JP2021035223A - 力率改善回路 - Google Patents

力率改善回路 Download PDF

Info

Publication number
JP2021035223A
JP2021035223A JP2019154519A JP2019154519A JP2021035223A JP 2021035223 A JP2021035223 A JP 2021035223A JP 2019154519 A JP2019154519 A JP 2019154519A JP 2019154519 A JP2019154519 A JP 2019154519A JP 2021035223 A JP2021035223 A JP 2021035223A
Authority
JP
Japan
Prior art keywords
diode bridge
semiconductor element
power factor
voltage
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019154519A
Other languages
English (en)
Inventor
ハフィジ ズル
Hafizi Zul
ハフィジ ズル
善直 中本
Yoshinao Nakamoto
善直 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019154519A priority Critical patent/JP2021035223A/ja
Publication of JP2021035223A publication Critical patent/JP2021035223A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

【課題】出力される高電圧に比して、低い電圧の耐圧仕様のデバイスを用いて構成することが可能な力率改善回路を提供する。【解決手段】力率改善回路1は、第1入力端子51にコイル4を介して接続された第1交流端11cを有する第1ダイオードブリッジ11と、第1ダイオードブリッジの正極端11aと負極端11bとの間に接続された第1半導体素子21と、第2入力端子52に接続された第1交流端12cを有する第2ダイオードブリッジ12と、第2ダイオードブリッジの正極端12aと負極端12bとの間に接続された第2半導体素子22と、第1コンデンサ41と第2コンデンサ42との直列接続体の一方端が第1出力端子53に接続され、他方端が第2出力端子54に接続された出力コンデンサ41、42と、直列接続体における中間接続点が第1ダイオードブリッジの第2交流端11dと第2ダイオードブリッジの第2交流端12dとに接続されている。【選択図】図1

