WO2020179207A1 - コバルト基合金粉末、コバルト基合金焼結体およびコバルト基合金焼結体の製造方法 - Google Patents

コバルト基合金粉末、コバルト基合金焼結体およびコバルト基合金焼結体の製造方法 Download PDF

Info

Publication number
WO2020179207A1
WO2020179207A1 PCT/JP2019/051097 JP2019051097W WO2020179207A1 WO 2020179207 A1 WO2020179207 A1 WO 2020179207A1 JP 2019051097 W JP2019051097 W JP 2019051097W WO 2020179207 A1 WO2020179207 A1 WO 2020179207A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
based alloy
cobalt
sintered body
Prior art date
Application number
PCT/JP2019/051097
Other languages
English (en)
French (fr)
Inventor
玉艇 王
今野 晋也
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to JP2020509116A priority Critical patent/JP6938765B2/ja
Priority to CN201980004000.XA priority patent/CN112004953A/zh
Priority to RU2021101927A priority patent/RU2771192C9/ru
Priority to KR1020217001718A priority patent/KR102435878B1/ko
Priority to AU2019432628A priority patent/AU2019432628B2/en
Priority to EP19848920.5A priority patent/EP3725901A4/en
Priority to CA3105471A priority patent/CA3105471C/en
Priority to US16/640,207 priority patent/US11306372B2/en
Priority to SG11202100143WA priority patent/SG11202100143WA/en
Publication of WO2020179207A1 publication Critical patent/WO2020179207A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles

Definitions

  • the present invention relates to a cobalt-based alloy powder, a cobalt-based alloy sintered body, and a method for producing a cobalt-based alloy sintered body.
  • Co-based alloy materials are typical heat-resistant alloy materials together with nickel (Ni)-based alloy materials, and are also called superalloys and widely used for high-temperature members of turbines (for example, gas turbines and steam turbines). There is.
  • the Co-based alloy material has a higher material cost than the Ni-based alloy material, but has excellent corrosion resistance and wear resistance and is easily solid-solution strengthened, and thus has been used as a turbine vane or a combustor member.
  • the Ni-based alloy material is strengthened by the precipitation of the ⁇ 'phase (for example, Ni 3 (Al, Ti) phase). It was developed and is now mainstream.
  • the Co-based alloy material since it is difficult to precipitate an intermetallic compound phase such as the ⁇ 'phase of the Ni-based alloy material, which greatly contributes to the improvement of mechanical properties, precipitation strengthening by the carbide phase has been studied.
  • Patent Document 1 Japanese Patent Laid-Open No. 61-243143
  • massive and granular carbides having a grain size of 0.5 to 10 ⁇ m are deposited on a base of a cobalt-based alloy having a grain size of 10 ⁇ m or less.
  • a Co-based superplastic alloy is disclosed.
  • the cobalt-based alloy has a weight ratio of C: 0.15 to 1%, Cr: 15 to 40%, W and/or Mo: 3 to 15%, B: 1% or less, Ni: 0 to 20%,
  • Nb 0 to 1.0%
  • Zr 0 to 1.0%
  • Ta 0 to 1.0%
  • Ti 0 to 3%
  • Al 0 to 3%
  • the balance Co is that
  • a Co-based superplastic material that exhibits superplasticity even in a low temperature region (for example, 950° C.), has an elongation of 70% or more, and can produce a complex-shaped object by plastic working such as forging. It is said that it can provide alloys.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 7-179967
  • Cr 21 to 29%
  • Mo 15 to 24%
  • B 0.5 to 2%
  • Si 0.1% or more are 0 in weight%.
  • the Co-based alloy has a composite structure in which molybdenum boride and chromium carbide are relatively finely dispersed in a quaternary alloy phase of Co, Cr, Mo, and Si, and has good corrosion resistance and resistance. It is said to have wear resistance and high strength.
  • the Co-based alloy materials described in Patent Documents 1 and 2 are considered to have higher mechanical properties than the Co-based alloy materials before them, but compared with the recent precipitation strengthened Ni-based alloy materials. However, it cannot be said that it has sufficient mechanical properties. However, if it is possible to achieve mechanical properties equivalent to or higher than those of the ⁇ 'phase precipitation strengthened Ni-based alloy material (for example, a creep durability temperature of 100,000 hours at 58 MPa is 875° C. or higher, and a tensile strength at room temperature is 500 MPa or higher),
  • the Co-based alloy material can be a material suitable for a turbine high temperature member.
  • the present invention has been made in view of the above problems, and an object thereof is a Co-based alloy powder capable of providing a Co-based alloy material having mechanical properties equal to or higher than that of a precipitation strengthened Ni-based alloy material, It is to provide a Co-based alloy sintered body and a method for manufacturing a Co-based alloy sintered body.
  • One aspect of the cobalt-based alloy powder of the present invention for achieving the above object is 0.08% by mass or more and 0.25% by mass or less of carbon, Boron of 0.1% by mass or less and 10 mass% or more and 30 mass% or less of chromium, Iron of 5% by mass or less and Including 30% by mass or less of nickel, Contains iron and nickel so that the total is 30% by mass or less.
  • At least one of tungsten and molybdenum is included so that the total amount is 5% by mass or more and 12% by mass or less
  • At least one of titanium, zirconium, niobium, tantalum, hafnium, and vanadium is contained so that the total is 0.5% by mass or more and 2% by mass or less
  • With 0.5% by mass or less of silicon, With 0.5% by mass or less of manganese It contains 0.003% by mass or more and 0.04% by mass or less of nitrogen, the balance consisting of cobalt and impurities, the crystal grains constituting the cobalt-based alloy powder have segregation cells, and the average size of the segregation cells is 0. It is characterized in that it is not less than 0.15 ⁇ m and not more than 4 ⁇ m.
  • one aspect of the cobalt-based alloy sintered body of the present invention for achieving the above object is. 0.08% by mass or more and 0.25% by mass or less of carbon, Boron of 0.1% by mass or less and 10 mass% or more and 30 mass% or less of chromium, Iron of 5% by mass or less and Including 30% by mass or less of nickel, Contains iron and nickel so that the total is 30% by mass or less.
  • At least one of tungsten and molybdenum is included so that the total amount is 5% by mass or more and 12% by mass or less
  • At least one of titanium, zirconium, niobium, tantalum, hafnium, and vanadium is contained so that the total is 0.5% by mass or more and 2% by mass or less
  • With 0.5% by mass or less of silicon, With 0.5% by mass or less of manganese The content of nitrogen is 0.04 mass% or more and 0.1 mass% or less, and the balance is cobalt and impurities. Is 0.15 ⁇ m or more and 4 ⁇ m or less.
  • one aspect of the method for producing a cobalt-based alloy sintered body of the present invention for achieving the above object is to mix raw materials of the cobalt-based alloy powder having the above-described chemical composition and melt them to prepare a molten metal.
  • the cobalt-based alloy powder of the present invention is the above-mentioned cobalt-based alloy powder having a melting step, a melt-powdering step of forming a rapidly solidified alloy powder from the molten metal, and a sintering step of sintering the rapidly solidified alloy powder. It is characterized by having the composition of.
  • a Co-based alloy powder, a Co-based alloy sintered body, and a method for producing a Co-based alloy sintered body capable of providing a Co-based alloy material having mechanical properties equal to or higher than those of a precipitation strengthened Ni-based alloy material Can be provided.
  • the final solidified parts eg dendrite boundaries and crystal grains
  • the boundary has the property of being significantly segregated. Therefore, in the conventional Co-based alloy material, the carbide phase particles are precipitated along the dendrite boundaries or the crystal grain boundaries of the matrix phase.
  • the average interval and the average crystal grain size of the dendrite boundaries is 10 1 ⁇ 10 2 ⁇ m order, the average spacing of the carbide phase particles to 10 1 ⁇ 10 2 ⁇ m order Become. Even in a process such as laser welding in which the solidification rate is relatively fast, the average interval of the carbide phase particles in the solidified portion is about 5 ⁇ m.
  • the precipitation strengthening in an alloy is inversely proportional to the average spacing between the precipitates, and it is said that the precipitation strengthening becomes effective when the average spacing between the precipitates is about 2 ⁇ m or less.
  • the average spacing between the precipitates does not reach that level, and the effect of sufficient precipitation strengthening cannot be obtained.
  • Cr carbide phase is another carbide phase that can be precipitated in a Co-based alloy. Since the Cr component has a high solid solubility in the Co-based alloy parent phase and is difficult to segregate, the Cr carbide phase can be dispersed and precipitated in the parent phase crystal grains. However, it is known that the Cr carbide phase has low lattice consistency with the Co-based alloy matrix crystal and is not so effective as a precipitation strengthening phase.
  • the present inventors can dramatically improve the mechanical properties of the Co-based alloy material if the carbide phase particles contributing to precipitation strengthening can be dispersed and precipitated in the matrix crystal grains. I thought I could do it. Further, it was thought that a heat-resistant alloy material superior to the precipitation-strengthened Ni-based alloy material could be provided in combination with the good corrosion resistance and wear resistance originally possessed by the Co-based alloy material.
  • the present inventors have diligently studied the alloy composition and the manufacturing method for obtaining such a Co-based alloy material. As a result, they have found that by optimizing the alloy composition, carbide phase particles that contribute to alloy strengthening can be dispersed and precipitated in the matrix crystal grains of the Co-based alloy material. The present invention has been completed based on this finding.
  • the C component is referred to as an MC-type carbide phase (Ti, Zr, Nb, Ta, Hf and / or V carbide phase or enhanced carbide phase) which is a precipitation strengthening phase. In some cases) is an important ingredient that constitutes.
  • the content of the C component is preferably 0.08 mass% or more and 0.25 mass% or less, more preferably 0.1 mass% or more and 0.2 mass% or less, and 0.12 mass% or more and 0.18 mass% or less. Is more preferable.
  • the C content is less than 0.08% by mass, the amount of the strengthened carbide phase precipitated is insufficient, and the effect of improving the mechanical properties cannot be sufficiently obtained.
  • the C content exceeds 0.25% by mass, excessive hardening causes the ductility and toughness of the sintered body obtained by sintering the Co-based alloy to decrease.
  • the B component is a component that contributes to the improvement of the bondability of the crystal grain boundaries (so-called grain boundary strengthening).
  • grain boundary strengthening a component that contributes to the improvement of the bondability of the crystal grain boundaries.
  • the component B is not an essential component, when it is contained, it is preferably 0.1 mass% or less, more preferably 0.005 mass% or more and 0.05 mass% or less. If the B content exceeds 0.1% by mass, cracks are likely to occur during sintering of the Co-based alloy and subsequent heat treatment.
  • the Cr component is a component that contributes to the improvement of corrosion resistance and oxidation resistance.
  • the content of the Cr component is preferably 10% by mass or more and 30% by mass or less, and more preferably 10% by mass or more and 25% by mass or less.
  • the content of the Cr component is more preferably 10% by mass or more and 18% by mass or less. If the Cr content is less than 10% by mass, corrosion resistance and oxidation resistance will be insufficient. On the other hand, when the Cr content exceeds 30% by mass, a brittle ⁇ phase or a Cr carbide phase is formed, and the mechanical properties (toughness, ductility, strength) are lowered.
  • Ni 30% by mass or less Since the Ni component has similar characteristics to the Co component and is cheaper than Co, it is a component that can be contained by partially replacing the Co component.
  • the Ni component is not an essential component, but when it is contained, it is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 5% by mass or more and 15% by mass or less.
  • the Ni content exceeds 30% by mass, the wear resistance and the resistance to local stress, which are the characteristics of Co-based alloys, deteriorate. This is considered to be due to the difference between the stacking defect energy of Co and that of Ni.
  • the Fe component is much cheaper than Ni and has properties similar to those of the Ni component, so that the Fe component can be contained in a form that replaces a part of the Ni component. That is, the total content of Fe and Ni is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 5% by mass or more and 15% by mass or less.
  • the Fe component is not an essential component, but when it is contained, it is preferably 5% by mass or less and more preferably 3% by mass or less within a range smaller than the Ni content. When the Fe content exceeds 5 mass %, it becomes a cause of deterioration of corrosion resistance and mechanical properties.
  • W and / or Mo Total 5% by mass or more and 12% by mass or less
  • the W component and the Mo component are components that contribute to the solid solution strengthening of the matrix.
  • the total content of the W component and / or the Mo component is preferably 5% by mass or more and 12% by mass or less, and more preferably 7% by mass or more and 10% by mass or less. If the total content of the W component and the Mo component is less than 5% by mass, solid solution strengthening of the parent phase becomes insufficient. On the other hand, when the total content of the W component and the Mo component exceeds 12% by mass, a brittle ⁇ phase is likely to be generated and mechanical properties (toughness, ductility) are deteriorated.
  • the Re component is a component that contributes to solid solution strengthening of the mother phase and contributes to improvement of corrosion resistance.
  • the Re component is not an essential component, but when it is contained, it is preferably 2% by mass or less, more preferably 0.5% by mass or more and 1.5% by mass or less in the form of partially replacing the W component or Mo component. If the Re content exceeds 2% by mass, not only the action and effect of the Re component are saturated, but also the material cost increases, which is a demerit.
  • Ti, Zr, Nb, Ta, Hf and V 0.5% by mass or more and 2% by mass or less in total Ti component, Zr component, Nb component, Ta component, Hf component and V component are reinforced carbide phases ( It is an important component that constitutes the MC type carbide phase).
  • the total content of one or more of Ti, Zr, Nb, Ta, Hf and V components is preferably 0.5% by mass or more and 2% by mass or less, and more preferably 0.5% by mass or more and 1.8% by mass or less. preferable. If the total content is less than 0.5% by mass, the amount of the reinforced carbide phase precipitated is insufficient, and the effect of improving the mechanical properties cannot be sufficiently obtained.
  • the strengthened carbide phase particles are coarsened, the formation of brittle phase (for example, ⁇ phase) is promoted, and oxide phase particles that do not contribute to precipitation strengthening are generated. The mechanical properties are reduced.
  • the content when Ti is contained is preferably 0.01% by mass or more and 1% by mass or less, and more preferably 0.05% by mass or more and 0.8% by mass or less.
  • Zr is contained
  • the content is preferably 0.05% by mass or more and 1.5% by mass or less, and more preferably 0.1% by mass or more and 1.2% by mass or less.
  • Nb is contained
  • the content is preferably 0.02% by mass or more and 1% by mass or less, and more preferably 0.05% by mass or more and 0.8% by mass or less.
  • Ta is contained, the content is preferably 0.05% by mass or more and 1.5% by mass or less, and more preferably 0.1% by mass or more and 1.2% by mass or less.
