WO2020179340A1 - 水素付加装置及び水素透過膜の消耗度判定方法 - Google Patents

水素付加装置及び水素透過膜の消耗度判定方法 Download PDF

Info

Publication number
WO2020179340A1
WO2020179340A1 PCT/JP2020/004381 JP2020004381W WO2020179340A1 WO 2020179340 A1 WO2020179340 A1 WO 2020179340A1 JP 2020004381 W JP2020004381 W JP 2020004381W WO 2020179340 A1 WO2020179340 A1 WO 2020179340A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
water
chamber
dissolved
permeable membrane
Prior art date
Application number
PCT/JP2020/004381
Other languages
English (en)
French (fr)
Inventor
孝士 橘
Original Assignee
株式会社日本トリム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本トリム filed Critical 株式会社日本トリム
Priority to CN202080012888.4A priority Critical patent/CN113412146B/zh
Publication of WO2020179340A1 publication Critical patent/WO2020179340A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/28Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water

Definitions

  • the present invention relates to an apparatus for generating hydrogenated water in which hydrogen is added to water and a method for determining the degree of consumption of a hydrogen permeable membrane.
  • a technique for dissolving hydrogen in the raw material water supplied to the raw material water distribution unit is known (see, for example, Patent Document 1).
  • Patent Document 1 discloses that the hydrogen gas generated by electrolysis in the electrolytic cell is supplied to the hydrogen gas flow section.
  • a technique for example, a configuration that appropriately controls the water level of the electrolytic cell is required, which causes an increase in cost. Therefore, in addition to the technique disclosed in Patent Document 1, various techniques for inexpensively producing hydrogenated water have been studied.
  • the above module deteriorates due to exhaustion of the hydrogen permeable membrane, so regular replacement is recommended.
  • the degree of consumption of the hydrogen permeable membrane can be easily estimated by, for example, the usage time of the module.
  • the present invention has been devised in view of the above circumstances, and provides a hydrogen addition device and a method for determining the degree of consumption of a hydrogen permeable membrane, which can accurately determine the degree of consumption of a hydrogen permeable membrane with a simple and inexpensive configuration.
  • the main purpose is that.
  • the first invention of the present invention is a hydrogen addition device for adding hydrogen to water, in a first chamber to which dissolved hydrogen water is supplied, a second chamber to which raw water is supplied, and the second chamber.
  • a hydrogen permeable film that moves hydrogen molecules dissolved in the dissolved hydrogen water from the first chamber to the second chamber in order to generate hydrogen-added water, and the hydrogen-added water taken out from the second chamber. It includes a hydrogen concentration detecting unit for detecting the dissolved hydrogen concentration, and at least a determining unit for determining the degree of consumption of the hydrogen permeation film based on the dissolved hydrogen concentration.
  • the hydrogen addition apparatus further include a dissolved hydrogen water generation unit that generates the dissolved hydrogen water to be supplied to the first chamber.
  • the dissolved hydrogen water generating unit has an anode feeding body and a cathode feeding body, and the dissolved hydrogen water is generated by electrolyzing water in the first chamber.
  • the control unit for controlling the voltage applied to the anode power supply and the cathode power supply, the control unit, so that the dissolved hydrogen concentration of the dissolved hydrogen water is constant, It is desirable to control the voltage.
  • the hydrogen molecules are dissolved in the dissolved hydrogen water in a saturated state.
  • a circulating water channel for circulating the dissolved hydrogen water is further provided between the dissolved hydrogen water generating unit and the first chamber.
  • the hydrogenation apparatus further includes a flow rate detection unit for detecting the supply amount of the raw water to the second chamber per unit time, and the determination unit further includes the determination unit based on the supply amount. It is desirable to determine the degree of consumption of the hydrogen permeable membrane.
  • the second invention of the present invention dissolves in the dissolved hydrogen water in order to generate hydrogenated water in the first chamber to which the dissolved hydrogen water is supplied, the second chamber to which the raw water is supplied, and the second chamber.
  • a method of determining the degree of consumption of the hydrogen permeable membrane comprising: It includes a step of detecting the dissolved hydrogen concentration of the hydrogenated water extracted from the hydrogen addition water, and at least a step of determining the degree of consumption of the hydrogen permeable film based on the dissolved hydrogen concentration.
  • the hydrogenation apparatus of the first invention hydrogen dissolved in the dissolved hydrogen water permeates the hydrogen permeable film and moves from the first chamber to the second chamber, whereby the second chamber is described. Hydrogenated water is produced.
  • the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber depends on the degree of consumption of the hydrogen permeable membrane, and decreases as the hydrogen permeable membrane is consumed. Therefore, in the first invention, the determination unit determines the degree of consumption of the hydrogen permeable membrane based on at least the dissolved hydrogen concentration of the hydrogenated water, whereby the hydrogen has a simple and inexpensive configuration. It is possible to accurately determine the degree of wear of the permeable membrane.
  • the exhaustion degree determination method for the hydrogen permeable membrane according to the second aspect of the present invention is based on at least the step of detecting the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber, and at least based on the dissolved hydrogen concentration. And a step of determining the degree of consumption of the hydrogen permeable membrane. Therefore, the consumption level of the hydrogen permeable membrane can be accurately determined with a simple and inexpensive structure.
  • FIG. 1 shows a schematic configuration of an embodiment of the hydrogenation apparatus of the present invention.
  • the hydrogenation device 1 is a device for adding hydrogen to water, and the hydrogenated water to which hydrogen is added is used, for example, as dialysate preparation water for preparing a dialysate (hereinafter, the hydrogenated water is dialyzed). Sometimes referred to as water for liquid preparation). In recent years, hemodialysis using hydrogenated water for the preparation of dialysate has received attention as being effective in reducing oxidative stress in patients.