Description

本発明は、電源装置に用いられる力率改善回路に関する。
高調波が発生するおそれのある電源装置には力率改善回路(PFC)が設けられている。力率改善回路は、電源装置において発生する高調波電流を規制値以下に抑制するために設けられている。
特開2017−55544号公報
近年の電気機器においては、商用電源電圧(例えば100V、200V)から、より高い直流電圧を必要とする電源装置が求められる場合がある。このようなより高い直流電圧を形成するための電源装置に用いられる力率改善回路には、昇圧された高電圧に対応して、耐圧の高いデバイスを用いる必要がある。しかしながら、このような耐圧の高いデバイスを用いることは、デバイスの価格が上昇し、デバイスの実装面積が比較的に大きくなり、装置としての製造コストを上昇させることになる。このような力率改善回路を用いた電源装置においては、この分野における根本的な課題である小型化および低価格化に対応することが困難な構成となる。
本発明は、出力される高電圧に比して、低い電圧の耐圧仕様のデバイスを用いることが可能な力率改善回路の提供を目的とするものである。
本発明に係る一態様の力率改善回路は、
交流電圧が入力される第1入力端子および第2入力端子と、
負荷に接続され、直流電圧を出力する第1出力端子および第2出力端子と、
前記第1入力端子に接続された第1交流端を有する第1ダイオードブリッジと、
前記第1ダイオードブリッジの正極端と負極端との間に接続された第1半導体素子と、
前記第2入力端子に接続された第1交流端を有する第2ダイオードブリッジと、
前記第2ダイオードブリッジの正極端と負極端との間に接続された第2半導体素子と、
第1コンデンサと第2コンデンサとの直列接続体で構成され、前記直列接続体の一方端が前記第1出力端子に接続され、前記直列接続体の他方端が前記第2出力端子に接続された出力コンデンサと、
前記第1ダイオードブリッジの正極端と前記第1出力端子との間に接続された第1ダイオードと、
前記第1ダイオードブリッジの負極端と前記第2出力端子との間に接続された第2ダイオードと、
前記第2ダイオードブリッジの正極端と前記第1出力端子との間に接続された第3ダイオードと、
前記第2ダイオードブリッジの負極端と前記第2出力端子との間に接続された第4ダイオードと、を備え、
前記直列接続体における前記第1コンデンサと前記第2コンデンサとの接続点が前記第1ダイオードブリッジの第2交流端と前記第2ダイオードブリッジの第2交流端とに接続されている。
本発明によれば、力率の改善を行うと共に、出力される高電圧に比して、低い電圧の耐圧仕様のデバイスを用いて構成することが可能となり、小型化および低価格化を達成することが可能な力率改善回路を提供することができる。
本発明の実施の形態1に係る力率改善回路を示す回路図 実施の形態1の力率改善回路における第1入力端子に正電圧が入力されたときの電流経路を示す回路図 実施の形態1の力率改善回路における第1入力端子に正電圧が入力されたときの電流経路を示す回路図 実施の形態1の力率改善回路における第1入力端子に正電圧が入力されたときの電流経路を示す回路図 実施の形態1の力率改善回路における第1入力端子に正電圧が入力されたときの電流経路を示す回路図 実施の形態1の力率改善回路における第1入力端子に負電圧が入力されたときの電流経路を示す回路図 実施の形態1の力率改善回路における第1入力端子に負電圧が入力されたときの電流経路を示す回路図 実施の形態1の力率改善回路における第1入力端子に負電圧が入力されたときの電流経路を示す回路図 実施の形態1の力率改善回路における第1入力端子に負電圧が入力されたときの電流経路を示す回路図 実施の形態1の力率改善回路における各デバイスの波形図 図4の波形図の一部を拡大して示した波形図 本発明の実施の形態1における変形例としての力率改善回路を示す回路図
以下、本発明の力率改善回路の具体的な実施の形態について添付の図面を参照しながら説明する。なお、本発明の力率改善回路は、以下の実施の形態に記載した力率改善回路の構成に限定されるものではなく、以下の実施の形態において説明する技術的特徴を有する技術的思想と同等の技術に基づく力率改善回路の構成を含むものである。
また、以下の実施の形態において示す数値、形状、構成、ステップ(工程、モード)、およびステップの順序などは、一例を示すものであり、本発明を以下の実施の形態の構成に限定するものではない。以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。なお、実施の形態の変形例においては、同じ要素には同じ符号を付して、説明を省略する場合がある。また、図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示している。
先ず始めに、本発明の力率改善回路における各種態様を例示する。
本発明に係る第1の態様の力率改善回路は、
本発明に係る一態様の力率改善回路は、
交流電圧が入力される第1入力端子および第2入力端子と、
負荷に接続され、直流電圧を出力する第1出力端子および第2出力端子と、
前記第1入力端子に接続された第1交流端を有する第1ダイオードブリッジと、
前記第1ダイオードブリッジの正極端と負極端との間に接続された第1半導体素子と、
前記第2入力端子に接続された第1交流端を有する第2ダイオードブリッジと、
前記第2ダイオードブリッジの正極端と負極端との間に接続された第2半導体素子と、
第1コンデンサと第2コンデンサとの直列接続体で構成され、前記直列接続体の一方端が前記第1出力端子に接続され、前記直列接続体の他方端が前記第2出力端子に接続された出力コンデンサと、
前記第1ダイオードブリッジの正極端と前記第1出力端子との間に接続された第1ダイオードと、
