WO2020181485A1 - 模数转换器以及相关芯片 - Google Patents

模数转换器以及相关芯片 Download PDF

Info

Publication number
WO2020181485A1
WO2020181485A1 PCT/CN2019/077811 CN2019077811W WO2020181485A1 WO 2020181485 A1 WO2020181485 A1 WO 2020181485A1 CN 2019077811 W CN2019077811 W CN 2019077811W WO 2020181485 A1 WO2020181485 A1 WO 2020181485A1
Authority
WO
WIPO (PCT)
Prior art keywords
analog
digital
converter
digital converter
signal
Prior art date
Application number
PCT/CN2019/077811
Other languages
English (en)
French (fr)
Inventor
黄思衡
王文祺
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to JP2020543593A priority Critical patent/JP2021518068A/ja
Priority to PCT/CN2019/077811 priority patent/WO2020181485A1/zh
Priority to EP19914177.1A priority patent/EP3739761A4/en
Priority to CN201980000373.XA priority patent/CN110168939B/zh
Priority to US16/985,115 priority patent/US11043961B2/en
Publication of WO2020181485A1 publication Critical patent/WO2020181485A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • H03M3/464Details of the digital/analogue conversion in the feedback path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1033Calibration over the full range of the converter, e.g. for correcting differential non-linearity
    • H03M1/1038Calibration over the full range of the converter, e.g. for correcting differential non-linearity by storing corrected or correction values in one or more digital look-up tables
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/80Simultaneous conversion using weighted impedances
    • H03M1/802Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices
    • H03M1/804Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices with charge redistribution
    • H03M1/806Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices with charge redistribution with equally weighted capacitors which are switched by unary decoded digital signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/378Testing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/38Calibration
    • H03M3/386Calibration over the full range of the converter, e.g. for correcting differential non-linearity
    • H03M3/388Calibration over the full range of the converter, e.g. for correcting differential non-linearity by storing corrected or correction values in one or more digital look-up tables
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M3/424Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a multiple bit one
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • H03M3/462Details relating to the decimation process

Definitions

  • FIG. 2 is a block diagram of an embodiment in which the delta-sigma analog-to-digital converter of FIG. 1 is operated in a measurement mode of operation.
  • FIG. 5 is a circuit diagram of an embodiment in which the delta-sigma analog-to-digital converter of FIG. 3 operates in the first stage of the measurement operation mode.
  • the charge to be distributed stored in the capacitor Csi of the D/A conversion unit 104_i under test in the first stage will be distributed to the Cf of the loop filter 112 and the plurality of capacitors Cs1, Cs2, ..., Csi, ...Csn, and obtain a digital signal Vout, which is related to the capacitance value of the capacitor Csi of the D/A conversion unit 104_i under test and the plurality of capacitors Cs1, Cs2 of the D/A conversion units 104_1, 104_2...104_i...140_n ..., Csi,... Csn ratio of the total capacitance value.
  • the first stage of FIG. 5 and the second stage of FIG. 6 may be repeated for the D/A conversion unit 104_i under test to obtain a more accurate ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

提出了一种模数转换器(10)。所述模数转换器具有模数转换操作模式与量测操作模式。所述模数转换器包括输入端(100)、数模转换器(104)以及输出端(102)。输入端用来接收模拟信号。输出端用来输出数字信号。数模转换器包括多个数模转换单元。当所述模数转换器操作在所述模数转换操作模式时,所述模数转换器用来将所述模拟信号转换为所述数字信号,以及当所述模数转换器操作在所述量测操作模式时,所述数字信号相关于待测数模转换单元的电容值与所述多个数模转换单元的总电容值的比值。