  • the content is preferably 0.01% by mass or more and 0.5% by mass or less, and more preferably 0.02% by mass or more and 0.1% by mass or less.
  • V is contained, the content is preferably 0.01% by mass or more and 0.5% by mass or less, and more preferably 0.02% by mass or more and 0.1% by mass or less.
  • the Si component plays a role of deoxidation and contributes to the improvement of mechanical properties.
  • the Si component is not an essential component, but when contained, it is preferably 0.5 mass% or less, more preferably 0.01 mass% or more and 0.3 mass% or less. If the Si content exceeds 0.5% by mass, coarse particles of an oxide (for example, SiO 2 ) are formed, which causes deterioration of mechanical properties.
  • the Mn component is a component that plays a role of deoxidation and desulfurization and contributes to improvement of mechanical properties and corrosion resistance.
  • the Mn component is not an essential component, when it is contained, it is preferably 0.5 mass% or less, more preferably 0.01 mass% or more and 0.3 mass% or less.
  • MnS coarse particles of sulfide
  • N 0.003% by mass or more and 0.04% by mass or less or more than 0.04% by mass and 0.1% by mass or less
  • the content of the N component varies depending on the gas atomizing atmosphere when the Co-based alloy powder is manufactured.
  • the content of the N component becomes low (N: 0.003 mass% or more and 0.04 mass% or less)
  • N The content of the component becomes high (N: 0.04 mass% or more and 0.1 mass% or less).
  • the N component is a component that contributes to the stable formation of a strengthened carbide phase. If the N content is less than 0.003% by mass, the action and effect of the N component cannot be sufficiently obtained. On the other hand, if the N content exceeds 0.1% by mass, coarse particles of nitride (for example, Cr nitride) are formed, which causes deterioration of mechanical properties.
  • nitride for example, Cr nitride
  • Co component+impurity The Co component is one of the main components of the present alloy, and is the component with the maximum content. As described above, the Co-based alloy material has an advantage that it has corrosion resistance and wear resistance equal to or higher than that of the Ni-based alloy material.
  • the Al component is one of the impurities of the present alloy and is not a component intentionally included. However, an Al content of 0.5 mass% or less is acceptable because it does not have a large adverse effect on the mechanical properties of the Co-based alloy product. If the Al content exceeds 0.5 mass %, coarse particles of oxides or nitrides (for example, Al 2 O 3 or AlN) are formed, which causes a decrease in mechanical properties.
  • the O component is also one of the impurities in this alloy and is not a component that is intentionally included. However, an O content of 0.04% by mass or less is acceptable because it does not significantly adversely affect the mechanical properties of the Co-based alloy product. If the O content exceeds 0.04% by mass, coarse particles of various oxides (for example, Ti oxide, Zr oxide, Al oxide, Fe oxide, Si oxide) are formed to improve mechanical properties. It becomes a decrease factor.
  • various oxides for example, Ti oxide, Zr oxide, Al oxide, Fe oxide, Si oxide
  • FIG. 2 is a flow chart showing an example of steps of a method for producing a Co-based alloy powder and a Co-based alloy sintered body according to the present invention.
  • a raw material mixing and dissolving step step 1: of mixing and melting the raw materials of the Co-based alloy powder to form the molten metal 10 so as to have the composition of the Co-based alloy powder of the present invention described above.
  • the melting method is not particularly limited, and the conventional method for the high heat resistant alloy (for example, the induction melting method, the electron beam melting method, the plasma arc melting method) can be preferably used.
  • the molten metal 10 is formed and then once solidified to form a raw material alloy ingot, and thereafter, It is preferable to remelt the raw alloy ingot to form a cleansing melt.
  • the remelting method is not particularly limited as long as the cleanliness of the alloy can be improved, but for example, the vacuum arc remelting (VAR) method can be preferably used.
  • a melt-powdering step (step 2: S2) of forming the rapidly solidified Co-based alloy powder 20 from the melt 10 (or the cleaned melt) is performed. Since the Co-based alloy powder of the present invention is produced by rapid solidification with a high cooling rate, it is possible to obtain a segregation cell as shown in FIG. 1, which improves the strength of the Co-based alloy product. The average size of the segregation cell decreases as the cooling rate increases.
  • melt-powderization method there is no particular limitation on the melt-powderization method as long as a highly clean and homogeneous composition can be obtained, and the conventional alloy powder manufacturing method (for example, atomizing method (gas atomizing method, plasma atomizing method), water atomizing method) can be preferably used.
  • atomizing method gas atomizing method, plasma atomizing method
  • water atomizing method water atomizing method
  • FIG. 1 is a diagram schematically showing the powder surface of the Co-based alloy powder of the present invention.
  • the Co-based alloy powder 20 of the present invention is a polycrystalline body composed of a powder 21 having an average powder particle size of 5 ⁇ m or more and 150 ⁇ m or less, and a segregation cell is formed on the surface and inside of the powder 21. 22 is formed.
  • the segregation cell 22 changes its shape depending on the cooling rate in the step of producing Co-based alloy powder (powderizing step) described later.
  • FIG. 1 shows an example in which the segregation cells are dendrite-shaped (dendritic). It is considered that after sintering the Co-based alloy powder 20, carbide is deposited along this segregation cell.
  • the average size of the segregation cell is preferably 0.15 ⁇ m or more and 4 ⁇ m or less.
  • the dendrite structure 22 shown in FIG. 1 has a primary branch 24 extending along the coagulation direction and a secondary branch 25 extending from the primary branch 24.
  • the average size of the segregation cells in the dendrite structure is the average width (arm interval) 23 of this secondary branch 25 (the portion shown by the arrow in FIG. 1).
  • the “average size of the segregation cell” shall indicate the diameter.
  • the “average size of the segregation cell” is a value obtained by averaging the sizes of the segregation cells in a predetermined area of an observation image such as SEM (Scanning Electron Microscope).
  • the Co-based alloy powder of the present invention preferably has a particle size of 5 ⁇ m or more and 85 ⁇ m or less. It is more preferably 10 ⁇ m or more and 85 ⁇ m or less, and further preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • the preferable composition of the Co-based alloy powder of the present invention is shown in Table 1 below.
  • the Co-based alloy sintered body of the present invention can be obtained by performing the sintering step (Step 3: S3) of sintering the Co-based alloy powder 20 generated by rapid solidification.
  • the sintering method is not particularly limited, and for example, a hot isostatic pressing (Hot Isostatic Pressing) can be used.
  • a molded body (diameter 8 mm ⁇ height 10 mm) was formed by HIP using the alloy powders of grain size S of IA-2 and CA-5 in Table 1.
  • the HIP sintering conditions were 1150° C., 150 MPa, and 1 hour.
  • heat treatment was carried out at 980 ° C. for 4 hours to prepare a sintered body using IA-2 powder and a sintered body using CA-5 powder.
  • a cast body (diameter 8 mm x height 10 mm) is formed by a precision casting method using the above-mentioned alloy powder having a particle size of L of IA-2 and CA-5, and the same solution heat treatment step and aging heat treatment step as described above are performed. Then, a cast alloy product (cast body) using IA-2 powder and a cast alloy product (cast body) using CA-5 powder were prepared.
  • Microstructure observation and mechanical property test From the sintered body and the cast body produced as described above, test pieces for microstructure observation and mechanical property test were respectively collected, and microstructure observation and mechanical property test were performed.
  • Microstructure observation was performed by SEM. Further, the obtained SEM observation image was subjected to image analysis using image processing software (public domain software developed by ImageJ, National Institutes of Health (NIH)), and the average size of the segregation cells, the average interval of microsegregation, and The average interparticle distance of the carbide phase particles was measured.
  • image processing software public domain software developed by ImageJ, National Institutes of Health (NIH)
  • FIG. 5 is an SEM observation photograph of the Co-based alloy sintered body of the present invention.
  • FIG. 5 shows SEMs of Co-based alloy powders having three types of particle sizes (5 to 25 ⁇ m, 10 to 85 ⁇ m, and 70 ⁇ m or more) that have been heat-treated (982 ° C., 4 hours) immediately after HIP and after HIP. It is a photograph which was observed in (Scanning Electron Microscope). It can be seen that the structure of the sintered body is maintained before and after the heat treatment. Further, the sintered body using the powder having any particle size had a fine structure in which the reinforced carbide phase particles were precipitated. It is considered that the reinforced carbide phase particles were precipitated along the segregation cell of the Co-based alloy powder by sintering.
  • Table 2 shows the 0.2% proof stress and tensile strength of the Co-based alloy sintered body of the present invention
  • Table 3 shows the average precipitate interval L and the tensile strength of the Co-based alloy sintered body.
  • Table 2 also shows the results for the cast material. As shown in Table 2, each particle size achieves 0.2% proof stress and tensile strength higher than those of the cast material. Further, it can be seen from Table 3 that particularly high tensile strength (460 MPa or more) is achieved when the average precipitate spacing L is 1 to 1.49 ⁇ m.
  • FIG. 6 is a graph showing the relationship between the average size of the segregation cells in the Co-based alloy sintered body and the cast body and the 0.2% proof stress at 800° C. Note that FIG. 6 also shows the data of the cast body as a comparison. In the cast, the average size of the segregation cells was substituted by the average interval of microsegregation.
  • "IA-2" and "CA-5" are Co-based alloy powders having the compositions shown in Table 1.
  • the Co-based alloy sintered body prepared using CA-5 powder showed an almost constant 0.2% proof stress without being affected by the average size of the segregated cells.
  • the yield strength of the Co-based alloy sintered body prepared using the IA-2 powder changed significantly by 0.2% depending on the average size of the segregated cells.
  • CA-5 powder has an excessively low total content of “Ti+Zr+Nb+Ta+Hf+V” (almost not included). Therefore, as a result of observing the structure, the sintered body using the CA-5 powder had a fine structure in which the reinforced carbide phase was not precipitated but Cr carbide particles were precipitated. This result confirms that the Cr carbide particles are not very effective as precipitation strengthening particles. On the other hand, the sintered body using the IA-2 powder had a fine structure in which reinforced carbide phase particles were precipitated. Therefore, it is considered that the 0.2% proof stress changed significantly depending on the average size of the segregated cells (the resulting average interparticle distance of the carbide phase particles).
  • the 0.2% proof stress at 800 ° C. is required to be 250 MPa or more. Therefore, if 0.2% proof stress of more than 250 MPa is judged as “pass” and less than 250 MPa is judged as “fail”, the average size of the segregation cell (the resulting average inter-particle distance of the carbide phase particles) is 0. It was confirmed that mechanical properties of “pass” were obtained in the range of 0.15 to 4 ⁇ m. In other words, it is considered that one of the factors that the conventional carbide phase precipitation Co-based alloy material could not obtain sufficient mechanical properties is that the average interparticle distance of the reinforced carbide phase particles could not be controlled within a desired range.
  • the heat treatment causes the carbides on the segregation cells to agglomerate and the inter-particle distance of the carbide phase particles to expand, resulting in a decrease in 0.2% proof stress. Further, even if it exceeds 4 ⁇ m, the influence on the 0.2% proof stress becomes small.
  • the average size of the segregation cells constituting the Co-based alloy powder of the present invention is also preferably 0.15 to 4 ⁇ m.
  • the average size of the segregation cell is more preferably 0.15 to 2 ⁇ m, further preferably 0.15 to 1.5 ⁇ m.
  • the average size of the segregation cells is about the same as the average size of the segregation cells of the Co alloy powder by appropriate sintering. It is considered that a Co-based alloy powder sintered body in which carbides are precipitated at intervals of 15 to 4 ⁇ m can be obtained.
  • the raw material of the Co-based alloy sintered body of the present invention preferably contains 75% by mass or more, and more preferably 90% by mass or more of the above Co-based alloy powder.
  • FIG. 3 is an example of a Co-based alloy product of the present invention, and is a schematic perspective view showing a turbine vane as a turbine high temperature member.
  • the turbine stationary blade 100 is roughly composed of an inner ring side end wall 101, a blade portion 102, and an outer ring side end wall 103. Cooling structures are often formed inside the wings. Note that, for example, in the case of a power generation gas turbine with an output of 30 MW, the length of the blade portion of the turbine vane (distance between both end walls) is about 170 mm.
  • FIG. 4 is a schematic cross-sectional view showing an example of a gas turbine equipped with the Co-based alloy product according to the present invention.
  • the gas turbine 200 is roughly configured by a compressor unit 210 that compresses intake air and a turbine unit 220 that blows combustion gas of fuel to turbine blades to obtain rotational power.
  • the turbine high temperature member of the present invention can be suitably used as a turbine nozzle 221 or a turbine stationary blade 100 in the turbine section 220.
  • the turbine high temperature member of the present invention is not limited to gas turbine applications, and may be used for other turbine applications (for example, steam turbine applications).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