  • the hydrogen addition device 1 is arranged, for example, on the downstream side of the reverse osmosis membrane treatment device 200.
  • the hydrogenation device 1 and the reverse osmosis membrane treatment device 200 may be integrated and configured as one device.
  • a dialysis agent diluting device (not shown) for diluting a liquid dialysis agent with water for preparing a dialysate is connected.
  • the reverse osmosis membrane treatment device 200 purifies water supplied from the outside by using the reverse osmosis membrane.
  • the reverse osmosis membrane treatment device 200 and the hydrogenation device 1 are connected by a treated water supply path 10.
  • the water purified by the reverse osmosis membrane treatment device 200 passes through the treated water supply path 10 and is supplied to the hydrogenation device 1 to generate hydrogenated water for dialysate preparation. Used as raw water (hereinafter referred to as raw water).
  • the hydrogenation apparatus 1 used for producing dialysate preparation water adds hydrogen to the raw water supplied from the reverse osmosis membrane treatment apparatus 200 to generate hydrogenated water for dialysate preparation.
  • the hydrogenation device 1 and the dialysis base agent dilution device are connected by a hydrogenation water supply passage 20.
  • the hydrogenated water generated by the hydrogenation device 1 passes through the hydrogenation water supply passage 20 and is supplied to the dialysis base agent diluting device to be used for preparing a dialysate.
  • FIG. 2 shows the main configuration of the hydrogen addition device 1.
  • the hydrogenation apparatus 1 includes a dissolved hydrogen water generation unit 2 and a hydrogen permeation membrane module 3.
  • the dissolved hydrogen water generation unit 2 generates dissolved hydrogen water and supplies it to the hydrogen permeation membrane module 3.
  • Dissolved hydrogen water is water in which hydrogen molecules are dissolved.
  • the electrolytic cell 4 is applied as the dissolved hydrogen water producing unit 2.
  • the electrolyzer 4 generates hydrogen molecules by electrolyzing water to generate dissolved hydrogen water.
  • the electrolytic cell 4 is configured such that a first polar chamber 40a in which the first power feeding body 41 is arranged and a second polar chamber 40b in which the second power feeding body 42 is arranged are separated by a diaphragm 43.
  • the first power feeding body 41 and the second power feeding body 42 have different polarities. That is, one of the first feeding body 41 and the second feeding body 42 is applied as an anode feeding body, and the other is applied as a cathode feeding body. In the present embodiment, the first feeding body 41 is applied as an anode feeding body, and the second feeding body 42 is applied as a cathode feeding body. Water is supplied to both the first electrode chamber 40a and the second electrode chamber 40b of the electrolysis chamber 40, and a DC voltage is applied to the first power feeding body 41 and the second power feeding body 42, so that water is generated in the electrolysis chamber 40. Electrolysis occurs.
  • FIG. 3 is a block diagram showing the electrical configuration of the hydrogenation device 1.
  • the polarities of the first feeder 41 and the second feeder 42 and the voltages applied to the first feeder 41 and the second feeder 42 are controlled by the control unit 9.
  • the control unit 9 includes, for example, a CPU (Central Processing Unit) that executes various types of arithmetic processing and information processing, a program that controls the operation of the CPU, and a memory that stores various types of information.
  • the control unit 9 controls the respective units of the device in addition to the first power feeding body 41 and the second power feeding body 42.
  • a current detector 44 is provided in the current supply line between the first power feeding body 41 and the control unit 9.
  • the current detector 44 may be provided in the current supply line between the second power feeder 42 and the control unit 9.
  • the current detector 44 detects the electrolytic current supplied to the first feeding body 41 and the second feeding body 42, and outputs an electric signal corresponding to the value to the control unit 9.
  • the control unit 9 controls the DC voltage applied to the first power feeding body 41 and the second power feeding body 42, for example, based on the electrical signal output from the current detector 44. More specifically, the control unit 9 applies a DC voltage to the first power feeding body 41 and the second power feeding body 42 so that the electrolysis current detected by the current detector 44 has a preset desired value. Feedback control. For example, when the electrolytic current is excessive, the control unit 9 reduces the voltage, and when the electrolytic current is too small, the control unit 9 increases the voltage. As a result, the electrolytic current supplied to the first feeding body 41 and the second feeding body 42 is appropriately controlled.
  • hydrogen gas and oxygen gas are generated by electrolyzing water in the electrolysis chamber 40.
  • hydrogen gas is generated, and dissolved hydrogen water in which the hydrogen molecules are dissolved is generated and supplied to the hydrogen permeation membrane module 3.
  • the dissolved hydrogen water produced by such electrolysis is also referred to as “electrolytic hydrogen water”.
  • oxygen gas is generated in the first electrode chamber 40a on the anode side.
  • a solid polymer film made of a fluororesin having a sulfonic acid group is appropriately used as the diaphragm 43.
  • the solid polymer film is electrolyzed to move the oxonium ions generated in the first electrode chamber 40a on the anode side to the second electrode chamber 40b on the cathode side to be used as a raw material for producing hydrogen molecules. Therefore, hydroxide ions are not generated during electrolysis, and the pH of the electrolytic hydrogen water does not change.
  • the hydrogen permeable membrane module 3 includes a first chamber 31, a second chamber 32, and a hydrogen permeable membrane 33.
  • the first chamber 31 and the second chamber 32 are separated by a hydrogen permeable film 33.
  • the first chamber 31 and the second electrode chamber 40b of the electrolytic cell 4 are connected by a hydrogen water supply passage 50.
  • the dissolved hydrogen water generated in the second electrode chamber 40b of the electrolytic cell 4 passes through the hydrogen water supply passage 50 and is supplied to the first chamber 31.
  • the second chamber 32 is connected to the treated water supply passage 10.
  • Raw water is supplied to the second chamber 32 from the reverse osmosis membrane treatment device 200.
  • the hydrogen permeable membrane 33 is composed of, for example, a hollow fiber membrane that is a porous membrane that permeates hydrogen molecules. Dissolved hydrogen water generated in the electrolytic cell 4 is successively supplied to the first chamber 31, so that the dissolved hydrogen concentration of water in the first chamber 31 is the dissolved hydrogen concentration of water in the second chamber 32. Greater than.
  • the hollow fiber membrane moves the hydrogen dissolved in the liquid from the first chamber 31 having a high dissolved hydrogen concentration to the second chamber 32 having a low dissolved hydrogen concentration.
  • the hydrogen permeable membrane 33 may be a membrane having a function of allowing hydrogen molecules dissolved in the liquid to permeate from the high-concentration liquid side to the low-concentration liquid side, and is not limited to the hollow fiber membrane.
  • the hydrogen permeable membrane 33 transfers hydrogen molecules dissolved in the dissolved hydrogen water in the first chamber 31 from the first chamber 31 to the second chamber 32 in order to generate hydrogenated water in the second chamber 32. Move. This makes it possible to generate hydrogenated water with a simple and inexpensive structure without requiring a structure for pressurizing hydrogen molecules.
  • the hydrogen permeable membrane 33 is consumed with use.
  • the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32 depends on the degree of consumption of the hydrogen permeable membrane 33. More specifically, when the hydrogen permeable membrane 33 is new, the dissolved hydrogen concentration of the hydrogenated water generated in the second chamber 32 is high, and the dissolved hydrogen concentration decreases as the hydrogen permeable membrane 33 is consumed. Therefore, in the present hydrogenation apparatus 1, the control unit 9 functions as a determination unit for determining the degree of wear of the hydrogen permeable membrane 33, and monitors the degree of wear of the hydrogen permeable membrane 33. The determination of the degree of consumption of the hydrogen permeable membrane 33 by the control unit 9 is performed as needed or periodically.
  • a hydrogen concentration sensor (hydrogen concentration detector) 21 is provided in the hydrogen-added water supply passage 20.
  • the hydrogen concentration sensor 21 detects the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32, and outputs a corresponding electric signal to the control unit 9.
  • the degree of consumption of the hydrogen permeable membrane 33 correlates with the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32. For example, when the dissolved hydrogen concentration of the hydrogenated water is less than a predetermined threshold value, it can be determined that the hydrogen permeable membrane 33 is being consumed. A plurality of the above threshold values may be set. Therefore, the control unit 9 determines the degree of consumption of the hydrogen permeation film 33 based on the electric signal input from the hydrogen concentration sensor 21, that is, the dissolved hydrogen concentration of the hydrogenated water. This makes it possible to accurately determine the degree of wear of the hydrogen permeable membrane module 3 with a simple and inexpensive configuration.
  • control unit 9 applies the DC voltage applied to the first power feeding body 41 and the second power feeding body 42 so that the electrolytic current detected by the current detector 44 becomes a preset desired value. Feedback control. Thereby, the dissolved hydrogen concentration of the dissolved hydrogen water generated in the second electrode chamber 40b on the cathode side of the electrolytic cell 4 and supplied to the first chamber 31 of the hydrogen permeable membrane module 3 becomes constant, and the control unit 9 It is possible to more accurately determine the consumption level of the hydrogen permeable membrane module 3.
  • the dissolved hydrogen water supplied to the first chamber 31 of the hydrogen permeable membrane module 3 has hydrogen dissolved in a saturated state.
  • the saturated state of the dissolved hydrogen water is realized, for example, by increasing the DC voltage applied to the first power feeding body 41 and the second power feeding body 42. Therefore, the control of the electrolytic cell 4 is facilitated, and the control unit 9 can determine the consumption level of the hydrogen permeable membrane module 3 more accurately. Further, it becomes possible to increase the dissolved hydrogen concentration of the hydrogenated water generated in the second chamber 32.
  • the hydrogen addition device 1 is provided with an output unit 91 that outputs the consumption level of the hydrogen permeable membrane 33 determined by the control unit 9.
  • the output unit 91 outputs the consumption level by voice or image.
  • Such an output unit 91 can be realized by a speaker device, an LED (light emitting diode), a liquid crystal display (Liquid Crystal Display), or the like. Further, the output unit 91 may be configured to output a wireless or wired signal corresponding to the degree of wear of the hydrogen permeable membrane 33 to the computer device that manages the hydrogenation device 1. With such an output unit 91, the manager of the hydrogen adding apparatus 1 can easily know the degree of consumption of the hydrogen permeable membrane 33.
  • the treated water that has been subjected to the reverse osmosis membrane treatment by the reverse osmosis membrane treatment apparatus 200 is applied to the water that is electrolyzed in the electrolytic cell 4.
  • the treated water is supplied to the electrolytic cell 4 via the treated water supply path 10 and the treated water supply path 11 branching from the treated water supply path 10. That is, the electrolytic cell 4 of the dissolved hydrogen water generation unit 2 and the second chamber 32 of the hydrogen permeation membrane module 3 receive the treated water from the reverse osmosis membrane treatment device 200, which is the same water source.
  • the hydrogen adding apparatus 1 and the piping around the hydrogen adding apparatus 1 are simplified.
  • the hydrogenation apparatus 1 of the present embodiment further includes a circulation channel 5 for circulating dissolved hydrogen water between the second electrode chamber 40b and the first chamber 31 of the electrolytic cell 4.
  • the hydrogen water supply path 50 that connects the second electrode chamber 40b of the electrolytic cell 4 and the first chamber 31 constitutes a part of the circulating water channel 5.
  • the dissolved hydrogen concentration in the first chamber 31 can be increased. Thereby, the difference in the dissolved hydrogen concentration between the first chamber 31 and the second chamber 32 is maintained, so that the dissolved hydrogen concentration of the hydrogenated water can be easily increased.
  • the circulation water channel 5 of the present embodiment is provided with a pump 6 for circulating dissolved hydrogen water in the circulation water channel 5 and a tank 7 for storing the dissolved hydrogen water.
  • the pump 6 is arranged between the tank 7 and the electrolytic cell 4.
  • the pump 6 is controlled by the control unit and drives and circulates the dissolved hydrogen water in the circulating water channel 5.
