WO2020183702A1 - 半導体デバイスのための電圧バランス回路 - Google Patents

半導体デバイスのための電圧バランス回路 Download PDF

Info

Publication number
WO2020183702A1
WO2020183702A1 PCT/JP2019/010550 JP2019010550W WO2020183702A1 WO 2020183702 A1 WO2020183702 A1 WO 2020183702A1 JP 2019010550 W JP2019010550 W JP 2019010550W WO 2020183702 A1 WO2020183702 A1 WO 2020183702A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
transformer
circuit
voltage
primary winding
Prior art date
Application number
PCT/JP2019/010550
Other languages
English (en)
French (fr)
Inventor
紀元 野坂
亘 岡田
晨 陳
隆章 石井
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to PCT/JP2019/010550 priority Critical patent/WO2020183702A1/ja
Priority to US17/274,991 priority patent/US11552550B2/en
Priority to CN201980058485.0A priority patent/CN112655144B/zh
Priority to JP2021505453A priority patent/JP6996660B2/ja
Priority to EP19919265.9A priority patent/EP3836373A4/en
Publication of WO2020183702A1 publication Critical patent/WO2020183702A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/102Modifications for increasing the maximum permissible switched voltage in field-effect transistor switches

Definitions

  • the present invention relates to, for example, a voltage balance circuit for a plurality of semiconductor devices connected in series, a switching circuit using the same, and a power conversion device.
  • a switching circuit that obtains high withstand voltage characteristics with a low withstand voltage device is realized. can do.
  • the low withstand voltage semiconductor device is remarkably cheaper than the high withstand voltage semiconductor device and has a small on-resistance, which leads to low cost and high operation efficiency.
  • the voltage design standard may be exceeded. In particular, if the output capacity of the semiconductor device varies, such a case may occur.
  • each drive is used to balance the drain-source voltage (Vds) of each semiconductor device during switching.
  • the gate current (Ig1, Ig2) of each semiconductor device is balanced by using one transformer in the circuit.
  • the switching control signal from the first drive circuit drives the first semiconductor device via the primary winding of the transformer, while the switching control signal from the second drive circuit is the secondary of the transformer.
  • the second semiconductor device is driven via the winding.
  • the first and second drive circuits and semiconductor devices are provided so that the induced voltage due to the switching control signal in the primary winding of the transformer and the induced voltage due to the switching control signal in the secondary winding are opposite to each other.
  • Each gate of is connected.
  • An object of the present invention solves the above problems, and in a circuit in which a plurality of semiconductor devices are connected in series, the voltage balance of the output voltage at the time of switching between the plurality of semiconductor devices is highly accurate as compared with the prior art. It is an object of the present invention to provide a voltage balance circuit which can be performed in the above, a switching circuit using the same, and a power conversion device.
  • the voltage balance circuit is In a voltage balance circuit for balancing each output voltage of a plurality of semiconductor devices connected in series with each other,
  • the plurality of semiconductor devices include at least first and second semiconductor devices having control terminals and first and second element terminals, respectively.
  • the voltage balance circuit A first transformer with primary and secondary windings, A second transformer with a primary winding and a secondary winding, It has first and second capacitors connected in series with each other. One end of the first capacitor is connected to the first element terminal of the first semiconductor device. One end of the second capacitor is connected to the second element terminal of the second semiconductor device. The other ends of the first and second capacitors are connected to each other and to the other end of the secondary winding of the first transformer.
  • the first output terminal of the first control signal for controlling the first semiconductor device is connected to one end of the primary winding of the first transformer, and the other end of the primary winding of the first transformer Connected to the control terminal of the first semiconductor device,
  • the second output terminal of the first control signal is the second element terminal of the first semiconductor device, the first element terminal of the second semiconductor device, and the primary winding of the second transformer.
  • the first output terminal of the second control signal for controlling the second semiconductor device is connected to one end of the primary winding of the second transformer, and the other end of the primary winding of the second transformer is.
  • the second output terminal of the second control signal is connected to the second element terminal of the second semiconductor device.
  • the first control signal is applied to the control terminal of the first semiconductor device via the primary winding of the first transformer.
  • the second control signal is applied to the control terminal of the second semiconductor device via the primary winding of the second transformer.
  • One end of each of the secondary windings is connected to each other.
  • the voltage balance of the output voltage at the time of switching between the plurality of semiconductor devices can be performed with higher accuracy as compared with the prior art. ..
  • FIG. 1 is a circuit diagram showing a configuration example of the switching circuit 100 according to the first embodiment and its peripheral circuits.
  • the switching circuit 100 includes a control signal generation circuit 10, a pair of drive circuits 11 and 12, and a pair of transformers 20 and 30.