前記第1ダイオードブリッジの負極端と前記第2出力端子との間に接続された第2ダイオードと、
前記第2ダイオードブリッジの正極端と前記第1出力端子との間に接続された第3ダイオードと、
前記第2ダイオードブリッジの負極端と前記第2出力端子との間に接続された第4ダイオードと、を備え、
前記直列接続体における前記第1コンデンサと前記第2コンデンサとの接続点が前記第1ダイオードブリッジの第2交流端と前記第2ダイオードブリッジの第2交流端とに接続されている。このように構成された力率改善回路においては、出力される高電圧に比して、低い電圧の耐圧仕様のデバイスを用いて構成することが可能となる。
本発明に係る第2の態様の力率改善回路は、前記の第1の態様において、前記第1入力端子と前記第1ダイオードブリッジの第1交流端との間、若しくは前記第2入力端子と前記第2ダイオードブリッジの第1交流端との間に、電流が流れたときにエネルギーの蓄積または放電を繰り返すデバイスが設けられている構成でもよい。
本発明に係る第3の態様の力率改善回路は、前記の第2の態様において、電流が流れたときにエネルギーの蓄積または放電を繰り返す前記デバイスがコイルで構成されてもよい。
本発明に係る第4の態様の力率改善回路は、前記の第1の態様から第3の態様において、前記直列接続体における前記第1コンデンサと前記第2コンデンサが実質的に同じ容量を有する構成でもよい。
本発明に係る第5の態様の力率改善回路は、前記の第1の態様から第4の態様のいずれかの態様において、前記第1ダイオードブリッジと前記第2ダイオードブリッジと、および前記第1半導体素子と前記第2半導体素子とが、実質的に同じ仕様により構成されてもよい。
本発明に係る第6の態様の力率改善回路は、前記の第1の態様から第5の態様のいずれかの態様において、前記第1半導体素子と前記第2半導体素子が、MOSFET、IGBTまたはSiCMOSFETで構成されてもよい。
(実施の形態1)
以下、本発明に係る実施の形態1の力率改善回路(PFC)について、図面を参照しながら説明する。図1は実施の形態1の力率改善回路を示す回路図である。
図1の回路図に示すように、力率改善回路1は、交流電源3に接続される入力端子51、52と、負荷5に接続される出力端子53、54とを備えている。実施の形態1の力率改善回路1としては、コイル4、2つのダイオードブリッジ11、12、2つの半導体素子(例えば、MOSFET、IGBTまたはSiCMOSFETなどのスイッチング素子)21、22、2つのコンデンサ41、42、および4つのダイオード31、32、33、34を含んで構成された例で説明する。
力率改善回路1の第1入力端子51にはコイル4の一端が接続され、コイル4の他端には第1ダイオードブリッジ11の一方の交流端である第1交流端11cが接続されている。第1ダイオードブリッジ11の正極端11aと負極端11bとの間にはスイッチング素子としての第1半導体素子21、例えば、MOSFETのドレイン(D)とソース(S)が接続される。また、第1ダイオードブリッジ11の正極端11aには第1ダイオード31のアノード(A)が接続され、第1ダイオード31のカソード(K)は負荷5に接続される第1出力端子53に接続されている。一方、第1ダイオードブリッジ11の負極端11bには第2ダイオード32のカソード(K)が接続され、第2ダイオード32のアノード(A)は負荷5に接続される第2出力端子54に接続されている。
力率改善回路1の第2入力端子52には第2ダイオードブリッジ12の一方の交流端である第1交流端12cが接続されている。第2ダイオードブリッジ12の正極端12aと負極端12bとの間にはスイッチング素子としての第2半導体素子22、例えば、MOSFETのドレイン(D)とソース(S)が接続される。また、第2ダイオードブリッジ12の正極端12aには第3ダイオード33のアノード(A)が接続され、第3ダイオード33のカソード(K)は負荷5に接続される第1出力端子53に接続されている。一方、第2ダイオードブリッジ12の負極端12bには第4ダイオード34のカソード(K)が接続され、第4ダイオード34のアノード(A)は負荷5に接続される第2出力端子54に接続されている。
実施の形態1の力率改善回路1において、図1に示すように、2つのコンデンサ41、42の直列接続体は、第1出力端子53と第2出力端子54との間に接続された出力コンデンサであり、負荷5と並列接続となっている。コンデンサ41、42の直列接続体における中間接続点(第1コンデンサ41と第2コンデンサ42との接続点)は、第1ダイオードブリッジ11および第2ダイオードブリッジ12におけるそれぞれの第2交流端11d、12dに接続されている。
上記のように構成された実施の形態1の力率改善回路1において、第1ダイオードブリッジ11と第2ダイオードブリッジ12、第1半導体素子21と第2半導体素子22、および第1コンデンサ41と第2コンデンサ42のそれぞれは、実質的に同じ仕様で対応するように構成されている。即ち、出力コンデンサとなる直列接続体における第1コンデンサ41と第2コンデンサ42は実質的に同じ容量を有している。また、第1ダイオードブリッジ11に接続された第1ダイオード31と第2ダイオード32、および第2ダイオードブリッジ12に接続された第3ダイオード33と第4ダイオード34においても、それぞれのダイオードが対応するように実質的に同じ仕様により構成されている。
[力率改善回路における昇圧動作]
次に、実施の形態1の力率改善回路1において、交流電源3から入力された交流電圧を昇圧する動作について説明する。実施の形態1の力率改善回路1においては、第1入力端子51および第2入力端子52に交流電源3から交流電圧が入力され、スイッチング素子としての第1半導体素子21および第2半導体素子22に対するオン/オフ駆動制御により所望の昇圧電圧が第1出力端子53および第2出力端子54から負荷5に供給される構成である。
