合に、スイッチの異常の状態に応じた異常信号が第3制御装置に対して送信される。このため、第3制御装置は、異常信号に基づいてスイッチの異常の状態を把握することができる。そして、第3制御装置により、第1制御装置から受信した異常信号に基づいて、複数の電流制限フラグから選択された1つの電流制限フラグが第2制御装置に対して送信される。したがって、第2制御装置は、スイッチの異常の状態に応じて、適切な電流上限値を設定することができる。
第3の手段では、前記第3制御装置は、前記第1制御装置に対して前記スイッチの制御に関する指令信号を送信し、前記第1制御装置は、前記第3制御装置から受信した前記指令信号に基づいて、前記スイッチを制御し、前記第3制御装置は、前記指令信号に基づいて、複数の電流制限フラグから選択した1つの電流制限フラグを前記第2制御装置に対して送信する。
上記構成によれば、第3制御装置により、第1制御装置に対してスイッチの制御に関する指令信号が送信される。そして、第1制御装置により、第3制御装置から受信した指令信号に基づいて、スイッチが制御される。このため、第3制御装置は、指令信号に基づいてスイッチの動作の状態を把握することができる。そして、第3制御装置により、指令信号に基づいて、複数の電流制限フラグから選択された1つの電流制限フラグが第2制御装置に対して送信される。したがって、第2制御装置は、スイッチの動作状態に応じて、適切な電流上限値を設定することができる。
第4の手段では、前記第1制御装置は、前記スイッチの動作の状態に応じた動作信号を前記第3制御装置に対して送信し、前記第3制御装置は、前記第1制御装置から受信した前記動作信号に基づいて、複数の電流制限フラグから選択した1つの電流制限フラグを前記第2制御装置に対して送信する。
上記構成によれば、第1制御装置により、スイッチの動作の状態に応じた動作信号が第3制御装置に対して送信される。このため、第3制御装置は、動作信号に基づいてスイッチの動作の状態を把握することができる。そして、第3制御装置により、第1制御装置から受信した動作信号に基づいて、複数の電流制限フラグから選択された1つの電流制限フラグが第2制御装置に対して送信される。したがって、第2制御装置は、スイッチの動作の状態に応じて、適切な電流上限値を設定することができる。
第2制御装置と第3制御装置との信号伝達が、何らかの異常により途絶える場合がある。この場合、第2制御装置は、第3制御装置から電流制限フラグを受信することができなくなり、電流制限フラグに基づいて発電電流の上限値を設定することができなくなる。
この点、第5の手段では、前記第2制御装置は、前記第3制御装置との前記信号伝達が途絶えた場合に、前記複数の電流制限フラグのうち発電電流の上限値が最も小さい電流制限フラグに基づいて、前記回転電機の前記発電における発電電流の上限値を設定するといった構成を採用している。このため、第2制御装置と第3制御装置との信号伝達が途絶え
た場合であっても、第2制御装置は、電流制限フラグに基づいて発電電流の上限値を設定することができる。さらに、複数の電流制限フラグのうち発電電流の上限値が最も小さい電流制限フラグに基づいて、発電電流の上限値が設定される。したがって、いずれの通電経路においても、電流が上限値を超えないようにすることができる。
回転電機の発電における発電電流の上限値を設定したとしても、信号のノイズやリプル電流により回転電機の界磁電流の大きさがばらつき、発電電流が上限値を超えるおそれがある。この点、第6の手段では、前記回転電機は、界磁電流に基づいて前記発電を実行するものであり、前記第2制御装置は、前記界磁電流と前記発電電流とで規定される領域において、前記界磁電流の増加量に対する前記発電電流の増加量が大きい領域ほど、前記回転電機の前記発電における発電電流の目標値を前記上限値に対して小さく設定するといった構成を採用している。
このため、界磁電流の大きさがばらついたとしても、発電電流が上限値を超えることを抑制することができる。さらに、界磁電流の増加量に対する発電電流の増加量が小さい領域ほど、回転電機の発電における発電電流の目標値を上限値に近付けて設定することができる。その結果、回転電機の発電電流を過剰に小さくすることを抑制することができる。
一般に、エンジンの駆動力及び界磁電流に基づいて発電を実行する回転電機において、回転電機の回転速度が低いほど、界磁電流の増加量に対する発電電流の増加量が大きくなる。このため、エンジンのアイドル運転時において、アイドル回転速度が低いほど、界磁電流の増加量に対する発電電流の増加量が大きくなり、発電電流がばらつき易くなる。
この点、第7の手段では、前記回転電機は、エンジン(42)の駆動力及び界磁電流に基づいて、前記発電を実行するものであり、前記第3制御装置は、前記第2制御装置により前記回転電機の前記発電における発電電流の前記上限値が設定される場合に、前記エンジンのアイドル回転速度が低いほど、前記アイドル回転速度を大きく上昇させるといった構成を採用している。このため、界磁電流の大きさがばらついたとしても、発電電流が上限値を超えることを抑制することができる。さらに、界磁電流の増加量に対する発電電流の増加量が小さいアイドル回転速度ほど、アイドル回転速度の上昇量を小さくすることができる。その結果、エンジンのアイドル回転速度を過剰に上昇させることを抑制することができる。
電源システムを示す電気回路図。 回転電機ユニットの電気的構成を示す回路図。 回転電機の界磁電流と回転速度と出力電流の関係を示すマップ。 電池ユニットにおける異常発生時の処理の流れを示すタイムチャート。 通信異常発生時の処理の流れを示すタイムチャート。
以下、車両の各種機器に電力を供給する車載電源システムに具現化した一実施形態について、図面を参照して説明する。
