WO2020182433A1 - Gasdiffusionslage für eine brennstoffzelle und brennstoffzelle - Google Patents

Gasdiffusionslage für eine brennstoffzelle und brennstoffzelle Download PDF

Info

Publication number
WO2020182433A1
WO2020182433A1 PCT/EP2020/054374 EP2020054374W WO2020182433A1 WO 2020182433 A1 WO2020182433 A1 WO 2020182433A1 EP 2020054374 W EP2020054374 W EP 2020054374W WO 2020182433 A1 WO2020182433 A1 WO 2020182433A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas diffusion
diffusion layer
fuel cell
weight
fibers
Prior art date
Application number
PCT/EP2020/054374
Other languages
English (en)
French (fr)
Inventor
Harald Bauer
Silvan Hippchen
Juergen Hackenberg
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to KR1020217032438A priority Critical patent/KR20210138041A/ko
Priority to US17/438,533 priority patent/US20220158199A1/en
Priority to JP2021554651A priority patent/JP2022524807A/ja
Priority to CN202080020719.5A priority patent/CN113574708A/zh
Publication of WO2020182433A1 publication Critical patent/WO2020182433A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a gas diffusion layer for a fuel cell, comprising a composite material.
  • the invention also relates to a fuel cell which comprises the gas diffusion layer, as well as a method for producing the
  • a fuel cell is a galvanic cell, which is the chemical
  • a fuel cell Converts oxidizing agent into electrical energy.
  • a fuel cell is therefore an electrochemical energy converter.
  • hydrogen (H 2 ) and oxygen (O 2 ) in particular are converted into water (H 2 O), electrical energy and heat.
  • An electrolyzer is an electrochemical energy converter which splits water (H 2 O) into hydrogen (H 2 ) and oxygen (O 2 ) using electrical energy.
  • PEM proton exchange membranes
  • Proton exchange membrane fuel cells have a centrally arranged membrane that is conductive for protons, i.e. for hydrogen ions.
  • the oxidizing agent in particular atmospheric oxygen, is thereby spatially separated from the fuel, in particular hydrogen.
  • Proton exchange membrane fuel cells also have an anode and a cathode.
  • the fuel is fed to the anode of the fuel cell and is catalytically oxidized to protons, releasing electrons.
  • the protons pass through the membrane to the cathode.
  • the released electrons are derived from the fuel cell and flow to the cathode via an external circuit.
  • the oxidizing agent is fed to the fuel cell's cathode and it reacts to water by absorbing electrons from the external circuit and protons that have passed through the membrane to the cathode. The resulting water is drained from the fuel cell.
  • the gross response is:
  • a voltage is applied between the anode and the cathode of the fuel cell.
  • several fuel cells can be mechanically arranged one behind the other to form a fuel cell stack and electrically connected in series.
  • the bipolar plates have, for example, channel-like structures for distributing the fuel and the oxidizing agent to the electrodes.
  • the channel-like structures also serve to drain off the water produced during the reaction.
  • the bipolar plates can also have structures for conducting a cooling liquid through the fuel cell to dissipate heat.
  • the cathode side of the PEM fuel cell must be perpendicular to the
  • Membrane surface oxygen can be transported into the reaction zone on the membrane and the water formed must be removed. This usually takes place through an open pore system, for example a particulate porous layer (microporous layer, MPL). At the same time, the pore system must ensure electrical contact between the catalyst on the membrane and the bipolar plate.
  • MPL microporous layer
  • a pore system and an electrically conductive support structure are combined, which also meet the mechanical requirements resulting from the
  • the particulate porous layer with pore system (MPL) and the support structure (Gas diffusion backbone, GDB) are also referred to collectively as the gas diffusion layer.
  • MPL particulate porous layer with pore system
  • GDB support structure
  • the substances involved in the reaction must be supplied and removed evenly and distributed evenly over the surface parallel to the membrane. In order to achieve an even distribution, a certain amount of
  • a PEM fuel cell is constructed in such a way that a very fine, mostly hydrophilic, catalyst-containing layer of carbon particles is applied to both sides of the membrane as an electrode.
  • the combination of one electrode layer on each side of the membrane and the membrane is known as an electrode-membrane-electrode unit (EME).
  • EME electrode-membrane-electrode unit
  • the EME is followed by a gas diffusion layer, which usually comprises a microporous layer (MPL) and a support structure (gas diffusion backbone, GDB), the microporous layer being arranged on the membrane side and the supporting structure on the side of the gas diffusion layer facing away from the membrane is.
  • MPL microporous layer
  • GDB gas diffusion backbone
  • the microporous layer which is usually formed from carbon particles, for electrical conductivity, and Teflon particles, as a chemically stable binder system with poor wettability for liquid water, usually has a pore size between 0.06 ⁇ m and 1 ⁇ m.
  • the support structure is often formed from carbon fabric or paper-like connected carbon fibers with pores between 20 ⁇ m and 200 ⁇ m.
  • gas diffusion layer On the side of the gas diffusion layer facing away from the membrane, there then follow in the layer structure structured gas channels and plates made of graphite or metal, which are also referred to as gas distribution structures.
  • the gas diffusion layer By means of webs between the gas channels, the gas diffusion layer is pressed by the bipolar plates on both sides of the membrane and thus makes electrical and thermal contact with the catalyst layer.
  • the width of gas channels and webs is typically from 0.2 mm to 2 mm, so that a distance from web center to web center between 0.4 and 4 mm results.
  • No. 9,160,020 describes metal foams and expanded metal structures that are used as gas distribution structures.
  • the suitability of metal foams is limited, however, since they can damage thin gas diffusion layers or microporous layers and also the membrane of the fuel cell.
  • Carbon fiber papers or woven carbon mats from the mold construction of carbon fiber reinforced plastics, which are coated with a microporous layer, are known as gas diffusion layers.
  • Gas diffusion layer describes inhomogeneous electrical and thermal contacts as well as the accumulation of product water, which is caused by
  • Electrode films are usually produced by means of slurry processes, melt extrusion or largely solvent-free roller processes.
  • a gas diffusion layer for a fuel cell which comprises a composite material that contains electrically conductive particles, a binder and fibers, preferably carbon fibers, the particles and the fibers being present in a mixture in the composite material.
  • the gas diffusion layer can also be used in other electrochemical energy converters, for example in one
  • Electrolyzer can be used.
  • the gas diffusion layer according to the invention can be used as a fiber-reinforced