図2Aから図2Dは、実施の形態1の力率改善回路1において、第1入力端子51の電位が第2入力端子52の電位より高いとき、即ち、第1入力端子51に正電圧が入力され、第2出力端子52に負電圧が入力されたときの電流経路を示す回路図である。
図2Aは、第1半導体素子(例えば、MOSFET)21がオン状態(ON)であり、第2半導体素子(例えば、MOSFET)22がオフ状態(OFF)のときの電流経路を示している。図2Aに示すように、第1入力端子51に入力された電流は、コイル4を介して第1ダイオードブリッジ11の第1交流端11cに入力され、第1ダイオードブリッジ11の正極端11aから第1半導体素子21を流れ、第1ダイオードブリッジ11の負極端11bから第2交流端11dを通り、第2コンデンサ42に至る。このときの電流経路としては、更に、第2コンデンサ42から第4ダイオード34を介して第2ダイオードブリッジ12の負極端12bおよび第1交流端12cを通り、第2入力端子52に至る。図2Aに示す電流経路は、第1入力端子51に正電圧が入力された状態において、第1半導体素子21がオン状態であり、第2半導体素子22がオフ状態のときである。この電流経路においては、コイル4からエネルギーが放出されて、第2コンデンサ42が昇圧された電圧により充電される。
図2Bは、第1半導体素子21および第2半導体素子22が共にオン状態(ON)のときの電流経路を示している。図2Bに示すように、第1入力端子51に入力された電流は、コイル4を介して第1ダイオードブリッジ11の第1交流端11cに入力され、第1ダイオードブリッジ11の正極端11aから第1半導体素子21を流れ、第1ダイオードブリッジ11の負極端11bから第2交流端11dを通り、第2ダイオードブリッジ12の第2交流端12dに入力される。更に、第2ダイオードブリッジ12の第2交流端12dから正極端12aを通って第2半導体素子22を流れ、第2ダイオードブリッジ12の負極端12bから第1交流端12cを通り、第2入力端子52に至る。図2Bに示す電流経路は、第1入力端子51に正電圧が入力された状態において、第1半導体素子21および第2半導体素子22が共にオン状態のときである。この電流経路においては、コイル4に対してエネルギーが蓄積される。
図2Cは、第1半導体素子21がオフ状態(OFF)であり、第2半導体素子22がオン状態(ON)のときの電流経路を示している。図2Cに示すように、第1入力端子51に入力された電流は、コイル4を介して第1ダイオードブリッジ11の第1交流端11cに入力され、第1ダイオードブリッジ11の正極端11aから第1ダイオード31を通り、第1コンデンサ41に至る。このときの電流経路としては、更に、第1コンデンサ41から中間接続点を通り、第2ダイオードブリッジ12の第2交流端12dに入力され、第2ダイオードブリッジ12の正極端12aから第2半導体素子22を流れ、第2ダイオードブリッジ12の負極端12bから第1交流端12cを通り、第2入力端子52に至る。図2Cに示す電流経路は、第1入力端子51に正電圧が入力された状態において、第1半導体素子21がオフ状態であり、第2半導体素子22がオン状態のときである。この電流経路においては、コイル4からエネルギーが放出されて、第1コンデンサ41が昇圧された電圧により充電される。
図2Dは、第1半導体素子21および第2半導体素子22が共にオフ状態(OFF)のときの電流経路を示している。図2Dに示すように、第1入力端子51に入力された電流は、コイル4を介して第1ダイオードブリッジ11の第1交流端11cに入力され、第1ダイオードブリッジ11の正極端11aから第1ダイオード31を通り、第1コンデンサ41に至る。このときの電流経路としては、更に、第1コンデンサ41から第2コンデンサ42の直列接続体を通り、第4ダイオード34から第2ダイオードブリッジ12の負極端12bに入力され、第2ダイオードブリッジ12の第1交流端12cから第2入力端子52に至る。図2Dに示す電流経路は、第1入力端子51に正電圧が入力された状態において、第1半導体素子21および第2半導体素子22が共にオフ状態のときである。この電流経路においては、コイル4からエネルギーが放出されて、第1コンデンサ41および第2コンデンサ42が昇圧された電圧により充電される。
図2Aから図2Dに示すように、第1入力端子51に正電圧が入力され、第2出力端子52に負電圧が入力されたときにおいて、第1半導体素子21および第2半導体素子22に対するオン/オフ駆動制御により、力率が改善され、所望の値に昇圧された電圧を負荷5に供給することが可能となる。
図3Aから図3Dは、図2Aから図2Dとは入力される交流電圧の正負が逆の状態のときを示しており、第1入力端子51に負電圧が入力され、第2出力端子52に正電圧が入力されたときの電流経路を示す回路図である。
図3Aは、第1半導体素子(例えば、MOSFET)21がオン状態(ON)であり、第2半導体素子(例えば、MOSFET)22がオフ状態(OFF)のときの電流経路を示している。図3Aに示すように、第2入力端子52に入力された電流は、第2ダイオードブリッジ12の第1交流端12cに入力され、第2ダイオードブリッジ12の正極端12aから第3ダイオード33を流れ、第1コンデンサ41に至る。このときの電流経路としては、更に、第1コンデンサ41から中間接続点を通り、第1ダイオードブリッジ11の第2交流端11dから正極端11aを通り、第1半導体素子21を流れ、第1ダイオードブリッジ11の負極端11bから第1交流端11cを通り、コイル4を介して第1入力端子51に至る。図3Aに示す電流経路は、第2入力端子52に正電圧が入力された状態において、第1半導体素子21がオン状態であり、第2半導体素子22がオフ状態のときである。この電流経路においては、コイル4からエネルギーが放出されて、第1コンデンサ41が昇圧された電圧により充電される。