Description

模数转换器以及相关芯片 技术领域
本申请涉及一种转换器,尤其涉及一种模数转换器以及相关芯片。
背景技术
Δ-Σ模数转换器的数模转换器的多个数模转换单元之间具有适配误差,因而造成Δ-Σ模数转换器的效能下降。可通过对多个数模转换单元之间的适配误差进行校正来解决上述问题。然而,为了进行校正,需先量测多个数模转换单元之间的相对大小。然而,现有技术需引入大量额外的电路组件来量测多个数模转换单元之间的相对大小,进而导致设计难度增加以及硬件成本增加。有鉴于此,本申请针对量测多个数模转换单元之间的相对大小的方法进一步改良及创新以改善上述情况。
发明内容
本申请的目的之一在于公开一种数据转换器,尤其涉及一种模数转换器以及相关芯片,来解决上述问题。
本申请的一实施例公开了一种模数转换器,具有模数转换操作模式与量测操作模式,所述模数转换器包括:输入端,用来接收模拟信号;输出端,用来输出数字信号;数模转换器,包括多个数模转换单元分别具有单元输入端与单元输出端,所述多个数模转换单元的单元输出端彼此耦接,所述多个数模转换单元依据所述多个数模转换单元的单元输入端产生输出信号;输入路径选择模块,耦接于 所述输入端与所述数模转换器之间,当所述模数转换器操作在所述模数转换操作模式时,所述输入路径选择模块将所述多个数模转换单元的每一单元输入端耦接至所述输入端以接收所述模拟信号,以及当所述模数转换器操作在所述量测操作模式时,所述输入路径选择模块将所述多个数模转换单元中的待测数模转换单元的单元输入端耦接至第一参考电压,以及将所述多个数模转换单元中的其它数模转换单元的单元输入端耦接至第二参考电压;以及处理电路,耦接于所述数模转换器和所述输出端之间,所述处理电路用来依据所述输出信号产生所述数字信号;其中当所述模数转换器操作在所述模数转换操作模式时,所述模数转换器用来将所述模拟信号转换为所述数字信号,以及当所述模数转换器操作在所述量测操作模式时,所述数字信号相关于所述待测数模转换单元的电容值与所述多个数模转换单元的总电容值的比值。
本申请的一实施例公开了一种芯片。所述芯片包括所述模数转换器。
本申请所公开的模数转换器以及相关芯片能够量测出所述多个数模转换单元的每一者的电容值与所述多个数模转换单元的总电容值的比值,因而能够进行所述多个数模转换单元之间的适配误差的校正,藉此提升模数转换器的效能。
附图说明
图1为本申请Δ-Σ模数转换器操作在模数转换操作模式的实施例的方块示意图。
图2为相对于图1的Δ-Σ模数转换器操作在量测操作模式的实施例的方块示意图。
图3为图1的Δ-Σ模数转换器操作在模数转换操作模式的第一阶段的实施例的电路图。
图4为相对于图3的Δ-Σ模数转换器操作在模数转换操作模式的第二阶段的实施例的电路图。
图5为相对于图3的Δ-Σ模数转换器操作在量测操作模式的第一阶段的实施例的电路图。
图6为相对于图5的Δ-Σ模数转换器操作在量测操作模式的第二阶段的实施例的电路图。
图7为相对于图6的Δ-Σ模数转换器被复位的实施例的电路图。
其中,附图标记说明如下:
10                               Δ-Σ模数转换器
100                              输入端
102                              输出端
104                              数模转换器
106                              输入路径选择模块
108                              处理电路
110                              开关组件
112                              环路滤波器
114                              量化器
116                              抽取滤波器
118                              积分模块
120                              输出路径选择模块
140_1-140_n                      数模转换单元
Vin                              模拟信号
Vout                             数字信号
V1                               第一参考电压
V2                               第二参考电压
V3                               第三参考电压
Vdac                             输出信号
LF_A                             环路滤波信号
Q_D                              量化信号
Figure PCTCN2019077811-appb-000001
                           开关
Figure PCTCN2019077811-appb-000002
     开关
Figure PCTCN2019077811-appb-000003
     开关
Figure PCTCN2019077811-appb-000004
     开关
Figure PCTCN2019077811-appb-000005
     开关
Figure PCTCN2019077811-appb-000006
     开关
Figure PCTCN2019077811-appb-000007
     开关
Figure PCTCN2019077811-appb-000008
       复位开关
D_1       开关
D_2       开关
Cs1-Csn   电容器
具体实施方式
以下揭示内容提供了多种实施方式或例示,其能用以实现本揭示内容的不同特征。下文所述之组件与配置的具体例子系用以简化本揭示内容。当可想见,这些叙述仅为例示,其本意并非用于限制本揭示内容。举例来说,在下文的描述中,将一第一特征形成于一第二特征上或之上,可能包括某些实施例其中所述的第一与第二特征彼此直接接触;且也可能包括某些实施例其中还有额外的组件形成于上述第一与第二特征之间,而使得第一与第二特征可能没有直接接触。此外,本揭示内容可能会在多个实施例中重复使用组件符号和/或标号。此种重复使用乃是基于简洁与清楚的目的,且其本身不代表所讨论的不同实施例和/或组态之间的关系。
再者,在此处使用空间上相对的词汇,譬如「之下」、「下方」、「低于」、「之上」、「上方」及与其相似者,可能是为了方便说明图中所绘示的一组件或特征相对于另一或多个组件或特征之间的关系。这些空间上相对的词汇其本意除了图中所绘示的方位之外,还涵盖了装置在使用或操作中所处的多种不同方位。可能将所述设备放置于其它方位(如,旋转90度或处于其它方位),而这些空间上相对的描述词汇就应该做相应的解释。