  • the gas diffusion layer preferably has exactly one layer and the one layer comprises the composite material.
  • the gas diffusion layer is made from the composite material in a single layer.
  • the gas diffusion layer more preferably consists of the composite material.
  • Composite material contains both the electrically conductive particles and the fibers, which are not spatially separated from one another but are in a mixed form.
  • the gas diffusion layer preferably does not include any support structure (GDL).
  • the fibers preferably have a length L of at least 0.2 mm, preferably of at least 2 mm. More preferably, the length L is not more than 12 mm. The length L is usually understood to mean the greatest possible spatial extension of a fiber.
  • the fibers preferably have a diameter Df of 5 ⁇ m to 15 ⁇ m, in particular 6 ⁇ m to 12 ⁇ m.
  • the carbon fibers are in particular short carbon fibers, e.g. B. of the type
  • the electrically conductive particles can be described as geometrically round compared to the fibers.
  • the electrically conductive particles preferably have a length to width to height ratio of 1: 1: 1 to 10: 10: 1.
  • the electrically conductive particles particularly preferably have a round shape, a potato shape or a platelet shape.
  • a round shape is understood to mean an approximate ratio of length to width to height of 1 to 1 to 1, a potato shape an approximate ratio of 5 to 3 to 2 and a platelet shape an approximate one
  • the gas diffusion layer preferably has a thickness D of 10 mhi to 300 mhi, more preferably from 20 mhi to 150 mhi.
  • the composite material preferably contains 1% by weight to 20% by weight, preferably 2% by weight to 10% by weight, of a first binder, in particular
  • PVDF Polyvinylidene fluoride
  • a second binder in particular polytetrafluoroethylene (PTFE)
  • PTFE polytetrafluoroethylene
  • the composite material preferably has elastic properties, in particular an elastic deformation of up to 10%.
  • the composite material is preferably porous and can be processed into thin layers or films.
  • a fuel cell which comprises a gas diffusion layer according to the invention, the fuel cell in particular being a
  • Polymer electrolyte fuel cell (PEM FC) is. Preferably includes
  • Fuel cell two gas diffusion layers according to the invention are arranged in particular between a bipolar plate and an electrode-membrane-electrode unit in the fuel cell.
  • the fuel cell comprises a gas distributor structure with a surface, the surface having elevations for guiding the gas and adjacent elevations being at a distance A from one another.
  • the distance A becomes a width
  • the length L of the fibers of the composite material is preferably at least twice as long, preferably at least three times as long and in particular not more than fifty times as long as the distance A.
  • the fuel cell also preferably does not include a support structure (GDB).
  • GDB support structure
  • a method for producing a gas diffusion layer is also provided.
  • the additive can be carbon black, conductive graphite, vitreous carbon or mixtures thereof.
  • the glass carbon preferably has an average diameter of 1 ⁇ m to 10 ⁇ m; it can be porous or gas-tight.
  • the additive can also contain the electrically conductive particles with a mean diameter dm of 0.5 ⁇ m to 50 ⁇ m or consist of these.
  • the composite material allows a thin design of a gas diffusion layer, with both a uniform distribution of the substances involved in the reaction and an electrical and thermal contact, as well as a
  • a possible product jam in the fuel cell is reduced and higher current densities can be achieved.
  • the gas diffusion layer according to the invention offers reliable mechanical support for the membrane in relation to the bipolar plate without damaging the membrane.
  • the assembly process in particular its positioning, is also facilitated by the rigid, thin structure of the gas diffusion layer according to the invention. Furthermore, the gas diffusion layer offers tolerance compensation during assembly if the composite material has elastic properties.
  • gas diffusion layer according to the invention can form a self-supporting film with a low surface roughness, so that the
  • Gas diffusion layer can be coated directly with a catalyst layer and a membrane (Direct Membrane Deposition, DMD).
  • DMD Direct Membrane Deposition
  • the gas diffusion layer according to the invention is stable and the fibers are embedded in the electrically conductive particles, so that fibers protruding from the surface and thus damage to the membrane are avoided.
  • the gas diffusion layer can also be further structured by embossing or printing and influence the flow guidance on the bipolar plate side.
  • Figure 1 shows a fuel cell stack
  • FIG. 2 shows a fuel cell with a gas diffusion layer according to the prior art
  • FIG. 3 shows a fuel cell with a gas diffusion layer according to the invention.
  • FIG. 1 shows a schematic representation of a fuel cell stack 4 with a plurality of fuel cells 3.
  • Each fuel cell 3 has a membrane 24, two gas diffusion layers 1, an anode 30 and a cathode 32.
  • the individual fuel cells 3 are delimited from one another by bipolar plates 50, which can include a cooling plate 45.
  • the fuel cell stack 4 to which hydrogen 40 and oxygen 42 and a cooling medium 44 are supplied, is closed by two end plates 48 and has current collectors 52.
  • the various inlets are separated from one another by seals 46.
  • FIG. 2 shows a schematic representation of a fuel cell 3 which has a gas diffusion layer 1 according to the prior art.
  • the fuel cell 3 comprises a membrane 24 on which a
  • Catalyst layer 34 is arranged.
  • the catalyst layer 34 is followed by one on the anode 30 side as well as on the cathode 32 side
  • Gas diffusion layer 1 each consisting of a support structure 38 and a
  • microporous layer 36 is constructed.
  • the support structure 38 has a larger pore size than the microporous layer 36 and is arranged on the side of the gas diffusion layer 1 facing away from the membrane 24.
  • the gas diffusion layers 1 are each surrounded by a gas distribution structure 16 through which hydrogen 40 or oxygen 42 is supplied to the gas diffusion layers 1.
  • the gas distributor structures 16 have surfaces 18 with elevations 20.
  • the elevations 20 have a distance A 22 from one another, whereby
  • Gas supply channels 26 are formed.
  • FIG. 3 shows a fuel cell 3 comprising one according to the invention
  • Gas diffusion layer 1 The fuel cell 3 corresponds essentially to the fuel cell 3 shown in FIG. 2 with the difference that in FIG. 3 the gas diffusion layers 1 are designed according to the invention.
  • the gas diffusion layers 1 consist of only one layer 11, which extends from the catalyst layer 34 to the surface 18 of the gas distribution structure 16.
  • the gas diffusion layers 1 are constructed from a composite material 5 that contains electrically conductive particles 7 and fibers 9.
  • the fibers 9 have a length L 12 which is at least twice as long as the distance A 22 between the elevations 20 of the gas distribution structures 16.
  • the gas diffusion layers 1 have a thickness D 14.