図3Bは、第1半導体素子21および第2半導体素子22が共にオン状態(ON)のときの電流経路を示している。図3Bに示すように、第2入力端子52に入力された電流は、第2ダイオードブリッジ12の第1交流端12cに入力され、第2ダイオードブリッジ12の正極端12aから第2半導体素子22を流れ、第2ダイオードブリッジ12の負極端12bから第2交流端12dを通り、第1ダイオードブリッジ11の第2交流端11dに入力される。更に、第1ダイオードブリッジ11の第2交流端11dから正極端11aを通って第1半導体素子21を流れ、第1ダイオードブリッジ11の負極端11bから第1交流端11cを通り、コイル4を介して第1入力端子51に至る。図3Bに示す電流経路は、第2入力端子52に正電圧が入力された状態において、第1半導体素子21および第2半導体素子22が共にオン状態のときである。この電流経路においては、コイル4に対してエネルギーが蓄積される。
図3Cは、第1半導体素子21がオフ状態(OFF)であり、第2半導体素子22がオン状態(ON)のときの電流経路を示している。図3Cに示すように、第2入力端子52に入力された電流は、第2ダイオードブリッジ12の第1交流端12cに入力され、第2ダイオードブリッジ12の正極端12aから第2半導体素子22を流れ、第2ダイオードブリッジ12の負極端12bから第2交流端12dを通り、第2コンデンサ42に至る。このときの電流経路としては、更に、第2コンデンサ42から第2ダイオード32を通り、第1ダイオードブリッジ11の負極端11bから第1交流端11cを通り、コイル4を介して第1入力端子51に至る。図3Cに示す電流経路は、第2入力端子52に正電圧が入力された状態において、第1半導体素子21がオフ状態であり、第2半導体素子22がオン状態のときである。この電流経路においては、コイル4からエネルギーが放出されて、第2コンデンサ42が昇圧された電圧により充電される。
図3Dは、第1半導体素子21および第2半導体素子22が共にオフ状態(OFF)のときの電流経路を示している。図3Dに示すように、第2入力端子52に入力された電流は、第2ダイオードブリッジ12の第1交流端12cに入力され、第2ダイオードブリッジ12の正極端12aから第3ダイオード33を通り、第1コンデンサ41に至る。このときの電流経路としては、更に、直列接続体である第1コンデンサ41から第2コンデンサ42を通り、第2ダイオード32から第1ダイオードブリッジ11の負極端11bに入力され、第1ダイオードブリッジ11の第1交流端11cからコイル4を介して第1入力端子51に至る。図3Dに示す電流経路は、第2入力端子52に正電圧が入力された状態において、第1半導体素子21および第2半導体素子22が共にオフ状態のときである。この電流経路においては、コイル4からエネルギーが放出されて、第1コンデンサ41および第2コンデンサ42が昇圧された電圧により充電される。
図3Aから図3Dに示したように、第1入力端子51に負電圧が入力され、第2出力端子52に正電圧が入力されたときにおいて、第1半導体素子21および第2半導体素子22に対するオン/オフ駆動制御により、力率が改善され、所望の値に昇圧された電圧を負荷5に供給することが可能となる。上記のように、実施の形態1の力率改善回路1においては、形成された電流経路に電流が流れたとき、コイル4にエネルギーの蓄積または放電が繰り返えされて、出力コンデンサ(41、42)において所望の昇圧電圧が出力される構成となる。
図4は、実施の形態1の力率改善回路1における各デバイスの波形図を示している。図4の(1)は、交流電源3から入力される電圧波形である。図4の(2)は、第1半導体素子(MOSFET)21に入力されるゲート信号を示している。図4の(3)は、第2半導体素子(MOSFET)22に入力されるゲート信号を示している。図4の(4)は、第1半導体素子21のドレイン−ソース間電圧を示している。図4の(5)は、第2半導体素子22のドレイン−ソース間電圧を示している。実施の形態1の力率改善回路1においては、第1半導体素子21および第2半導体素子22のドレイン−ソース間電圧が、出力直流電圧の略半分の電圧となっている。
図4における(6)〜(9)は、ダイオード(31〜34)の両端電圧を示しており、(6)が第1ダイオード31の両端電圧、(7)が第2ダイオード32の両端電圧、(8)が第3ダイオード33の両端電圧、(9)が第4ダイオード34の両端電圧を示している。図4の(6)〜(9)に示すように、実施の形態1の力率改善回路1においては、第1入力端子51に正電圧が入力されたとき、第1ダイオード31と第4ダイオード34の両端に電圧が加わり、そのときの電圧は出力直流電圧の略半分となっている。一方、第1入力端子51に負電圧が入力されたとき、即ち、第2入力端子52に正電圧が入力されたとき、第2ダイオード32と第3ダイオード33の両端に電圧が加わり、そのときの電圧は出力直流電圧の略半分となっている。
図4における(10)は、第1ダイオードブリッジ11の両端電圧を示しており、正極端11a−負極端11b間の電圧を示している。図4における(11)は、第2ダイオードブリッジ12の両端電圧を示しており、正極端12a−負極端12b間の電圧を示している。実施の形態1の力率改善回路1において、第1ダイオードブリッジ11および第2ダイオードブリッジ12の両極端に加わる電圧においても、出力直流電圧の略半分となっている。