図1に示すように、電源システム10は、第1蓄電部としての鉛蓄電池11と第2蓄電部としてのリチウムイオン蓄電池12とを有する2電源システムである。電源システム10では、回転電機ユニット16に対して並列に、鉛蓄電池11、リチウムイオン蓄電池12、及び電気負荷14,15が接続されている。各蓄電池11,12からは、スタータ13や、各種の電気負荷14,15、回転電機ユニット16への給電が可能となっている。また、各蓄電池11,12に対しては、回転電機ユニット16による充電が可能となっている。
鉛蓄電池11は周知の汎用蓄電池である。これに対し、リチウムイオン蓄電池12は、鉛蓄電池11に比べて、充放電における電力損失が少なく、出力密度、及びエネルギ密度の高い高密度蓄電池である。リチウムイオン蓄電池12は、鉛蓄電池11に比べて充放電時のエネルギ効率が高い蓄電池であるとよい。また、リチウムイオン蓄電池12は、それぞれ複数の単電池を有してなる組電池として構成されている。これら各蓄電池11,12の定格電圧はいずれも同じであり、例えば12Vである。
図示による具体的な説明は割愛するが、リチウムイオン蓄電池12は、収容ケースに収容されて基板一体の電池ユニットUとして構成されている。電池ユニットUは、出力端子P1〜P4を有している。出力端子P1に鉛蓄電池11とスタータ13と電気負荷14とが接続され、出力端子P2に回転電機ユニット16が接続され、出力端子P4に電気負荷15が接続されている。鉛蓄電池11及びスタータ13はヒューズ17を介して出力端子P1に接続されている。
各電気負荷14,15は、各蓄電池11,12から供給される供給電力の電圧について要求が相違するものである。このうち電気負荷14には、供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される定電圧要求負荷が含まれる。これに対し、電気負荷15は、定電圧要求負荷以外の一般的な電気負荷である。電気負荷14は被保護負荷とも言える。また、電気負荷14は電源失陥が許容されない負荷であり、電気負荷15は、電気負荷14に比べて電源失陥が許容される負荷であるとも言える。
定電圧要求負荷である電気負荷14の具体例としては、ナビゲーション装置やオーディオ装置、メータ装置、エンジンECU等の各種ECUが挙げられる。この場合、供給電力の電圧変動が抑えられることで、上記各装置において不要なリセット等が生じることが抑制され、安定動作が実現可能となっている。電気負荷14として、電動ステアリング装置やブレーキ装置等の走行系アクチュエータが含まれていてもよい。また、電気負荷15の具体例としては、シートヒータやリヤウインドウのデフロスタ用ヒータ、ヘッドライト、フロントウインドウのワイパ、空調装置の送風ファン等が挙げられる。
回転電機ユニット16は、3相交流モータとしての回転電機21と、電力変換装置としてのインバータ22と、回転電機21の作動を制御する回転電機ECU23とを備えている。回転電機ユニット16は、モータ機能付き発電機であり、機電一体型のISG(Integrated Starter Generator)として構成されている。
ここで、回転電機ユニット16の電気的構成について図2を用いて説明する。回転電機21は、3相電機子巻線としてU相、V相、W相の相巻線24U,24V,24Wと、界磁巻線25とを備えている。回転電機21の回転軸は、図示しないエンジン出力軸に対してベルトにより駆動連結されている。エンジン出力軸の回転によって回転電機21の回転軸が回転する一方、回転電機21の回転軸の回転によってエンジン出力軸が回転する。つまり、回転電機ユニット16は、エンジン出力軸や車軸の回転により発電(回生発電)を行う発電機能と、エンジン出力軸に回転力を付与する力行機能とを備えている。
インバータ22は、各相巻線24U,24V,24Wから出力される交流電圧を直流電圧に変換して電池ユニットUに対して出力する。また、インバータ22は、電池ユニットUから入力される直流電圧を交流電圧に変換して各相巻線24U,24V,24Wへ出力する。インバータ22は、相巻線の相数と同数の上下アームを有するブリッジ回路であり、3相全波整流回路を構成している。また、インバータ22は、回転電機21に供給される電力を調節することで回転電機21を駆動する駆動回路を構成している。
インバータ22は、相ごとに上アームスイッチSp及び下アームスイッチSnを備えている。本実施形態では、各スイッチSp,Snとして、電圧制御形の半導体スイッチング素子を用いており、具体的には、NチャネルMOSFETを用いている。上アームスイッチSpには、上アームダイオードDpが逆並列に接続され、下アームスイッチSnには、下アームダイオードDnが逆並列に接続されている。本実施形態では、各ダイオードDp,Dnとして、各スイッチSp,Snのボディダイオードを用いている。なお、各ダイオードDp,Dnとしては、ボディダイオードに限らず、例えば各スイッチSp,Snとは別部品のダイオードであってもよい。
各相におけるスイッチSp,Snの直列接続体の中間接続点は、各相巻線24U,24V,24Wの一端にそれぞれ接続されている。また、インバータ22の高圧側経路と低圧側経路との間には、インバータ22の入出力の電圧を検出する電圧センサ26が設けられている。その他、回転電機ユニット16には、各相巻線24U,24V,24Wを流れる電流を検出する電流センサ27と、界磁巻線25に流れる電流を検出する電流センサ28が設けられている。なお、電流センサ27は、インバータ22と各相巻線との間に設けられていてもよいし、下アームスイッチSnとグランドラインとの間に相ごとに設けられていてもよい。上記各センサ26〜28の検出信号は回転電機ECU23に適宜入力される。また、図示は略すが、回転電機21には、回転子の角度情報を検出する回転角度センサが設けられ、インバータ22には、その回転角度センサからの信号を処理する信号処理回路が設けられている。