Abstract

Die Erfindung betrifft eine Gasdiffusionslage (1) für eine Brennstoffzelle (3), umfassend ein Verbundmaterial (5), das elektrisch leitfähige Partikel (7), ein Bindemittel und Fasern (9), bevorzugt Carbonfasern, enthält, wobei die Partikel (7) und die Fasern (9) in dem Verbundmaterial (5) in Mischung vorliegen. Ferner betrifft die Erfindung eine Brennstoffzelle und ein Verfahren zur Herstellung der Gasdiffusionslage.

Description

Gasdiffusionslase für eine Brennstoffzelle und Brennstoffzelle
Die Erfindung betrifft eine Gasdiffusionslage für eine Brennstoffzelle, umfassend ein Verbundmaterial. Die Erfindung betrifft auch eine Brennstoffzelle, die die Gasdiffusionslage umfasst, sowie ein Verfahren zur Herstellung der
Gasdiffusionslage.
Stand der Technik
Eine Brennstoffzelle ist eine galvanische Zelle, welche die chemische
Reaktionsenergie eines kontinuierlich zugeführten Brennstoffs und eines
Oxidationsmittels in elektrische Energie wandelt. Eine Brennstoffzelle ist also ein elektrochemischer Energiewandler. Bei bekannten Brennstoffzellen werden insbesondere Wasserstoff (H2) und Sauerstoff (O2) in Wasser (H2O), elektrische Energie und Wärme gewandelt.
Ein Elektrolyseur ist ein elektrochemischer Energiewandler, welcher Wasser (H2O) mittels elektrischer Energie in Wasserstoff (H2) und Sauerstoff (O2) spaltet.
Unter anderem sind Protonenaustauschmembranen (Proton-Exchange- Membrane = PEM)-Brennstoffzellen bekannt, die auch als Polymerelektrolyt- Brennstoffzelle bezeichnet werden. Weiterhin bekannt sind Anionen-Austausch- Membranen sowohl für Brennstoffzellen als auch für Elektrolyseure.
Protonenaustauschmembran-Brennstoffzellen weisen eine zentral angeordnete Membran auf, die für Protonen, also für Wasserstoffionen, leitfähig ist. Das Oxidationsmittel, insbesondere Luftsauerstoff, ist dadurch räumlich von dem Brennstoff, insbesondere Wasserstoff, getrennt.
Protonenaustauschmembran-Brennstoffzellen weisen ferner eine Anode und eine Kathode auf. Der Brennstoff wird an der Anode der Brennstoffzelle zugeführt und katalytisch unter Abgabe von Elektronen zu Protonen oxidiert. Die Protonen gelangen durch die Membran zu der Kathode. Die abgegebenen Elektronen werden aus der Brennstoffzelle abgeleitet und fließen über einen externen Stromkreis zu der Kathode.
Das Oxidationsmittel wird an der Kathode der Brennstoffzelle zugeführt und es reagiert durch Aufnahme der Elektronen aus dem externen Stromkreis und Protonen, die durch die Membran zur Kathode gelangt sind, zu Wasser. Das so entstandene Wasser wird aus der Brennstoffzelle abgeleitet. Die Bruttoreaktion lautet:
02 + 4 H+ + 4 e - 2 H20
Zwischen der Anode und der Kathode der Brennstoffzelle liegt dabei eine Spannung an. Zur Erhöhung der Spannung können mehrere Brennstoffzellen mechanisch hintereinander zu einem Brennstoffzellenstapel angeordnet und elektrisch in Reihe geschaltet werden.
Zur gleichmäßigen Verteilung des Brennstoffs an die Anode sowie zur gleichmäßigen Verteilung des Oxidationsmittels an die Kathode sind
Bipolarplatten vorgesehen. Die Bipolarplatten weisen beispielsweise kanalartige Strukturen zur Verteilung des Brennstoffs sowie des Oxidationsmittels an die Elektroden auf. Die kanalartigen Strukturen dienen ferner zur Ableitung des bei der Reaktion entstandenen Wassers. Die Bipolarplatten können darüber hinaus Strukturen zur Durchleitung einer Kühlflüssigkeit durch die Brennstoffzelle zur Abführung von Wärme aufweisen.
Auf der Kathodenseite der PEM-Brennstoffzelle muss senkrecht zur
Membranoberfläche Sauerstoff in die Reaktionszone an der Membran transportiert werden und das gebildete Wasser muss entfernt werden. Dies geschieht üblicherweise durch ein offenes Porensystem, zum Beispiel eine partikuläre poröse Schicht (Microporous Layer, MPL). Gleichzeitig muss das Porensystem den elektrischen Kontakt zwischen dem Katalysator an der Membran und der Bipolarplatte sicherstellen.
In der Regel werden ein Porensystem und eine elektrisch leitfähige Stützstruktur kombiniert, die auch mechanischen Anforderungen, die sich aus dem
Anpressdruck für die Kontaktierung und Abdichtung ergeben, genügen. Die partikuläre poröse Schicht mit Porensystem (MPL) und die Stützstruktur (Gasdiffusionsbackbone, GDB) werden gemeinsam auch als Gasdiffusionslage bezeichnet. Die an der Reaktion beteiligten Stoffe sind gleichmäßig zu- und abzuführen und über die Fläche parallel zur Membran gleichmäßig zu verteilen. Um eine gleichmäßige Verteilung zu erzielen wird ein gewisses Maß an
Druckverlust in Kauf genommen, wobei die lokale Reaktionsrate druckabhängig ist und sich mit lokalen Druckunterschieden verringert.