図4における(12)は、出力端子(53−54)間電圧を示しており、昇圧された直流出力電圧波形を示している。直流出力電圧は、スイッチング素子である第1半導体素子(MOSFET)21および第2半導体素子(MOSFET)22のデューティ比により制御することが可能である。図4における(13)は、コイル4に流れる電流であり、交流電源3からの電圧波形に対応する波形となる。
図5は、図4の波形図の一部を拡大して示しており、交流電源3からの電圧波形の半波長(正電圧領域)における第1半導体素子(MOSFET)21および第2半導体素子(MOSFET)22に関する波形図である。図5において、(1)は交流電源3の入力電圧波形を示しており、正電圧側の半波長を示している。図5の(2)〜(4)は、図5の(1)の入力電圧のときの第1半導体素子(MOSFET)21における動作を示している。図5において、(2)はゲート信号、(3)はドレイン電流、(4)はドレイン−ソース間電圧を示している。同様に、図5の(5)〜(7)は、図5の(1)の入力電圧のときの第2半導体素子(MOSFET)22における動作を示しており、(5)はゲート信号、(6)はドレイン電流、(7)はドレイン−ソース間電圧を示している。なお、図5は、電圧波形の正電圧領域(半波長)における第1半導体素子(MOSFET)21および第2半導体素子(MOSFET)22の動作について示したが、電圧波形の負電圧領域(半波長)においても第1半導体素子(MOSFET)21および第2半導体素子(MOSFET)22は同様の動作を行う。
図4および図5に示すように、第1半導体素子(MOSFET)21および第2半導体素子(MOSFET)22のデューティ比を変更することにより、所望の直流電圧を出力することが可能となる。従って、図1に示した実施の形態1の力率改善回路1は、力率改善と共に、交流電源3からの交流電圧から所望に昇圧した直流電圧を出力することが可能となる。
実施の形態1の力率改善回路1は、図1に示した回路構成において、第1半導体素子(例えば、MOSFET、IGBTまたはSiCMOSFET)21および第2半導体素子(例えば、MOSFET、IGBTまたはSiCMOSFET)22を図5に示したようにオン/オフ駆動制御することにより、力率が改善されると共に、所望の直流電圧を出力することができる構成となる。更に、実施の形態1の力率改善回路1においては、第1半導体素子21および第2半導体素子22としては、出力直流電圧の略半分の電圧に耐える耐圧仕様のデバイスを用いることが可能となる。また、その他のデバイスにおいても、負荷5に加わる出力直流電圧の略半分の電圧が加わる回路構成であるため、各デバイスにおける耐圧仕様が、昇圧構成であるにもかかわらず、従来から使用されている低い耐圧仕様のデバイスを用いることが可能な構成となる。即ち、実施の形態1の力率改善回路1は、第1半導体素子21、第2半導体素子22、ダイオードブリッジ11、12、ダイオード31、32、33、34のそれぞれにおいて、出力される直流電圧の略半分の耐圧仕様を有するデバイスで構成することが可能となる。この結果、本発明によれば、出力される高電圧に比して、低い電圧の耐圧仕様のデバイスを用いることが可能となり、更なる昇圧構成となるように設計しても、従来のデバイスを用いることが可能となり、小型化および低価格化を容易に達成できる力率改善回路となる。
[変形例]
図6は本発明の実施の形態1の変形例としての力率改善回路2を示す回路図である。図6の回路図に示すように、力率改善回路2は、前述の実施の形態1の力率改善回路1と同様のデバイスにより構成されているが、コイル4の接続位置が異なっている。
変形例の力率改善回路2におけるコイル4は、第2入力端子52と、第2ダイオードブリッジ12の一方の交流端である第1交流端12cとの間に接続されている。従って、第1入力端子51は、第1ダイオードブリッジ11の第1交流端11cに直接的に接続された構成となる。力率改善回路2におけるその他の構成は、実施の形態1の力率改善回路1と同じである。
上記のように構成された変形例としての力率改善回路2においても、実施の形態1の力率改善回路1と同じ効果を奏するものであり、出力される高電圧に比して、低い電圧の耐圧仕様のデバイスを用いることが可能となり、更なる昇圧構成としても従来のデバイスを用いることが可能となり、小型化および低価格化を達成できる力率改善回路となる。
本発明の力率改善回路は、実施の形態および変形例を用いて説明したように、力率の改善を行うと共に、出力される高電圧に比して、低い電圧の耐圧仕様のデバイスを用いて構成することが可能となり、小型化および低価格化を達成することが可能となる。また、本発明の力率改善回路の回路構成を電源装置に用いることにより、小型化および低価格化を達成できる汎用性の高い各種装置を構築することが可能となる。
本発明の力率改善回路は、力率を改善すると共に、所望の値に昇圧した直流電圧を小型で低コストのデバイスで構成することができ、小型化および低価格化が要求される各種電気機器における電源装置として汎用性の高いものとなる。
1 力率改善回路
2 力率改善回路(変形例)
3 交流電源
4 コイル
5 負荷
11 第1ダイオードブリッジ
11a 正極端
11b 負極端
11c 第1交流端
11d 第2交流端
12 第2ダイオードブリッジ
12a 正極端
12b 負極端
12c 第1交流端
12d 第2交流端
21 第1半導体素子(例えば、MOSFET、IGBTまたはSiCMOSFET)
22 第2半導体素子(例えば、MOSFET、IGBTまたはSiCMOSFET)
31 第1ダイオード
32 第2ダイオード
33 第3ダイオード
34 第4ダイオード
41 第1コンデンサ
42 第2コンデンサ
51 第1入力端子
52 第2入力端子
53 第1出力端子
54 第2出力端子