  • the pair of transformers 20 and 30 drains (first element terminal) of the semiconductor devices Q1 and Q2 when a switching control signal is applied to each gate (control terminal) of the pair of semiconductor devices Q1 and Q2.
  • the voltage balance circuit 50 for balancing the voltage (output voltage) between the source (second element terminal) is configured.
  • the semiconductor devices Q1 and Q2 are, for example, N-channel MOS field effect transistors, which are connected in series with each other. That is, an input voltage Vin is applied to the drain of the semiconductor device Q1, the source of the semiconductor device Q2 is connected to the drain of the semiconductor device Q2, and the source of the semiconductor device Q2 is grounded.
  • the transformer 20 has a primary winding 21 and a secondary winding 22, and the transformer 30 has a primary winding 31 and a secondary winding 32.
  • the winding start terminal 21a of the primary winding 21 of the transformer 20 is connected to the signal output terminal 11a of the drive circuit 11, and the winding end terminal 21b of the primary winding 21 is connected to the gate of the semiconductor device Q1. Further, the winding start terminal 31a of the primary winding 31 of the transformer 30 is connected to the signal output terminal 12a of the drive circuit 12, and the winding end terminal 31b of the primary winding 31 is connected to the gate of the semiconductor device Q2.
  • the signal reference terminal 11b of the drive circuit 11 is connected to the source of the semiconductor device Q1, and the signal reference terminal 12b of the drive circuit 12 is grounded.
  • the winding end terminal 32b of the secondary winding 32 is connected to the source of the semiconductor device Q1 and the drain of the semiconductor device Q2.
  • the drain of the semiconductor device Q1 is connected to the winding end terminal 22b of the secondary winding 22 via the connection point P1, the capacitor C1 and the connection point P2.
  • the source of the semiconductor device Q2 is connected to the winding end terminal 22b of the secondary winding 22 via the connection point P3, the capacitor C2, and the connection point P2.
  • the capacitances of the capacitors C1 and C2 are equal to each other.
  • the control signal generation circuit 10 generates, for example, a switching control signal Sc which is a rectangular wave and outputs it to the drive circuits 11 and 12, respectively.
  • the drive circuit 11 amplifies the input switching control signal, and then applies the amplified switching control signal to the gate of the semiconductor device Q1 via the primary winding 21 of the transformer 20 to drive the drive circuit 11 on and off.
  • the drive circuit 12 amplifies the input switching control signal, and then applies the amplified switching control signal to the gate of the semiconductor device Q2 via the primary winding 31 of the transformer 30 to drive the drive circuit 12 on and off.
  • the switching circuit 100 of FIG. 1 configured as described above switches the input voltage Vin by driving the semiconductor devices Q1 and Q2 on and off according to the switching control signal Sc.
  • the voltage balance circuit 50 the directions of the induced voltages in the secondary windings 22 and 32 due to the switching control signals Sc applied to the primary windings 21 and 31 of the transformers 20 and 30 are opposite to each other.
  • a pair of capacitors C1 and C2 are connected on the output side of the semiconductor devices Q1 and Q2 connected in series with each other so as to be targeted with reference to the connection point P2.
  • connection point P2 of the capacitors C1 and C2 is connected to the connection point of the semiconductor devices Q1 and Q2 via the secondary windings 22 and 32 of the transformers 20 and 30, respectively, and the drain-source is connected using the capacitors C1 and C2.
  • the secondary windings of the transformers 20 and 30 When the average value of voltage (Vds1 + Vds) / 2 is sensed and the drain-source voltages Vds1 and Vds2 of each semiconductor device Q1 and Q2 are not equal and the voltage balance is lost, the secondary windings of the transformers 20 and 30 When a predetermined current flows through 22 and 32 and the transformers 20 and 30 magnetically couple with the primary winding circuit on the gate side, the drain-source voltages Vds1 and Vds2 of the semiconductor devices Q1 and Q2 are in the direction of voltage balance. A predetermined current flows through each of the semiconductor devices Q1 and Q2.
  • the voltage balance between the drain-source voltage Vds1 and Vds2 at the time of switching between the semiconductor devices Q1 and Q2 can be performed with higher accuracy than in the prior art, whereby the semiconductor device Q1 can be performed. , Q2 failure can be significantly suppressed.
  • the present inventors executed a simulation and confirmed that the voltage was balanced when the device capacities of the semiconductor devices Q1 and Q2 varied by 20%.
  • FIG. 2 is a circuit diagram showing a configuration example of the switching circuit 100 according to the second embodiment and its peripheral circuits.
  • FIG. 3A is a plan view of the electrode 41 portion of FIG. 2
  • FIG. 3B is a vertical sectional view taken along the line AA'of FIG. 3A.
  • the peripheral circuit of the switching circuit 100 of FIG. 2 is characterized in that the capacitors C1 and C2 are replaced with parasitic capacitances C1p and C2p, respectively, as compared with the peripheral circuit of FIG.
  • the parasitic capacitance C1p is a pair of electrodes 41 in which a dielectric substrate 40 on which semiconductor devices Q1 and Q2 are mounted is sandwiched and electrodes are opposed to each other.
  • 42 are parasiticly formed, and the parasitic capacitance C2p is also parasitically formed between the pair of electrodes 42 and 43 sandwiching the dielectric substrate 40, similarly to the parasitic capacitance C1p.