回転電機ECU23は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。回転電機ECU23は、その内部の図示しないICレギュレータにより、界磁巻線25に流す励磁電流(界磁電流)を調整する。これにより、回転電機ユニット16の発電電圧(電池ユニットUに対する出力電圧)が制御される。また、回転電機ECU23は、車両の走行開始後にインバータ22を制御して回転電機21を駆動させて、エンジン42の駆動力をアシストする。回転電機21は、エンジン始動時にクランク軸に初期回転を付与することが可能であり、エンジン始動装置としての機能も有している。なお、図1において、回転電機ECU23に鉛蓄電池11が接続されているとよい。
次に、電池ユニットUにおける電気的構成を説明する。図1に示すように、電池ユニットUには、ユニット内電気経路(通電経路)として、各出力端子P1,P2を繋ぐ電気経路L1と、電気経路L1上の点N1とリチウムイオン蓄電池12とを繋ぐ電気経路L2とが設けられている。このうち電気経路L1にスイッチ31が設けられ、電気経路L2にスイッチ32が設けられている。なお、鉛蓄電池11とリチウムイオン蓄電池12とを接続する電気経路で言えば、回転電機ユニット16との接続点N1よりも鉛蓄電池11の側にスイッチ31が設けられ、接続点N1よりもリチウムイオン蓄電池12の側にスイッチ32が設けられている。
これら各スイッチ31,32は、例えば2×n個のMOSFET(半導体スイッチング素子)を備え、その2つ一組のMOSFETの寄生ダイオードが互いに逆向きになるように直列に接続されている。この寄生ダイオードによって、各スイッチ31,32をオフ状態とした場合にそのスイッチが設けられた経路に流れる電流が完全に遮断される。なお、スイッチ31,32として、MOSFETに代えて、IGBTやバイポーラトランジスタ等を用いることも可能である。
電気経路L1においてスイッチ31よりもP1側には電圧センサ33が設けられ、スイッチ31よりもP2側には電圧センサ34が設けられている。電圧センサ33により出力端子P1の端子電圧が検出され、電圧センサ34により出力端子P2の端子電圧が検出される。
また、電池ユニットUには、スイッチ31を迂回するバイパス経路L3が設けられている。バイパス経路L3は、出力端子P3と電気経路L1上の点N1とを接続するようにして設けられている。出力端子P3はヒューズ35を介して鉛蓄電池11に接続されている。バイパス経路L3によって、スイッチ31を介さずに、鉛蓄電池11と電気負荷15及び回転電機ユニット16との接続が可能となっている。バイパス経路L3には、例えば常閉式の機械式リレーからなるバイパススイッチ36が設けられている。バイパススイッチ36を閉鎖することで、スイッチ31がオフ(開放)されていても鉛蓄電池11と電気負荷15及び回転電機ユニット16とが電気的に接続される。電気負荷15はヒューズ38を介して出力端子P4に接続されており、出力端子P4はスイッチ39を介して出力端子P2及び点N1に接続されている。スイッチ39は、スイッチ31,32と同様のスイッチである。ここで、ヒューズ35の容量A1よりもヒューズ38の容量A2が大きく、ヒューズ38の容量A2よりもヒューズ17の容量A3が大きくなっている(A1<A2<A3)。
電池ユニットUは、各スイッチ31,32のオンオフ(開閉)を制御する電池ECU37を備えている。電池ECU37は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されている。電池ECU37は、各蓄電池11,12の蓄電状態や、上位制御装置であるエンジンECU40からの指令値に基づいて、各スイッチ31,32のオンオフを制御する。これにより、鉛蓄電池11とリチウムイオン蓄電池12とを選択的に用いて充放電が実施される。例えば、電池ECU37は、リチウムイオン蓄電池12のSOC(残存容量:State Of Charge)を算出し、そのSOCが所定の使用範囲内に保持されるようにリチウムイオン蓄電池12への充電量及び放電量を制御する。また、電池ECU37は、エンジンECU40からの指令値に基づいて、スイッチ39のオンオフを制御する。
回転電機ユニット16の回転電機ECU23や電池ユニットUの電池ECU37には、これら各ECU23,37を統括的に管理する上位制御装置としてのエンジンECU40が接続されている。エンジンECU40は、CPU、ROM、RAM、入出力インターフェース等を含むマイコンにより構成されており、都度のエンジン運転状態や車両走行状態に基づいて、エンジン42の運転を制御する。エンジンECU40は、回転電機ECU23へ電圧指令値及びトルク指令値を送信する。回転電機ECU23は、エンジンECU40から受信した電圧指令値及びトルク指令値に基づいて、界磁巻線25に流す励磁電流及びインバータ22の動作を制御する。
これら各ECU23,37,40は、CAN等の通信ネットワークを構築する通信線41により接続されて相互に通信可能(信号伝達可能)となっており、所定周期で双方向の通信が実施される。これにより、各ECU23,37,40に記憶される各種データが互いに共有できるものとなっている。なお、電池ECU37が「第1制御装置」に相当し、回転電機ECU23が「第2制御装置」に相当し、エンジンECU40が「第3制御装置」に相当する。また、通信線41が「信号伝達経路」に相当する。電池ECU37、回転電機ECU23、及びエンジンECU40により、制御システムが構成されている。
ところで、電池ユニットUでは、各スイッチ31,32においてオフ故障(開きっぱなし故障)の発生が懸念される。そこで、電池ECU37は、各スイッチ31,32のオフ故障の有無を判定するとともに、オフ故障の発生時において、リチウムイオン蓄電池12の使用(すなわち充放電)を禁止すべく各スイッチ31,32に対してオフ信号を出力する。スイッチ31,32がオフされる際には、バイパススイッチ36に対する開放指令が停止され、それに伴いバイパススイッチ36が閉鎖状態に移行する。かかる状態下では、鉛蓄電池11側がバイパス経路L3を介して回転電機ユニット16に接続される。このとき、スイッチ32がオフされることにより、リチウムイオン蓄電池12と回転電機ユニット16との間が遮断される。