Zur Zu- und Abführung von an der Reaktion beteiligten Stoffen werden häufig Strukturen eingesetzt, die mit zunehmender Entfernung von der Membran größere Poren aufweisen. In der Regel ist eine PEM-Brennstoffzelle so aufgebaut, dass auf die Membran beidseitig eine sehr feine, meist hydrophile, katalysatorhaltige Schicht aus Kohlenstoffpartikeln als Elektrode aufgebracht wird. Der Verbund aus je einer Elektrodenlage auf jeder Seite der Membran und der Membran wird als Elektrode-Membran-Elektrode-Einheit (EME) bezeichnet. Die Porengröße beträgt hier ungefähr 15 nm. Auf die EME folgt jeweils eine Gasdiffusionslage, die üblicherweise eine mikroporöse Lage (MPL) und eine Stützstruktur (Gasdiffusionsbackbone, GDB) umfasst, wobei die mikroporöse Lage membranseitig und die Stützstruktur auf der Membran abgewandten Seite der Gasdiffusionslage angeordnet ist. Die mikroporöse Lage, die üblicherweise aus Kohlenstoffpartikeln, für die elektrische Leitfähigkeit, und Teflonpartikeln, als chemisch beständiges Bindersystem mit schlechter Benetzbarkeit für flüssiges Wasser, gebildet wird, weist in der Regel eine Porengröße zwischen 0,06 pm und 1 pm auf. Die Stützstruktur wird häufig aus Kohlenstoffgewebe oder papierartig verbundenen Kohlenstofffasern mit Poren zwischen 20 pm und 200 pm gebildet.
Auf der Membran abgewandten Seite der Gasdiffusionslage folgen dann im Schichtaufbau strukturierte Gaskanäle und Platten aus Graphit oder Metall, die auch als Gasverteilerstrukturen bezeichnet werden. Mittels Stegen zwischen den Gaskanälen wird die Gasdiffusionslage von den Bipolarplatten auf beide Seiten der Membran gepresst und kontaktiert so die Katalysatorschicht elektrisch und thermisch. Die Breite von Gaskanälen und Stegen beträgt typischerweise von 0,2 mm bis 2 mm, so dass sich ein Abstand von Stegmitte zu Stegmitte zwischen 0,4 und 4 mm ergibt.
US 9,160,020 beschreibt Metallschäume und Streckmetallstrukturen, die als Gasverteilerstrukturen eingesetzt werden. Die Eignung von Metallschäumen ist jedoch eingeschränkt, da sie dünne Gasdiffusionslagen oder mikroporöse Lagen und auch die Membran der Brennstoffzelle beschädigen können.
Als Gasdiffusionslagen sind insbesondere Carbon-Faserpapiere oder gewebte Carbonmatten aus dem Formenbau von kohlefaserverstärkten Kunststoffen bekannt, die mit einer mikroporösen Schicht beschichtet sind.
US 2004/0152588 beschreibt aus groben Partikeln gepresste Gasdiffusionslagen mit Dicken von ca. 400 pm, die mit und ohne mikroporöser Lage verwendet werden.
Aus Kotaka et al., Investigation of Interfacial Water Transport in the Gas Diffusion Media by Neutron Radiography, ECS Transactions, 64 (3), Seiten 839 - 851, 2014, ist die ausschließliche Verwendung einer mikroporösen Lage als
Gasdiffusionslage beziehungsweise die ausschließliche Verwendung eines Faservlieses, das eine Stützstruktur darstellt, als Gasdiffusionslage bekannt, wobei der Einsatz des alleinigen Faservlieses zu erhöhter Wasseransammlung in der Zelle führte. Auch Hiroshi et al., Application of a self-supporting microporous layer to gas diffusion layers of proton exchange membrane fuel cells, Journal of Power Sources 342, 2017, Seiten 393 - 404, betrifft die Verwendung einer mikroporösen Lage oder einer Stützstruktur als Gasdiffusionslage.
Für die ausschließliche Verwendung von Carbon-Faserpapier als
Gasdiffusionslage werden inhomogene elektrische und thermische Kontakte beschrieben sowie die Ansammlung von Produktwasser, was durch
unregelmäßige und relativ weit voneinander entfernt liegenden Carbonfasern mit entsprechend großen Zwischenräumen bedingt sein kann.
Ferner offenbart US 2004/0152588 die Herstellung von Kompositmaterialien, umfassend eine Polymermatrix, und US 9,325,022 beschreibt die Herstellung von Gasdiffusionslagen. Elektrodenfilme werden üblicherweise mittels Slurry- Verfahren, Schmelzextrusion oder weitgehend lösemittelfreiem Walzenverfahren hergestellt.
Im Allgemeinen werden bei der Skalierung von Brennstoffzellen
Leistungseinbußen beobachtet, die auf lokale Inhomogenitäten zurückzuführen sind. Offenbarung der Erfindung
Es wird eine Gasdiffusionslage für eine Brennstoffzelle vorgeschlagen, die ein Verbundmaterial, das elektrisch leitfähige Partikel, ein Bindemittel und Fasern, bevorzugt Carbonfasern enthält, umfasst, wobei die Partikel und die Fasern in dem Verbundmaterial in Mischung vorliegen. Die Gasdiffusionslage kann auch in anderen elektrochemischen Energiewandlern, beispielsweise in einem
Elektrolyseur, eingesetzt werden.
Die erfindungsgemäße Gasdiffusionslage kann als faserverstärkte,
partikelbasierte poröse Gasdiffusionslage verstanden werden.
Bevorzugt weist die Gasdiffusionslage genau eine Schicht auf und die eine Schicht umfasst das Verbundmaterial. Insbesondere ist die Gasdiffusionslage einlagig aus dem Verbundmaterial ausgeführt. Mehr bevorzugt besteht die Gasdiffusionslage aus dem Verbundmaterial.
Die Eigenschaften der im Stand der Technik beschriebenen Stützstruktur und der mikroporösen Lage werden in dem Verbundmaterial kombiniert. Das