  • the directions of the induced voltages in the secondary windings 22 and 32 due to the switching control signals Sc applied to the primary windings 21 and 31 of the transformers 20 and 30 are opposite to each other.
  • a pair of parasitic capacitances C1p and C2p are connected to each other on the output side of the semiconductor devices Q1 and Q2 connected in series so as to be targeted with the electrode 42 as a reference. Therefore, the gate currents (Ig1, Ig2) of each semiconductor device Q1 and Q2 can be balanced, and the voltage balance of the drain-source voltage (output voltage) at the time of switching between each semiconductor device Q1 and Q2 can be conventionally adjusted. It can be done with higher accuracy than technology.
  • FIG. 4 is a plan view showing a configuration example of the electrode type primary winding 21A and secondary winding 22A according to the modified example of the first embodiment or the second embodiment.
  • the primary winding 21 and the secondary winding 22 of the transformer 20 have electrodes facing each other so as to be electromagnetically coupled to each other on the dielectric substrate 40, for example, a strip-shaped electrode. It may be the primary winding 21A and the secondary winding 22A of the type.
  • the primary winding 31 and the secondary winding 32 of the transformer 30 also have, for example, strip-shaped electrode-type primary windings and secondary windings formed so as to be electromagnetically coupled to each other on the dielectric substrate 40, respectively. You may.
  • the electrode type primary winding 21A may be provided on the front surface of the dielectric substrate 40, and the electrode type secondary winding 22A may be provided on the back surface of the dielectric substrate 40.
  • the primary winding 21A and the secondary winding 22A may be electromagnetically coupled to each other to realize the function of the transformer with a parasitic component.
  • the voltage balance circuit 50 configured as described above also has the same effects as those of the first and second embodiments.
  • FIG. 5 is a circuit diagram showing a configuration example of the power conversion device according to the third embodiment.
  • the power conversion device of FIG. 5 is an asynchronous rectification type boost chopper circuit using the switching circuit 100 having the voltage balance circuit 50 of FIG.
  • the input voltage Vin from the DC voltage source 1 is applied to the series circuit of the semiconductor devices Q1 and Q2 via the reactor Lr.
  • the drain of the semiconductor device Q1 is connected to the smoothing electrolytic capacitor Cb and the load resistor 2 via the rectifying diode D1.
  • the input voltage Vin can be boosted by asynchronous rectification and output to the load resistor 2.
  • the operation and effect of the voltage balance circuit 50 are the same as those in the first and second embodiments.
  • FIG. 6 is a circuit diagram showing a configuration example of the power conversion device according to the fourth embodiment.
  • the power conversion device of FIG. 6 is a synchronous boost chopper circuit using the switching circuit 100 having the voltage balance circuit 50 of FIG.
  • the input voltage Vin from the DC voltage source 1 is applied to the series circuit of the semiconductor devices Q1 and Q2 via the reactor Lr.
  • the drain of the semiconductor device Q1 is connected to the smoothing electrolytic capacitor Cb and the load resistor 2 via the semiconductor devices Q4 and Q3.
  • the semiconductor devices Q3, Q4, Q1 and Q2 are connected in series and driven by the switching circuit 100.
  • the on / off of the semiconductor devices Q1 and Q2 and the on / off of the semiconductor devices Q3 and Q4 are reversed from each other.
  • the input voltage Vin can be boosted synchronously and output to the load resistor 2.
  • the operation and effect of the voltage balance circuit 50 are the same as those in the first and second embodiments.
  • FIG. 7 is a circuit diagram showing a configuration example of the power conversion device according to the fifth embodiment.
  • the power conversion device of FIG. 7 is a bridge type inverter circuit using the switching circuit 100 having the voltage balance circuit 50 of FIG.
  • the semiconductor devices Q1 to Q4 are connected in series with each other, and the semiconductor devices Q5 to Q8 are connected in series with each other.
  • the series circuit of the semiconductor devices Q1 to Q4 and the series circuit of the semiconductor devices Q5 to Q8 are connected in parallel.
  • the input voltage Vin from the DC voltage source 1 is applied to each of these series circuits, and the connection point P11 between the source of the semiconductor device Q2 and the drain of the semiconductor device Q3, the source of the semiconductor device Q3, and the drain of the semiconductor device Q4.
  • the output voltage Vout is output from the connection point P12 between the two.
  • the semiconductor devices Q3, Q4, Q1 and Q2 are connected in series and driven by the switching circuit 100. It should be noted that the on / off of the semiconductor devices Q1, Q2, Q7 and Q8 and the on / off of the semiconductor devices Q3, Q4, Q5 and Q6 are reversed from each other.
  • the input voltage Vin can be synchronously switched to generate a predetermined AC signal and output.
  • the operation and effect of the voltage balance circuit 50 are the same as those in the first and second embodiments.
  • the asynchronous rectifying type boost chopper circuit, the synchronous chopper circuit, the inverter circuit and the like are shown as an example, but the voltage balance circuit 50 according to the present embodiment can be used as another DC / DC converter or the like in addition to the circuit. It may also be applied to the power converter and the inverter topology circuit of.
  • the voltage balance of the output voltage at the time of switching between the plurality of semiconductor devices can be performed with higher accuracy than in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Abstract