なお上記以外に、電池ユニットUでは、リチウムイオン蓄電池12の異常高温が生じることが懸念される。そこで、電池ECU37は、ユニット内に設けた温度センサ等によりリチウムイオン蓄電池12が異常高温状態にあるか否かを判定するとともに、異常高温の発生時において、リチウムイオン蓄電池12の使用を禁止すべく各スイッチ31,32に対してオフ信号を出力する。この場合にも、上記同様、バイパススイッチ36が閉鎖状態に移行し、鉛蓄電池11側がバイパス経路L3を介して回転電機ユニット16に接続される。
ここで、電池ユニットUにおいてスイッチ31,32をオフし、かつバイパススイッチ36をオンした状態下で回転電機21の発電を制限しないままにしておくと、バイパス経路L3のヒューズ35やバイパススイッチ36での許容値を超える大きさの電流(過電流)が流れることが考えられる。つまり、リチウムイオン蓄電池12の充放電が停止された状態では、電源システム10において鉛蓄電池11のみで充放電が行われることになり、回転電機21から鉛蓄電池11の側への過剰放電が生じることが懸念される。そして、バイパス経路L3に過電流が流れると、ヒューズ35の溶断やバイパススイッチ36の破損が生じ、ひいては車両において所望の退避走行状態を継続できなくなることが懸念される。
これに対して、電池ECU37は、スイッチオフ故障や異常高温等の異常発生時には、スイッチ31,32やリチウムイオン蓄電池12の異常の状態に応じた異常信号を、通信線41を介してエンジンECU40に対して送信する。
そして、エンジンECU40は、電池ECU37から受信した異常信号(スイッチ31,32,36,39の状態)に基づいて、複数の電流制限フラグから選択した1つの電流制限フラグを回転電機ECU23に対して送信する。複数の電流制限フラグは、異常信号により把握されるスイッチ31,32,36,39の開閉状態に応じてそれぞれ設定されている。例えば、スイッチ31,32,39が開放されており、スイッチ36が閉鎖されている状態に対しては、発電電流の上限値が最も小さい電流制限フラグ1が設定されている。スイッチ31,32,36が開放されており、スイッチ39が閉鎖されている状態に対しては、電流制限フラグ1よりも発電電流の上限値が大きい電流制限フラグ2が設定されている。スイッチ32,36,39が開放されており、スイッチ31が閉鎖されている状態に対しては、発電電流の上限値が電流制限フラグ2よりも大きい電流制限フラグ3が設定されている。すなわち、本実施形態では、それぞれヒューズ35,38,17を有する電気経路に電流が流れる場合に、ヒューズ35,38,17の容量の大きさ(各電気経路に流すことのできる電流の上限値)に応じて電流制限フラグ(発電電流の上限値)が設定されている。また、複数のヒューズに電流が流れる場合には、1つのヒューズのみに電流が流れる場合よりも発電電流の上限値が大きい電流制限フラグを設定するとよい。
回転電機ECU23は、電池ユニットUでの異常発生に対するフェイルセーフ処理として、エンジンECU40から受信した電流制限フラグに基づいて、回転電機21の発電電流の上限値を設定する。そして、回転電機ECU23は、回転電機21の界磁巻線25に流す励磁電流を調整することにより、回転電機21から出力される発電電流を上限値以下に制限する。回転電機21の出力制限として、発電電力をゼロにすることも可能である。なお、回転電機21の発電電流の制限を、各相巻線に流れる電流を調整することにより実施することも可能である。
また、回転電機ECU23とエンジンECU40との通信が、何らかの異常により途絶える場合がある。この場合、回転電機ECU23は、エンジンECU40から電流制限フラグを受信することができなくなり、電流制限フラグに基づいて発電電流の上限値を設定することができなくなる。
そこで、回転電機ECU23は、エンジンECU40との通信が途絶えた場合に、複数の電流制限フラグのうち発電電流の上限値が最も小さい電流制限フラグに基づいて、回転電機21の発電電流の上限値を設定する。具体的には、回転電機ECU23は、上記電流制限フラグ1をエンジンECU40から受信した場合と同様に、発電電流の上限値を設定する。
さらに、回転電機21の発電における発電電流の上限値を設定したとしても、信号のノイズやリプル電流により回転電機21の界磁電流の大きさがばらつき、発電電流が上限値を超えるおそれがある。この点、本実施形態では、図3に示すように、回転電機ECU23は、界磁電流と出力電流(発電電流)とで規定される領域において、界磁電流の増加量に対する発電電流の増加量が大きい領域ほど、回転電機21の発電における発電電流の目標値を上限値に対して小さく設定する。すなわち、領域R1における界磁電流の増加量に対する発電電流の増加量は、領域R2における界磁電流の増加量に対する発電電流の増加量よりも大きくなっている。このため、回転電機ECU23は、発電電流の上限値が設定された場合に、領域R1では領域R2と比較して、発電電流の目標値を発電電流の上限値に対して小さく設定する。また、回転電機21の発電において、インバータ22によりPWM整流を行う場合は、インバータ22により同期整流を行う場合よりも、界磁電流の増加量(あるいは回転電機21の回転速度の上昇量)に対する発電電流の増加量が大きくなる。このため、回転電機ECU23により回転電機21の発電における発電電流の上限値を設定する場合には、インバータ22によりPWM整流を行うことを禁止し、同期整流等の他の整流を行うとよい。
一般に、回転電機21の回転速度が低いほど、界磁電流の増加量に対する発電電流の増加量が大きくなる。例えば、図3に示すように、回転電機21の回転速度が2000rpmの場合は、回転速度が10000rpmの場合と比較して、界磁電流の増加量に対する発電電流の増加量が大きくなる。このため、エンジン42のアイドル運転時において、アイドル回転速度が低いほど、界磁電流の増加量に対する発電電流の増加量が大きくなり、発電電流がばらつき易くなる。なお、回転電機21の回転速度は、エンジン42の回転速度の略2.4倍である。