  • the dissolved hydrogen water generated in the electrolytic cell 4 is quickly supplied to the first chamber 31, and the water pressure in the first chamber 31 is increased.
  • the capacity of the circulating water channel 5 is increased, and the fluctuation of the dissolved hydrogen concentration in the circulating water channel 5 is suppressed.
  • the voltage applied to the first power feeding body 41 and the second power feeding body 42 is increased in advance, and the electrolytic cell 4 is operated, whereby the concentration of dissolved hydrogen in the circulating water channel 5 is increased. It can be easily increased to a saturated concentration. As a result, the difference in the dissolved hydrogen concentration between the first chamber 31 and the second chamber 32 becomes large, and the dissolved hydrogen concentration of the hydrogenated water can be easily increased.
  • the top of tank 7 is open. Therefore, the hydrogen molecules that could not be dissolved in the electrolytic cell 4 become bubbles, move through the circulating water channel 5, flow into the tank 7, and a part of them escape from the upper part of the tank 7.
  • the treated water supply path 10 is provided with a water inlet valve 12 and a flow meter (flow rate detector) 13.
  • the water inlet valve 12 is driven by, for example, an electromagnetic force controlled by the controller 9, and limits the treated water flowing in the treated water supply passage 10.
  • the flow meter 13 detects the flow rate per unit time of the treated water flowing in the treated water supply path 10, that is, the raw water supplied to the second chamber 32 (hereinafter, simply referred to as the flow rate or the supply amount), and is a control unit. Output to 9.
  • the control unit 9 controls the water inlet valve 12 according to the flow rate input from the flow meter 13. As a result, the flow rate of the treated water supplied as raw water to the second chamber 32 is optimized.
  • a water supply valve 14 is provided in the treated water supply passage 11.
  • the water supply valve 14 is driven by, for example, an electromagnetic force controlled by the control unit 9, and limits the treated water flowing in the treated water supply passage 11. More specifically, when filling or refilling the tank 7 with water for electrolysis, the water supply valve 14 is opened, and then, when the raw water is supplied to the second chamber 32 of the hydrogen permeable membrane module 3. The water supply valve 14 is closed.
  • the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32 also depends on the amount of raw water supplied to the second chamber 32. For example, when the amount of raw water supplied to the second chamber 32 increases, the dissolved hydrogen concentration of the hydrogenated water tends to decrease.
  • control unit 9 determines the degree of consumption of the hydrogen permeable membrane 33 based on the amount of raw hydrogen supplied by the flow meter 13 in addition to the dissolved hydrogen concentration of the hydrogen-added water detected by the hydrogen concentration sensor 21. It is preferably configured to make a determination. This allows the control unit 9 to more accurately determine the degree of consumption of the hydrogen permeable membrane 33.
  • a gas vent valve 16 is provided in the exhaust passage 15 (see FIG. 2) extending upward from the first pole chamber 40a of the electrolytic chamber 40.
  • the oxygen gas generated in the first pole chamber 40a by electrolysis is discharged from the exhaust passage 15 and the gas vent valve 16.
  • FIG. 4 shows a processing procedure of a method for determining the degree of consumption of the hydrogen permeable membrane 33 in the hydrogen permeable membrane module 3.
  • the method for determining the degree of consumption of the hydrogen permeable membrane 33 includes step S1 for detecting the dissolved hydrogen concentration, step S2 for detecting the supply amount of raw water, step S3 for determining the degree of consumption of the hydrogen permeable membrane 33, and outputting the determination result. And step S4 of performing.
  • step S1 the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32 is detected by the hydrogen concentration sensor 21.
  • the flow rate meter 13 detects the amount of raw water supplied to the second chamber 32.
  • step S3 the control unit 9 determines the degree of consumption of the hydrogen permeable membrane 33 based on the dissolved hydrogen concentration of the hydrogenated water detected in step S1 and the supply amount of raw water detected in step S2. Then, in step S4, the output unit 91 outputs the determination result of step S3.
  • the present consumption level determination method it is possible to accurately determine the consumption level of the hydrogen permeable membrane 33 with a simple and inexpensive configuration.
  • the hydrogen addition device 1 at least generates dissolved hydrogen in the first chamber 31 to which the dissolved hydrogen water is supplied, the second chamber 32 to which the raw water is supplied, and the second chamber 32.
  • a hydrogen permeation film 33 that moves hydrogen dissolved in water from the first chamber 31 to the second chamber 32, a hydrogen concentration sensor 21 that detects the dissolved hydrogen concentration of the hydrogenated water taken out from the second chamber 32, and at least It suffices to include the control unit 9 that determines the degree of consumption of the hydrogen permeable membrane 33 based on the dissolved hydrogen concentration.
  • the dissolved hydrogen water producing unit 2 that produces the dissolved hydrogen water to be supplied to the first chamber 31 is not limited to the electrolytic cell 4 that electrolyzes water.
  • the hydrogen addition device 1 can be applied to various purposes in addition to generation of hydrogen addition water for preparing dialysate. For example, it can be widely applied to the production of hydrogenated water for drinking, cooking or agriculture.
  • the consumption degree determination method may include at least a step S1 for detecting the dissolved hydrogen concentration and a step S3 for determining the consumption degree of the hydrogen permeation membrane 33. ..
  • step S2 of detecting the supply amount of raw water may be omitted.
  • step S3 the control unit 9 determines the degree of consumption of the hydrogen permeable membrane 33 based on the dissolved hydrogen concentration of the hydrogenated water detected in step S1.
  • Hydrogen addition device 2 Dissolved hydrogen water generation part 3: Hydrogen permeable membrane module 4: Electrolyzer 5: Circulating water channel 9: Control part (judgment part) 13: Flow meter (flow rate detector) 21: Hydrogen concentration sensor (hydrogen concentration detector) 31: 1st chamber 32: 2nd chamber 33: Hydrogen permeable membrane module 33: Hydrogen permeable membrane 41: 1st electric power feeder (anode electric power feeder) 42: Second power supply (cathode power supply)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

水素付加装置1は、溶存水素水が供給される第1室31と、原水が供給される第2室32と、第2室32で水素付加水を生成するために、溶存水素水に溶け込んだ水素を第1室31から第2室32へと移動させる水素透過膜33と、第2室32から取り出された水素付加水の溶存水素濃度を検出する水素濃度センサー21と、少なくとも、水素付加水の溶存水素濃度に基づいて、水素透過膜33の消耗度を判定する制御部とを備える。

Description

水素付加装置及び水素透過膜の消耗度判定方法
 本発明は、水に水素が付加された水素付加水を生成する装置及び水素透過膜の消耗度判定方法に関する。
 水に水素を付加する方法として、水素透過膜(ガス透過膜)によって水素ガス流通部と原料水流通部とが区画されたモジュールを用い、水素ガス流通部に加圧した水素ガスを供給して、原料水流通部に供給した原料水に水素を溶解させる技術が知られている(例えば、特許文献1参照)。
特開2009-125654号公報
 上記特許文献1では、電解槽で電気分解により生成した水素ガスが水素ガス流通部に供給される旨開示されている。しかしながら、このような技術では、例えば、電解槽の水位を適切に制御する構成が必要となり、コストアップを招来する。そこで、上記特許文献1に開示されているような技術の他にも、安価に水素付加水を生成する技術が種々検討されている。
 一方、上記モジュールは、水素透過膜の消耗によって劣化するため、定期的な交換が推奨される。水素透過膜の消耗度は、例えば、上記モジュールの使用時間等によって簡易的に推定可能である。
 しかしながら、水素透過膜は高価であることから、低廉なランニングコストで水素付加水を生成するためには、水素透過膜の消耗度をより正確に判定する技術の確立が求められている。
 本発明は、以上のような実状に鑑み案出されたもので、簡素かつ安価な構成で水素透過膜の消耗度を正確に判定できる水素付加装置及び水素透過膜の消耗度判定方法を提供することを主たる目的としている。
 本発明の第1発明は、水に水素を付加するための水素付加装置であって、溶存水素水が供給される第1室と、原水が供給される第2室と、前記第2室で水素付加水を生成するために、前記溶存水素水に溶け込んだ水素分子を前記第1室から前記第2室へと移動させる水素透過膜と、前記第2室から取り出された前記水素付加水の溶存水素濃度を検出する水素濃度検出部と、少なくとも、前記溶存水素濃度に基づいて、前記水素透過膜の消耗度を判定する判定部とを備える。
 本発明に係る前記水素付加装置において、前記第1室に供給する前記溶存水素水を生成する溶存水素水生成部をさらに備える、ことが望ましい。
 本発明に係る前記水素付加装置において、前記溶存水素水生成部は、陽極給電体と陰極給電体とを有し、水を電気分解することにより前記溶存水素水を生成し、前記第1室に供給する電解槽を有し、前記陽極給電体及び前記陰極給電体に印加する電圧を制御する制御部をさらに備え、前記制御部は、前記溶存水素水の溶存水素濃度が一定となるように、前記電圧を制御する、ことが望ましい。
 本発明に係る前記水素付加装置において、前記溶存水素水には、前記水素分子が飽和状態で溶解している、ことが望ましい。
 本発明に係る前記水素付加装置において、前記溶存水素水生成部と前記第1室との間で、前記溶存水素水を循環させる循環水路をさらに備える、ことが望ましい。
 本発明に係る前記水素付加装置において、前記第2室への前記原水の単位時間あたりの供給量を検出する流量検出部をさらに備え、前記判定部は、さらに、前記供給量に基づいて、前記水素透過膜の消耗度を判定する、ことが望ましい。
 本発明の第2発明は、溶存水素水が供給される第1室と、原水が供給される第2室と、前記第2室で水素付加水を生成するために、前記溶存水素水に溶け込んだ水素を前記第1室から前記第2室へと移動させる水素透過膜とを備えた水素透過モジュールにおいて、前記水素透過膜の消耗度を判定する消耗度判定方法であって、前記第2室から取り出された前記水素付加水の溶存水素濃度を検出するステップと、少なくとも、前記溶存水素濃度に基づいて、前記水素透過膜の消耗度を判定するステップとを含む。
 本第1発明の前記水素付加装置では、前記溶存水素水に溶け込んだ水素が前記水素透過膜を透過して前記第1室から前記第2室へと移動することにより、前記第2室で前記水素付加水が生成される。前記第2室から取り出された前記水素付加水の前記溶存水素濃度は、前記水素透過膜の前記消耗度に依存し、前記水素透過膜が消耗するに従い低くなる。そこで、本第1発明では、前記判定部が、少なくとも、前記水素付加水の前記溶存水素濃度に基づいて、前記水素透過膜の前記消耗度を判定することにより、簡素かつ安価な構成で前記水素透過膜の前記消耗度を正確に判定することが可能となる。
 本第2発明の前記水素透過膜の前記消耗度判定方法は、前記第2室から取り出された前記水素付加水の前記溶存水素濃度を検出する前記ステップと、少なくとも、前記溶存水素濃度に基づいて、前記水素透過膜の前記消耗度を判定する前記ステップとを含む。従って、簡素かつ安価な構成で前記水素透過膜の前記消耗度を正確に判定することが可能となる。
本発明の実施の一形態である水素付加装置の概略構成を示す図である。 水素付加装置の主要な構成を示す図である。 水素付加装置の電気的な構成を示すブロック図である。 本発明の実施の一形態の消耗度判定方法の処理手順を示すフローチャートである。
 以下、本発明の実施の一形態が図面に基づき説明される。
 図1は、本発明の水素付加装置の一実施形態の概略構成を示している。水素付加装置1は、水に水素を付加するための装置であり、水素が付加された水素付加水は、例えば、透析液調製用水として透析液の調製に用いられる(以下、水素付加水を透析液調製用水と記すこともある)。近年、透析液の調製に水素付加水を用いた血液透析は、患者の酸化ストレス低減に有効であるとして、注目されている。
 水素付加装置1は、例えば、逆浸透膜処理装置200の下流側に配置される。水素付加装置1と逆浸透膜処理装置200とは、統合されて一つの装置として構成されていてもよい。水素付加装置1の下流側には、例えば、透析液調製用水を用いて液状の透析原剤を希釈する透析原剤希釈装置(図示せず)に接続されている。
 逆浸透膜処理装置200は、逆浸透膜を用いて外部から供給された水を浄化する。逆浸透膜処理装置200と、水素付加装置1とは、処理水供給路10によって接続されている。逆浸透膜処理装置200によって浄化処理された水(以下、処理水とする)は、処理水供給路10を通過して水素付加装置1に供給され、透析液調製用の水素付加水を生成するための原水(以下、原水と記す)として用いられる。
 透析液調製用水の生成に用いられる水素付加装置1は、逆浸透膜処理装置200から供給された原水に水素を付加して透析液調製用の水素付加水を生成する。水素付加装置1と、上記透析原剤希釈装置とは、水素付加水供給路20によって接続されている。水素付加装置1によって生成された水素付加水は、水素付加水供給路20を通過して、上記透析原剤希釈装置に供給され、透析液の調製に用いられる。
 図2は、水素付加装置1の主要な構成を示している。水素付加装置1は、溶存水素水生成部2と、水素透過膜モジュール3とを含んでいる。
 溶存水素水生成部2は、溶存水素水を生成し、水素透過膜モジュール3に供給する。溶存水素水とは、水素分子が溶け込んだ水である。本実施形態では、溶存水素水生成部2として電解槽4が適用されている。電解槽4は、水を電気分解することにより、水素分子を発生させ、溶存水素水を生成する。