互いに直列に接続された第1及び第2の半導体デバイスを含む電圧バランス回路は、1次巻線及び2次巻線を有する第1のトランスと、1次巻線及び2次巻線を有する第2のトランスと、互いに直列に接続されかつ複数の半導体デバイスの出力端子間に接続された1対のキャパシタとを備え、第1の制御信号は第1のトランスの1次巻線を介して第1の半導体デバイスの制御端子に印加され、第2の制御信号は第2のトランスの1次巻線を介して第2の半導体デバイスの制御端子に印加され、各2次巻線の一端を互いに接続した。

Description

半導体デバイスのための電圧バランス回路
 本発明は、例えば直列接続される複数の半導体デバイスのための電圧バランス回路とそれを用いたスイッチング回路及び電力変換装置に関する。
 例えばスイッチ素子である複数の半導体デバイスを直列に接続し、それらを1つの素子としてスイッチングをオン・オフ同期して動作させることで、低耐電圧のデバイスで高耐電圧特性を得るスイッチング回路を実現することができる。ここで、低耐圧の半導体デバイスは、高耐圧の半導体デバイスに比べて顕著に価格が安く、オン抵抗も小さいので、低コスト及び動作の高効率化につながる。しかし、半導体デバイスの電気的特性のバラつきにより、電圧バランスが崩れると、電圧設計の基準を超える場合がある。特に、半導体デバイスの出力容量にバラつきがあると、そのような場合が発生する可能性がある。
 この課題を解決するために、例えば、特許文献1では、複数の半導体デバイスを直列接続した、従来例回路において、スイッチング時に各半導体デバイスのドレイン-ソース電圧(Vds)をバランスさせるために、各ドライブ回路に1個のトランスを用いて各半導体デバイスのゲート電流(Ig1,Ig2)をバランスさせる。ここで、第1のドライブ回路からのスイッチング制御信号を当該トランスの1次巻線を介して第1の半導体デバイスを駆動する一方、第2のドライブ回路からのスイッチング制御信号を当該トランスの2次巻線を介して第2の半導体デバイスを駆動する。なお、当該トランスの1次巻線におけるスイッチング制御信号による誘起電圧と、2次巻線におけるスイッチング制御信号による誘起電圧とが互いに逆方向となるように、第1及び第2のドライブ回路並びに半導体デバイスの各ゲートとが接続される。
特許第4760256号公報
 前記従来例回路について、本発明者がシミュレーションを行ったところ、各半導体デバイスの出力容量に20%ばらつきがある場合において、各半導体デバイスのゲート電流は一致しているが、ドレイン-ソース電圧Vdsに乖離があることを確認した。
 前記従来例回路では、大きなトランスを用いるために、回路規模の大型化、また、半導体デバイスのばらつき(例えば出力容量、しきい値等)によって、電圧アンバランスが発生する課題があった。その結果、素子耐圧を超える電圧が半導体デバイスに印加され、当該半導体デバイスが破壊され、もしくはスイッチング時の発生損失に大きな偏りが発生することで、半導体デバイスの発熱や寿命に大きな影響を与えたりする可能性があった。
 本発明の目的は以上の問題点を解決し、複数の半導体デバイスが直列に接続された回路において、複数の半導体デバイス間のスイッチング時の出力電圧の電圧バランスを、従来技術に比較して高精度で行うことができる電圧バランス回路と、それを用いたスイッチング回路及び電力変換装置を提供することにある。
 本発明の一態様に係る電圧バランス回路は、
 互いに直列に接続された複数の半導体デバイスの各出力電圧をバランスさせるための電圧バランス回路において、
 前記複数の半導体デバイスは、それぞれ制御端子と第1及び第2の素子端子を有する少なくとも第1及び第2の半導体デバイスを含み、
 前記電圧バランス回路は、
 1次巻線及び2次巻線を有する第1のトランスと、
 1次巻線及び2次巻線を有する第2のトランスと、
 互いに直列に接続された第1及び第2のキャパシタとを備え、
 前記第1のキャパシタの一端は前記第1の半導体デバイスの第1の素子端子に接続され、
 前記第2のキャパシタの一端は前記第2の半導体デバイスの第2の素子端子に接続され、
 前記第1及び第2のキャパシタの各他端は互いに接続されかつ、前記第1のトランスの2次巻線の他端に接続され、
 前記第1の半導体デバイスを制御する第1の制御信号の第1の出力端子は第1のトランスの1次巻線の一端に接続され、前記第1のトランスの1次巻線の他端は前記第1の半導体デバイスの制御端子に接続され、
 前記第1の制御信号の第2の出力端子は前記第1の半導体デバイスの第2の素子端子、前記第2の半導体デバイスの第1の素子端子及び前記第2のトランスの1次巻線の他端に接続され、
 前記第2の半導体デバイスを制御する第2の制御信号の第1の出力端子は第2のトランスの1次巻線の一端に接続され、前記第2のトランスの1次巻線の他端は前記第2の半導体デバイスの制御端子に接続され、
 前記第2の制御信号の第2の出力端子は前記第2の半導体デバイスの第2の素子端子に接続され、
 前記第1の制御信号は前記第1のトランスの1次巻線を介して前記第1の半導体デバイスの制御端子に印加され、
 前記第2の制御信号は前記第2のトランスの1次巻線を介して前記第2の半導体デバイスの制御端子に印加され、
 前記各2次巻線の一端を互いに接続した
ことを特徴とする。
 従って、本発明によれば、複数の半導体デバイスが直列に接続された回路において、複数の半導体デバイス間のスイッチング時の出力電圧の電圧バランスを、従来技術に比較して高精度で行うことができる。