Claims (6)

  1. 交流電圧が入力される第1入力端子および第2入力端子と、
    負荷に接続され、直流電圧を出力する第1出力端子および第2出力端子と、
    前記第1入力端子に接続された第1交流端を有する第1ダイオードブリッジと、
    前記第1ダイオードブリッジの正極端と負極端との間に接続された第1半導体素子と、
    前記第2入力端子に接続された第1交流端を有する第2ダイオードブリッジと、
    前記第2ダイオードブリッジの正極端と負極端との間に接続された第2半導体素子と、
    第1コンデンサと第2コンデンサとの直列接続体で構成され、前記直列接続体の一方端が前記第1出力端子に接続され、前記直列接続体の他方端が前記第2出力端子に接続された出力コンデンサと、
    前記第1ダイオードブリッジの正極端と前記第1出力端子との間に接続された第1ダイオードと、
    前記第1ダイオードブリッジの負極端と前記第2出力端子との間に接続された第2ダイオードと、
    前記第2ダイオードブリッジの正極端と前記第1出力端子との間に接続された第3ダイオードと、
    前記第2ダイオードブリッジの負極端と前記第2出力端子との間に接続された第4ダイオードと、を備え、
    前記直列接続体における前記第1コンデンサと前記第2コンデンサとの接続点が前記第1ダイオードブリッジの第2交流端と前記第2ダイオードブリッジの第2交流端とに接続された力率改善回路。
  2. 前記第1入力端子と前記第1ダイオードブリッジの第1交流端との間、若しくは前記第2入力端子と前記第2ダイオードブリッジの第1交流端との間に、電流が流れたときにエネルギーの蓄積または放電を繰り返すデバイスを設ける、請求項1に記載の力率改善回路。
  3. 電流が流れたときにエネルギーの蓄積または放電を繰り返す前記デバイスがコイルで構成される、請求項2に記載の力率改善回路。
  4. 前記直列接続体における前記第1コンデンサと前記第2コンデンサは実質的に同じ容量を有して構成される、請求項1から3のいずれか一項に記載の力率改善回路。
  5. 前記第1ダイオードブリッジと前記第2ダイオードブリッジと、および前記第1半導体素子と前記第2半導体素子とは、実質的に同じ仕様により構成された、請求項1から4のいずれか一項に記載の力率改善回路。
  6. 前記第1半導体素子と前記第2半導体素子は、MOSFET、IGBTまたはSiCMOSFETで構成される、請求項1から5のいずれか一項に記載の力率改善回路。
JP2019154519A 2019-08-27 2019-08-27 力率改善回路 Pending JP2021035223A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019154519A JP2021035223A (ja) 2019-08-27 2019-08-27 力率改善回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019154519A JP2021035223A (ja) 2019-08-27 2019-08-27 力率改善回路

Publications (1)

Publication Number Publication Date
JP2021035223A true JP2021035223A (ja) 2021-03-01

Family

ID=74676219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019154519A Pending JP2021035223A (ja) 2019-08-27 2019-08-27 力率改善回路

Country Status (1)

Country Link
JP (1) JP2021035223A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185139A1 (en) 2021-03-05 2022-09-09 Ricoh Company, Ltd. Drive unit, liquid discharge head, and liquid discharge apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182441A (ja) * 1995-12-28 1997-07-11 Toshiba Corp 三相整流装置
JPH11122930A (ja) * 1997-10-16 1999-04-30 Toshiba Fa Syst Eng Corp 整流装置用半導体モジュ−ル
JP2002142458A (ja) * 2000-10-31 2002-05-17 Fuji Electric Co Ltd 整流回路及びその制御方法
JP2002176777A (ja) * 2000-12-06 2002-06-21 Toshiba Industrial Products Manufacturing Corp 三相整流装置
JP2004104909A (ja) * 2002-09-09 2004-04-02 Sanken Electric Co Ltd 三相スイッチング整流装置
JP2009095083A (ja) * 2007-10-04 2009-04-30 Fuji Electric Systems Co Ltd 電力変換装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182441A (ja) * 1995-12-28 1997-07-11 Toshiba Corp 三相整流装置
JPH11122930A (ja) * 1997-10-16 1999-04-30 Toshiba Fa Syst Eng Corp 整流装置用半導体モジュ−ル
JP2002142458A (ja) * 2000-10-31 2002-05-17 Fuji Electric Co Ltd 整流回路及びその制御方法
JP2002176777A (ja) * 2000-12-06 2002-06-21 Toshiba Industrial Products Manufacturing Corp 三相整流装置
JP2004104909A (ja) * 2002-09-09 2004-04-02 Sanken Electric Co Ltd 三相スイッチング整流装置
JP2009095083A (ja) * 2007-10-04 2009-04-30 Fuji Electric Systems Co Ltd 電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185139A1 (en) 2021-03-05 2022-09-09 Ricoh Company, Ltd. Drive unit, liquid discharge head, and liquid discharge apparatus

Similar Documents

Publication Publication Date Title
US9270166B2 (en) Power factor improvement circuit
US9899911B2 (en) Power source circuit
TWI414139B (zh) 高電壓增益電源轉換器
JP2019083658A (ja) 電力変換装置
US20050237771A1 (en) Circuit for converting an AC voltage to a DC voltage
US11309805B2 (en) Inverter and photovoltaic installation
AU2005335243A1 (en) Step-down voltage converter
CN110546874B (zh) 电力转换系统
US10924000B2 (en) DC-DC converter with reduced ripple
RU2437204C1 (ru) Устройство источника питания постоянного тока
JP2021035223A (ja) 力率改善回路
US8120930B2 (en) Rush current reduction circuit and electric appliance
JP5923961B2 (ja) 交流直流変換装置
US11973440B2 (en) Isolated DC/DC converter with secondary-side full bridge diode rectifier and asymmetrical auxiliary capacitor
TW201541831A (zh) 電力轉換裝置
JP6191542B2 (ja) 電力変換装置
JP6996660B2 (ja) 半導体デバイスのための電圧バランス回路
US20060164869A1 (en) Inverter
CN109075710A (zh) 开关电源控制电路及开关电源装置
JP4674122B2 (ja) 電源装置
JP2020048342A (ja) スイッチング素子のゲート駆動回路
KR101421020B1 (ko) 브리지리스 역률 보상 회로
JP5724939B2 (ja) 電源安定化装置
WO2023243321A1 (ja) コンバータ装置
US20240106322A1 (en) Power conversion system and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220531