析出強化Ni基合金材と同等以上の機械的特性を有するCo基合金材を提供可能なCo基合金粉末、Co基合金焼結体およびCo基合金焼結体の製造方法を提供する。 本発明に係るCo基合金粉末は、0.08質量%以上0.25質量%以下の炭素と、0.1質量%以下のホウ素と、10質量%以上30質量%以下のクロムと、5質量%以下の鉄と、30質量%以下のニッケルとを含み、鉄とニッケルの合計が30質量%以下となるように含み、タングステンおよびモリブデンのうちの少なくとも1つを合計が5質量%以上12質量%以下となるように含み、チタン、ジルコニウム、ニオブ、タンタル、ハフニウムおよびバナジウムのうちの少なくとも1つを合計が0.5質量%以上2質量%以下となるように含み、0.5質量%以下のケイ素と、0.5質量%以下のマンガンと、0.003質量%以上0.04質量%以下の窒素とを含み、残部がコバルトと不純物とからなり、コバルト基合金粉末を構成する結晶粒が偏析セルを有し、偏析セルの平均サイズが0.15μm以上4μm以下であることを特徴とする。

Description

コバルト基合金粉末、コバルト基合金焼結体およびコバルト基合金焼結体の製造方法
 本発明は、コバルト基合金粉末、コバルト基合金焼結体およびコバルト基合金焼結体の製造方法に関するものである。
 コバルト(Co)基合金材は、ニッケル(Ni)基合金材とともに代表的な耐熱合金材料であり、超合金とも称されてタービン(例えば、ガスタービン、蒸気タービン)の高温部材に広く用いられている。Co基合金材は、Ni基合金材と比べて材料コストは高いものの耐食性や耐摩耗性が優れており、固溶強化し易いことから、タービン静翼や燃焼器部材として用いられてきた。
 耐熱合金材料において、現在までに行われてきた種々の合金組成の改良および製造プロセスの改良によって、Ni基合金材では、γ’相(例えばNi(Al,Ti)相)の析出による強化が開発され現在主流になっている。一方、Co基合金材においては、Ni基合金材のγ’相のような機械的特性向上に大きく寄与する金属間化合物相が析出しづらいことから、炭化物相による析出強化が研究されてきた。
 例えば、特許文献1(特開昭61-243143)には、結晶粒径が10μm以下であるコバルト基合金の基地に、粒径が0.5から10μmである塊状及び粒状の炭化物を析出させてなることを特徴とするCo基超塑性合金が開示されている。また、前記コバルト基合金は、重量比でC:0.15~1%、Cr:15~40%、W及び又はMo:3~15%、B:1%以下、Ni:0~20%、Nb:0~1.0%、Zr:0~1.0%、Ta:0~1.0%、Ti:0~3%、Al:0~3%、及び残部Coからなること、が開示されている。特許文献1によると、低い温度領域(例えば、950℃)でも超塑性を示して70%以上の伸び率を有し、かつ鍛造加工等の塑性加工により複雑形状物を作製しえるCo基超塑性合金を提供できる、とされている。
 特許文献2(特開平7-179967)には、重量%にて、Cr:21~29%、Mo:15~24%、B:0.5~2%、Si:0.1%以上で0.5%未満、C:1%を越えて2%以下、Fe:2%以下、Ni:2%以下及び残部実質的にCoからなる、耐食性、耐摩耗性及び高温強度にすぐれるCo基合金が開示されている。特許文献2によると、当該Co基合金は、Co、Cr、Mo、Siの4元系合金相にモリブデン硼化物及びクロム炭化物が比較的微細に分散した複合組織を有し、良好な耐食
性及び耐摩耗性、並びに高い強度を備える、とされている。
特開昭61-243143号公報 特開平7-179967号公報
 特許文献1~2に記載されたようなCo基合金材は、それら以前のCo基合金材に比して高い機械的特性を有すると考えられるが、近年の析出強化Ni基合金材と比較すると、十分な機械的特性を有しているとは言えない。しかしながら、γ’相析出強化Ni基合金材と同等以上の機械的特性(例えば、58MPaで10万時間のクリープ耐用温度が875℃以上、室温の引張耐力が500MPa以上)を達成することができれば、Co基合金材は、タービン高温部材に適した材料となりうる。
 本発明は、上記のような課題に鑑みてなされたものであり、その目的は、析出強化Ni基合金材と同等以上の機械的特性を有するCo基合金材を提供可能なCo基合金粉末、Co基合金焼結体およびCo基合金焼結体の製造方法を提供することにある。
 上記目的を達成するための本発明のコバルト基合金粉末の一態様は、
 0.08質量%以上0.25質量%以下の炭素と、
 0.1質量%以下のホウ素と、
 10質量%以上30質量%以下のクロムと、
 5質量%以下の鉄と、
 30質量%以下のニッケルとを含み、
 鉄とニッケルを合計が30質量%以下となるように含み、
 タングステンおよびモリブデンのうちの少なくとも1つを合計が5質量%以上12質量%以下となるように含み、
 チタン、ジルコニウム、ニオブ、タンタル、ハフニウムおよびバナジウムうちの少なくとも1つを合計が0.5質量%以上2質量%以下となるように含み、
 0.5質量%以下のケイ素と、
 0.5質量%以下のマンガンと、
 0.003質量%以上0.04質量%以下の窒素とを含み、残部がコバルトと不純物とからなり、コバルト基合金粉末を構成する結晶粒が偏析セルを有し、偏析セルの平均サイズが0.15μm以上4μm以下であることを特徴とする。
 また、上記目的を達成するための本発明のコバルト基合金焼結体の一態様は、
 0.08質量%以上0.25質量%以下の炭素と、
 0.1質量%以下のホウ素と、
 10質量%以上30質量%以下のクロムと、
 5質量%以下の鉄と、
 30質量%以下のニッケルとを含み、
 鉄とニッケルを合計が30質量%以下となるように含み、
 タングステンおよびモリブデンのうちの少なくとも1つを合計が5質量%以上12質量%以下となるように含み、
 チタン、ジルコニウム、ニオブ、タンタル、ハフニウムおよびバナジウムのうちの少なくとも1つを合計が0.5質量%以上2質量%以下となるように含み、
 0.5質量%以下のケイ素と、
 0.5質量%以下のマンガンと、
 0.04質量%以上0.1質量%以下の窒素とを含み、残部がコバルトと不純物とからなり、なり、コバルト基合金粉末を構成する結晶粒が偏析セルを有し、偏析セルの平均サイズが0.15μm以上4μm以下であることを特徴とする。
 また、上記目的を達成するための本発明のコバルト基合金焼結体の製造方法の一態様は、上述した化学組成を有するコバルト基合金粉末の原料を混合・溶解して溶湯を作製する原料混合溶解工程と、溶湯から急冷凝固合金粉末を形成する溶湯-粉末化工程と、急冷凝固合金粉末を焼結する焼結工程とを有し、コバルト基合金粉末が上述した本発明のコバルト基合金粉末の組成を有することを特徴とする。
 本発明によれば、析出強化Ni基合金材と同等以上の機械的特性を有するCo基合金材を提供可能なCo基合金粉末、Co基合金焼結体およびCo基合金焼結体の製造方法を提供することができる。
本発明のCo基合金粉末の粉末表面を模式的に示す図である。 本発明のCo基合金粉末の製造方法の工程例を示すフロー図である。 本発明のCo基合金焼結体を用いた製造物の一例であり、タービン高温部材としてのタービン静翼を示す斜視模式図である。 本発明のCo基合金焼結体を用いた製造物を装備するガスタービンの一例を示す断面模式図である。 本発明のCo基合金焼結体のSEM観察写真である。 Co基合金焼結体および鋳造体における偏析セルの平均サイズと800℃における0.2%耐力との関係を示すグラフである。
 [本発明の基本思想]
 前述したように、Co基合金材では、炭化物相の析出による強化が種々研究開発されてきた。析出強化に寄与する炭化物相としては、例えば、Ti、Zr、Nb、Ta、HfおよびVのMC型炭化物相(Mは遷移金属を意味し、Cは炭素を意味する。)、およびそれら金属元素の複合炭化物相が挙げられる。
 Ti、Zr、Nb、Ta、HfおよびVの各成分と炭化物相を形成する上で不可欠なC成分とは、Co基合金の溶融凝固の際に、最終凝固部(例えば、デンドライト境界や結晶粒界)に著しく偏析する性状がある。そのため、従来のCo基合金材では、当該炭化物相粒子は、母相のデンドライト境界や結晶粒界に沿って析出する。例えば、Co基合金の普通鋳造材では、通常、デンドライト境界の平均間隔や平均結晶粒径が10~10μmオーダになるため、炭化物相粒子の平均間隔も10~10μmオーダになる。また、レーザ溶接などの凝固速度が比較的速いプロセスであっても、凝固部における炭化物相粒子の平均間隔は5μm程度である。
 合金における析出強化は、析出物同士の平均間隔に反比例することが一般的に知られており、析出強化が有効になるのは、析出物同士の平均間隔が2μm程度以下の場合と言われている。しかしながら、上述した従来技術では、析出物同士の平均間隔がそのレベルに達しておらず、十分な析出強化の作用効果が得られない。言い換えると、従来技術では、合金強化に寄与する炭化物相粒子を微細分散析出させることが難しかった。これが、析出強化Ni基合金材に比して、Co基合金材は機械的特性が不十分と言われてきた主な要因である。
 なお、Co基合金において析出しうる他の炭化物相として、Cr炭化物相がある。Cr成分はCo基合金母相への固溶性が高く偏析しづらいことから、Cr炭化物相は母相結晶粒内に分散析出させることが可能である。しかしながら、Cr炭化物相は、Co基合金母相結晶との格子整合性が低く、析出強化相としてはそれほど有効でないことが知られている。
 本発明者等は、Co基合金材において、析出強化に寄与する炭化物相粒子を母相結晶粒内に分散析出させることができれば、Co基合金材の機械的特性を飛躍的に向上させることができると考えた。また、Co基合金材が元々有する良好な耐食性や耐摩耗性と併せると、析出強化Ni基合金材を凌駕する耐熱合金材を提供できると考えた。