Verbundmaterial enthält sowohl die elektrisch leitfähigen Partikel als auch die Fasern, die räumlich nicht voneinander getrennt sind, sondern in gemischter Form vorliegen.
Die Gasdiffusionslage umfasst bevorzugt keine Stützstruktur (GDL).
Bevorzugt weisen die Fasern eine Länge L von mindestens 0,2 mm, bevorzugt von mindestens 2 mm auf. Weiter bevorzugt beträgt die Länge L nicht mehr als 12 mm. Unter der Länge L wird üblicherweise die größtmögliche räumliche Ausdehnung einer Faser verstanden.
Bevorzugt weisen die Fasern einen Durchmesser Df von 5 pm bis 15 pm, insbesondere von 6 pm bis 12 pm, auf.
Die Carbonfasern sind insbesondere Carbon-Kurzfasern, z. B. des Typs
SIGRAFIL der SGL Group. Carbon-Kurzfasern sind insbesondere durch
Schneiden von Endlosfasern erhältlich. Die elektrisch leitfähigen Partikel können im Vergleich zu den Fasern als geometrisch rund bezeichnet werden. Bevorzugt besitzen die elektrisch leitfähigen Partikel ein Verhältnis von Länge zu Breite zu Höhe von 1 zu 1 zu 1 bis 10 zu 10 zu 1. Die elektrisch leitfähigen Partikel weisen insbesondere bevorzugt eine runde Form, eine kartoffelige Form oder eine Plättchenform auf. Unter einer runden Form wird ein ungefähres Verhältnis von Länge zu Breite zu Höhe von 1 zu 1 zu 1 verstanden, unter einer kartoffeligen Form ein ungefähres Verhältnis von 5 zu 3 zu 2 und unter einer Plättchenform ein ungefähres
Verhältnis von 10 zu 10 zu 1.
Die Gasdiffusionslage weist bevorzugt eine Dicke D von 10 mhi bis 300 mhi, mehr bevorzugt von 20 mhi bis 150 mhi auf.
Das Verbundmaterial enthält bevorzugt zu 1 Gew.-% bis 20 Gew.-%, bevorzugt zu 2 Gew.-% bis 10 Gew.-%, ein erstes Bindemittel, insbesondere
Polyvinylidenfluorid (PVDF), zu 0 Gew.-% bis 20 Gew.-%, bevorzugt zu 1 Gew.- % bis 10 Gew.-% ein zweites Bindemittel, insbesondere Polytetrafluorethylen (PTFE), zu 1 Gew.-% bis 50 Gew.-%, bevorzugt zu 5 Gew.-% bis 20 Gew.-% die Fasern, zu 0 Gew.-% bis 96 Gew.-%, bevorzugt zu 10 Gew.-% bis 50 Gew.-% die elektrisch leitfähigen Partikel mit einem mittleren Durchmesser dm von 0,5 mhi bis 50 mhi und zu 2 Gew.-% bis 98 Gew.-%, bevorzugt zu 10 Gew.-% bis 78 Gew.-% die elektrisch leitfähigen Partikel mit einem mittleren Durchmesser dm von weniger als 0,5 mhi
Ferner weist das Verbundmaterial bevorzugt elastische Eigenschaften auf, insbesondere eine elastische Verformung von bis zu 10%.
Das Verbundmaterial ist bevorzugt porös und lässt sich zu dünnen Schichten beziehungsweise Folien verarbeiten.
Es wird auch eine Brennstoffzelle vorgeschlagen, die eine erfindungsgemäße Gasdiffusionslage umfasst, wobei die Brennstoffzelle insbesondere eine
Polymerelektrolyt-Brennstoffzelle (PEM FC) ist. Bevorzugt umfasst die
Brennstoffzelle zwei erfindungsgemäße Gasdiffusionslagen. Die Gasdiffusionslage ist insbesondere zwischen einer Bipolarplatte und einer Elektrode-Membran-Elektrode-Einheit in der Brennstoffzelle angeordnet.
In einer möglichen Ausgestaltung der Erfindung umfasst die Brennstoffzelle eine Gasverteilerstruktur mit einer Oberfläche, wobei die Oberfläche Erhebungen zur Gasführung aufweist und benachbarte Erhebungen einen Abstand A zueinander besitzen. Unter dem Abstand A wird insbesondere eine Breite eines
Strömungskanals zwischen den Erhebungen verstanden. Die Länge L der Fasern des Verbundmaterials ist bevorzugt mindestens doppelt so lang, bevorzugt mindestens dreimal so lang und insbesondere nicht mehr als fünfzigmal so lang, wie der Abstand A.
Auch die Brennstoffzelle umfasst bevorzugt keine Stützstruktur (GDB).
Ferner wird ein Verfahren zur Herstellung einer Gasdiffusionslage
vorgeschlagen, umfassend die folgenden Schritte: a. Herstellen einer ersten Mischung enthaltend das erste Bindemittel, ein Lösemittel und ein Additiv,
b. Aufträgen der ersten Mischung auf die elektrisch leitfähigen Partikel und die Fasern, bevorzugt unter Verwendung einer Wirbelschicht, so dass eine zweite Mischung entsteht,
c. Compoundieren der zweiten Mischung und Extrudieren oder Auswalzen eines Films aus der zweiten Mischung.
Das Additiv kann Leitruß, leitfähiger Graphit, Glaskohle oder Mischungen davon sein. Die Glaskohle weist bevorzugt einen mittleren Durchmesser von 1 pm bis 10 pm auf, sie kann porös oder gasdicht sein. Das Additiv kann auch die elektrisch leitfähigen Partikel mit einem mittleren Durchmesser dm von 0,5 pm bis 50 pm enthalten oder aus diesen bestehen.
Vorteile der Erfindung
Das Verbundmaterial ermöglicht eine dünne Ausführung einer Gasdiffusionslage, wobei sowohl eine gleichmäßige Verteilung der an der Reaktion beteiligten Stoffe als auch eine elektrische und thermische Kontaktierung, sowie eine
ausreichende mechanische Stabilität gewährleistet sind. Auf einen mehrlagigen Aufbau einer Gasdiffusionslage kann verzichtet werden, wodurch die Bauhöhe der Brennstoffzelle und auch des Brennstoffzellenstapels reduziert werden kann.
Ein möglicher Produktstau in der Brennstoffzelle wird reduziert und höhere Stromdichten können erreicht werden.
Darüber hinaus kann eine homogenere Temperatur- und Druckverteilung erreicht werden und die Brennstoffzelle kann mit höherem Druck gepresst werden, was einen höheren Gasdruck in der Zelle ermöglicht und die Kontaktwiderstände am Übergang zum Katalysator und zur Bipolarplatte reduziert. Die
erfindungsgemäße Gasdiffusionslage bietet eine verlässliche mechanische Stütze für die Membran gegenüber der Bipolarplatte, ohne die Membran zu beschädigen.
Durch die biegesteife, dünne Struktur der erfindungsgemäßen Gasdiffusionslage wird ferner der Montageprozess, insbesondere ihre Positionierung, erleichtert. Ferner bietet die Gasdiffusionslage einen Toleranzausgleich bei der Montage, wenn das Verbundmaterial elastische Eigenschaften aufweist.
Weiterhin kann die erfindungsgemäße Gasdiffusionslage einen frei tragenden Film mit einer geringen Oberflächenrauigkeit bilden, so dass die
Gasdiffusionslage direkt mit einer Katalysatorschicht und einer Membran beschichtet werden kann (Direct Membrane Deposition, DMD). Die
erfindungsgemäße Gasdiffusionslage ist stabil und die Fasern sind in den elektrisch leitfähigen Partikeln eingebettet, so dass aus der Oberfläche ragende Fasern und damit eine Beschädigung der Membran vermieden werden.
Auch kann die Gasdiffusionslage durch Prägen oder Drucken weiter strukturiert werden und auf die Strömungsführung bipolar plattenseitig Einfluss nehmen.
Kurze Beschreibung der Zeichnungen
Ausführungsformen der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert.
Es zeigen: Figur 1 einen Brennstoffzellenstapel,
Figur 2 eine Brennstoffzelle mit einer Gasdiffusionslage gemäß dem Stand der Technik und
Figur 3 eine Brennstoffzelle mit einer erfindungsgemäßen Gasdiffusionslage. Ausführungsformen der Erfindung
In der nachfolgenden Beschreibung der Ausführungsformen der Erfindung werden gleiche oder ähnliche Elemente mit gleichen Bezugszeichen bezeichnet, wobei auf eine wiederholte Beschreibung dieser Elemente in Einzelfällen verzichtet wird. Die Figuren stellen den Gegenstand der Erfindung nur schematisch dar.
Figur 1 zeigt eine schematische Darstellung eines Brennstoffzellenstapels 4 mit mehreren Brennstoffzellen 3. Jede Brennstoffzelle 3 weist eine Membran 24, zwei Gasdiffusionslagen 1, eine Anode 30 und eine Kathode 32 auf. Die einzelnen Brennstoffzellen 3 sind durch Bipolarplatten 50, die eine Kühlplatte 45 umfassen können, voneinander abgegrenzt.
Der Brennstoffzellenstapel 4, dem Wasserstoff 40 und Sauerstoff 42 sowie ein Kühlmedium 44 zugeführt wird, wird durch zwei Endplatten 48 abgeschlossen und weist Stromsammler 52 auf. Die verschiedenen Zuführungen sind durch Dichtungen 46 voneinander getrennt.
Figur 2 zeigt eine schematische Darstellung einer Brennstoffzelle 3, die eine Gasdiffusionslage 1 gemäß dem Stand der Technik aufweist.
Die Brennstoffzelle 3 umfasst eine Membran 24, auf der beidseitig eine
Katalysatorlage 34 angeordnet ist. Auf die Katalysatorlage 34 folgt jeweils, sowohl auf Seite der Anode 30, als auch auf Seite der Kathode 32 eine
Gasdiffusionslage 1, die jeweils aus einer Stützstruktur 38 und einer
mikroporösen Lage 36 aufgebaut ist. Die Stützstruktur 38 weist eine größere Porengröße als die mikroporöse Lage 36 auf und ist auf der der Membran 24 abgewandten Seite der Gasdiffusionslage 1 angeordnet. Die Gasdiffusionslagen 1 sind jeweils von einer Gasverteilerstruktur 16 eingefasst, durch die Wasserstoff 40 beziehungsweise Sauerstoff 42 den Gasdiffusionslagen 1 zugeführt wird. Die Gasverteilerstrukturen 16 weisen Oberflächen 18 mit Erhebungen 20 auf. Die Erhebungen 20 haben einen Abstand A 22 zueinander, wodurch
Gaszufuhrkanäle 26 gebildet werden.
Figur 3 zeigt eine Brennstoffzelle 3 umfassend eine erfindungsgemäße
Gasdiffusionslage 1. Die Brennstoffzelle 3 entspricht im Wesentlichen der in Figur 2 dargestellten Brennstoffzelle 3 mit dem Unterschied, dass in Figur 3 die Gasdiffusionslagen 1 erfindungsgemäß ausgeführt sind. Die Gasdiffusionslagen 1 bestehen aus nur einer Schicht 11, die sich von der Katalysatorlage 34 zur Oberfläche 18 der Gasverteilerstruktur 16 erstreckt. Die Gasdiffusionslagen 1 sind aus einem Verbundmaterial 5 aufgebaut, das elektrisch leitfähige Partikel 7 und Fasern 9 enthält. Die Fasern 9 besitzen eine Länge L 12, die mindestens doppelt so lang ist wie der Abstand A 22 zwischen den Erhebungen 20 der Gasverteilerstrukturen 16. Ferner weisen die Gasdiffusionslagen 1 eine Dicke D 14 auf.
Die Gasdiffusionslagen 1 gemäß Figur 3, die aus dem Verbundmaterial 5 aufgebaut sind, ersetzen jeweils die Stützstrukturen 38 und die mikroporösen Lagen 36, die in Figur 2 dargestellt sind.
Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele und die darin hervorgehobenen Aspekte beschränkt. Vielmehr ist innerhalb des durch die Ansprüche angegebenen Bereichs eine Vielzahl von Abwandlungen möglich, die im Rahmen fachmännischen Handelns liegen.