虽然用以界定本申请较广范围的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处,「约」通常系指实际数值在一特定数值或范围的正负10%、5%、1%或0.5%之内。或者是,「约」一词代表实际数值落在平均值的可接受标准误差之内,视本申请所属技术领域中具有通常知识者的考虑而定。当可理解,除了实验例之外,或除非另有明确的说明,此处所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长短、温度、操作条件、数量比例及其它相似者)均经过「约」的修饰。因此,除非另有相反的说明,本说明书与附随申请专利范围所揭示的数值参数皆为约略的数值,且可视需求而更动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一端点或介于二端点之间;除非另有说明,此处所述的数值范围皆包括端点。
在量测数模转换单元的传统电路架构中,需要额外的讯号源、电阻器以及电压量测电路以量测数模转换单元的电容器的电容值。本公开的Δ-Σ模数转换器可被组态为增量型Δ-Σ模数转换器,可以在几乎不影响Δ-Σ模数转换器操作在模数转换操作模式的情况下,得到其中的数模转换单元的电容信息。
图1和图2为本申请的Δ-Σ(delta-sigma)模数转换器10的实施例的方块示意图,差别在于图1的Δ-Σ模数转换器10是操作在模数转换操作模式;图2的Δ-Σ模数转换器10是操作在量测操作模式。具体来说,所述模数转换操作模式是用来在一般情况下针对输入的模拟信号Vin转换为数字信号Vout,而所述量测操作模式则是用来在非一般情况下,例如在出厂或是上电时,对Δ-Σ模数转换器10中的多个组件,例如电容,之间的适配误差进行评估,得到的评估结果可进而用来校正Δ-Σ模数转换器10在所述模数转换操作模式的准确度。
参照图1,Δ-Σ模数转换器10包括输入端100、输出端102、 数模转换器104、输入路径选择模块106、组态成处理电路108的开关组件110、环路滤波器(loop filter)112及量化器114、抽取滤波器(decimation filter)116、积分模块118及输出路径选择模块120。数模转换器104包括多个数模转换单元104_1、104_2…104_i…140_n(如图3所示),其中n为正整数,在本实施例中,n大于1。多个数模转换单元104_1、104_2…104_i…140_n分别具有单元输入端与单元输出端,多个数模转换单元104_1、104_2…104_i…140_n的单元输出端彼此耦接,多个数模转换单元104_1、104_2…104_i…140_n依据多个数模转换单元104_1、104_2…104_i…140_n的单元输入端产生输出信号Vdac。
输入端100用来接收模拟信号Vin。输入路径选择模块106,耦接于输入端100与数模转换器104之间,受控于开关组件110而组态为将输入端100耦接至数模转换器104,如两者之间的实线所示,并且输入路径选择模块106组态为中断第一参考电压V1及第二参考电压V2与数模转换器104之间的电性连接,如之间的虚线所示。据此,数模转换器104用来依据模拟信号Vin产生输出信号Vdac。在一些实施例中,第一参考电压V1可以是数模转换器参考电压或是电源电压、第二参考电压V2可以是共模电压。
处理电路108耦接于数模转换器104和输出端102之间,处理电路108用来依据输出信号Vdac产生数字信号Vout。详言之,环路滤波器112耦接于数模转换器104,并基于输出信号Vdac产生环路滤波信号LF_A。在一些实施例中,环路滤波器112包括低通滤波器。量化器114耦接于环路滤波器112,用来基于环路滤波信号LF_A产生量化信号Q_D。数模转换器104再基于量化信号Q_D及模拟信号Vin产生输出信号Vdac。输出路径选择模块120用来选择性地将量化信号Q_D耦接至抽取滤波器116或积分模块118。在图1的实施例中,也就是在模数转换操作模式下,输出路径选择模块120受控于开关组件110而组态为将量化器114耦接至抽取滤波器116,如两者之间的实线所示,并且不将量化器114耦接至积分模块118,如两者之间的虚线所示。输出路径选择模块120将量化信号Q_D耦 接至抽取滤波器116。据此,抽取滤波器116用来依据量化信号Q_D产生数字信号Vout。输出端102用来输出数字信号Vout。
处理电路108,在一些实施例中,更包括数据加权平均电路,耦接于量化器114和数模转换器104之间,用来基于量化信号Q_D选择性导通多个数模转换单元104_1、104_2…104_i…140_n。
处理电路108,在另一些实施例中,更包括递增式数据加权平均电路,耦接于114量化器和数模转换器104之间,用来基于量化信号Q_D选择性导通多个数模转换单元104_1、104_2…104_i…140_n。
接下来请参照图2,用于说明量测操作模式的图2类似于用于说明模数转换操作模式的图1,差别在于图2的输入路径选择模块106的组态及输出路径选择模块120的组态。
输入路径选择模块106经开关组件110组态为将第一参考电压V1及第二参考电压V2耦接至数模转换器104,如之间的实线所示,并且输入路径选择模块106组态为中断模拟信号Vin及数模转换器104之间的电性连接,使得数模转换器104无法接收模拟信号Vin,如两者之间的虚线所示。数模转换器104改以依据第一参考电压V1及第二参考电压V2产生输出信号Vdac。
在量测操作模式下,输出路径选择模块120经开关组件110组态为将量化器114耦接至积分模块118,并且输出路径选择模块120将量化信号Q_D耦接至积分模块118。据此,数模转换器104、环路滤波器112、量化器114及积分模块118组态成增量型Δ-Σ模数转换器。积分模块118用来依据量化信号Q_D产生包括待测数模转换单元的电容值与多个数模转换单元104_1、104_2…104_i…140_n的总电容值的比值的数字信号Vout。
在一实施例中,积分模块118包括累加器(accumulator)。在另一实施例中,积分模块118包括K阶级联积分滤波器(Kth-order cascade-of-integrators filter,Kth-order COI filter)。应注 意的是,本申请不以累加器及阶级联积分滤波器为限。在其它实施例中,积分模块118可改用其它类似功能的数位电路来实现。
基于增量型Δ-Σ模数转换器的操作原理,得到做为待测数模转换单元的第一数模转换单元的电容值与多个数模转换单元104_1、104_2…104_i…140_n的总电容值的比值后,复位环路滤波器112及积分模块118。接下来,再将第二数模转换单元做为待测数模转换单元,藉此得到第二数模转换单元的电容值与多个数模转换单元104_1、104_2…104_i…140_n的总电容值的比值。依此类推,多个数模转换单元104_1、104_2…104_i…140_n的每一个的电容值与多个数模转换单元104_1、104_2…104_i…140_n的总电容值的比值都能藉此获得,其操作的细节将于以下关于图5到图7的段落中说明。
本公开通过输出路径选择模块120的设计而能够组态为增量型Δ-Σ模数转换器,并且增量型Δ-Σ模数转换器又通过输入路径选择模块106的设计能够产生相关于待测数模转换单元的电容值与多个数模转换单元104_1、104_2…104_i…140_n的总电容值的比值。据此,就能够根据所有数模转换单元的比值的大小关系以对多个数模转换单元104_1、104_2…104_i…140_n的适配误差进行校正。
由于增量型Δ-Σ模数转换器本身具有高分辨率的特性,Δ-Σ模数转换器10产生的相关于待测数模转换单元的电容值与多个数模转换单元104_1、104_2…104_i…140_n的总电容值的比值也因此具有高分辨率的特性。又,Δ-Σ模数转换器10在量测操作模式的电路架构类似Δ-Σ模数转换器10在模数转换操作模式的电路架构,例如,重复利用了数模转换器104、环路滤波器112及量化器114。因此,Δ-Σ模数转换器10的设计仅微幅增加成本,并且不会显着的增加寄生电容。由于寄生电容没有显着的增加,几乎不影响Δ-Σ模数转换器10操作在模数转换操作模式的效能。