 そこで、本発明者等は、そのようなCo基合金材を得るための合金組成および製造方法について鋭意研究した。その結果、合金組成を最適化することにより、Co基合金材の母相結晶粒内に合金強化に寄与する炭化物相粒子を分散析出させられることを見出した。本発明は、当該知見に基づいて完成されたものである。
 以下、図面を参照しながら、本発明に係る実施形態を説明する。ただし、本発明はここで取り上げた実施形態に限定されることはなく、発明の技術的思想を逸脱しない範囲で、公知技術と適宜組み合わせたり公知技術に基づいて改良したりすることが可能である。
 [Co基合金粉末の化学組成]
 上述した本発明のCo基合金粉末の化学組成について、以下に説明する。
 C:0.08質量%以上0.25質量%以下
 C成分は、析出強化相となるMC型炭化物相(Ti、Zr、Nb、Ta、Hfおよび/またはVの炭化物相、強化炭化物相と称する場合がある)を構成する重要な成分である。C成分の含有率は、0.08質量%以上0.25質量%以下が好ましく、0.1質量%以上0.2質量%以下がより好ましく、0.12質量%以上0.18質量%以下が更に好ましい。C含有率が0.08質量%未満になると、強化炭化物相の析出量が不足し、機械的特性向上の作用効果が十分に得られない。一方、C含有率が0.25質量%超になると、過度に硬化することで、Co基合金を焼結して得た焼結体の延性や靭性が低下する。
 B:0.1質量%以下
 B成分は、結晶粒界の接合性の向上(いわゆる粒界強化)に寄与する成分である。B成分は必須成分ではないが、含有させる場合、0.1質量%以下が好ましく、0.005質量%以上0.05質量%以下がより好ましい。B含有率が0.1質量%超になると、Co基合金の焼結時やその後の熱処理で割れが発生し易くなる。
 Cr:10質量%以上30質量%以下
 Cr成分は、耐食性や耐酸化性の向上に寄与する成分である。Cr成分の含有率は、10質量%以上30質量%以下が好ましく、10質量%以上25質量%以下がより好ましい。Co基合金製造物の最表面に耐食性被覆層を別途設けるような場合は、Cr成分の含有率は、10質量%以上18質量%以下が更に好ましい。Cr含有率が10質量%未満になると、耐食性や耐酸化性が不十分になる。一方、Cr含有率が30質量%超になると、脆性のσ相が生成したりCr炭化物相が生成したりして機械的特性(靱性、延性、強さ)が低下する。
 Ni:30質量%以下
 Ni成分は、Co成分と類似した特性を有しかつCoに比して安価なことから、Co成分の一部を置き換えるかたちで含有させることができる成分である。Ni成分は必須成分ではないが、含有させる場合、30質量%以下が好ましく、20質量%以下がより好ましく、5質量%以上15質量%以下が更に好ましい。Ni含有率が30質量%超になると、Co基合金の特徴である耐摩耗性や局所応力への耐性が低下する。これは、Coの積層欠陥エネルギーとNiのそれとの差異に起因すると考えられる。
 Fe:5質量%以下
 Fe成分は、Niよりもはるかに安価でありかつNi成分と類似した性状を有することから、Ni成分の一部を置き換えるかたちで含有させることができる成分である。すなわち、FeおよびNiの合計含有率は30質量%以下が好ましく、20質量%以下がより好ましく、5質量%以上15質量%以下が更に好ましい。Fe成分は必須成分ではないが、含有させる場合、Ni含有率よりも少ない範囲で5質量%以下が好ましく、3質量%以下がより好ましい。Fe含有率が5質量%超になると、耐食性や機械的特性の低下要因になる。
 Wおよび/またはMo:合計5質量%以上12質量%以下
 W成分およびMo成分は、母相の固溶強化に寄与する成分である。W成分および/またはMo成分の含有率は、合計で5質量%以上12質量%以下が好ましく、7質量%以上10質量%以下がより好ましい。W成分とMo成分との合計含有率が5質量%未満になると、母相の固溶強化が不十分になる。一方、W成分とMo成分との合計含有率が12質量%超になると、脆性のσ相が生成し易くなって機械的特性(靱性、延性)が低下する。
 Re:2質量%以下
 Re成分は、母相の固溶強化に寄与すると共に、耐食性の向上に寄与する成分である。Re成分は必須成分ではないが、含有させる場合、W成分またはMo成分の一部を置き換えるかたちで2質量%以下が好ましく、0.5質量%以上1.5質量%以下がより好ましい。Re含有率が2質量%超になると、Re成分の作用効果が飽和するのに加えて、材料コストの増加がデメリットになる。
 Ti、Zr、Nb、Ta、HfおよびVの1種以上:合計0.5質量%以上2質量%以下
 Ti成分、Zr成分、Nb成分、Ta成分、Hf成分およびV成分は、強化炭化物相(MC型炭化物相)を構成する重要な成分である。Ti、Zr、Nb、Ta、HfおよびV成分の1種以上の合計含有率は、0.5質量%以上2質量%以下が好ましく、合計0.5質量%以上1.8質量%以下がより好ましい。合計含有率が0.5質量%未満になると、強化炭化物相の析出量が不足し、機械的特性向上の作用効果が十分に得られない。一方、当該合計含有率が2質量%超になると、強化炭化物相粒子が粗大化したり脆性相(例えばσ相)の生成を促進したり析出強化に寄与しない酸化物相粒子を生成したりして機械的特性が低下する。
 より具体的には、Tiを含有させる場合の含有率は、0.01質量%以上1質量%以下が好ましく、0.05質量%以上0.8質量%以下がより好ましい。Zrを含有させる場合の含有率は、0.05質量%以上1.5質量%以下が好ましく、0.1質量%以上1.2質量%以下がより好ましい。Nbを含有させる場合の含有率は、0.02質量%以上1質量%以下が好ましく、0.05質量%以上0.8質量%以下がより好ましい。Taを含有させる場合の含有率は、0.05質量%以上1.5質量%以下が好ましく、0.1質量%以上1.2質量%以下がより好ましい。Hfを含有させる場合の含有率は、0.01質量%以上0.5質量%以下が好ましく、0.02質量%以上0.1質量%以下がより好ましい。Vを含有させる場合の含有率は、0.01質量%以上0.5質量%以下が好ましく、0.02質量%以上0.1質量%以下がより好ましい。
 Si:0.5質量%以下
 Si成分は、脱酸素の役割を担って機械的特性の向上に寄与する成分である。Si成分は必須成分ではないが、含有させる場合、0.5質量%以下が好ましく、0.01質量%以上0.3質量%以下がより好ましい。Si含有率が0.5質量%超になると、酸化物(例えばSiO)の粗大粒子を形成して機械的特性の低下要因になる。
 Mn:0.5質量%以下
 Mn成分は、脱酸素・脱硫の役割を担って機械的特性の向上や耐腐食性の向上に寄与する成分である。Mn成分は必須成分ではないが、含有させる場合、0.5質量%以下が好ましく、0.01質量%以上0.3質量%以下がより好ましい。Mn含有率が0.5質量%超になると、硫化物(例えばMnS)の粗大粒子を形成して機械的特性や耐食性の低下要因になる。
 N:0.003質量%以上0.04質量%以下または0.04質量%より大きく0.1質量%以下
 N成分は、Co基合金粉末を製造する際のガスアトマイズの雰囲気によって含有量が異なる。ガスアトマイズをアルゴンガス雰囲気中で行った場合にはN成分の含有量は低くなり(N:0.003質量%以上0.04質量%以下)、ガスアトマイズを窒素ガス雰囲気中で行った場合にはN成分の含有量は高くなる(N:0.04質量%以上0.1質量%以下)。
 N成分は、強化炭化物相の安定生成に寄与する成分である。N含有率が0.003質量%未満になると、N成分の作用効果が十分に得られない。一方、N含有率が0.1質量%超になると、窒化物(例えばCr窒化物)の粗大粒子を形成して機械的特性の低下要因になる。
 残部:Co成分+不純物
 Co成分は、本合金の主要成分の一つであり、最大含有率の成分である。前述したように、Co基合金材は、Ni基合金材と同等以上の耐食性や耐摩耗性を有する利点がある。
 Al成分は、本合金の不純物の一つであり、意図的に含有させる成分ではない。ただし、0.5質量%以下のAl含有率であれば、Co基合金製造物の機械的特性に大きな悪影響を及ぼさないことから許容される。Al含有率が0.5質量%超になると、酸化物や窒化物(例えばAlやAlN)の粗大粒子を形成して機械的特性の低下要因になる。
 O成分も、本合金の不純物の一つであり、意図的に含有させる成分ではない。ただし、0.04質量%以下のO含有率であれば、Co基合金製造物の機械的特性に大きな悪影響を及ぼさないことから許容される。O含有率が0.04質量%超になると、各種酸化物(例えば、Ti酸化物、Zr酸化物、Al酸化物、Fe酸化物、Si酸化物)の粗大粒子を形成して機械的特性の低下要因になる。
[Co基合金粉末の製造方法]
 図2は本発明に係るCo基合金粉末およびCo基合金焼結体の製造方法の工程例を示すフロー図である。図2に示すように、まず、上述した本発明のCo基合金粉末の組成となるように、Co基合金粉末の原料を混合・溶解して溶湯10を形成する原料混合溶解工程(ステップ1:S1)を行う。溶解方法に特段の限定はなく、高耐熱合金に対する従前の方法(例えば、誘導溶解法、電子ビーム溶解法、プラズマアーク溶解法)を好適に利用できる。
 なお、合金中の不純物成分の含有率をより低減する(合金の清浄度を高める)ため、原料混合溶解工程S1において、溶湯10を形成した後に一旦凝固させて原料合金塊を形成し、その後、該原料合金塊を再溶解して清浄化溶湯を形成することは好ましい。合金の清浄度を高められる限り再溶解方法に特段の限定はないが、例えば、真空アーク再溶解(VAR)法を好ましく利用できる。
 次に、溶湯10(または清浄化溶湯)から急冷凝固したCo基合金粉末20を形成する溶湯-粉末化工程(ステップ2:S2)を行う。本発明のCo基合金粉末は、冷却速度の速い急冷凝固によって作製するため、図1に示すような、Co基合金製品の強度を向上する偏析セルを得ることができる。偏析セルの平均サイズは、冷却速度が速いほど小さくなる。