この点、本実施形態では、エンジンECU40は、回転電機ECU23により回転電機21の発電における発電電流の上限値が設定される場合に、エンジン42のアイドル回転速度が低いほど、アイドル回転速度を大きく上昇させる。例えば、アイドル回転速度が800rpmの場合と1200rpmの場合とにおいて、共にアイドル回転速度を1500rpmまで上昇させる。
図4は、電池ユニットUにおける異常発生時の処理の流れを示すタイムチャートである。
同図において、時刻t11以前においては、電池ユニットUに異常が生じておらず、スイッチ31,32が閉鎖(状況によっては一方のみが開放)、スイッチ36,39が開放の状態にある。エンジンECU40(E−ECU)は、ISG制御モード指令値、トルク指令値、及び電圧指令値(図示略)を、回転電機ECU23(ISG−ECU)へ送信している。ISG制御モード指令値は、0:ニュートラル制御、1:発電制御、2:始動制御、及び3:アシスト制御のいずれを実行するかを示す指令値である。回転電機ECU23は、ISG制御モード指令値、トルク指令値、及び電圧指令値に基づいて、回転電機21の発電及び力行の動作を制御している。
ここで、電池ECU37(電池−ECU)において異常が検出されると、時刻t11において、電池ECU37からエンジンECU40へ異常の状態に応じた異常信号が送信される。これ以後、所定の期間Ta11が経過するまで、異常発生時のスイッチ31,32の開閉状態が維持される。期間Ta11は、回転電機21の発電電流を0まで減少させることのできる期間として設定されている。
時刻t11から期間Ta12が経過すると、時刻t12において、エンジンECU40内で電池異常フラグがオンになる。期間Ta12は、エンジンECU40が異常信号を受信するための通信時間と、エンジンECU40で異常信号を認識するための処理時間との合計である。そして、時刻t13において、ISG制御モード指令値が、1:発電制御に設定されるとともに、異常信号に基づいて選択された電流制限フラグがエンジンECU40から回転電機ECU23へ送信される。
時刻t13から期間Ta13が経過すると、時刻t14において、回転電機ECU23は、ISG制御モードを、0:ニュートラル制御に設定する。期間Ta13は、回転電機ECU23が電流制限フラグを受信するための通信時間と、回転電機ECU23で電流制限フラグを認識するための処理時間との合計である。回転電機ECU23は、電流制限フラグのみを受信及び認識するため、期間Ta13は期間Ta12よりも短くなっている。そして、回転電機ECU23は、トルク指令値を減少させて、回転電機21の発電電流を0Aまで減少させる。回転電機ECU23は、0:ニュートラル制御に設定してから期間Ta14が経過するまで、すなわちスイッチ31,32,36,39の開閉状態が切り替わるまで、0:ニュートラル制御を維持する。
時刻t15において、電池ECU37は、スイッチ31,32を開放するとともに、スイッチ36,39を閉鎖する。このとき、回転電機21の発電電流は0Aになっている。時刻t15よりも後の時刻t16(期間Ta14経過後)において、回転電機ECU23は、ISG制御モード指令値に従ってISG制御モードを、1:発電制御に設定する。このとき、回転電機ECU23は、エンジンECU40から受信した電流制限フラグに基づいて、回転電機21の発電電流を上限値An以下に制限する。すなわち、回転電機ECU23は、回転電機21の発電電流を、電流制限フラグに対応する発電電流の上限値An以下に制限する。このため、時刻t17以降において、回転電機21の発電電流が上限値An以下に制限されている。
図5は、通信異常発生時の処理の流れを示すタイムチャートである。
同図において、時刻t21以前においては、エンジンECU40と回転電機ECU23との通信異常が生じておらず、スイッチ31,32,36,39の開閉状態が制御されている。エンジンECUは、ISG制御モード指令値、トルク指令値、及び電圧指令値(図示略)を、回転電機ECU23へ送信している。回転電機ECU23は、ISG制御モード指令値、トルク指令値、及び電圧指令値に基づいて、回転電機21の発電及び力行の動作を制御している。
ここで、時刻t21において回転電機ECU23において通信異常が検出されると、異常を確定するための異常判定期間Ta21が経過した時刻t22において通信異常が確定する。エンジンECU40においても、時刻t22で通信異常が確定し、通信異常フラグがオンになる。通信異常が確定すると、回転電機ECU23は、ISG制御モードを、0:ニュートラル制御に設定する。そして、回転電機ECU23は、トルク指令値を減少させて、回転電機21の発電電流を0Aまで減少させる。回転電機ECU23は、0:ニュートラル制御に設定してから期間Ta22が経過するまで、すなわち回転電機21の発電電流を0Aまで減少させるために必要な期間が経過するまで、0:ニュートラル制御を維持する。時刻t23において、エンジンECU40は、ISG制御モード指令値を、0:ニュートラル制御に設定する。
時刻t22から期間Ta22が経過すると、回転電機ECU23は、ISG制御モードを、1:発電制御に設定する。このとき、回転電機ECU23は、複数の電流制限フラグのうち発電電流の上限値が最も小さい電流制限フラグ1に基づいて、回転電機21の発電電流を上限値A1以下に制限する。すなわち、回転電機ECU23は、回転電機21の発電電流を、電流制限フラグ1に対応する発電電流の上限値A1以下に制限する。
時刻t25において、回転電機ECU23において通信正常が検出されると、正常を確定するための正常判定期間Ta23が経過した時刻t26において通信正常が確定する。通信正常が確定すると、回転電機ECU23は、ISG制御モード指令値に従ってISG制御モードを、0:ニュートラル制御に設定する。エンジンECU40においては、時刻t27で通信正常が確定し、通信異常フラグがオフになる。
以上詳述した本実施形態は、以下の利点を有する。
・エンジンECU40により、スイッチ31,32,36,39の状態に基づいて、複数の電流制限フラグから選択された1つの電流制限フラグが回転電機ECU23に対して送信される。そして、回転電機ECU23により、エンジンECU40から受信した電流制限フラグに基づいて、回転電機21の発電における発電電流の上限値が設定される。したがって、通電経路の構成や状態に応じて、電流上限値を適切に設定することができる。さらに、回転電機ECU23は、エンジンECU40から電流制限フラグを受信するだけであり、通信の負荷が増加することを抑制することができる。しかも、回転電機ECU23は、回転電機21の発電における発電電流の上限値を設定するだけであり、発電における処理負荷が増加することを抑制することができる。
・スイッチ31,32,36,39が異常である場合に、電池ECU37により、スイッチ31,32,36,39の異常の状態に応じた異常信号がエンジンECU40に対して送信される。このため、エンジンECU40は、異常信号に基づいてスイッチ31,32,36,39の異常の状態を把握することができる。そして、エンジンECU40により、電池ECU37から受信した異常信号に基づいて、複数の電流制限フラグから選択された1つの電流制限フラグが回転電機ECU23に対して送信される。したがって、回転電機ECU23は、スイッチ31,32,36,39の異常の状態に応じて、適切な電流上限値を設定することができる。
・回転電機ECU23は、エンジンECU40との通信が途絶えた場合に、複数の電流制限フラグのうち発電電流の上限値が最も小さい電流制限フラグ1に基づいて、回転電機21の発電における発電電流の上限値A1を設定している。このため、回転電機ECU23とエンジンECU40との通信が途絶えた場合であっても、回転電機ECU23は、電流制限フラグに基づいて発電電流の上限値を設定することができる。さらに、複数の電流制限フラグのうち発電電流の上限値が最も小さい電流制限フラグ1に基づいて、発電電流の上限値A1が設定される。したがって、いずれの電気経路においても、電流が上限値を超えないようにすることができる。
・回転電機ECU23は、界磁電流と発電電流(出力電流)とで規定される領域において、界磁電流の増加量に対する発電電流の増加量が大きい領域ほど、回転電機21の発電における発電電流の目標値を上限値に対して小さく設定している。このため、界磁電流の大きさがばらついたとしても、発電電流が上限値を超えることを抑制することができる。さらに、界磁電流の増加量に対する発電電流の増加量が小さい領域ほど、回転電機21の発電における発電電流の目標値を上限値に近付けて設定することができる。その結果、回転電機21の発電電流を過剰に小さくすることを抑制することができる。
・エンジンECU40は、回転電機ECU23により回転電機21の発電における発電電流の上限値が設定される場合に、エンジン42のアイドル回転速度が低いほど、アイドル回転速度を大きく上昇させている。このため、界磁電流の大きさがばらついたとしても、発電電流が上限値を超えることを抑制することができる。さらに、界磁電流の増加量に対する発電電流の増加量が小さいアイドル回転速度ほど、アイドル回転速度の上昇量を小さくすることができる。その結果、エンジン42のアイドル回転速度を過剰に上昇させることを抑制することができる。
・回転電機ECU23は、電流制限フラグを受信した後は、エンジンECU40との通信を必要とせず、発電電流の上限値を設定することができる。このため、発電電流の上限値を設定する際に、エンジンECU40との通信を常に必要とする構成と比較して、通信による遅延なく発電電流を制限することができる。
なお、上記実施形態を、以下のように変更して実施することもできる。
・上記実施形態では、エンジンECU40は、回転電機ECU23により回転電機21の発電における発電電流の上限値が設定される場合に、エンジン42のアイドル回転速度が低いほど、アイドル回転速度を大きく上昇させている。これに対して、このアイドル回転速度を上昇させる制御を省略することもできる。
・上記実施形態では、回転電機ECU23は、界磁電流と発電電流とで規定される領域において、界磁電流の増加量に対する発電電流の増加量が大きい領域ほど、回転電機21の発電における発電電流の目標値を上限値に対して小さく設定している。これに対して、この回転電機21の発電における発電電流の目標値を、上限値に対して小さく設定する制御を省略することもできる。すなわち、回転電機21の発電における発電電流の目標値を、上限値に対して一律に設定することもできる。
・上記実施形態では、回転電機ECU23は、エンジンECU40との通信が途絶えた場合に、複数の電流制限フラグのうち発電電流の上限値が最も小さい電流制限フラグに基づいて、回転電機21の発電における発電電流の上限値を設定している。これに対して、回転電機ECU23は、エンジンECU40との通信が途絶えた場合に、複数の電流制限フラグのうち標準的な電流制限フラグに基づいて、回転電機21の発電における発電電流の上限値を設定することもできる。
・エンジンECU40(第3制御装置)は、電池ECU37(第1制御装置)に対してスイッチ31,32,36,39の制御に関する指令信号を送信し、電池ECU37は、エンジンECU40から受信した指令信号に基づいて、スイッチ31,32,36,39を制御し、エンジンECU40は、指令信号に基づいて、複数の電流制限フラグから選択した1つの電流制限フラグを回転電機ECU23(第2制御装置)に対して送信することもできる。
上記構成によれば、エンジンECU40により、電池ECU37に対してスイッチ31,32,36,39の制御に関する指令信号が送信される。そして、電池ECU37により、エンジンECU40から受信した指令信号に基づいて、スイッチ31,32,36,39が制御される。このため、エンジンECU40は、指令信号に基づいてスイッチ31,32,36,39の動作の状態を把握することができる。そして、エンジンECU40により、指令信号に基づいて、複数の電流制限フラグから選択された1つの電流制限フラグが回転電機ECU23に対して送信される。したがって、回転電機ECU23は、スイッチ31,32,36,39の動作状態に応じて、適切な電流上限値を設定することができる。