相对地,在一些量测数模转换单元的传统电路架构中,需要额外的讯号源、电阻器以及电压量测电路以量测数模转换单元的电容,设计相对复杂。又,若对电压量测电路的分辨率有严格的要求,则 会使电压量测电路的设计相对复杂。复杂的设计可能增加显着的寄生电容,进而无可避免地影响Δ-Σ模数转换器在模数转换操作模式的效能。
图3为图1的Δ-Σ模数转换器10操作在模数转换操作模式的第一阶段的实施例的电路图。参照图3,图3进一步揭露Δ-Σ模数转换器10的细节,例如:Δ-Σ模数转换器102除了包括多个数模转换单元104_1、104_2…104_i…140_n外还包括开关
Figure PCTCN2019077811-appb-000009
Figure PCTCN2019077811-appb-000010
环路滤波器112包括组成积分器的放大器122及电容Cf,以及复位开关
Figure PCTCN2019077811-appb-000011
其中电容器Cf与复位开关
Figure PCTCN2019077811-appb-000012
并联于放大器122的反向输入端及输出端之间;以及,输出路径选择模块120包括开关
Figure PCTCN2019077811-appb-000013
Figure PCTCN2019077811-appb-000014
其中开关
Figure PCTCN2019077811-appb-000015
耦接于量化器114及抽取滤波器116之间,以及开关
Figure PCTCN2019077811-appb-000016
耦接于量化器114及积分模块118之间。应注意的是,在本实施例中,仅绘示出一级积分器做为环路滤波器112,然而本申请不以此为限。在一些实施例中,环路滤波器112可包括多个级联积分器。
多个数模转换单元104_1、104_2…104_i…140_n各包括开关
Figure PCTCN2019077811-appb-000017
D_1及D_2,以及电容器。为了区分多个数模转换单元104_1、104_2…104_i…140_n的电容器,数模转换单元104_1的电容器命名为Cs1、数模转换单元104_2的电容器命名为Cs2、数模转换单元104_i的电容器命名为Csi、数模转换单元104_n的电容器命名为Csn,依此类推。
以数模转换单元104_1为例,开关
Figure PCTCN2019077811-appb-000018
耦接于输入路径选择模块106与电容器Cs1的一端之间;开关D_1及
Figure PCTCN2019077811-appb-000019
串联于电容器Cs1的一端与第一参考电压V1之间;以及,开关D_2及
Figure PCTCN2019077811-appb-000020
串联于电容器Cs1的一端与第三参考电压V3之间。其余数模转换单元104_2…104_n具有相同的电路结构,于此不再赘述。在一些实施例中,第三参考电压包括接地电压。
开关
Figure PCTCN2019077811-appb-000021
耦接于多个电容器Cs1、Cs2、…、Csi、…Csn的每一者的另一端与第二参考电压之间。开关
Figure PCTCN2019077811-appb-000022
耦接于多个电容器Cs1、 Cs2、…、Csi、…Csn的每一者的另一端与放大器122的反向输入端之间。
在Δ-Σ模数转换器10的模数转换操作模式中,输出路径选择模块120的开关
Figure PCTCN2019077811-appb-000023
导通,而输出路径选择模块120的开关
Figure PCTCN2019077811-appb-000024
不导通。量化信号Q_D据此电性连接至数模转换器116。因此,数模转换器116依据量化信号Q_D进行模数转换以转换出数字信号Vout。
在第一阶段中,开关
Figure PCTCN2019077811-appb-000025
Figure PCTCN2019077811-appb-000026
导通,而开关
Figure PCTCN2019077811-appb-000027
不导通。输入路径选择模块106通过导通的开关
Figure PCTCN2019077811-appb-000028
将多个数模转换单元104_1、104_2…104_i…140_n的每一单元输入端耦接至输入端100以接收模拟信号Vin,藉此采样模拟信号Vin。详言之,多个电容器Cs1、Cs2、…、Csi、…Csn每一者的一端通过导通的开关
Figure PCTCN2019077811-appb-000029
接收模拟电压Vin,多个电容器Cs1、Cs2、…、Csi、…Csn每一者的另一端通过导通的开关
Figure PCTCN2019077811-appb-000030
接收第二参考电压V2。因此,多个电容器Cs1、Cs2、…、Csi、…Csn的每一者具有(Vin-V2)的跨压,因而会积累电荷(下称待分配电荷)于其中。
图4为相对于图3的Δ-Σ模数转换器10操作在模数转换操作模式的第二阶段的实施例的电路图。参照图4,开关
Figure PCTCN2019077811-appb-000031
Figure PCTCN2019077811-appb-000032
不导通,而开关
Figure PCTCN2019077811-appb-000033
Figure PCTCN2019077811-appb-000034
导通,多个电容器Cs1、Cs2、…、Csi、…Csn的每一者的另一端电性连接至放大器122的反向输入端,其中放大器的非反向输入端接收第二参考电压V2。基于Δ-Σ模数转换器的操作原理,多个数模转换单元104_1、104_2…104_i…140_n中被选通的数模转换单元的开关D_1导通及开关D_2不导通,使得被选通的数模转换单元的电容器的一端接收第一参考电压V1,而多个数模转换单元104_1、104_2…104_i…140_n中不被选通的数模转换单元的开关D_1不导通且开关D_2导通,使得不被选通的数模转换单元的电容器的一端接收第三参考电压V3。
因此,在第一阶段中多个电容器Cs1、Cs2、…、Csi、…Csn每一者储存的待分配电荷会在第二阶段中被分配给环路滤波器112 的Cf以及多个电容器Cs1、Cs2、…、Csi、…Csn。据此,Δ-Σ模数转换器10将模拟信号Vin转换为数字信号Vout。
图5为相对于图3的Δ-Σ模数转换器10操作在量测操作模式的第一阶段的实施例的电路图。Δ-Σ模数转换器10的量测操作模式同要包括交替操作的第一阶段及第二阶段。参照图5,在Δ-Σ模数转换器10的量测操作模式中,输出路径选择模块120的开关
Figure PCTCN2019077811-appb-000035
不导通,而输出路径选择模块120的开关
Figure PCTCN2019077811-appb-000036
导通。量化信号Q_D据此电性连接至积分模块118。据此,Δ-Σ模数转换器10经组态为增量型Δ-Σ模数转换器。积分模块118依据量化信号Q_D产生数字信号Vout。
在第一阶段中,开关
Figure PCTCN2019077811-appb-000037
Figure PCTCN2019077811-appb-000038
导通,而开关