 高清浄・均質組成が得られる限り溶湯-粉末化方法に特段の限定はなく、従前の合金粉末製造方法(例えば、アトマイズ法(ガスアトマイズ法、プラズマアトマイズ法)、水アトマイズ法)を好ましく利用できる。
[Co基合金粉末の組織構造]
 図1は本発明のCo基合金粉末の粉末表面を模式的に示す図である。図1に示すように、本発明のCo基合金粉末20は、平均粉末粒径が5μm以上150μm以下の粉末21で構成される多結晶体であり、粉末21の表面及び内部には、偏析セル22が形成されている。偏析セル22は、後述するCo基合金粉末を製造する工程(粉末化工程)における冷却速度によって形が変わる。冷却速度が比較的速いと球状の偏析セルとなり、冷却速度が比較的遅いとデンドライト状(樹枝状)の偏析セルとなる。図1では、偏析セルがデンドライト状(樹枝状)である例を示している。Co基合金粉末20を焼結後、この偏析セルに沿って炭化物が析出されると考えられる。
 偏析セルの平均サイズは、0.15μm以上4μm以下であることが好ましい。図1に示すデンドライト組織22は、凝固方向に沿って伸びた一次枝24と、一次枝24から伸びた二次枝25とを有する。デンドライト組織における偏析セルの平均サイズは、この二次枝25の平均幅(アーム間隔)23(図1中、矢印で示す部分)となる。
 なお、球状の偏析セルの場合、「偏析セルの平均サイズ」は、直径を指すものとする。 本発明において「偏析セルの平均サイズ」とは、SEM(Scanning Electron Microscope)等の観察画像の所定領域における偏析セルのサイズを平均した値とする。
[Co基合金粉末の粒径]
 本発明のCo基合金粉末の粒径は、5μm以上85μm以下であることが好ましい。より好ましくは10μm以上85μm以下であり、さらに好ましくは5μm以上25μm以下である。
 本発明のCo基合金粉末の好ましい組成を、以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
[Co基合金焼結体の製造方法]
図2に示すように、急冷凝固によって生成したCo基合金粉末20を焼結する焼結工程(ステップ3:S3)を行うことで、本発明のCo基合金焼結体を得ることができる。焼結方法に特に限定は無く、例えば熱間静水圧プレス(Hot Isostatic Pressing)を用いることができる。
 (IA-2粉末を用いた焼結体およびCA-5粉末を用いた焼結体の作製)
 表1のIA-2およびCA-5の粒度Sの合金粉末を用いてHIPにより成形体(直径8mm×高さ10mm)を形成した。HIPの焼結条件は、1150℃、150MPa、1時間とした。その後、980℃で4時間の熱処理を行い、IA-2粉末を用いた焼結体よびCA-5粉末を用いた焼結体を作製した。
 (IA-2粉末を用いた鋳造合金製造物およびCA-5粉末を用いた鋳造合金製造物の作製)
 上述したIA-2およびCA-5の粒度Lの合金粉末を用いて精密鋳造法により鋳造体(直径8mm×高さ10mm)を形成し、上記と同様の溶体化熱処理工程と時効熱処理工程とを行って、IA-2粉末を用いた鋳造合金製造物(鋳造体)およびCA-5粉末を用いた鋳造合金製造物(鋳造体)を作製した。
 (微細組織観察および機械的特性試験)
 上記で作製した焼結体および鋳造体から、微細組織観察用および機械的特性試験用の試験片をそれぞれ採取し、微細組織観察および機械的特性試験を行った。
 微細組織観察はSEMにより行った。また、得られたSEM観察像に対して画像処理ソフトウェア(ImageJ、National Institutes of Health(NIH)開発のパブリックドメインソフトウェア)を用いた画像解析により、偏析セルの平均サイズ、ミクロ偏析の平均間隔、および炭化物相粒子の平均粒子間距離を測定した。
 機械的特性試験としては、800℃において引張試験を行い、0.2%耐力を測定した。
図5は本発明のCo基合金焼結体のSEM観察写真である。図5には3種類の粒径(5~25μm、10~85μmおよび70μm以上)のそれぞれのCo基合金粉末について、HIP直後およびHIP後に熱処理(982℃、4時間)を施したものについて、SEM(Scanning Electron Microscope)にて観察を行った写真である。熱処理前後において、焼結体の組織は維持されていることが分かる。また、いずれの粒径の粉末を用いた焼結体も、強化炭化物相粒子が析出した微細組織を有していた。この強化炭化物相粒子は、焼結によってCo基合金粉末の偏析セルに沿って析出したと考えられる。
 表2に本発明のCo基合金焼結体の0.2%耐力および引張強さを、表3にCo基合金焼結体の平均析出物間隔Lと引張強さを示す。表2には鋳造材の結果も示している。表2に示すように、各粒径ともに鋳造材よりも高い0.2%耐力および引張強さを達成している。また、表3より、平均析出物間隔Lが1~1.49μmで、特に高い引張強さ(460Mpa以上)を達成していることが分かる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
図6はCo基合金焼結体および鋳造体における偏析セルの平均サイズと800℃における0.2%耐力との関係を示すグラフである。なお、図6には、比較として鋳造体のデータも示した。鋳造体においては、ミクロ偏析の平均間隔で偏析セルの平均サイズを代用した。図中、「IA-2」および「CA-5」は、表1に記載の組成を有するCo基合金粉末である。
 図6に示すように、CA-5粉末を用いて作製したCo基合金焼結体は、偏析セルの平均サイズに影響されず、ほとんど一定の0.2%耐力を示した。一方、IA-2粉末を用いて作製したCo基合金焼結体は、偏析セルの平均サイズによって0.2%耐力が大きく変化した。
 CA-5粉末は、「Ti+Zr+Nb+Ta+Hf+V」の合計含有率が過少である(ほとんど含まれていない)。そのため、CA-5粉末を用いた焼結体では、組織観察の結果、強化炭化物相は析出せずにCr炭化物粒子が析出した微細組織を有していた。この結果から、Cr炭化物粒子は、析出強化粒子としてはそれほど有効でないことが確認される。これに対し、IA-2粉末を用いた焼結体は、強化炭化物相粒子が析出した微細組織を有していた。そのため、偏析セルの平均サイズ(その結果としての炭化物相粒子の平均粒子間距離)によって0.2%耐力が大きく変化したと考えられる。
 また、本発明が対象とするタービン高温部材に対する要求特性を勘案すると、800℃における0.2%耐力は250MPa以上が必要とされている。そこで、250MPa超の0.2%耐力を「合格」と判定し、250MPa未満を「不合格」と判定すると、偏析セルの平均サイズ(その結果としての炭化物相粒子の平均粒子間距離)が0.15~4μmの範囲において「合格」となる機械的特性が得られることが確認された。言い換えると、従来の炭化物相析出Co基合金材において十分な機械的特性が得られなかった要因の一つは、強化炭化物相粒子の平均粒子間距離を望ましい範囲に制御できなかったためと考えられる。
 偏析セルの平均間隔が0.1μm以下では、熱処理によって偏析セル上の炭化物が凝集し、炭化物相粒子の粒子間距離が拡大してしまい、0.2%耐力が低下するものと考えられる。また、4μm以上を超えても、0.2%耐力に対する影響は小さくなる。
上記結果から、本発明のCo基合金粉末を構成する偏析セルの平均サイズも、0.15~4μmが好ましいと考えられる。偏析セルの平均サイズは、0.15~2μmがより好ましく、0.15~1.5μmがさらに好ましい。本発明のCo合金粉末を焼結したCo基合金焼結体においても、適切な焼結によってCo合金粉末の偏析セルの平均サイズと同程度の偏析セルの平均サイズを有すると考えられ、0.15~4μmの間隔で炭化物が析出したCo基合金粉末焼結体を得られるものと考えられる。
 なお、本発明のCo基合金焼結体の原料は、上述したCo基合金粉末を75質量%以上含むことが好ましく、90質量%以上含むことがより好ましい。
 [Co基合金焼結体を用いた製造物]
 図3は、本発明のCo基合金製造物の一例であり、タービン高温部材としてのタービン静翼を示す斜視模式図である。図3に示したように、タービン静翼100は、概略的に、内輪側エンドウォール101と翼部102と外輪側エンドウォール103とから構成される。翼部の内部には、しばしば冷却構造が形成される。なお、例えば、出力30MW級の発電用ガスタービンの場合、タービン静翼の翼部の長さ(両エンドウォールの間の距離)は170mm程度である。
 図4は、本発明に係るCo基合金製造物を装備するガスタービンの一例を示す断面模式図である。図4に示したように、ガスタービン200は、概略的に、吸気を圧縮する圧縮機部210と燃料の燃焼ガスをタービン翼に吹き付けて回転動力を得るタービン部220とから構成される。本発明のタービン高温部材は、タービン部220内のタービンノズル221やタービン静翼100として好適に用いることができる。なお、本発明のタービン高温部材は、ガスタービン用途に限定されるものではなく、他のタービン用途(例えば、蒸気タービン用途)であってもよい。
 上述した実施形態や実験例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、実施形態の構成の一部を当業者の技術常識の構成に置き換えることが可能であり、また、実施形態の構成に当業者の技術常識の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実験例の構成の一部について、発明の技術的思想を逸脱しない範囲で、削除・他の構成に置換・他の構成の追加をすることが可能である。
 20…Co基合金粉末、21…Co基合金粉末の結晶粒、22…デンドライト組織、100…タービン静翼、101…内輪側エンドウォール、102…翼部、103…外輪側エンドウォール、200…ガスタービン、210…圧縮機部、220…タービン部、221…タービンノズル。