実施形態1に係るスイッチング回路100と、その周辺回路の構成例を示す回路図である。 実施形態2に係るスイッチング回路100と、その周辺回路の構成例を示す回路図である。 図2の電極41部分の平面図である。 図3AのA-A’線についての縦断面図である。 変形例に係る電極形式の1次巻線21A及び2次巻線22Aの構成例を示す平面図である。 実施形態3に係る電力変換装置の構成例を示す回路図である。 実施形態4に係る電力変換装置の構成例を示す回路図である。 実施形態5に係る電力変換装置の構成例を示す回路図である。
 以下、本発明にかかる実施形態について図面を参照して説明する。なお、同一又は同様の構成要素については同一の符号を付している。
実施形態1.
 図1は実施形態1に係るスイッチング回路100と、その周辺回路の構成例を示す回路図である。図1において、スイッチング回路100は、制御信号発生回路10と、1対のドライブ回路11,12,と、1対のトランス20,30を備えて構成される。ここで、1対のトランス20,30は、1対の半導体デバイスQ1,Q2の各ゲート(制御端子)にスイッチング制御信号を印加したときにその半導体デバイスQ1,Q2のドレイン(第1の素子端子)-ソース(第2の素子端子)間電圧(出力電圧)の電圧バランスをとるための電圧バランス回路50を構成する。
 図1において、半導体デバイスQ1,Q2は例えばNチャネルMOS電界効果トランジスタであって、互いに直列に接続される。すなわち、半導体デバイスQ1のドレインには入力電圧Vinが印加され、半導体デバイスQ2のソースは半導体デバイスQ2のドレインに接続され、半導体デバイスQ2のソースは接地される。
 トランス20は1次巻線21及び2次巻線22を有し、トランス30は1次巻線31及び2次巻線32を有する。トランス20の1次巻線21の巻き始め端子21aはドライブ回路11の信号出力端子11aに接続され、1次巻線21の巻き終り端子21bは半導体デバイスQ1のゲートに接続される。また、トランス30の1次巻線31の巻き始め端子31aはドライブ回路12の信号出力端子12aに接続され、1次巻線31の巻き終り端子31bは半導体デバイスQ2のゲートに接続される。
 ドライブ回路11の信号基準端子11bは半導体デバイスQ1のソースに接続され、ドライブ回路12の信号基準端子12bは接地される。2次巻線32の巻き終り端子32bは半導体デバイスQ1のソース及び半導体デバイスQ2のドレインに接続される。半導体デバイスQ1のドレインは接続点P1、キャパシタC1及び接続点P2を介して2次巻線22の巻き終り端子22bに接続される。半導体デバイスQ2のソースは接続点P3、キャパシタC2及び接続点P2を介して2次巻線22の巻き終り端子22bに接続される。なお、キャパシタC1とC2の容量は互いに等しい。
 図1において、制御信号発生回路10は例えば矩形波であるスイッチング制御信号Scを発生してそれぞれドライブ回路11,12に出力する。ドライブ回路11は入力されるスイッチング制御信号を増幅した後、増幅したスイッチング制御信号をトランス20の1次巻線21を介して半導体デバイスQ1のゲートに印加することでオン・オフ駆動する。ドライブ回路12は入力されるスイッチング制御信号を増幅した後、増幅したスイッチング制御信号をトランス30の1次巻線31を介して半導体デバイスQ2のゲートに印加することでオン・オフ駆動する。
 以上のように構成された図1のスイッチング回路100は、入力電圧Vinを、スイッチング制御信号Scを従って半導体デバイスQ1,Q2をオン・オフ駆動することでスイッチングする。ここで、電圧バランス回路50では、トランス20,30の各1次巻線21,31に印加されるスイッチング制御信号Scによる2次巻線22,32における誘起電圧の方向が互いに逆方向になり、かつ互いに直列に接続された半導体デバイスQ1,Q2の出力側で接続点P2を基準として対象となるように1対のキャパシタC1,C2を接続している。すなわち、キャパシタC1,C2の接続点P2がトランス20,30の各2次巻線22,32を介して半導体デバイスQ1,Q2の接続点に接続されて、キャパシタC1,C2を用いてドレイン-ソース電圧の平均値(Vds1+Vds)/2をセンシングし、各半導体デバイスQ1,Q2のドレイン-ソース間電圧Vds1,Vds2が等しくなく、電圧バランスが崩れているときに、トランス20,30の2次巻線22,32に所定電流が流れかつトランス20,30によりゲート側の1次巻線回路と磁気結合することで、各半導体デバイスQ1,Q2のドレイン-ソース間電圧Vds1,Vds2が電圧バランスする方向に各半導体デバイスQ1,Q2に所定の電流が流れる。
 以上説明したように、各半導体デバイスQ1,Q2間のスイッチング時のドレインーソース間電圧Vds1,Vds2の電圧バランスを、従来技術に比較して高精度で行うことができ、これにより、半導体デバイスQ1,Q2の故障を大幅に抑制できる。なお、本発明者らは、半導体デバイスQ1,Q2のデバイス容量において20%ばらつきがある場合において、シミュレーションを実行して電圧バランスすることを確認した。
実施形態2.
 図2は実施形態2に係るスイッチング回路100と、その周辺回路の構成例を示す回路図である。また、図3Aは図2の電極41部分の平面図であり、図3Bは図3AのA-A’線についての縦断面図である。図2のスイッチング回路100の周辺回路は、図1の周辺回路に比較して、キャパシタC1,C2をそれぞれ寄生容量C1p,C2pで置き換えて構成したことを特徴としている。
 具体的には、図3A及び図3Bに示すように、寄生容量C1pは、半導体デバイスQ1,Q2が装着される誘電体基板40を挟設しかつ電極同士が対向している1対の電極41,42間に寄生的に形成され、寄生容量C2pも寄生容量C1pと同様に、誘電体基板40を挟設する1対の電極42,43間に寄生的に形成される。
 以上構成された電圧バランス回路50においても、トランス20,30の各1次巻線21,31に印加されるスイッチング制御信号Scによる2次巻線22,32における誘起電圧の方向が互いに逆方向になり、かつ互いに直列に接続された半導体デバイスQ1,Q2の出力側で電極42を基準として対象となるように1対の寄生容量C1p,C2pを接続している。このため、各半導体デバイスQ1,Q2のゲート電流(Ig1,Ig2)をバランスさせることができ、各半導体デバイスQ1,Q2間のスイッチング時のドレイン-ソース間電圧(出力電圧)の電圧バランスを、従来技術に比較して高精度で行うことができる。
変形例.
 図4は実施形態1又は実施形態2の変形例に係る電極形式の1次巻線21A及び2次巻線22Aの構成例を示す平面図である。変形例を示す図4において、トランス20の1次巻線21及び2次巻線22はそれぞれ、誘電体基板40において互いに電磁的に結合するように電極同士が対向している例えばストリップ形状の電極形式の1次巻線21A及び2次巻線22Aであってもよい。トランス30の1次巻線31及び2次巻線32もそれぞれ、誘電体基板40において互いに電磁的に結合するように形成された例えばストリップ形状の電極形式の1次巻線及び2次巻線あってもよい。また、電極形式の1次巻線21Aを誘電体基板40の表面に設け、電極形式の2次巻線22Aを誘電体基板40の裏面に設けてもよい。このような構成によって、1次巻線21Aと2次巻線22Aが互いに電磁的に結合し、寄生成分で、トランスの機能を実現させてもよい。以上のように構成された電圧バランス回路50も実施形態1及び2と同様の作用効果を有する。
実施形態3.
 図5は実施形態3に係る電力変換装置の構成例を示す回路図である。図5の電力変換装置は、図1の電圧バランス回路50を有するスイッチング回路100を用いた非同期整流型昇圧チョッパ回路である。
 図5において、直流電圧源1からの入力電圧VinはリアクトルLrを介して、半導体デバイスQ1,Q2の直列回路に印加される。半導体デバイスQ1のドレインは整流ダイオードD1を介して、平滑用電解キャパシタCb及び負荷抵抗2に接続される。
 以上のように構成された電力変換装置では、入力電圧Vinを非同期整流により昇圧して負荷抵抗2に出力することができる。なお、電圧バランス回路50の作用効果は実施形態1及び2と同様である。
実施形態4.
 図6は実施形態4に係る電力変換装置の構成例を示す回路図である。図6の電力変換装置は、図1の電圧バランス回路50を有するスイッチング回路100を用いた同期型昇圧チョッパ回路である。
 図6において、直流電圧源1からの入力電圧VinはリアクトルLrを介して、半導体デバイスQ1,Q2の直列回路に印加される。半導体デバイスQ1のドレインは半導体デバイスQ4,Q3を介して、平滑用電解キャパシタCb及び負荷抵抗2に接続される。ここで、半導体デバイスQ3,Q4,Q1,Q2は直列に接続され、スイッチング回路100により駆動される。なお、半導体デバイスQ1,Q2のオン・オフと、半導体デバイスQ3,Q4のオン・オフとは互いに反転される。
 以上のように構成された電力変換装置では、入力電圧Vinを同期で昇圧して負荷抵抗2に出力することができる。なお、電圧バランス回路50の作用効果は実施形態1及び2と同様である。
実施形態5.
 図7は実施形態5に係る電力変換装置の構成例を示す回路図である。図7の電力変換装置は、図1の電圧バランス回路50を有するスイッチング回路100を用いたブリッジ型インバータ回路である。
 図7において、半導体デバイスQ1~Q4は互いに直列に接続され、半導体デバイスQ5~Q8は互いに直列に接続される。半導体デバイスQ1~Q4の直列回路と、半導体デバイスQ5~Q8の直列回路とは並列に接続される。直流電圧源1からの入力電圧Vinはこれら各直列回路に印加され、半導体デバイスQ2のソースと半導体デバイスQ3のドレインとの間の接続点P11と、半導体デバイスQ3のソースと半導体デバイスQ4のドレインとの間の接続点P12とから出力電圧Voutが出力される。ここで、半導体デバイスQ3,Q4,Q1,Q2は直列に接続され、スイッチング回路100により駆動される。なお、なお、半導体デバイスQ1,Q2,Q7,Q8のオン・オフと、半導体デバイスQ3,Q4,Q5,Q6のオン・オフとは互いに反転される。
 以上のように構成された電力変換装置では、入力電圧Vinを同期してスイッチングして所定の交流信号を生成して出力することができる。なお、電圧バランス回路50の作用効果は実施形態1及び2と同様である。
 以上の実施形態では、非同期整流型昇圧チョッパ回路、同期型チョッパ回路、インバータ回路等を一例として示したが、本実施形態に係る電圧バランス回路50を前記回路以外にも他のDC/DCコンバータ等の電力変換装置、インバータトポロジ回路にも適用してもよい。
 以上詳述したように、複数の半導体デバイスが直列に接続された回路において、複数の半導体デバイス間のスイッチング時の出力電圧の電圧バランスを、従来技術に比較して高精度で行うことができる。
1 直流電圧源、
2 負荷抵抗、
10 制御信号発生回路、
11,12 ドライブ回路、
11a,12a 信号出力端子、
11b,12b 信号基準端子、
20,30 トランス、
21,21A,31 1次巻線、
22,22A,32 2次巻線、
21a,22a,31a,32a 巻き始め端子、
21b,22b,31b,32b 巻き終り端子、
40 誘電体基板、
41,42,43 電極、
50 電圧バランス回路、
100 スイッチング回路、
C1,C2 キャパシタ、
Cb 電解キャパシタ、
C1p,C2p 寄生容量、
D1 整流ダイオード、
Lr リアクトル、
P1~P3 接続点、
Q1~Q8 MOSトランジスタ。