Claims

Ansprüche
1. Gasdiffusionslage (1) für eine Brennstoffzelle (3), umfassend ein
Verbundmaterial (5), das elektrisch leitfähige Partikel (7), ein Bindemittel und Fasern (9), bevorzugt Carbonfasern, enthält,
wobei die Partikel (7) und die Fasern (9) in dem Verbundmaterial (5) in Mischung vorliegen.
2. Gasdiffusionslage (1) nach Anspruch 1, wobei die Gasdiffusionslage (1) genau eine Schicht (11) aufweist und die eine Schicht (11) das
Verbundmaterial (5) umfasst.
3. Gasdiffusionslage (1) nach einem der vorhergehenden Ansprüche, wobei die Fasern (9) eine Länge L (12) von mindestens 0,2 mm, bevorzugt von mindestens 2 mm, aufweisen, insbesondere beträgt die Länge L (12) nicht mehr als 12 mm.
4. Gasdiffusionslage (1) nach einem der vorhergehenden Ansprüche, wobei die Fasern (9) einen Durchmesser Df von 5 pm bis 15 pm aufweisen.
5. Gasdiffusionslage (1) nach einem der vorhergehenden Ansprüche, wobei das Verbundmaterial (5) elastische Eigenschaften aufweist.
6. Gasdiffusionslage (1) nach einem der vorhergehenden Ansprüche, wobei die Gasdiffusionslage (1) eine Dicke D (14) von 10 pm bis 300 pm, bevorzugt von 20 pm bis 150pm, aufweist.
7. Gasdiffusionslage (1) nach einem der vorhergehenden Ansprüche, wobei das Verbundmaterial (5) zu 1 Gew.-% bis 20 Gew.-%, bevorzugt zu 2 Gew.-% bis 10 Gew.-%, ein erstes Bindemittel, bevorzugt Polyvinylidenfluorid (PVDF), zu 0 Gew.-% bis 20 Gew.-%, bevorzugt zu 1 Gew.-% bis 10 Gew.-%, ein zweites Bindemittel, bevorzugt Polytetrafluorethylen (PTFE), zu 1 Gew.-% bis 50 Gew.-%, bevorzugt zu 5 Gew.-% bis 20 Gew.-%, die Fasern (9), zu 0 Gew.-% bis 96 Gew.-%, bevorzugt zu 10 Gew.-% bis 50 Gew.-%, die elektrisch leitfähigen Partikel (7) mit einem mittleren Durchmesser dm von 0,5 pm bis 50 pm und zu 2 Gew.-% bis 98 Gew.-%, bevorzugt zulO Gew.-% bis 78 Gew.-%, die elektrisch leitfähigen Partikel (7) mit einem mittleren Durchmesser dm von weniger als 0,5 pm enthält.
8. Brennstoffzelle (3) umfassend eine Gasdiffusionslage (1) nach einem der Ansprüche 1 bis 7, wobei die Brennstoffzelle (3) insbesondere eine Polymerelektrolyt-Brennstoffzelle (PEMFC) ist.
9. Brennstoffzelle (3) nach Anspruch 8, wobei die Brennstoffzelle (3) eine Gasverteilerstruktur (16) mit einer Oberfläche (18) umfasst und die Oberfläche (18) Erhebungen (20) zur Gasführung aufweist und benachbarte Erhebungen (20) einen Abstand A (22), zueinander aufweisen,
wobei die Länge L (12) der Fasern (9) mindestens doppelt so lang ist, bevorzugt mindestens dreimal so lang und insbesondere nicht mehr als fünfzigmal so lang ist, wie der Abstand A (22).
10. Verfahren zur Herstellung einer Gasdiffusionslage (1) nach einem der Ansprüche 1 bis 7, umfassend die folgenden Schritte:
a. Herstellen einer ersten Mischung enthaltend das erste Bindemittel, ein Lösemittel und ein Additiv,
b. Aufträgen der ersten Mischung auf die elektrisch leitfähigen Partikel (7) und die Fasern (9), bevorzugt unter Verwendung einer Wirbelschicht, so dass eine zweite Mischung entsteht, c. Compoundieren der zweiten Mischung und Extrudieren oder Auswalzen eines Films aus der zweiten Mischung.
PCT/EP2020/054374 2019-03-13 2020-02-19 Gasdiffusionslage für eine brennstoffzelle und brennstoffzelle WO2020182433A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217032438A KR20210138041A (ko) 2019-03-13 2020-02-19 연료 전지용 가스 확산층 및 연료 전지
US17/438,533 US20220158199A1 (en) 2019-03-13 2020-02-19 Gas diffusion layer for a fuel cell, and fuel cell
JP2021554651A JP2022524807A (ja) 2019-03-13 2020-02-19 燃料電池用ガス拡散層および燃料電池
CN202080020719.5A CN113574708A (zh) 2019-03-13 2020-02-19 用于燃料电池的气体扩散层和燃料电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019203373.3 2019-03-13
DE102019203373.3A DE102019203373A1 (de) 2019-03-13 2019-03-13 Gasdiffusionslage für eine Brennstoffzelle und Brennstoffzelle

Publications (1)

Publication Number Publication Date
WO2020182433A1 true WO2020182433A1 (de) 2020-09-17

Family

ID=69631609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/054374 WO2020182433A1 (de) 2019-03-13 2020-02-19 Gasdiffusionslage für eine brennstoffzelle und brennstoffzelle

Country Status (6)

Country Link
US (1) US20220158199A1 (de)
JP (1) JP2022524807A (de)
KR (1) KR20210138041A (de)
CN (1) CN113574708A (de)
DE (1) DE102019203373A1 (de)
WO (1) WO2020182433A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023094162A1 (de) * 2021-11-23 2023-06-01 Robert Bosch Gmbh Verfahren zum herstellen einer gasdiffusionslage, gasdiffusionslage, brennstoffzelle sowie vorrichtung zum herstellen einer gasdiffusionslage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021210493A1 (de) 2021-09-21 2023-03-23 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzelleneinheit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030127A2 (de) * 2002-09-23 2004-04-08 Proton Motor Fuel Cell Gmbh Gasdiffusionselektroden für polymerelektrolytmembran-brennstoffzellen und verfahren zu ihrer herstellung
US20040152588A1 (en) 2001-06-23 2004-08-05 Kosmas Janowitz Method for producing gas diffusion electrodes
US20070154771A1 (en) * 2006-01-04 2007-07-05 Jang Bor Z Highly conductive composites for fuel cell flow field plates and bipolar plates
US20080149900A1 (en) * 2006-12-26 2008-06-26 Jang Bor Z Process for producing carbon-cladded composite bipolar plates for fuel cells
US20080268318A1 (en) * 2006-12-26 2008-10-30 Jang Bor Z Carbon cladded composite flow field plate, bipolar plate and fuel cell
US9160020B2 (en) 2009-03-31 2015-10-13 Toyota Shatai Kabushiki Kaisha Fuel cell
US9325022B2 (en) 2011-06-17 2016-04-26 Nissan Motor Co., Ltd. Gas diffusion layer for fuel cell and method for manufacturing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10050512A1 (de) * 2000-10-11 2002-05-23 Freudenberg Carl Kg Leitfähiger Vliesstoff
GB0027119D0 (en) * 2000-11-07 2000-12-20 Johnson Matthey Plc Gas diffusion substrate
JP4215979B2 (ja) * 2001-12-17 2009-01-28 日本バルカー工業株式会社 拡散膜、該拡散膜を有する電極および拡散膜の製造方法
US20040121122A1 (en) * 2002-12-20 2004-06-24 Graftech, Inc. Carbonaceous coatings on flexible graphite materials
JP4388314B2 (ja) * 2003-01-21 2009-12-24 株式会社巴川製紙所 固体高分子型燃料電池用ガス拡散電極基材、その製造方法及びそれを用いた固体高分子型燃料電池
CN101771155B (zh) * 2008-12-29 2012-07-25 中国科学院大连化学物理研究所 一种用于质子交换膜燃料电池的气体扩散层及其制备方法
JP5601779B2 (ja) * 2009-02-20 2014-10-08 日本バイリーン株式会社 ガス拡散層、膜−電極接合体及び燃料電池
JP5753469B2 (ja) * 2011-10-03 2015-07-22 東邦テナックス株式会社 導電シート及びその製造方法
GB201401952D0 (en) * 2014-02-05 2014-03-19 Johnson Matthey Fuel Cells Ltd Gas diffusion substrate
JP6691924B2 (ja) * 2015-11-09 2020-05-13 日本バイリーン株式会社 導電性多孔シート、固体高分子形燃料電池、及び導電性多孔シートの製造方法
WO2017085901A1 (ja) * 2015-11-19 2017-05-26 パナソニックIpマネジメント株式会社 燃料電池用ガス拡散層及びその製造方法、膜電極接合体、並びに燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152588A1 (en) 2001-06-23 2004-08-05 Kosmas Janowitz Method for producing gas diffusion electrodes
WO2004030127A2 (de) * 2002-09-23 2004-04-08 Proton Motor Fuel Cell Gmbh Gasdiffusionselektroden für polymerelektrolytmembran-brennstoffzellen und verfahren zu ihrer herstellung
US20070154771A1 (en) * 2006-01-04 2007-07-05 Jang Bor Z Highly conductive composites for fuel cell flow field plates and bipolar plates
US20080149900A1 (en) * 2006-12-26 2008-06-26 Jang Bor Z Process for producing carbon-cladded composite bipolar plates for fuel cells
US20080268318A1 (en) * 2006-12-26 2008-10-30 Jang Bor Z Carbon cladded composite flow field plate, bipolar plate and fuel cell
US9160020B2 (en) 2009-03-31 2015-10-13 Toyota Shatai Kabushiki Kaisha Fuel cell
US9325022B2 (en) 2011-06-17 2016-04-26 Nissan Motor Co., Ltd. Gas diffusion layer for fuel cell and method for manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AUCH HIROSHI ET AL.: "Application of a self-supporting microporous layer to gas diffusion layers of proton exchange membrane fuel cells", JOURNAL OF POWER SOURCES, vol. 342, 2017, pages 393 - 404, XP029895597, DOI: 10.1016/j.jpowsour.2016.12.064
KOTAKA ET AL.: "Investigation of Interfacial Water Transport in the Gas Diffusion Media by Neutron Radiography", ECS TRANSACTIONS, vol. 64, no. 3, 2014, pages 839 - 851