Claims (20)

  1.  0.08質量%以上0.25質量%以下の炭素と、
     0.1質量%以下のホウ素と、
     10質量%以上30質量%以下のクロムと、
     5質量%以下の鉄と、
     30質量%以下のニッケルとを含み、
     前記鉄と前記ニッケルを合計が30質量%以下となるように含み、
     タングステンおよびモリブデンのうちの少なくとも1つを合計が5質量%以上12質量%以下となるように含み、
     チタン、ジルコニウム、ニオブ、タンタル、ハフニウムおよびバナジウムのうちの少なくとも1つを合計が0.5質量%以上2質量%以下となるように含み、
     0.5質量%以下のケイ素と、
     0.5質量%以下のマンガンと、
     0.003質量%以上0.04質量%以下の窒素とを含み、残部がコバルトと不純物とからなるコバルト基合金粉末であり、
     前記コバルト基合金粉末を構成する結晶粒が偏析セルを有し、前記偏析セルの平均サイズが0.15μm以上4μm以下であることを特徴とするコバルト基合金粉末。
  2.  0.08質量%以上0.25質量%以下の炭素と、
     0.1質量%以下のホウ素と、
     10質量%以上30質量%以下のクロムと、
     5質量%以下の鉄と、
     30質量%以下のニッケルとを含み、
     前記鉄と前記ニッケルを合計が30質量%以下となるように含み、
     タングステンおよびモリブデンのうちの少なくとも1つを合計が5質量%以上12質量%以下となるように含み、
     チタン、ジルコニウム、ニオブ、タンタル、ハフニウムおよびバナジウムのうちの少なくとも1つを合計が0.5質量%以上2質量%以下となるように含み、
     0.5質量%以下のケイ素と、
     0.5質量%以下のマンガンと、
     0.04質量%より大きく0.1質量%以下の窒素とを含み、残部がコバルトと不純物とからなるコバルト基合金粉末であり、
     前記コバルト基合金粉末を構成する結晶粒が偏析セルを有し、前記偏析セルの平均サイズが0.15μm以上4μm以下であることを特徴とするコバルト基合金粉末。
  3.  0.08質量%以上0.25質量%以下の炭素と、
     0.1質量%以下のホウ素と、
     10質量%以上30質量%以下のクロムと、
     5質量%以下の鉄と、
     30質量%以下のニッケルとを含み、
     前記鉄と前記ニッケルを合計が30質量%以下となるように含み、
     タングステンおよびモリブデンのうちの少なくとも1つを合計が5質量%以上12質量%以下となるように含み、
     チタン、ジルコニウム、ニオブ、タンタル、ハフニウムおよびバナジウムのうちの少なくとも1つを合計が0.5質量%以上2質量%以下となるように含み、
     0.5質量%以下のケイ素と、
     0.5質量%以下のマンガンと、
     0.04質量%より大きく0.1質量%以下の窒素とを含み、残部がコバルトと不純物とからなるコバルト基合金粉末であり、
     前記コバルト基合金粉末の粒径が5μm以上85μm以下であることを特徴とするコバルト基合金粉末。
  4.  前記コバルト基合金粉末の粒径が5μm以上85μm以下であることを特徴とする請求項1または2に記載のコバルト基合金粉末。
  5.  前記コバルト基合金粉末の粒径が5~25μmであることを特徴とする請求項1から3のいずれか1項に記載のコバルト基合金粉末。
  6.  前記コバルト基合金粉末の粒径が10~85μmであることを特徴とする請求項1から3のいずれか1項に記載のコバルト基合金粉末。
  7.  前記チタンを含む場合該チタンは0.01質量%以上1質量%以下であり、
     前記ジルコニウムを含む場合該ジルコニウムは0.05質量%以上1.5質量%以下であり、
     前記ニオブを含む場合該ニオブは0.02質量%以上1質量%以下であり、
     前記タンタルを含む場合該タンタルは0.05質量%以上1.5質量%以下であり、
    前記ハフニウムを含む場合該ハフニウムは0.01質量%以上0.5質量%以下であり、
    前記バナジウムを含む場合該バナジウムは0.01質量%以上0.5質量%以下であることを特徴とする請求項1から3のいずれか1項に記載のコバルト基合金粉末。
  8.  不純物として、0.5質量%以下のアルミニウムと、0.04質量%以下の酸素とを含むことを特徴とする請求項1から3のいずれか1項に記載のコバルト基合金粉末。
  9.  0.08質量%以上0.25質量%以下の炭素と、
     0.1質量%以下のホウ素と、
     10質量%以上30質量%以下のクロムと、
     5質量%以下の鉄と、
     30質量%以下のニッケルとを含み、
     前記鉄と前記ニッケルを合計が30質量%以下となるように含み、
     タングステンおよびモリブデンのうちの少なくとも1つを合計が5質量%以上12質量%以下となるように含み、
     チタン、ジルコニウム、ニオブ、タンタル、ハフニウムおよびバナジウムのうちの少なくとも1つを合計が0.5質量%以上2質量%以下となるように含み、
     0.5質量%以下のケイ素と、
     0.5質量%以下のマンガンと、
     0.003質量%以上0.04質量%以下の窒素とを含み、残部がコバルトと不純物とからなるコバルト基合金焼結体であり、
     前記コバルト基合金焼結体を構成する結晶粒が偏析セルを有し、前記偏析セルの平均サイズが0.15μm以上4μm以下であることを特徴とするコバルト基合金焼結体。
  10.  0.08質量%以上0.25質量%以下の炭素と、
     0.1質量%以下のホウ素と、
     10質量%以上30質量%以下のクロムと、
     5質量%以下の鉄と、
     30質量%以下のニッケルとを含み、
     前記鉄と前記ニッケルを合計が30質量%以下となるように含み、
     タングステンおよびモリブデンのうちの少なくとも1つを合計が5質量%以上12質量%以下となるように含み、
     チタン、ジルコニウム、ニオブ、タンタル、ハフニウムおよびバナジウムのうちの少なくとも1つを合計が0.5質量%以上2質量%以下となるように含み、
     0.5質量%以下のケイ素と、
     0.5質量%以下のマンガンと、
     0.04質量%より大きく0.1質量%以下の窒素とを含み、残部がコバルトと不純物とからなるコバルト基合金焼結体であり、
     前記コバルト基合金焼結体を構成する結晶粒が偏析セルを有し、前記偏析セルの平均サイズが0.15μm以上4μm以下であることを特徴とするコバルト基合金焼結体。
  11.  0.08質量%以上0.25質量%以下の炭素と、
     0.1質量%以下のホウ素と、
     10質量%以上30質量%以下のクロムと、
     5質量%以下の鉄と、
     30質量%以下のニッケルとを含み、
     前記鉄と前記ニッケルを合計が30質量%以下となるように含み、
     タングステンおよびモリブデンのうちの少なくとも1つを合計が5質量%以上12質量%以下となるように含み、
     チタン、ジルコニウム、ニオブ、タンタル、ハフニウムおよびバナジウムのうちの少なくとも1つを合計が0.5質量%以上2質量%以下となるように含み、
     0.5質量%以下のケイ素と、
     0.5質量%以下のマンガンと、
     0.04質量%より大きく0.1質量%以下の窒素とを含み、残部がコバルトと不純物とからなるコバルト基合金焼結体であり、
     前記コバルト基合金焼結体の粒径が5μm以上85μm以下であることを特徴とするコバルト基合金焼結体。
  12.  前記コバルト基合金焼結体の粒径が5μm以上85μm以下であることを特徴とする請求項9または10に記載のコバルト基合金焼結体。
  13.  前記コバルト基合金焼結体の粒径が5μm以上25μm以下であることを特徴とする請求項9から11のいずれか1項に記載のコバルト基合金焼結体。
  14.  前記コバルト基合金焼結体の粒径が10μm以上85μm以下であることを特徴とする請求項9から11のいずれか1項に記載のコバルト基合金焼結体。
  15.  前記チタンを含む場合該チタンは0.01質量%以上1質量%以下であり、
     前記ジルコニウムを含む場合該ジルコニウムは0.05質量%以上1.5質量%以下であり、
     前記ニオブを含む場合該ニオブは0.02質量%以上1質量%以下であり、
     前記タンタルを含む場合該タンタルは0.05質量%以上1.5質量%以下であり、
    前記ハフニウムを含む場合該ハフニウムは0.01質量%以上0.5質量%以下であり、
    前記バナジウムを含む場合該バナジウムは0.01質量%以上0.5質量%以下であることを特徴とする請求項9から11のいずれか1項に記載のコバルト基合金焼結体。
  16.  不純物として、0.5質量%以下のアルミニウムと、0.04質量%以下の酸素とを含むことを特徴とする請求項9から11のいずれか1項に記載のコバルト基合金焼結体。
  17.  前記偏析セルに炭化物が析出していることを特徴とする請求項9から11のいずれか1項に記載のコバルト基合金焼結体。
  18.  所定の化学組成を有するコバルト基合金粉末の原料を混合・溶解して溶湯を作製する原料混合溶解工程と、
     前記溶湯から急冷凝固合金粉末を形成する溶湯-粉末化工程と、
     前記急冷凝固合金粉末を焼結する焼結工程とを有し、
     前記コバルト基合金粉末は、0.08質量%以上0.25質量%以下の炭素と、
     0.1質量%以下のホウ素と、
     10質量%以上30質量%以下のクロムと、
     5質量%以下の鉄と、
     30質量%以下のニッケルとを含み、
     前記鉄と前記ニッケルを合計が30質量%以下となるように含み、
     タングステンおよびモリブデンのうちの少なくとも1つを合計が5質量%以上12質量%以下となるように含み、
     チタン、ジルコニウム、ニオブ、タンタル、ハフニウムおよびバナジウムの少なくとも1つの合計が0.5質量%以上2質量%以下となるように含み、
     0.5質量%以下のケイ素と、
     0.5質量%以下のマンガンと、
     0.003質量%以上0.04質量%以下の窒素とを含み、残部がコバルトと不純物とからなり、前記コバルト基合金粉末を構成する結晶粒が偏析セルを有し、前記偏析セルの平均サイズが0.15μm以上4μm以下であることを特徴とするコバルト基合金焼結体の製造方法。
  19.  前記溶湯-粉末化工程は、ガスアトマイズまたはプラズマアトマイズによって前記急冷凝固合金粉末を形成することを特徴とする請求項18に記載のコバルト基合金焼結体の製造方法。
  20.  コバルト基合金焼結体の原料は、前記コバルト基合金粉末を75質量%以上含むことを特徴とする請求項18または19に記載のコバルト基合金焼結体の製造方法。
PCT/JP2019/051097 2019-03-07 2019-12-26 コバルト基合金粉末、コバルト基合金焼結体およびコバルト基合金焼結体の製造方法 WO2020179207A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2020509116A JP6938765B2 (ja) 2019-03-07 2019-12-26 コバルト基合金粉末、コバルト基合金焼結体およびコバルト基合金焼結体の製造方法
CN201980004000.XA CN112004953A (zh) 2019-03-07 2019-12-26 钴基合金粉末、钴基合金烧结体和钴基合金烧结体的制造方法
RU2021101927A RU2771192C9 (ru) 2019-03-07 2019-12-26 Порошок сплава на основе кобальта, спечённое тело из сплава на основе кобальта и способ изготовления спечённого тела из сплава на основе кобальта
KR1020217001718A KR102435878B1 (ko) 2019-03-07 2019-12-26 코발트기 합금 분말, 코발트기 합금 소결체 및 코발트기 합금 소결체의 제조 방법
AU2019432628A AU2019432628B2 (en) 2019-03-07 2019-12-26 Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for manufacturing cobalt-based alloy sintered body
EP19848920.5A EP3725901A4 (en) 2019-03-07 2019-12-26 POWDERY COBALT-BASED ALLOYS, COBALT-BASED SINTER BODIES AND METHOD FOR MANUFACTURING A COBALT-BASED SINTER BODY
CA3105471A CA3105471C (en) 2019-03-07 2019-12-26 Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body
US16/640,207 US11306372B2 (en) 2019-03-07 2019-12-26 Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body
SG11202100143WA SG11202100143WA (en) 2019-03-07 2019-12-26 Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2019/009207 2019-03-07
PCT/JP2019/009207 WO2020179082A1 (ja) 2019-03-07 2019-03-07 コバルト基合金粉末、コバルト基合金焼結体およびコバルト基合金焼結体の製造方法

Publications (1)

Publication Number Publication Date
WO2020179207A1 true WO2020179207A1 (ja) 2020-09-10

Family

ID=72338465

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/009207 WO2020179082A1 (ja) 2019-03-07 2019-03-07 コバルト基合金粉末、コバルト基合金焼結体およびコバルト基合金焼結体の製造方法
PCT/JP2019/051097 WO2020179207A1 (ja) 2019-03-07 2019-12-26 コバルト基合金粉末、コバルト基合金焼結体およびコバルト基合金焼結体の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009207 WO2020179082A1 (ja) 2019-03-07 2019-03-07 コバルト基合金粉末、コバルト基合金焼結体およびコバルト基合金焼結体の製造方法

Country Status (9)

Country Link
US (1) US11306372B2 (ja)
EP (1) EP3725901A4 (ja)
JP (1) JP6938765B2 (ja)
KR (1) KR102435878B1 (ja)
CN (1) CN112004953A (ja)
AU (1) AU2019432628B2 (ja)
CA (1) CA3105471C (ja)
SG (1) SG11202100143WA (ja)
WO (2) WO2020179082A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466944B (zh) * 2020-09-04 2023-06-27 三菱重工业株式会社 钴基合金材料和钴基合金制造物
CN115261678B (zh) * 2022-08-05 2023-03-28 沈阳大陆激光先进制造技术创新有限公司 一种用于高温加热炉的激光熔覆材料及工艺方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243143A (ja) 1984-11-06 1986-10-29 Agency Of Ind Science & Technol Co基超塑性合金およびその製造方法
JPH07179967A (ja) 1993-12-24 1995-07-18 Kubota Corp 耐食性、耐摩耗性及び高温強度にすぐれるコバルト基合金
JP2016102229A (ja) * 2014-11-27 2016-06-02 山陽特殊製鋼株式会社 造形用金属粉末
JP2017186620A (ja) * 2016-04-06 2017-10-12 セイコーエプソン株式会社 粉末冶金用金属粉末、コンパウンド、造粒粉末、焼結体および耐熱部品
CN107513642A (zh) * 2017-10-17 2017-12-26 广州纳联材料科技有限公司 钴基合金粉末及其制备方法和应用
WO2019031577A1 (ja) * 2017-08-09 2019-02-14 日立金属株式会社 合金部材、該合金部材の製造方法、および該合金部材を用いた製造物
JP2019049022A (ja) * 2017-09-08 2019-03-28 三菱日立パワーシステムズ株式会社 コバルト基合金積層造形体、コバルト基合金製造物、およびそれらの製造方法