Claims (5)

  1.  互いに直列に接続された複数の半導体デバイスの各出力電圧をバランスさせるための電圧バランス回路において、
     前記複数の半導体デバイスは、それぞれ制御端子と第1及び第2の素子端子を有する少なくとも第1及び第2の半導体デバイスを含み、
     前記電圧バランス回路は、
     1次巻線及び2次巻線を有する第1のトランスと、
     1次巻線及び2次巻線を有する第2のトランスと、
     互いに直列に接続された第1及び第2のキャパシタとを備え、
     前記第1のキャパシタの一端は前記第1の半導体デバイスの第1の素子端子に接続され、
     前記第2のキャパシタの一端は前記第2の半導体デバイスの第2の素子端子に接続され、
     前記第1及び第2のキャパシタの各他端は互いに接続されかつ、前記第1のトランスの2次巻線の他端に接続され、
     前記第1の半導体デバイスを制御する第1の制御信号の第1の出力端子は第1のトランスの1次巻線の一端に接続され、前記第1のトランスの1次巻線の他端は前記第1の半導体デバイスの制御端子に接続され、
     前記第1の制御信号の第2の出力端子は前記第1の半導体デバイスの第2の素子端子、前記第2の半導体デバイスの第1の素子端子及び前記第2のトランスの1次巻線の他端に接続され、
     前記第2の半導体デバイスを制御する第2の制御信号の第1の出力端子は第2のトランスの1次巻線の一端に接続され、前記第2のトランスの1次巻線の他端は前記第2の半導体デバイスの制御端子に接続され、
     前記第2の制御信号の第2の出力端子は前記第2の半導体デバイスの第2の素子端子に接続され、
     前記第1の制御信号は前記第1のトランスの1次巻線を介して前記第1の半導体デバイスの制御端子に印加され、
     前記第2の制御信号は前記第2のトランスの1次巻線を介して前記第2の半導体デバイスの制御端子に印加され、
     前記各2次巻線の一端を互いに接続した
    ことを特徴とする電圧バランス回路。
  2.  前記第1及び第2のキャパシタは電極同士が対向している寄生容量である請求項1記載の電圧バランス回路。
  3.  前記第1及び第2のトランスの1次巻線及び2次巻線は、互いに電磁的に結合するように電極同士が対向している1対の電極である請求項1又は2記載の電圧バランス回路。
  4.  スイッチング素子である前記第1及び第2の半導体デバイスを備え、入力電圧をスイッチングして出力するスイッチング回路であって、
     前記第1及び第2の制御信号はそれぞれ第1及び第2のスイッチング制御信号であり、
     請求項1~3のうちいずれか1つ記載の電圧バランス回路を備えたスイッチング回路。
  5.  請求項4記載のスイッチング回路を備え、入力電圧を所定の電圧に電力変換する電力変換装置であって、
     前記入力電圧を入力して前記第1及び第2の半導体デバイスの直列回路に出力するリアクトルと、
     前記第1及び第2の半導体デバイスによりスイッチングされた電圧を平滑する電解コンデンサとを備えた電力変換装置。
PCT/JP2019/010550 2019-03-14 2019-03-14 半導体デバイスのための電圧バランス回路 WO2020183702A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/010550 WO2020183702A1 (ja) 2019-03-14 2019-03-14 半導体デバイスのための電圧バランス回路
US17/274,991 US11552550B2 (en) 2019-03-14 2019-03-14 Voltage balance circuit for semiconductor devices connected in series with each other, switching circuit, and power converter apparatus
CN201980058485.0A CN112655144B (zh) 2019-03-14 2019-03-14 用于半导体器件的电压平衡电路
JP2021505453A JP6996660B2 (ja) 2019-03-14 2019-03-14 半導体デバイスのための電圧バランス回路
EP19919265.9A EP3836373A4 (en) 2019-03-14 2019-03-14 VOLTAGE COMPENSATION CIRCUIT FOR SEMICONDUCTOR DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010550 WO2020183702A1 (ja) 2019-03-14 2019-03-14 半導体デバイスのための電圧バランス回路

Publications (1)

Publication Number Publication Date
WO2020183702A1 true WO2020183702A1 (ja) 2020-09-17

Family

ID=72426492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010550 WO2020183702A1 (ja) 2019-03-14 2019-03-14 半導体デバイスのための電圧バランス回路

Country Status (5)