 電解槽4は、第1給電体41が配された第1極室40aと第2給電体42が配された第2極室40bとが隔膜43によって区分されてなる。
 第1給電体41と第2給電体42とは、極性が異なる。すなわち、第1給電体41及び第2給電体42の一方は陽極給電体として適用され、他方は陰極給電体として適用される。本実施形態では、第1給電体41が陽極給電体として適用され、第2給電体42が陰極給電体として適用されている。電解室40の第1極室40a及び第2極室40bの両方に水が供給され、第1給電体41及び第2給電体42に直流電圧が印加されることにより、電解室40内で水の電気分解が生ずる。
 図3は、水素付加装置1の電気的な構成を示すブロック図である。第1給電体41及び第2給電体42の極性及び第1給電体41及び第2給電体42に印加される電圧は、制御部9によって制御される。制御部9は、例えば、各種の演算処理、情報処理等を実行するCPU(Central Processing Unit)及びCPUの動作を司るプログラム及び各種の情報を記憶するメモリ等を有している。制御部9は、第1給電体41及び第2給電体42の他、装置各部の制御を司る。
 第1給電体41と制御部9との間の電流供給ラインには、電流検出器44が設けられている。電流検出器44は、第2給電体42と制御部9との間の電流供給ラインに設けられていてもよい。電流検出器44は、第1給電体41、第2給電体42に供給する電解電流を検出し、その値に相当する電気信号を制御部9に出力する。
 制御部9は、例えば、電流検出器44から出力された電気信号に基づいて、第1給電体41及び第2給電体42に印加する直流電圧を制御する。より具体的には、制御部9は、電流検出器44によって検出される電解電流が予め設定された所望の値となるように、第1給電体41及び第2給電体42に印加する直流電圧をフィードバック制御する。例えば、電解電流が過大である場合、制御部9は、上記電圧を減少させ、電解電流が過小である場合、制御部9は、上記電圧を増加させる。これにより、第1給電体41及び第2給電体42に供給する電解電流が適切に制御される。
  図1、2において、電解室40内で水が電気分解されることにより、水素ガス及び酸素ガスが発生する。例えば、陰極側の第2極室40bでは、水素ガスが発生し、当該水素分子が溶け込んだ溶存水素水が生成され、水素透過膜モジュール3に供給される。なお、このような電気分解を伴って生成された溶存水素水は、「電解水素水」とも称される。一方、陽極側の第1極室40aでは、酸素ガスが発生する。
  隔膜43には、例えば、スルホン酸基を有するフッ素系樹脂からなる固体高分子膜が適宜用いられている。固体高分子膜は、電気分解により、陽極側の第1極室40aで発生したオキソニウムイオンを陰極側の第2極室40bへと移動させて、水素分子の生成原料とする。従って、電気分解の際に水酸化物イオンが発生することなく、電解水素水のpHが変化しない。
 水素透過膜モジュール3は、第1室31と、第2室32と、水素透過膜33とを備える。第1室31と第2室32とは、水素透過膜33によって隔てられている。
 第1室31と電解槽4の第2極室40bとは、水素水供給路50によって接続されている。電解槽4の第2極室40bにて生成された溶存水素水は、水素水供給路50を通過して、第1室31に供給される。
 一方、第2室32は、処理水供給路10と接続されている。第2室32には、逆浸透膜処理装置200から原水が供給される。
 水素透過膜33は、例えば、水素分子を透過する多孔質膜である中空糸膜によって構成されている。第1室31には、電解槽4にて生成された溶存水素水が次々と供給されるので、第1室31内の水の溶存水素濃度は、第2室32内の水の溶存水素濃度よりも大きい。中空糸膜は、液体に溶け込んだ水素を溶存水素濃度が大きい第1室31から溶存水素濃度が小さい第2室32へと移動させる。水素透過膜33は、液体に溶け込んだ水素分子を、高濃度な液体側から低濃度な液体の側に透過させる機能を有する膜であればよく、中空糸膜に限られない。
 本発明では、水素透過膜33は、第2室32で水素付加水を生成するために、第1室31内の溶存水素水に溶け込んだ水素分子を第1室31から第2室32へと移動させる。これにより、水素分子を加圧するための構成等を必要とすることなく、簡素かつ安価な構成で水素付加水を生成することが可能となる。
 ところで、水素透過膜33は、使用に伴い消耗する。そして第2室32から取り出された水素付加水の溶存水素濃度は、水素透過膜33の消耗度に依存する。より具体的には、水素透過膜33が新しいとき、第2室32にて生成される水素付加水の溶存水素濃度は高く、水素透過膜33が消耗するに従い、上記溶存水素濃度は低下する。そこで、本水素付加装置1では、制御部9が、水素透過膜33の消耗度を判定する判定部として機能し、水素透過膜33の消耗度を監視する。なお、制御部9による水素透過膜33の消耗度の判定は、随時又は定期的に実行される。
 水素付加水供給路20には、水素濃度センサー(水素濃度検出部)21が設けられている。水素濃度センサー21は、第2室32から取り出された水素付加水の溶存水素濃度を検出し、対応する電気信号を制御部9に出力する。
 水素透過膜33の消耗度は、第2室32から取り出された水素付加水の溶存水素濃度と相関がある。例えば、水素付加水の溶存水素濃度が予め定められた閾値未満である場合、水素透過膜33の消耗が進行していると判定できる。上記閾値は複数定められていてもよい。そこで、制御部9は、水素濃度センサー21から入力された電気信号、すなわち、水素付加水の溶存水素濃度に基づいて、水素透過膜33の消耗度を判定する。これにより、簡素かつ安価な構成で水素透過膜モジュール3の消耗度を正確に判定することが可能となる。
 既に述べたように、制御部9は、電流検出器44によって検出される電解電流が予め設定された所望の値となるように、第1給電体41及び第2給電体42に印加する直流電圧をフィードバック制御する。これにより、電解槽4の陰極側の第2極室40bにて生成され、水素透過膜モジュール3の第1室31に供給される溶存水素水の溶存水素濃度が一定となり、制御部9が、水素透過膜モジュール3の消耗度をより一層正確に判定することが可能となる。
 水素透過膜モジュール3の第1室31に供給される溶存水素水は、水素が飽和状態で溶解している、のが望ましい。溶存水素水の上記飽和状態は、例えば、第1給電体41及び第2給電体42に印加する直流電圧を高めることにより実現される。従って、電解槽4の制御が容易となり、かつ、制御部9が、水素透過膜モジュール3の消耗度をより一層正確に判定することが可能となる。また、第2室32にて生成される水素付加水の溶存水素濃度を高めることが可能となる。
 本水素付加装置1では、制御部9によって判定された水素透過膜33の消耗度を出力する出力部91が設けられている。出力部91は、上記消耗度を音声又は画像等によって出力する。このような出力部91は、スピーカー装置、LED(発光ダイオード)、液晶ディスプレイ(Liquid Crystal Display)等によって実現可能である。また、出力部91は、水素付加装置1を管理するコンピューター装置に、水素透過膜33の消耗度に対応する無線又は有線による信号を出力するように構成されていてもよい。このような出力部91により、水素付加装置1の管理者は、水素透過膜33の消耗度を容易に知得できる。