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023094162A1 (de) * 2021-11-23 2023-06-01 Robert Bosch Gmbh Verfahren zum herstellen einer gasdiffusionslage, gasdiffusionslage, brennstoffzelle sowie vorrichtung zum herstellen einer gasdiffusionslage

Also Published As

Publication number Publication date
US20220158199A1 (en) 2022-05-19
JP2022524807A (ja) 2022-05-10
CN113574708A (zh) 2021-10-29
KR20210138041A (ko) 2021-11-18
DE102019203373A1 (de) 2020-09-17

Similar Documents

Publication Publication Date Title
DE112004002294B4 (de) Brennstoffzellensystem und Kathodendiffusionsschicht für ein Brennstoffzellensystem
DE102008046403B4 (de) Sauerstoffentwicklungsreaktionskatalysatoren enthaltende Elektroden
DE102012220628B4 (de) Brennstoffzellenmembran mit auf Nanofaser getragenen Katalysatoren, Brennstoffzelle und Verfahren zur Herstellung der Membran
DE102008051534A1 (de) Brennstoffzellenstapel mit asymmetrischen Diffusionsmedien an Anode und Kathode
DE102011076629A1 (de) Lokale hydrophile Gasdiffusionsschicht und Brennstoffzellenstapel mit derselben
DE102018003424A1 (de) Verbesserte katalysatorbeschichtete Membranen und Herstellungsverfahren für Brennstoffzellen
DE112020001053T5 (de) Kathodenkatalysatorschicht für eine Brennstoffzelle, und Brennstoffzelle
WO2020182433A1 (de) Gasdiffusionslage für eine brennstoffzelle und brennstoffzelle
DE112004001685T5 (de) Berücksichtigen einer MEA-Ausfallbetriebsart durch Steuerung einer MEA-Katalysatorschichtüberlappung
DE102004017501C5 (de) Brennstoffzelle, Brennstoffzellenstapel, Verfahren zu deren Herstellung sowie Verwendung der Brennstoffzelle
DE102011014154A1 (de) Selectively coated bipolar plates for water management and freeze start in pem fuel cells
DE102009035961A1 (de) Geschichtete Elektrode für elektrochemische Zellen
WO2018130388A1 (de) Verfahren zur herstellung einer bipolarplatte, bipolarplatte für eine brennstoffzelle und brennstoffzelle
DE112015001458T5 (de) Verfahren
DE102015100607A1 (de) Dichtungskonstruktion für eine PEM-Brennstoffzelle sowie Herstellverfahren
DE102014118309A1 (de) Schichtauslegung, um eine Korrosion von Brennstoffzellenelektroden aus einem nicht idealen Betrieb zu mindern
EP1500150B1 (de) Mikrostrukturierte diffusionsschicht in gasdiffusionselektroden
WO2017025557A1 (de) Membran-elektroden-einheit für eine brennstoffzelle sowie brennstoffzelle
WO2018166733A1 (de) Bipolarplatte für eine brennstoffzelle und brennstoffzelle sowie verfahren zur herstellung einer bipolarplatte
EP3736894A1 (de) Bipolarplatte für brennstoffzellen, brennstoffzellenstapel mit solchen bipolarplatten sowie fahrzeug mit einem solchen brennstoffzellenstapel
DE102009043208A1 (de) Materialauslegung, um eine Leistungsfähigkeit einer Brennstoffzelle bei hoher Mittentemperatur mit ultradünnen Elektroden zu ermöglichen
DE102018114334A1 (de) Thermische steuerung von substraten zur verhinderung der permeation von ionomeren
EP2399312B1 (de) Katalysatorschicht für den einsatz in einer brennstoffzelle sowie verfahren zu deren herstellung
DE102018215464A1 (de) Verfahren zum Herstellen einer Gasdiffusionslage für eine Brennstoffzelle
DE112012001206T5 (de) Brennstoffzellen-System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20706236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217032438

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20706236

Country of ref document: EP

Kind code of ref document: A1