Country Link
US (1) US11552550B2 (ja)
EP (1) EP3836373A4 (ja)
JP (1) JP6996660B2 (ja)
CN (1) CN112655144B (ja)
WO (1) WO2020183702A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089711A1 (ja) * 2021-11-17 2023-05-25 国立大学法人東京工業大学 電力用半導体素子のゲート駆動装置及び電力変換装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240195314A1 (en) * 2022-12-13 2024-06-13 Hamilton Sundstrand Corporation Two-switch exciter drive architecture with single switch modes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204578A (ja) * 2001-01-09 2002-07-19 Fuji Electric Co Ltd 直列接続された電圧駆動型半導体素子の制御装置
JP2005167535A (ja) * 2003-12-02 2005-06-23 Fuji Electric Holdings Co Ltd 半導体スイッチング回路
JP2010193563A (ja) * 2009-02-16 2010-09-02 Tokyo Electric Power Co Inc:The 半導体スイッチ回路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2569067B1 (fr) * 1984-01-25 1986-12-05 Jeumont Schneider Montage en serie de transistors de puissance
US5972231A (en) 1997-10-31 1999-10-26 Ncr Corporation Imbedded PCB AC coupling capacitors for high data rate signal transfer
JP4760256B2 (ja) 2005-09-21 2011-08-31 富士電機株式会社 複数個直列接続される電圧駆動型半導体素子の電圧分担のばらつき低減方法
CN102570441A (zh) * 2011-12-30 2012-07-11 东软飞利浦医疗设备系统有限责任公司 高压放电模块以及具备该模块的高压放电装置
US10112251B2 (en) * 2012-07-23 2018-10-30 Illinois Tool Works Inc. Method and apparatus for providing welding type power
CN203278691U (zh) * 2013-05-10 2013-11-06 浙江大学 一种双极性高压脉冲电源
JP2018037146A (ja) * 2016-08-29 2018-03-08 株式会社日立製作所 高電圧スイッチ回路、及びx線装置
CN107222107A (zh) * 2017-05-27 2017-09-29 深圳航天科技创新研究院 一种快速、耐高压固态开关
CN108322052A (zh) * 2018-01-16 2018-07-24 许继电源有限公司 一种基于碳化硅器件的电源系统和一种dc/dc装置
CN112438017B (zh) * 2018-07-26 2023-11-14 三菱电机株式会社 电动机驱动装置以及冷冻循环应用设备
JP7149757B2 (ja) * 2018-08-02 2022-10-07 株式会社日立産機システム スイッチング電源回路およびそれを備えた電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204578A (ja) * 2001-01-09 2002-07-19 Fuji Electric Co Ltd 直列接続された電圧駆動型半導体素子の制御装置
JP2005167535A (ja) * 2003-12-02 2005-06-23 Fuji Electric Holdings Co Ltd 半導体スイッチング回路
JP2010193563A (ja) * 2009-02-16 2010-09-02 Tokyo Electric Power Co Inc:The 半導体スイッチ回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3836373A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089711A1 (ja) * 2021-11-17 2023-05-25 国立大学法人東京工業大学 電力用半導体素子のゲート駆動装置及び電力変換装置
JP7549748B2 (ja) 2021-11-17 2024-09-11 国立大学法人東京工業大学 電力用半導体素子のゲート駆動装置及び電力変換装置

Also Published As

Publication number Publication date
EP3836373A4 (en) 2022-03-09
US20220060101A1 (en) 2022-02-24
JP6996660B2 (ja) 2022-01-17
CN112655144B (zh) 2024-06-18
CN112655144A (zh) 2021-04-13
JPWO2020183702A1 (ja) 2021-10-14
EP3836373A1 (en) 2021-06-16
US11552550B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
US9385624B2 (en) Rectifier circuit
EP1391982A2 (en) Dc-dc converter
WO2013031070A1 (ja) 電力変換装置
JP6996660B2 (ja) 半導体デバイスのための電圧バランス回路
JP2002186258A (ja) 並列電源システム
KR20190016479A (ko) Dc/dc 컨버터
KR102051001B1 (ko) 인버터 내 하이 사이드 스위치용 마이너스 전압의 생성을 위한 장치 및 방법
JP2019115130A (ja) 直流変換器
US11095229B1 (en) High switching frequency direct AC to AC converter
KR101463388B1 (ko) 배압 회로 구조를 이용한 양방향 반도체 변압기
US9906139B2 (en) Power supply module, power supply device, and power controlling method
US8054650B2 (en) Switching power supply circuit and driving method thereof
TWI543513B (zh) 諧振轉換器
JP7376247B2 (ja) 電力変換装置
US20060164869A1 (en) Inverter
JP2021035223A (ja) 力率改善回路
JP2006158137A (ja) スイッチング電源装置
KR20190135252A (ko) 부스트 컨버터
JP5899658B2 (ja) 電力変換装置
TWI590295B (zh) 用於質譜儀之陰極之電壓供應的裝置
KR100709905B1 (ko) Pwm 인버터용 fet의 스위칭 속도를 개선하기 위한 스위칭 회로
JP5765075B2 (ja) 電力変換装置及び充電装置
WO2021229676A1 (ja) 電力変換装置、半導体スイッチ駆動装置及び制御方法
CN118160208A (zh) 用于使实际变比与目标变比相适应的转换器和方法
US9667160B1 (en) Step-down direct current converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505453

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019919265

Country of ref document: EP

Effective date: 20210308

NENP Non-entry into the national phase

Ref country code: DE