 図1に示されるように、本実施形態では、電解槽4で電気分解される水は、逆浸透膜処理装置200にて逆浸透膜処理された処理水が適用される。処理水は、処理水供給路10及び処理水供給路10から分岐する処理水供給路11等を経て、電解槽4に供給される。すなわち、溶存水素水生成部2の電解槽4と水素透過膜モジュール3の第2室32とは、同一の水源である逆浸透膜処理装置200から処理水の供給を受ける。このような構成により、水素付加装置1及びその周辺の配管が簡素化される。
 本実施形態の水素付加装置1では、電解槽4の第2極室40bと第1室31との間で溶存水素水を循環させる循環水路5をさらに備えている。電解槽4の第2極室40bと第1室31とを接続する水素水供給路50は、循環水路5の一部を構成する。
 電解槽4にて電気分解を継続しながら、循環水路5で溶存水素水を循環させることにより、第1室31内での溶存水素濃度が高められる。これにより、第1室31と第2室32での溶存水素濃度の差が維持されるので、水素付加水の溶存水素濃度を容易に高めることが可能となる。
 本実施形態の循環水路5には、循環水路5内で溶存水素水を循環させるためのポンプ6及び溶存水素水を蓄えるタンク7が設けられている。ポンプ6は、タンク7と電解槽4との間に配されている。ポンプ6は、上記制御部によって制御され、循環水路5内の溶存水素水を駆動し、循環させる。これにより、電解槽4にて生成された溶存水素水は、速やかに第1室31に供給され、第1室31内の水圧が高められる。一方、タンク7に溶存水素水が蓄えられることにより、循環水路5の容量が増大し、循環水路5内の溶存水素濃度の変動が抑制される。
 第2室32に原水を供給する前に、予め第1給電体41及び第2給電体42に印加する電圧を高めて、電解槽4を運転することにより、循環水路5内の溶存水素濃度を容易に飽和濃度まで高めることができる。これにより、第1室31と第2室32での溶存水素濃度の差が大きくなり、水素付加水の溶存水素濃度を容易に高めることが可能となる。
 タンク7の上部は開放されている。このため、電解槽4にて溶け込めなかった水素分子は、気泡となって循環水路5を移動し、タンク7に流入し、その一部がタンク7の上部から抜け出る。
 処理水供給路10には、入水弁12及び流量計(流量検出部)13が設けられている。入水弁12は、例えば、制御部9によって制御された電磁力によって駆動され、処理水供給路10内を流れる処理水を制限する。流量計13は、処理水供給路10内を流れる処理水、すなわち、第2室32に供給される原水の単位時間あたりの流量(以下、単に流量又は供給量と記す)を検出し、制御部9に出力する。制御部9は、流量計13から入力された流量に応じて入水弁12を制御する。これにより、原水として第2室32に供給される処理水の流量が適正化される。
 処理水供給路11には、給水弁14が設けられている。給水弁14は、例えば、制御部9によって制御された電磁力によって駆動され、処理水供給路11内を流れる処理水を制限する。より具体的には、タンク7に電気分解のための水を充填又は補充する際には、給水弁14が開かれ、その後、水素透過膜モジュール3の第2室32に原水を供給する際には、給水弁14が閉じられる。
 第2室32から取り出される水素付加水の溶存水素濃度は、第2室32への原水の供給量にも依存する。例えば、第2室32への原水の供給量が増加すると、水素付加水の溶存水素濃度は低下する傾向となる。
 そこで、制御部9は、上記水素濃度センサー21によって検出された水素付加水の溶存水素濃度に加えて、流量計13によって検出された原水の供給量に基づいて、水素透過膜33の消耗度を判定するように構成されている、のが望ましい。これにより、制御部9が、水素透過膜33の消耗度をより一層正確に判定することが可能となる。
 電解室40の第1極室40aから上方に延びる排気路15(図2参照)には、ガス抜き弁16が設けられている。電気分解によって第1極室40aで生成された酸素ガスは、排気路15及びガス抜き弁16から排出される。
 図4は、水素透過膜モジュール3において、水素透過膜33の消耗度を判定する方法の処理手順を示している。水素透過膜33の消耗度判定方法は、溶存水素濃度を検出するステップS1と、原水の供給量を検出するステップS2と、水素透過膜33の消耗度を判定するステップS3と、判定結果を出力するステップS4とを含んでいる。
 ステップS1では、第2室32から取り出された水素付加水の溶存水素濃度が、水素濃度センサー21によって検出される。ステップS2では、第2室32への原水の供給量が流量計13によって検出される。ステップS1乃至ステップS2の順序は、問われない。すなわち、先にステップS2が実行され、その後ステップS1が実行されてもよい。
 ステップS3では、ステップS1で検出された水素付加水の溶存水素濃度及びステップS2で検出された原水の供給量に基づいて、制御部9が水素透過膜33の消耗度を判定する。そして、ステップS4では、ステップS3の判定結果が、出力部91によって出力される。
 本消耗度判定方法によれば、簡素かつ安価な構成で水素透過膜33の消耗度を正確に判定することが可能となる。
 以上、本発明の水素付加装置1等が詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。すなわち、水素付加装置1は、少なくとも、溶存水素水が供給される第1室31と、原水が供給される第2室32と、第2室32で水素付加水を生成するために、溶存水素水に溶け込んだ水素を第1室31から第2室32へと移動させる水素透過膜33と、第2室32から取り出された水素付加水の溶存水素濃度を検出する水素濃度センサー21と、少なくとも、溶存水素濃度に基づいて、水素透過膜33の消耗度を判定する制御部9とを備えていればよい。
 また、図1に示される水素付加装置1において、第1室31に供給するための溶存水素水を生成する溶存水素水生成部2は、水を電気分解する電解槽4に限られない。例えば、水とマグネシウムとの化学反応等により発生した水素分子を水に溶解させて溶存水素水を生成する装置、又は、水素ガスボンベから供給された水素ガス(水素分子)を水に溶解させて溶存水素水を生成する装置であってもよい。
 水素付加装置1は、透析液調製用の水素付加水の生成の他、種々の用途に適用可能である。例えば、飲用、料理用又は農業用の水素付加水の生成等にも広く適用可能である。
 また、消耗度判定方法は、少なくとも、水素透過膜33の消耗度判定方法は、溶存水素濃度を検出するステップS1と、水素透過膜33の消耗度を判定するステップS3とを含んでいればよい。例えば、原水の供給量を検出するステップS2が省略されてもよい。この場合、ステップS3では、ステップS1で検出された水素付加水の溶存水素濃度に基づいて、制御部9が水素透過膜33の消耗度を判定する。
1   :水素付加装置
2   :溶存水素水生成部
3   :水素透過膜モジュール
4   :電解槽
5   :循環水路
9   :制御部(判定部)
13  :流量計(流量検出部)
21  :水素濃度センサー(水素濃度検出部)
31  :第1室
32  :第2室
33  :水素透過膜モジュール
33  :水素透過膜
41  :第1給電体(陽極給電体)
42  :第2給電体(陰極給電体)