Figure PCTCN2019077811-appb-000039
不导通。输入路径选择模块106通过导通的开关
Figure PCTCN2019077811-appb-000040
将多个数模转换单元104_1、104_2…104_i…140_n中的待测数模转换单元104_i的单元输入端耦接至第一参考电压V1,以及将多个数模转换单元104_1、104_2…104_i…140_n中的其它数模转换单元的单元输入端耦接至第二参考电压V2。此外,多个数模转换单元104_1、104_2…104_i…140_n的每一单元输出端耦接于第二参考电压V2,且待测数模转换单元104_i基于第一参考电压V1以及第二参考电压V2来存储待分配电荷。详言之,待测数模转换单元104_i的电容器Csi的一端通过导通的开关
Figure PCTCN2019077811-appb-000041
接收第一参考电压V1,待测数模转换单元104_i的电容器Csi的另一端通过导通的开关
Figure PCTCN2019077811-appb-000042
接收第二参考电压V2。因此,待测数模转换单元104_i的电容器Csi具有V1-V2的跨压,因而会积累电荷(下称待分配电荷)于其中。
相对的,其余数模转换单元各者的电容器的一端通过导通的开关
Figure PCTCN2019077811-appb-000043
接收第二参考电压V2,以及其余数模转换单元各者的电容器的另一端通过导通的开关
Figure PCTCN2019077811-appb-000044
接收第二参考电压V2。由于跨压为0,因此其余数模转换单元的电容器不会积累电荷于其中。
图6为相对于图5的Δ-Σ模数转换器10操作在量测操作模式的第二阶段的实施例的电路图。参照图6,开关
Figure PCTCN2019077811-appb-000045
Figure PCTCN2019077811-appb-000046
不导通, 而开关
Figure PCTCN2019077811-appb-000047
导通,多个电容器Cs1、Cs2、…、Csi、…Csn的每一者的另一端电性连接至放大器122的反向输入端。基于Δ-Σ模数转换器的操作原理,多个数模转换单元104_1、104_2…104_i…140_n中被选通的数模转换单元的开关D_1导通及开关D_2不导通,使得被选通的数模转换单元的电容器的一端接收第一参考电压V1,而多个数模转换单元104_1、104_2…104_i…140_n中不被选通的数模转换单元的开关D_1不导通且开关D_2导通,使得不被选通的数模转换单元的电容器的一端接收第三参考电压V3。
以图6的实施例为例,待测数模转换单元104_i被选通。待测数模转换单元104_i的开关D_1导通而开关D_2不导通。因此,电容器Csi具有(V1-V2)的跨压,因而会积累电荷于其中。其它的n-1个数模转换单元不被选通。所述其它的n-1个数模转换单元的开关D_1不导通而开关D_2导通。因此,所述其它的n-1个数模转换单元的电容器具有(V3-V2)的跨压,因而会积累电荷于其中。在本实施例中,恰选通单个数模转换单元,然而本申请不以此为限。在一些实施例中,可选通多个数模转换单元。又,在本实施例中,恰选通待测数模转换单元104_i,然而本申请不以此为限。在一些实施例中,选通的数模转换单元可不包括待测数模转换单元104_i。
因此,在第一阶段中待测数模转换单元104_i的电容器Csi储存的待分配电荷会在第二阶段中被分配给环路滤波器112的Cf以及多个电容器Cs1、Cs2、…、Csi、…Csn,并得到数字信号Vout,数字信号Vout是相关于待测数模转换单元104_i的电容器Csi的电容值与多个数模转换单元104_1、104_2…104_i…140_n的多个电容器Cs1、Cs2、…、Csi、…Csn的总电容值的比值。在某些实施例中,可重复针对待测数模转换单元104_i进行图5的第一阶段和图6的第二阶段,以得到更为精准的比值。
在得到待测数模转换单元104_i的相关电容比值后,可再针对多个数模转换单元104_1、104_2…104_i…140_n中除104_i以外的 数模转换单元进行如图5的第一阶段和图6的第二阶段的操作。但在再次进行图5的第一阶段和图6的第二阶段的操作之前,需要对Δ-Σ模数转换器10进行复位操作以清除积累的电荷。
图7为相对于图6的Δ-Σ模数转换器10被复位的实施例的电路图。参照图7,环路滤波器112及积分模块118具有复位功能。当Δ-Σ模数转换器操作10在量测操作模式时,将多个数模转换单元中104_1、104_2…104_i…140_n中的第一数模转换单元,例如数模转换单元104_i,作为待测数模转换单元,并转换出包括所述比值的数字信号Vout后,环路滤波器112及积分模块118被复位,再将多个数模转换单元104_1、104_2…104_i…140_n中的第二数模转换单元,例如数模转换单元104_j,作为待测数模转换单元。应注意的是,i可以是介于1到n的任意数,j可以是1到n中和i不同的任意数。
本实施例系通过导通复位开关
Figure PCTCN2019077811-appb-000048
复位环路滤波器112。复位开关
Figure PCTCN2019077811-appb-000049
导通后,电容器Cf被旁通,因此放大器122的反向输入端的电位相同于放大器122的输出端的电位,因放大器122的反向输入端虚短路至非反向输入端均为第二参考电压V2。
输入路径选择模块106经组态为中断第一参考电压V1及模拟信号Vin与数模转换器104之间的电性连接,并将第二参考电压V2耦接至数模转换器104。又,开关
Figure PCTCN2019077811-appb-000050
Figure PCTCN2019077811-appb-000051
导通。输入路径选择模块106通过导通的开关
Figure PCTCN2019077811-appb-000052
将第二参考电压V2耦接至多个电容器Cs1、Cs2、…、Csi、…Csn的一端。第二参考电压V2通过导通的开关
Figure PCTCN2019077811-appb-000053
耦接至多个电容器Cs1、Cs2、…、Csi、…Csn的另一端。据此,多个电容器Cs1、Cs2、…、Csi、…Csn的跨压为0因而被复位。
通过重复地执行图5到图7,多个数模转换单元104_1、104_2…104_i…140_n的多个电容器Cs1、Cs2、…、Csi、…Csn各者的电容值与多个电容器Cs1、Cs2、…、Csi、…Csn的总电容值的比值均能被获得。据此,就能够根据所有数模转换单元104_1、 104_2…104_i…140_n的比值的大小关系以对多个数模转换单元104_1、104_2…104_i…140_n的适配误差进行校正。
在一些实施例中,上述的Δ-Σ模数转换器10可以使用半导体工艺来实现,例如本申请另提出一种芯片,包括Δ-Σ模数转换器10,且所述芯片可以是通过不同工艺来实现的半导体芯片。
上文的叙述简要地提出了本申请某些实施例之特征,而使得本申请所属技术领域具有通常知识者能够更全面地理解本揭示内容的多种态样。本申请所属技术领域具有通常知识者当可明了,其可轻易地利用本揭示内容作为基础,来设计或更动其它工艺与结构,以实现与此处所述之实施方式相同的目的和/或达到相同的优点。本申请所属技术领域具有通常知识者应当明白,这些均等的实施方式仍属于本揭示内容之精神与范围,且其可进行各种变更、替代与更动,而不会悖离本揭示内容之精神与范围。

Claims (14)

  1. 一种模数转换器,具有模数转换操作模式与量测操作模式,其特征在于,所述模数转换器包括:
    输入端,用来接收模拟信号;
    输出端,用来输出数字信号;
    数模转换器,包括多个数模转换单元分别具有单元输入端与单元输出端,所述多个数模转换单元的单元输出端彼此耦接,所述多个数模转换单元依据所述多个数模转换单元的单元输入端产生输出信号;
    输入路径选择模块,耦接于所述输入端与所述数模转换器之间,当所述模数转换器操作在所述模数转换操作模式时,所述输入路径选择模块将所述多个数模转换单元的每一单元输入端耦接至所述输入端以接收所述模拟信号,以及当所述模数转换器操作在所述量测操作模式时,所述输入路径选择模块将所述多个数模转换单元中的待测数模转换单元的单元输入端耦接至第一参考电压,以及将所述多个数模转换单元中的其它数模转换单元的单元输入端耦接至第二参考电压;以及
    处理电路,耦接于所述数模转换器和所述输出端之间,所述处理电路用来依据所述输出信号产生所述数字信号;
    其中当所述模数转换器操作在所述模数转换操作模式时,所述模数转换器用来将所述模拟信号转换为所述数字信号,以及当所述模数转换器操作在所述量测操作模式时,所述数字信号相关于所述待测数模转换单元的电容值与所述多个数模转换单元的总电容值的比值。
  2. 如权利要求1所述的模数转换器,其中当所述模数转换器操作在所述量测操作模式中,所述多个数模转换单元的每一单元输出端耦接于所述第二参考电压,且所述待测数模转换单元基于所述第一参考电压以及所述第二参考电压来存储待分配电荷。
  3. 如权利要求2所述的模数转换器,当所述模数转换器操作在所述量测操作模式中,所述其它数模转换单元不存储电荷。
  4. 如权利要求1所述的模数转换器,所述处理电路包括:
    环路滤波器,耦接于所述数模转换器,并基于所述输出信号产生环路滤波信号;以及
    量化器,用来基于所述环路滤波信号产生量化信号。
  5. 如权利要求4所述的模数转换器,所述处理电路还包括:
    抽取滤波器,用来依据所述量化信号产生所述数字信号;
    积分模块,用来依据所述量化信号产生包括所述比值的所述数字信号;以及
    输出路径选择模块,用来选择性地将所述量化信号耦接至所述抽取滤波器或所述积分模块。
  6. 如权利要求5所述的模数转换器,其中当所述模数转换器操作在所述模数转换操作模式时,所述输出路径选择模块将所述量化信号耦接至所述抽取滤波器,以及当所述模数转换器操作在所述量测操作模式时,所述输出路径选择模块将所述量化信号耦接至所述积分模块。
  7. 如权利要求4所述的模数转换器,其中所述环路滤波器包括低通滤波器。
  8. 如权利要求7所述的模数转换器,其中所述环路滤波器及所述积分模块具有复位功能,当所述模数转换器操作在所述量测操作模式时,将所述多个数模转换单元中的第一数模转换单元作为所述待测数模转换单元,并转换出包括所述比值的所述数字信号后,所述环路滤波器及所述积分模块被复位,再将所述多个数模转换单元中的第二数模转换单元作为所述待测数模转换单元。
  9. 如权利要求8所述的模数转换器,其中所述低通滤波器包括:
    积分器,包括电容器;以及
    复位开关,与所述电容器并联,
    其中通过导通所述复位开关复位所述环路滤波器。
  10. 如权利要求1所述的模数转换器,其中所述多个数模转换单元各包括电容器,以及其中所述量测操作模式包括交替操作的第一阶段及第二阶段,
    其中在所述第一阶段中,所述待测数模转换单元通过将所述待测数模转换单元的电容器耦接于所述第一参考电压及所述第二参考电压之间来存储所述待分配电荷,以及
    在所述第二阶段中,通过将所述多个数模转换单元的各电容器的一端耦接至所述第二参考电压,及将所述多个数模转换单元的各电容器的另一端耦接至所述第一参考电压或第三参考电压,以重新分配所述待分配电荷至所述多个数模转换单元的各电容器。
  11. 如权利要求10所述的模数转换器,其中所述第二参考电压是共模电压,所述第三参考电压是接地电压。
  12. 如权利要求4所述的模数转换器,其中所述处理电路更包括:
    数据加权平均电路,耦接于所述量化器和所述数模转换器之间,用来基于所述量化信号选择性导通所述多个数模转换单元。
  13. 如权利要求4所述的模数转换器,其中所述处理电路更包括:
    递增式数据加权平均电路,耦接于所述量化器和所述数模转换器之间,用来基于所述量化信号选择性导通所述多个数模转换单元。
  14. 一种芯片,其特征在于,所述芯片包括:
    如权利要求1-13任一项中所述的模数转换器。
PCT/CN2019/077811 2019-03-12 2019-03-12 模数转换器以及相关芯片 WO2020181485A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020543593A JP2021518068A (ja) 2019-03-12 2019-03-12 アナログ−デジタル変換器および関連するチップ
PCT/CN2019/077811 WO2020181485A1 (zh) 2019-03-12 2019-03-12 模数转换器以及相关芯片
EP19914177.1A EP3739761A4 (en) 2019-03-12 2019-03-12 ANALOG-DIGITAL CONVERTER AND ASSOCIATED CHIP
CN201980000373.XA CN110168939B (zh) 2019-03-12 2019-03-12 模数转换器以及相关芯片
US16/985,115 US11043961B2 (en) 2019-03-12 2020-08-04 Analog-to-digital converter and associated chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/077811 WO2020181485A1 (zh) 2019-03-12 2019-03-12 模数转换器以及相关芯片

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/985,115 Continuation US11043961B2 (en) 2019-03-12 2020-08-04 Analog-to-digital converter and associated chip

Publications (1)

Publication Number Publication Date
WO2020181485A1 true WO2020181485A1 (zh) 2020-09-17

Family

ID=67638067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077811 WO2020181485A1 (zh) 2019-03-12 2019-03-12 模数转换器以及相关芯片

Country Status (5)

Country Link
US (1) US11043961B2 (zh)
EP (1) EP3739761A4 (zh)
JP (1) JP2021518068A (zh)
CN (1) CN110168939B (zh)
WO (1) WO2020181485A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11402859B2 (en) * 2020-01-20 2022-08-02 GM Global Technology Operations LLC Multiple thermocouple management
US11271586B2 (en) * 2020-01-20 2022-03-08 GM Global Technology Operations LLC Analog to digital converters for temperature sensors of vehicles
US20230318619A1 (en) * 2022-04-05 2023-10-05 Stmicroelectronics (Research & Development) Limited Photodiode current compatible input stage for a sigma-delta analog-to-digital converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674381B1 (en) * 2003-02-28 2004-01-06 Texas Instruments Incorporated Methods and apparatus for tone reduction in sigma delta modulators
CN103762982A (zh) * 2014-01-16 2014-04-30 东南大学 一种模数转换器的电容失配快速校准电路及校准方法
CN104954018A (zh) * 2014-03-28 2015-09-30 澜起科技(上海)有限公司 ∑-δ模数转换器

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW584990B (en) * 2001-05-25 2004-04-21 Endpoints Technology Corp Sigma-Delta modulation device
US6603415B1 (en) * 2001-07-30 2003-08-05 Cirrus Logic, Inc. Circuits and methods for latch metastability detection and compensation and systems using the same
US6744394B2 (en) * 2002-05-10 2004-06-01 02Micro International Limited High precision analog to digital converter
US7375664B2 (en) * 2006-06-07 2008-05-20 Texas Instruments Incorporated Systems and methods for providing anti-aliasing in a sample-and-hold circuit
JP2008028855A (ja) * 2006-07-24 2008-02-07 Renesas Technology Corp 半導体集積回路装置
US7375666B2 (en) * 2006-09-12 2008-05-20 Cirrus Logic, Inc. Feedback topology delta-sigma modulator having an AC-coupled feedback path
US7688236B2 (en) * 2007-10-01 2010-03-30 Infineon Technologies Ag Integrated circuit comprising a plurality of digital-to-analog converters, sigma-delta modulator circuit, and method of calibrating a plurality of multibit digital-to-analog converters
JP5072607B2 (ja) * 2008-01-07 2012-11-14 株式会社東芝 A/d変換装置
US7564389B1 (en) * 2008-05-13 2009-07-21 Texas Instruments Incorporated Discrete-time, single-amplifier, second-order, delta-sigma analog-to-digital converter and method of operation thereof
JP5129298B2 (ja) * 2010-06-11 2013-01-30 旭化成エレクトロニクス株式会社 DWA(Data−Weighted−Averaging)回路、それを用いたデルタシグマ変調器
US8416105B2 (en) * 2011-02-17 2013-04-09 Taiwan Semiconductor Manufacturing Company, Ltd. ADC calibration apparatus
JP5754550B2 (ja) * 2012-04-19 2015-07-29 トヨタ自動車株式会社 Δς変調器及びδς型a/d変換器
KR20140011135A (ko) * 2012-07-17 2014-01-28 한국전자통신연구원 오프셋 전압 보정 장치 및 방법과 이를 포함한 연속 시간 델타 시그마 변조 장치
EP2974032B1 (en) * 2013-03-11 2020-04-29 Microchip Technology Incorporated 4n+1 level capacitive dac using n capacitors
US9054733B2 (en) * 2013-06-12 2015-06-09 Microchip Technology Incorporated Quantization noise coupling delta sigma ADC with a delay in the main DAC feedback
JP6407528B2 (ja) * 2013-12-27 2018-10-17 ルネサスエレクトロニクス株式会社 半導体装置
JP6372102B2 (ja) * 2014-03-10 2018-08-15 株式会社ソシオネクスト アナログデジタル変換回路
CN104168023B (zh) * 2014-08-27 2017-12-01 电子科技大学 一种高精度模数转换器
US9362938B2 (en) * 2014-09-16 2016-06-07 Qualcomm Technologies International, Ltd. Error measurement and calibration of analog to digital converters
US9219492B1 (en) * 2014-09-19 2015-12-22 Hong Kong Applied Science & Technology Research Institute Company, Limited Loading-free multi-stage SAR-assisted pipeline ADC that eliminates amplifier load by re-using second-stage switched capacitors as amplifier feedback capacitor
US9432049B2 (en) * 2015-01-07 2016-08-30 Asahi Kasei Microdevices Corporation Incremental delta-sigma A/D modulator and A/D converter
CN104980158B (zh) * 2015-07-07 2019-02-12 杭州士兰微电子股份有限公司 逐次逼近模数转换器及其校准方法
JP6823478B2 (ja) * 2017-01-31 2021-02-03 旭化成エレクトロニクス株式会社 インクリメンタル型デルタシグマad変換器および調整方法
US10312926B2 (en) * 2017-10-30 2019-06-04 Analog Devices Global Unlimited Company Noise-shaping analog-to-digital converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674381B1 (en) * 2003-02-28 2004-01-06 Texas Instruments Incorporated Methods and apparatus for tone reduction in sigma delta modulators
CN103762982A (zh) * 2014-01-16 2014-04-30 东南大学 一种模数转换器的电容失配快速校准电路及校准方法
CN104954018A (zh) * 2014-03-28 2015-09-30 澜起科技(上海)有限公司 ∑-δ模数转换器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3739761A4 *

Also Published As

Publication number Publication date
US20200366313A1 (en) 2020-11-19
EP3739761A4 (en) 2021-11-17
CN110168939B (zh) 2021-02-23
EP3739761A1 (en) 2020-11-18
US11043961B2 (en) 2021-06-22
JP2021518068A (ja) 2021-07-29
CN110168939A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
US11184017B2 (en) Method and circuit for noise shaping SAR analog-to-digital converter
CN112202448B (zh) 逐次逼近型模数转换器及其校准方法、电子设备
US10637495B2 (en) SAR ADCs with dedicated reference capacitor for each bit capacitor
WO2020181485A1 (zh) 模数转换器以及相关芯片
CN105720979B (zh) 具有片内储能电容的sar adc的校准技术
TWI484760B (zh) 同步取樣單端與差動雙輸入類比數位轉換器及其方法
US20120081243A1 (en) Digital-to-analog converter, analog-to-digital converter including same, and semiconductor device
CN108306644B (zh) 基于10位超低功耗逐次逼近型模数转换器前端电路
CN107094020A (zh) 模拟数字转换器
CN110495104B (zh) 模数转换器、传感器装置和用于模数转换的方法
US20150109159A1 (en) Analog to digital converter
CN107769784B (zh) 一种过采样式Pipeline SAR-ADC系统
JP5549824B2 (ja) A/d変換回路、電子機器及びa/d変換方法
CN110277996A (zh) 一种adc控制方法及逐次逼近式adc
CN109196780A (zh) 利用芯片上生成的精密参考信号的数据转换器系统误差校准
CN114285414A (zh) 缩放式增量型模数转换方法及转换器
CN110071696B (zh) 一种可用于温度传感器的连续时间积分器
Rogi et al. A novel architecture for a Capacitive-to-Digital Converter using time-encoding and noise shaping
TWI441456B (zh) Can reduce the energy consumption of the successive approximation of the temporary analog-to-digital converter
TWI454066B (zh) 用於管線式類比至數位轉換器之乘積數位至類比轉換器
KR100947249B1 (ko) 디지털-아날로그 변환기 및 그것을 이용한 아날로그-디지털변환기
CN112769417B (zh) 时钟故障检测器
CN112880845B (zh) 一种可变量程温度传感器
CN208908440U (zh) 一种模数转换器
WO2023005825A1 (zh) 模数转换器、电量检测电路以及电池管理系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020543593

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019914177

Country of ref document: EP

Effective date: 20200810

NENP Non-entry into the national phase

Ref country code: DE