・電池ECU37は、スイッチ31,32,36,39の動作の状態に応じた動作信号をエンジンECU40に対して送信し、エンジンECU40は、電池ECU37から受信した動作信号に基づいて、複数の電流制限フラグから選択した1つの電流制限フラグを回転電機ECU23に対して送信することもできる。
上記構成によれば、電池ECU37により、スイッチ31,32,36,39の動作の状態に応じた動作信号がエンジンECU40に対して送信される。このため、エンジンECU40は、動作信号に基づいてスイッチ31,32,36,39の動作の状態を把握することができる。そして、エンジンECU40により、電池ECU37から受信した動作信号に基づいて、複数の電流制限フラグから選択された1つの電流制限フラグが回転電機ECU23に対して送信される。したがって、回転電機ECU23は、スイッチ31,32,36,39の動作の状態に応じて、適切な電流上限値を設定することができる。
・上記実施形態では、それぞれヒューズ35,38,17を有する電気経路に電流が流れる場合に、ヒューズ35,38,17の容量の大きさに応じて電流制限フラグ(発電電流の上限値)が設定されている。これに対して、各スイッチ31,32,36,39の電流容量の大きさに応じて、電流制限フラグ(発電電流の上限値)を設定してもよい。例えば、図1において、スイッチ31,32の電流容量は、スイッチ36,39の電流容量よりも大きく設定されている。このため、例えばスイッチ31,32が開放されており、スイッチ36,39が閉鎖されている状態に対しては、発電電流の上限値が小さい電流制限フラグ11を設定する。一方、スイッチ36,39が開放されており、スイッチ31,32が閉鎖されている状態に対しては、電流制限フラグ11よりも発電電流の上限値が大きい電流制限フラグ12を設定する。こうした構成によっても、通電経路の構成や状態に応じて、電流上限値を適切に設定することができる。
・上記実施形態では、第1蓄電部として鉛蓄電池11を設けるとともに、第2蓄電部としてリチウムイオン蓄電池12を設ける構成としたが、これを変更してもよい。第2蓄電部として、リチウムイオン蓄電池12以外の高密度蓄電池、例えばニッケル−水素電池を用いてもよい。その他、少なくともいずれかの蓄電部としてキャパシタを用いることも可能である。
・回転電機21として、車両を走行させることのできる駆動力を発生するMG(Motor Generator)を採用することもできる。
・電源システム10を、車両以外の用途で用いることも可能である。
10…電源システム、11…鉛蓄電池、12…リチウムイオン蓄電池、14…電気負荷、15…電気負荷、21…回転電機、23…回転電機ECU、31…スイッチ、32…スイッチ、36…バイパススイッチ、37…電池ECU、39…スイッチ、40…エンジンECU、41…通信線。

Claims (7)

  1. 回転電機(21)と、前記回転電機に対して並列接続された第1蓄電部(11)、第2蓄電部(12)、及び電気負荷(14、15)と、前記第1蓄電部、前記第2蓄電部、及び前記電気負荷の少なくとも1つと前記回転電機とを導通及び遮断するスイッチ(31、32、36、39)と、を備える電源システム(10)に適用される制御システムであって、
    前記スイッチを制御する第1制御装置(37)と、
    前記回転電機の発電及び力行の作動を制御する第2制御装置(23)と、
    前記第1制御装置及び前記第2制御装置を統括的に管理する第3制御装置(40)と、を備え、
    前記第1制御装置、前記第2制御装置、及び前記第3制御装置は、信号伝達経路(41)により相互に信号伝達が可能になっており、
    前記第3制御装置は、前記スイッチの状態に基づいて、複数の電流制限フラグから選択した1つの電流制限フラグを前記第2制御装置に対して送信し、
    前記第2制御装置は、前記第3制御装置から受信した前記電流制限フラグに基づいて、前記回転電機の前記発電における発電電流の上限値を設定する制御システム。
  2. 前記第1制御装置は、前記スイッチが異常である場合に、前記スイッチの異常の状態に応じた異常信号を前記第3制御装置に対して送信し、
    前記第3制御装置は、前記第1制御装置から受信した前記異常信号に基づいて、複数の電流制限フラグから選択した1つの電流制限フラグを前記第2制御装置に対して送信する請求項1に記載の制御システム。
  3. 前記第3制御装置は、前記第1制御装置に対して前記スイッチの制御に関する指令信号を送信し、
    前記第1制御装置は、前記第3制御装置から受信した前記指令信号に基づいて、前記スイッチを制御し、
    前記第3制御装置は、前記指令信号に基づいて、複数の電流制限フラグから選択した1つの電流制限フラグを前記第2制御装置に対して送信する請求項1又は2に記載の制御システム。
  4. 前記第1制御装置は、前記スイッチの動作の状態に応じた動作信号を前記第3制御装置に対して送信し、
    前記第3制御装置は、前記第1制御装置から受信した前記動作信号に基づいて、複数の電流制限フラグから選択した1つの電流制限フラグを前記第2制御装置に対して送信する請求項1又は2に記載の制御システム。
  5. 前記第2制御装置は、前記第3制御装置との前記信号伝達が途絶えた場合に、前記複数の電流制限フラグのうち発電電流の上限値が最も小さい電流制限フラグに基づいて、前記回転電機の前記発電における発電電流の上限値を設定する請求項1〜4のいずれか1項に記載の制御システム。
  6. 前記回転電機は、界磁電流に基づいて前記発電を実行するものであり、
    前記第2制御装置は、前記界磁電流と前記発電電流とで規定される領域において、前記界磁電流の増加量に対する前記発電電流の増加量が大きい領域ほど、前記回転電機の前記発電における発電電流の目標値を前記上限値に対して小さく設定する請求項1〜5のいずれか1項に記載の制御システム。
  7. 前記回転電機は、エンジン(42)の駆動力及び界磁電流に基づいて、前記発電を実行するものであり、
    前記第3制御装置は、前記第2制御装置により前記回転電機の前記発電における発電電流の前記上限値が設定される場合に、前記エンジンのアイドル回転速度が低いほど、前記アイドル回転速度を大きく上昇させる請求項1〜6のいずれか1項に記載の制御システム。
JP2017020459A 2017-02-07 2017-02-07 制御システム Active JP6620769B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017020459A JP6620769B2 (ja) 2017-02-07 2017-02-07 制御システム
DE112018000715.4T DE112018000715T5 (de) 2017-02-07 2018-01-30 Steuerungssystem
PCT/JP2018/002890 WO2018147127A1 (ja) 2017-02-07 2018-01-30 制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017020459A JP6620769B2 (ja) 2017-02-07 2017-02-07 制御システム

Publications (2)

Publication Number Publication Date
JP2018129917A JP2018129917A (ja) 2018-08-16
JP6620769B2 true JP6620769B2 (ja) 2019-12-18

Family

ID=63107451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017020459A Active JP6620769B2 (ja) 2017-02-07 2017-02-07 制御システム

Country Status (3)

Country Link
JP (1) JP6620769B2 (ja)
DE (1) DE112018000715T5 (ja)
WO (1) WO2018147127A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7196710B2 (ja) * 2019-03-21 2022-12-27 株式会社デンソー 車載電源システムの制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4987247B2 (ja) * 2005-05-16 2012-07-25 日立オートモティブシステムズ株式会社 回転電機制御装置及びその始動方法
JP4969943B2 (ja) * 2006-08-10 2012-07-04 株式会社デンソー バッテリ充放電電流検出装置
US9868410B2 (en) * 2015-03-30 2018-01-16 GM Global Technology Operations LLC Apparatus and method for electrical power management in a vehicle system
JP6543069B2 (ja) * 2015-03-31 2019-07-10 株式会社Subaru 車両用電源装置

Also Published As

Publication number Publication date
JP2018129917A (ja) 2018-08-16
WO2018147127A1 (ja) 2018-08-16
DE112018000715T5 (de) 2019-11-14

Similar Documents

Publication Publication Date Title
JP6575458B2 (ja) 異常診断装置
JP6638616B2 (ja) 電源制御装置
JP6601365B2 (ja) 制御システム
US10875418B2 (en) Charge control apparatus and system
JP6642496B2 (ja) 電源装置及び電源システム
WO2018193782A1 (ja) 回転電機制御装置、及び電源システム
JP6756277B2 (ja) 回転電機ユニット
WO2018139204A1 (ja) 回転電機制御装置
JP6620769B2 (ja) 制御システム
JP6708165B2 (ja) 回転電機装置の制御装置
JP2018139462A (ja) 電源装置
CN110574285B (zh) 旋转电机控制装置和控制系统
JP6589803B2 (ja) 回転電機制御装置
JP2020156247A (ja) 車載電源システムの制御装置
JP7318286B2 (ja) 回転電機ユニット、及び回転電機システム
WO2024053424A1 (ja) 電力変換装置、プログラム
JP2020178522A (ja) 回転電機システム
JP6690567B2 (ja) スイッチ制御装置
JP2019022334A (ja) 回転電機の異常判定装置
WO2018021032A1 (ja) 制御システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191105

R151 Written notification of patent or utility model registration

Ref document number: 6620769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250