Claims (7)

  1.  水に水素を付加するための装置であって、
     溶存水素水が供給される第1室と、
     原水が供給される第2室と、
     前記第2室で水素付加水を生成するために、前記溶存水素水に溶け込んだ水素分子を前記第1室から前記第2室へと移動させる水素透過膜と、
     前記第2室から取り出された前記水素付加水の溶存水素濃度を検出する水素濃度検出部と、
     少なくとも、前記溶存水素濃度に基づいて、前記水素透過膜の消耗度を判定する判定部とを備える、
     水素付加装置。
  2.  前記第1室に供給する前記溶存水素水を生成する溶存水素水生成部をさらに備える、請求項1記載の水素付加装置。
  3.  前記溶存水素水生成部は、陽極給電体と陰極給電体とを有し、水を電気分解することにより前記溶存水素水を生成し、前記第1室に供給する電解槽を有し、
     前記陽極給電体及び前記陰極給電体に印加する電圧を制御する制御部をさらに備え、 
     前記制御部は、前記溶存水素水の溶存水素濃度が一定となるように、前記電圧を制御する、請求項2記載の水素付加装置。
  4.  前記溶存水素水には、前記水素分子が飽和状態で溶解している、請求項2又は3に記載の水素付加装置。
  5.  前記溶存水素水生成部と前記第1室との間で、前記溶存水素水を循環させる循環水路をさらに備える、請求項2乃至4のいずれかに記載の水素付加装置。
  6.  前記第2室への前記原水の単位時間あたりの供給量を検出する流量検出部をさらに備え、
     前記判定部は、さらに、前記供給量に基づいて、前記水素透過膜の消耗度を判定する、請求項1乃至5のいずれかに記載の水素付加装置。
  7.  溶存水素水が供給される第1室と、原水が供給される第2室と、前記第2室で水素付加水を生成するために、前記溶存水素水に溶け込んだ水素を前記第1室から前記第2室へと移動させる水素透過膜とを備えた水素透過モジュールにおいて、前記水素透過膜の消耗度を判定する方法であって、
     前記第2室から取り出された前記水素付加水の溶存水素濃度を検出するステップと、
     少なくとも、前記溶存水素濃度に基づいて、前記水素透過膜の消耗度を判定するステップとを含む、
     水素透過膜の消耗度判定方法。
PCT/JP2020/004381 2019-03-07 2020-02-05 水素付加装置及び水素透過膜の消耗度判定方法 WO2020179340A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080012888.4A CN113412146B (zh) 2019-03-07 2020-02-05 加氢装置以及氢透过膜的消耗度判定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-041497 2019-03-07
JP2019041497A JP7037515B2 (ja) 2019-03-07 2019-03-07 水素付加装置及び水素透過膜の消耗度判定方法

Publications (1)

Publication Number Publication Date
WO2020179340A1 true WO2020179340A1 (ja) 2020-09-10

Family

ID=72336892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004381 WO2020179340A1 (ja) 2019-03-07 2020-02-05 水素付加装置及び水素透過膜の消耗度判定方法

Country Status (4)

Country Link
JP (1) JP7037515B2 (ja)
CN (1) CN113412146B (ja)
TW (1) TW202033266A (ja)
WO (1) WO2020179340A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138010A (zh) * 2019-12-26 2020-05-12 深圳信息职业技术学院 一种基于物联网的净水氯浓度调整控制方法及系统
CN113893641A (zh) * 2021-11-17 2022-01-07 烟台杰瑞石油装备技术有限公司 可燃气体处理装置以及可燃气体处理方法
CN114345072A (zh) * 2021-12-03 2022-04-15 烟台杰瑞石油装备技术有限公司 车载式可燃气体处理设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7104837B1 (ja) 2021-07-06 2022-07-21 株式会社日本トリム 溶存ガス濃度測定方法、溶存水素濃度測定装置及び透析液調製用水製造装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177242A (ja) * 2010-02-26 2011-09-15 Mizu Kk 水素含有生体適用液の製造方法及び製造装置
JP2014161605A (ja) * 2013-02-27 2014-09-08 Nippon Torimu:Kk 水素付加装置および腹膜透析装置
JP2016093767A (ja) * 2014-11-12 2016-05-26 三菱重工業株式会社 ガス中のco2分離装置及びその膜分離方法、ガス中のco2分離装置の膜分離管理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234298A (ja) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd ガス溶解水供給装置及びガス溶解水の製造方法
JP5901665B2 (ja) * 2014-01-27 2016-04-13 株式会社日本トリム 透析液調製用水の製造装置
JP2016013349A (ja) * 2014-07-03 2016-01-28 株式会社あしたみらいず 透析液希釈用水素水製造装置
JP6836914B2 (ja) 2017-01-18 2021-03-03 株式会社日本トリム 水処理装置、透析液調製用水の製造装置及び水素水サーバー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177242A (ja) * 2010-02-26 2011-09-15 Mizu Kk 水素含有生体適用液の製造方法及び製造装置
JP2014161605A (ja) * 2013-02-27 2014-09-08 Nippon Torimu:Kk 水素付加装置および腹膜透析装置
JP2016093767A (ja) * 2014-11-12 2016-05-26 三菱重工業株式会社 ガス中のco2分離装置及びその膜分離方法、ガス中のco2分離装置の膜分離管理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138010A (zh) * 2019-12-26 2020-05-12 深圳信息职业技术学院 一种基于物联网的净水氯浓度调整控制方法及系统
CN113893641A (zh) * 2021-11-17 2022-01-07 烟台杰瑞石油装备技术有限公司 可燃气体处理装置以及可燃气体处理方法
WO2023087515A1 (zh) * 2021-11-17 2023-05-25 烟台杰瑞石油装备技术有限公司 可燃气体处理装置以及可燃气体处理方法
CN114345072A (zh) * 2021-12-03 2022-04-15 烟台杰瑞石油装备技术有限公司 车载式可燃气体处理设备

Also Published As

Publication number Publication date
CN113412146A (zh) 2021-09-17
TW202033266A (zh) 2020-09-16
JP7037515B2 (ja) 2022-03-16
JP2020142208A (ja) 2020-09-10
CN113412146B (zh) 2024-07-16

Similar Documents

Publication Publication Date Title
WO2020179340A1 (ja) 水素付加装置及び水素透過膜の消耗度判定方法
CN105948176B (zh) 电解水生成装置
JP6836914B2 (ja) 水処理装置、透析液調製用水の製造装置及び水素水サーバー
JP2020142209A (ja) 水素付加方法及び水素付加装置
JP2015003313A (ja) 透析液調製用水の製造装置
WO2020179338A1 (ja) 水素付加装置及び水素付加方法
CN112203751A (zh) 氢气溶解装置
WO2020179339A1 (ja) 水素付加装置及び水素透過膜の消耗度判定方法
JP2015177911A (ja) 透析液の製造装置
CN108474123B (zh) 过氧化氢生成装置
CN112218706B (zh) 氢气溶解装置
JP7011618B2 (ja) 溶存水素水生成装置及び溶存水素水生成方法
JP6810112B2 (ja) 電解水生成装置及び電解水生成方法
JP2021159886A (ja) 電解水生成装置及び洗浄用水生成装置
WO2017135207A1 (ja) 電解水生成装置並びにそれを用いた透析液調製用水の製造装置及び電解水生成方法
JP7373023B1 (ja) 電解水生成装置及び水処理装置
JP7348988B1 (ja) 電解水生成装置及び水処理装置
WO2023281815A1 (ja) 溶存ガス濃度測定方法、溶存水素濃度測定装置及び透析液調製用水製造装置
JP6885776B2 (ja) 電解水生成装置
JP2005279519A (ja) 電解水生成装置
JP2022110794A (ja) 水処理装置及び水処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765939

Country of ref document: EP

Kind code of ref document: A1