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018315A (ja) 1973-05-30 1975-02-26
JPS5576038A (en) 1978-12-04 1980-06-07 Hitachi Ltd High strength high toughness cobalt-base alloy
JPS5842741A (ja) 1981-09-07 1983-03-12 Res Inst Electric Magnetic Alloys 磁気記録再生ヘツド用耐摩耗性高透磁率合金およびその製造法ならびに磁気記録再生ヘツド
JPS58117848A (ja) 1982-01-06 1983-07-13 Mitsubishi Metal Corp 燃焼雰囲気ですぐれた高温耐食性および高温耐酸化性を示す高強度ni基鋳造合金
JPS6311638A (ja) 1986-03-20 1988-01-19 Hitachi Ltd 高強度高靭性コバルト基合金及びその製造法
US5002731A (en) * 1989-04-17 1991-03-26 Haynes International, Inc. Corrosion-and-wear-resistant cobalt-base alloy
EP0433072B1 (en) 1989-12-15 1994-11-09 Inco Alloys International, Inc. Oxidation resistant low expansion superalloys
JPH06287667A (ja) 1993-04-02 1994-10-11 Toshiba Corp 耐熱鋳造Co基合金
WO1997010368A1 (fr) 1995-09-11 1997-03-20 Hitachi, Ltd. Alliage a base de cobalt, buse de turbine a gaz et materiau de soudure fabriques avec cet alliage
US5640667A (en) 1995-11-27 1997-06-17 Board Of Regents, The University Of Texas System Laser-directed fabrication of full-density metal articles using hot isostatic processing
JPH09157780A (ja) * 1995-12-05 1997-06-17 Hitachi Ltd 高耐食性Co基合金
JP2002249838A (ja) 1996-04-09 2002-09-06 Mitsubishi Heavy Ind Ltd 化石燃料燃焼装置用耐食耐熱Ni基合金
FR2809387B1 (fr) 2000-05-23 2002-12-20 Saint Gobain Isover Procede de fabrication de laine minerale, alliages a base de cobalt pour le procede et autres utilisations
JP4264926B2 (ja) * 2002-07-05 2009-05-20 日本発條株式会社 析出強化型Co−Ni基耐熱合金の製造方法
JP3842717B2 (ja) 2002-10-16 2006-11-08 株式会社日立製作所 溶接材料、溶接構造物、ガスタービン動翼及びガスタービン動翼又は静翼の補修方法
US7067201B2 (en) 2003-09-29 2006-06-27 Vetco Gray Inc. Wear resistant coating for keel joint
JP4542857B2 (ja) 2004-09-22 2010-09-15 財団法人ファインセラミックスセンター 耐酸化性ユニット及び耐酸化性を付与する方法
WO2007032293A1 (ja) * 2005-09-15 2007-03-22 Japan Science And Technology Agency 高耐熱性、高強度Co基合金及びその製造方法
EP1914327A1 (en) 2006-10-17 2008-04-23 Siemens Aktiengesellschaft Nickel-base superalloy
JP5201334B2 (ja) 2008-03-19 2013-06-05 大同特殊鋼株式会社 Co基合金
JP5576038B2 (ja) 2008-12-05 2014-08-20 日本精機株式会社 紫外線硬化型インキ組成物、および、それを用いた車両用室内表示物
EP2503013B1 (en) 2009-11-19 2017-09-06 National Institute for Materials Science Heat-resistant superalloy
JP5582532B2 (ja) 2010-08-23 2014-09-03 大同特殊鋼株式会社 Co基合金
CH705750A1 (de) 2011-10-31 2013-05-15 Alstom Technology Ltd Verfahren zur Herstellung von Komponenten oder Abschnitten, die aus einer Hochtemperatur-Superlegierung bestehen.
CA2857404A1 (en) 2011-12-14 2013-06-20 Alstom Technology Ltd. Method for additively manufacturing an article made of a difficult-to-weld material
US9346101B2 (en) * 2013-03-15 2016-05-24 Kennametal Inc. Cladded articles and methods of making the same
MX2016002172A (es) 2013-08-20 2017-01-05 Univ Princeton Métodos y composiciones para potenciar la densidad .
US9482249B2 (en) 2013-09-09 2016-11-01 General Electric Company Three-dimensional printing process, swirling device and thermal management process
EP3025809B1 (en) 2014-11-28 2017-11-08 Ansaldo Energia IP UK Limited Method for manufacturing a component using an additive manufacturing process
US10099290B2 (en) 2014-12-18 2018-10-16 General Electric Company Hybrid additive manufacturing methods using hybrid additively manufactured features for hybrid components
JP6358246B2 (ja) 2015-01-08 2018-07-18 セイコーエプソン株式会社 粉末冶金用金属粉末、コンパウンド、造粒粉末、焼結体および装飾品
US11434766B2 (en) 2015-03-05 2022-09-06 General Electric Company Process for producing a near net shape component with consolidation of a metallic powder
MX2015016373A (es) 2015-11-27 2017-05-26 Geodent S A De C V Aleacion de base cobalto anticorrosion para restauraciones dentales.
JP6372498B2 (ja) 2016-02-19 2018-08-15 セイコーエプソン株式会社 粉末冶金用金属粉末、コンパウンド、造粒粉末、焼結体および耐熱部品
CN106435282B (zh) * 2016-11-03 2018-02-13 中南大学 一种钴基高温合金及其制备方法
JP6931545B2 (ja) 2017-03-29 2021-09-08 三菱重工業株式会社 Ni基合金積層造形体の熱処理方法、Ni基合金積層造形体の製造方法、積層造形体用Ni基合金粉末、およびNi基合金積層造形体
WO2020121367A1 (ja) 2018-12-10 2020-06-18 三菱日立パワーシステムズ株式会社 コバルト基合金積層造形体、コバルト基合金製造物、およびそれらの製造方法
EP3725902B1 (en) 2019-03-07 2023-03-01 Mitsubishi Heavy Industries, Ltd. Cobalt-based alloy product and method for producing same
EP3733886B1 (en) 2019-03-07 2022-08-24 Mitsubishi Heavy Industries, Ltd. Cobalt-based alloy product, method for manufacturing said product, and cobalt-based alloy article
EP3725903B1 (en) 2019-03-07 2023-02-22 Mitsubishi Heavy Industries, Ltd. Cobalt-based alloy product
WO2020179085A1 (ja) 2019-03-07 2020-09-10 三菱日立パワーシステムズ株式会社 熱交換器
WO2020179084A1 (ja) 2019-03-07 2020-09-10 三菱日立パワーシステムズ株式会社 コバルト基合金製造物、およびコバルト基合金物品
JP6713071B2 (ja) 2019-04-02 2020-06-24 三菱日立パワーシステムズ株式会社 コバルト基合金積層造形体の製造方法
JP6924874B2 (ja) 2019-04-02 2021-08-25 三菱パワー株式会社 コバルト基合金材料
US11867858B2 (en) 2019-08-20 2024-01-09 Nec Corporation Seismic observation device, seismic observation method, and recording medium
WO2021033546A1 (ja) 2019-08-21 2021-02-25 京セラ株式会社 ハンドオーバ制御方法、中継装置、及びドナー装置
CN113330130B (zh) 2019-12-26 2022-07-26 三菱重工业株式会社 钴基合金制造物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243143A (ja) 1984-11-06 1986-10-29 Agency Of Ind Science & Technol Co基超塑性合金およびその製造方法
JPH07179967A (ja) 1993-12-24 1995-07-18 Kubota Corp 耐食性、耐摩耗性及び高温強度にすぐれるコバルト基合金
JP2016102229A (ja) * 2014-11-27 2016-06-02 山陽特殊製鋼株式会社 造形用金属粉末
JP2017186620A (ja) * 2016-04-06 2017-10-12 セイコーエプソン株式会社 粉末冶金用金属粉末、コンパウンド、造粒粉末、焼結体および耐熱部品
WO2019031577A1 (ja) * 2017-08-09 2019-02-14 日立金属株式会社 合金部材、該合金部材の製造方法、および該合金部材を用いた製造物
JP2019049022A (ja) * 2017-09-08 2019-03-28 三菱日立パワーシステムズ株式会社 コバルト基合金積層造形体、コバルト基合金製造物、およびそれらの製造方法
CN107513642A (zh) * 2017-10-17 2017-12-26 广州纳联材料科技有限公司 钴基合金粉末及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3725901A4

Also Published As

Publication number Publication date
US11306372B2 (en) 2022-04-19
RU2771192C1 (ru) 2022-04-28
EP3725901A4 (en) 2021-12-15
US20210140016A1 (en) 2021-05-13
CA3105471A1 (en) 2020-09-10
WO2020179082A1 (ja) 2020-09-10
CN112004953A (zh) 2020-11-27
KR20210022682A (ko) 2021-03-03
AU2019432628B2 (en) 2022-11-10
JP6938765B2 (ja) 2021-09-22
AU2019432628A1 (en) 2021-01-28
KR102435878B1 (ko) 2022-08-24
EP3725901A1 (en) 2020-10-21
CA3105471C (en) 2022-12-13
JPWO2020179207A1 (ja) 2021-03-11
SG11202100143WA (en) 2021-09-29

Similar Documents

Publication Publication Date Title
KR102225271B1 (ko) 코발트기 합금 재료
JP6713071B2 (ja) コバルト基合金積層造形体の製造方法
JP6935579B2 (ja) コバルト基合金製造物および該製造物の製造方法
JP6935580B2 (ja) コバルト基合金製造物およびその製造方法
WO2020121367A1 (ja) コバルト基合金積層造形体、コバルト基合金製造物、およびそれらの製造方法
JP6935578B2 (ja) コバルト基合金製造物
JP6935577B2 (ja) コバルト基合金製造物
JP6924874B2 (ja) コバルト基合金材料
JP6938765B2 (ja) コバルト基合金粉末、コバルト基合金焼結体およびコバルト基合金焼結体の製造方法
JP7223877B2 (ja) コバルト基合金材料およびコバルト基合金製造物
RU2771192C9 (ru) Порошок сплава на основе кобальта, спечённое тело из сплава на основе кобальта и способ изготовления спечённого тела из сплава на основе кобальта
JP2023105829A (ja) コバルト基合金材料およびコバルト基合金製造物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020509116

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019848920

Country of ref document: EP

Effective date: 20200219

ENP Entry into the national phase

Ref document number: 3105471

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20217001718

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019432628

Country of ref document: AU

Date of ref document: 20191226

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE