WO2020178042A1 - Pompe à vide turbomoléculaire et procédé de purge - Google Patents

Pompe à vide turbomoléculaire et procédé de purge Download PDF

Info

Publication number
WO2020178042A1
WO2020178042A1 PCT/EP2020/054556 EP2020054556W WO2020178042A1 WO 2020178042 A1 WO2020178042 A1 WO 2020178042A1 EP 2020054556 W EP2020054556 W EP 2020054556W WO 2020178042 A1 WO2020178042 A1 WO 2020178042A1
Authority
WO
WIPO (PCT)
Prior art keywords
purge gas
vacuum pump
turbomolecular vacuum
turbomolecular
stage
Prior art date
Application number
PCT/EP2020/054556
Other languages
English (en)
Inventor
Nicolas Varennes
Antoine DENGREVILLE
Original Assignee
Pfeiffer Vacuum
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum filed Critical Pfeiffer Vacuum
Priority to CN202080017639.4A priority Critical patent/CN113518863A/zh
Priority to DE112020001075.9T priority patent/DE112020001075T5/de
Priority to KR1020217027117A priority patent/KR20210134315A/ko
Priority to JP2021552554A priority patent/JP2022522883A/ja
Publication of WO2020178042A1 publication Critical patent/WO2020178042A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Definitions

  • the present invention relates to a turbomolecular vacuum pump and a method for purging the turbomolecular vacuum pump.
  • turbomolecular vacuum pumps composed of a stator in which a rotor is driven in rapid rotation, for example a rotation at more than twenty thousand revolutions per minute.
  • a deposit layer may form in the vacuum pump. This deposit can lead to a restriction of play between the stator and the rotor which can cause the rotor to seize.
  • the deposition layer in fact heats the rotor by friction, which can generate creep of the latter and then a possible crack.
  • stator heating temperature generally cannot exceed 90 ° C, or even 120 ° C, in order to preserve the mechanical strength of the rotor. Heating the stator to these temperatures effectively makes it possible to reduce the formation of deposits in the pump without however always completely preventing it, in particular for certain chemistries, such as for AICI 3 for example.
  • One of the aims of the present invention is to provide a turbomolecular vacuum pump which at least partially resolves at least one drawback of the state of the art.
  • the invention relates to a turbomolecular vacuum pump configured to drive gases to be pumped from a suction to a discharge, the turbomolecular vacuum pump comprising:
  • stator comprising at least one stage of fins and a Holweck stator in which helical grooves are formed
  • a rotor comprising:
  • the turbomolecular vacuum pump further comprises a purge gas injection device comprising at least one channel formed in the stator and opening, for example through at least one hole, between the rotor and the stator, to inject a purge gas into the passage path pumped gases, downstream of at least one stage of the rotor blades, the purge gas injection device being configured so that the flow rate of the injected purge gas is less than a determined threshold so that the difference between the pressure suction without injection of the purge gas and with the injection of a purge gas is less than 0.066 Pa (
  • the pumped gases are thus diluted without or with very little change in the pumping performance at the suction of the turbomolecular vacuum pump.
  • the partial pressures of the condensable gases can thus be lowered to remain below the condensation values. This limits the risk of deposits in the turbomolecular vacuum pump and extends the time between two maintenances.
  • Injecting a purge gas downstream of at least one stage of the blades further helps prevent backscattering of the purge gas into the chamber to be evacuated.
  • Another important advantage is that the lowering of the partial pressure of the gases likely to be deposited in the turbomolecular vacuum pump makes it possible to increase the flow of gas to be pumped for the same set temperature for heating the stator. It is therefore possible to increase the flow of the pumped gases without risk of additional deposits due to the lowering of the partial pressures and without mechanical risks for the rotor.
  • the turbomolecular vacuum pump may have one or more of the features described below, taken alone or in combination.
  • At least one channel opens, for example, at the level of the molecular stage, for example through at least one hole.
  • the channel For example, provision is made for the channel to open into an upper part of the Holweck stator, at the entrance to the molecular stage.
  • the axis of the channel emerges from the Holweck stator at a distance from the turbomolecular stage, for example less than quarter of the height of the Holweck stator.
  • the molecular stage can thus be purged almost entirely.
  • the channel can also open into a lower part of the Holweck stator, at the outlet of the molecular stage, for example at a distance from the turbomolecular stage greater than half the height of the Holweck stator, in particular for applications where a deposit is found in the lower half of the Holweck stator.
  • the flow rate of injected purge gas is for example greater than or equal to 0.1689 Pa.m 3 / s (or 100 sccm).
  • the turbomolecular vacuum pump may further include an additional purge gas injection device configured to inject additional purge gas at the bearings of the turbomolecular vacuum pump located under the Holweck skirt.
  • the additional injection device for a purge gas cools the engine and allows the swivel elements of the turbomolecular vacuum pump to be swept, in particular the bearings, the electrical connections, the welds and the emergency bearings. Scavenging these elements with the additional purge gas protects them from potentially aggressive pumped gases.
  • the additional purge gas injection device has one or more inlets configured to deliver additional purge gas into a cavity receiving one end of a shaft configured to rotate the rotor.
  • the flow rate of additional purge gas is for example less than the flow rate of purge gas of the purge gas injection device, such as less than or equal to 0.08446 Pa.m 3 / s (or 50 sccm).
  • the turbomolecular vacuum pump comprises a common pipe for supplying the device for the additional injection of a purge gas and the channel of the device for injecting a purge gas. It is thus possible to limit the number of connections to the purge gas source on the turbomolecular vacuum pump.
  • the rotor has for example more than four stages of blades, such as between four and eight stages of blades.
  • At least one channel opens, for example, at the level of the turbomolecular stage, for example through at least one hole.
  • the channel opens for example at one of the last three stages of blades in the direction of circulation of the pumped gases. This also avoids possible deposits in the last compression stages of the turbomolecular stage.
  • a subject of the invention is also a method for purging a turbomolecular vacuum pump as described above, in which the flow rate of the purge gas injected into the passage path for the pumped gases, downstream of at least one stage of blades rotor, is less than a threshold determined so that the difference between the suction pressure without injection of purge gas and with injection of purge gas is less than 0.066 Pa (or approximately 0.5 mTorr).
  • the purge gas is, for example, nitrogen.
  • the determined threshold of the flow rate of the injected purge gas is for example 0.76 Pa.m 3 / s (ie approximately 450 sccm).
  • FIG. 1 shows a schematic view of a turbomolecular vacuum pump according to a first exemplary embodiment.
  • FIG. 2 shows an axial sectional view of the turbomolecular vacuum pump of FIG. 1.
  • FIG. 3 shows a partial view of a Holweck stator of the turbomolecular vacuum pump of Figure 2.
  • FIG. 4 shows a view similar to Figure 2 for a second embodiment.
  • upstream is understood to mean an element which is placed before another with respect to the direction of flow of the gas.
  • downstream is understood to mean an element placed after another relative to the direction of flow of the gas to be pumped, the element located upstream being at a lower pressure than the element located downstream.
  • Figures 1 and 2 illustrate a first embodiment of a turbomolecular vacuum pump 1.
  • the turbomolecular vacuum pump 1 comprises a stator 2 in which a rotor 3 is configured to rotate at high speed in axial rotation, for example a rotation at more than twenty thousand revolutions per minute.
  • the turbomolecular vacuum pump 1 comprises a turbomolecular stage 4 and a molecular stage 5 located downstream of the turbomolecular stage 4 in the direction of circulation of the pumped gases coming from a suction 6 of the turbomolecular vacuum pump 1 (represented by the arrows F1 in figure 2).
  • the pumped gases enter through the suction 6, first pass through the turbomolecular stage 4, then the molecular stage 5, to be then discharged to a discharge 8 of the turbomolecular vacuum pump 1.
  • the discharge 8 is connected to a primary pumping.
  • An annular inlet flange 7 surrounds, for example, the suction 6 to connect the vacuum pump 1 to an enclosure whose pressure is to be lowered.
  • the rotor 3 comprises at least two stages of blades 9 and the stator 2 comprises at least one stage of fins 10.
  • the stages of blades 9 and of fins 10 follow one another axially along the axis of rotation ll of the rotor 3 in the turbomolecular stage 4.
  • the rotor 3 comprises for example more than four stages of blades 9, such as for example between four and eight stages of blades 9 (six in the example illustrated in FIG. ).
  • Each stage of blades 9 of the rotor 3 comprises inclined blades which extend in a substantially radial direction from a hub 11 of the rotor 3 fixed to a shaft 12 of the turbomolecular vacuum pump 1.
  • the blades are distributed regularly around the periphery of the hub 11.
  • Each stage of fins 10 of the stator 2 comprises a ring from which depart, in a substantially radial direction, inclined fins, distributed regularly around the inner periphery of the ring.
  • the fins of a fin stage 10 of stator 2 engage between the blades of two successive blade stages 9 of rotor 3.
  • the blades of rotor 3 and the fins of stator 2 are angled to guide the molecules of the pumped gas to molecular stage 5.
  • rotor 3 has a Holweck skirt 13, formed by a smooth cylinder, which rotates opposite helical grooves 14 of a Holweck stator 15 of stator 2 ( Figure 3).
  • the helical grooves 14 of the stator 2 make it possible to compress and guide the gases pumped towards the discharge 8 (FIG. 2).
  • the rotor 3 can be made in one piece (monobloc) or it can be an assembly of several parts. It is for example made of aluminum material. It is fixed to the shaft 12 driven in rotation in the stator 2 by an internal motor 16 of the turbomolecular vacuum pump 1.
  • the motor 16 is for example arranged under a bell 17 of the stator 2, itself arranged under the Holweck skirt 13 of the rotor 3.
  • the rotor 3 is guided laterally and axially by magnetic or mechanical bearings 18.
  • the vacuum pump 1 can also include emergency bearings 19.
  • the stator 2 is for example made of aluminum material and produced by assembling several parts.
  • the turbomolecular vacuum pump 1 can also include means for controlling the temperature of the stator 2 to heat the stator 2 to a set temperature, in particular less than 120 ° C, such as 90 ° C.
  • the turbomolecular vacuum pump 1 further comprises a purge gas injection device 21 comprising at least one channel 20 formed in the stator 2 and emerging between the rotor 3 and the stator 2, to inject a purge gas into the path passage of the pumped gases from the suction 6, downstream of at least one stage of blades 9 ( Figures 2 and 3).
  • a purge gas injection device 21 comprising at least one channel 20 formed in the stator 2 and emerging between the rotor 3 and the stator 2, to inject a purge gas into the path passage of the pumped gases from the suction 6, downstream of at least one stage of blades 9 ( Figures 2 and 3).
  • the partial pressures of the condensable gases can thus be lowered to remain below the condensation values. This makes it possible to limit the risks of deposits in the turbomolecular vacuum pump 1 and to extend the time between two maintenances.
  • Injecting a purge gas downstream of at least one stage of blades 9 furthermore makes it possible to prevent backscattering of the purge gas in the chamber to be evacuated.
  • Another important advantage is that the lowering of the partial pressure of the gases liable to be deposited in the turbomolecular vacuum pump 1 makes it possible to increase the flow of gas to be pumped for the same set temperature for heating the stator 2. It is therefore possible to increase the flow of the pumped gases without risk of additional deposits due to the lowering of the partial pressures and without mechanical risks for the rotor 3.
  • the purge gas is for example air or nitrogen.
  • the flow rate of injected purge gas is for example greater than or equal to 0.1689 Pa.m 3 / s (or 100 sccm).
  • the purge gas injection device 21 is configured so that the flow rate of the injected purge gas is less than a determined threshold so that, in operation, the difference between the pressure at the suction 6 of the turbomolecular vacuum pump 1 without injection of purge gas and with injection of purge gas is less than 0.066 Pa (or approximately 0.5 mTorr).
  • the injection of the purge gas into the The passage of the pumped gases thus does not or very little change the pumping performance at the suction 6 of the turbomolecular vacuum pump 1.
  • the determined threshold of the flow rate of the injected purge gas is for example 0.76 Pa.m 3 / s (ie approximately 450 sccm).
  • the determined threshold of the flow rate of the injected purge gas is for example 1.3512 Pa.m 3 / s (ie approximately 800 sccm).
  • the determined threshold of the flow rate of the injected purge gas is for example 0.06756 Pa.m 3 / s (ie approximately 40 sccm).
  • the determined thresholds of the flow rate of the injected purge gas thus make it possible not to modify the pumping performance at the suction 6 of the turbomolecular vacuum pump 1.
  • the purge gas injection device 21 may further include at least one connector 25 located at the inlet of the at least one channel 20 and outside the stator 2, to connect the at least one channel 20 to a source. of external purge gas.
  • the purge gas injection device 21 may also include a nozzle (or calibrated orifice) or a flow controller to adjust the flow of purge gas.
  • the channel 20 opens at the level of the molecular stage 5.
  • the channel 20 opens into an upper part of the Holweck stator 15, at the entrance of molecular stage 5 ( Figure 3).
  • the axis of channel 20 emerges from the Holweck stator 15 at a distance d from the turbomolecular stage 4 less than a quarter of the height of the Holweck stator 15 ( Figure 2).
  • the turbomolecular vacuum pump 1 may also include an additional device for injecting a purge gas 22 configured to inject an additional purge gas at the level of the bearings 18 of the turbomolecular vacuum pump 1 located under the Holweck skirt 13.
  • the device for the additional injection of a purge gas 22 comprises one or more inlets 23, configured to supply a additional purge gas in a cavity 24 receiving one end of the shaft 12 driving the rotor 3 in rotation.
  • the purge gas rises up along the shaft 12, passing through the emergency bearings 19 where appropriate, the bearings 18, the motor 16 and exit from the bell 17 of the stator 2 to circulate between the bell 17 and the Holweck skirt 13, under the Holweck skirt 13, up to the discharge 8 (arrows F2 in FIG. 2).
  • the additional injection device of a purge gas 22 makes it possible to cool the engine 16 and makes it possible to sweep the pivoting elements of the turbomolecular vacuum pump 1, in particular the bearings 18, the electrical connections, the welds and the bearings. emergency 19. Sweeping these elements with the additional purge gas protects them from potentially aggressive pumped gases.
  • the flow of additional purge gas is low. It is for example less than or equal to the purge gas flow rate of the purge gas injection device 21, such as less than or equal to 0.08448 Pa.m 3 / s (or 50 sccm).
  • the device for the additional injection of a purge gas 22 may further comprise a nozzle or a flow controller for adjusting the flow rate of the purge gas.
  • the turbomolecular vacuum pump 1 comprises a common pipe for the supply 23 of the device for the additional injection of a purge gas 22 and the channel 20 of the device for injecting a purge gas 21 so as to limit the number of connections to the purge gas source on the turbomolecular vacuum pump 1.
  • One or more nozzles and / or one or more valves arranged on the inlet 23 and / or the channel 20 can make it possible to differentiate the purge rate of the additional purge rate.
  • the purge gases in the passage path of the pumped gases and at the level of the bearings 18 can be injected continuously.
  • the device 21 for injecting a purge gas may include a valve to stop / allow the injection of a purge gas. For example, it is possible to cut off the injection of the purge gas in the passage path of the pumped gases when the pumped gases are without risk for the turbomolecular vacuum pump 1 while leaving an injection of purge gas by the additional injection device. a purge gas 22 at the bearings 18 for their protection.
  • FIG. 4 illustrates a second exemplary embodiment.
  • the channel 20 opens out at the level of the turbomolecular stage 4, downstream of at least one stage of blades 9.
  • the channel 20 opens, for example, at one of the last three stages of blades 9 in the direction of circulation of the pumped gases F1.
  • the channel 20 opens from the stator 2 into the turbomolecular stage 4 opposite the fifth stage of blades 9 of the rotor 3, that is to say at the level of the second last stage of blades 9 of the six stages of blades 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

La présente invention a pour objet une pompe à vide turbomoléculaire (1) comportant un dispositif d'injection de gaz de purge (21) comprenant au moins un canal (20) ménagé dans le stator (2) et débouchant entre le rotor (3) et le stator (2), pour injecter un gaz de purge dans le chemin de passage des gaz pompés, en aval d'au moins un étage de pales (9) du rotor (3), le dispositif d'injection de gaz de purge (21) étant configuré pour que le débit du gaz de purge injecté soit inférieur à un seuil déterminé afin que la différence entre la pression à l'aspiration (6) sans injection du gaz de purge et avec injection d'un gaz de purge, soit inférieure à 0,066 Pa. L'invention concerne également un procédé de purge d'une pompe à vide turbomoléculaire (1).

Description

Description
Titre : Pompe à vide turbomoléculaire et procédé de purge
La présente invention concerne une pompe à vide turbomoléculaire et un procédé de purge de la pompe à vide turbomoléculaire.
La génération d’un vide poussé dans une enceinte nécessite l'utilisation de pompes à vide turbomoléculaire, composées d'un stator dans lequel un rotor est entraîné en rotation rapide, par exemple une rotation à plus de vingt mille tours par minute.
Dans certains procédés dans lesquels les pompes à vide turbomoléculaire sont utilisées, tels que les procédés de fabrication de semi-conducteurs ou de LED, une couche de dépôt peut se former dans la pompe à vide. Ce dépôt peut entraîner une restriction de jeu entre le stator et le rotor pouvant provoquer un grippage du rotor. La couche de dépôt vient en effet échauffer le rotor par frottement, ce qui peut générer un fluage de ce dernier puis une fissure éventuelle.
Il est connu de chauffer le stator pour éviter la condensation de produits de réaction dans la pompe. Cependant, la température de chauffage du stator ne peut généralement pas dépasser 90°C, voire 120°C, afin de préserver la tenue mécanique du rotor. Le chauffage du stator à ces températures permet effectivement de réduire la formation de dépôts dans la pompe sans toutefois toujours l’empêcher totalement, notamment pour certaines chimies, telles que pour l’AICI3 par exemple.
Des maintenances régulières doivent donc être programmées pour nettoyer fréquemment la pompe à vide.
Un des buts de la présente invention est de proposer une pompe à vide turbomoléculaire résolvant au moins partiellement au moins un inconvénient de l’état de la technique.
A cet effet, l’invention a pour objet une pompe à vide turbomoléculaire configurée pour entraîner des gaz à pomper d’une aspiration vers un refoulement, la pompe à vide turbomoléculaire comportant :
un stator comportant au moins un étage d’ailettes et un stator Holweck dans lequel sont ménagées des rainures hélicoïdales, et
un rotor comportant :
o au moins deux étages de pales, les étages de pales et les étages d’ailettes se succédant axialement le long d’un axe de rotation du rotor dans un étage turbomoléculaire de la pompe à vide turbomoléculaire, et o une jupe Holweck configurée pour tourner en regard des rainures hélicoïdales du stator dans un étage moléculaire de la pompe à vide turbomoléculaire situé en aval de l’étage turbomoléculaire dans la direction de circulation des gaz pompés, caractérisée en ce que la pompe à vide turbomoléculaire comporte en outre un dispositif d’injection de gaz de purge comprenant au moins un canal ménagé dans le stator et débouchant, par exemple par au moins un trou, entre le rotor et le stator, pour injecter un gaz de purge dans le chemin de passage des gaz pompés, en aval d’au moins un étage de pales du rotor, le dispositif d’injection de gaz de purge étant configuré pour que le débit du gaz de purge injecté soit inférieur à un seuil déterminé afin que la différence entre la pression à l’aspiration sans injection du gaz de purge et avec injection d’un gaz de purge soit inférieure à 0,066 Pa (soit environ 0,5 mTorr).
Les gaz pompés sont ainsi dilués sans ou avec très peu de modifications des performances de pompage à l’aspiration de la pompe à vide turbomoléculaire.
Les pressions partielles des gaz condensables peuvent ainsi être abaissées pour rester en-dessous des valeurs de condensation. Cela permet de limiter les risques de dépôt dans la pompe à vide turbomoléculaire et d’allonger la durée entre deux maintenances.
Injecter un gaz de purge en aval d’au moins un étage de pales permet en outre d’éviter la rétrodiffusion du gaz de purge dans l’enceinte à mettre sous vide.
Un autre avantage important est que l’abaissement de la pression partielle des gaz susceptibles de se déposer dans la pompe à vide turbomoléculaire permet d’augmenter le flux de gaz à pomper pour une même température de consigne de chauffage du stator. Il est donc possible d’augmenter le flux des gaz pompés sans risques de dépôts supplémentaires du fait de l’abaissement des pressions partielles et sans risques mécaniques pour le rotor.
La pompe à vide turbomoléculaire peut comporter une ou plusieurs des caractéristiques décrites ci-après, prises seules ou en combinaison.
Au moins un canal débouche par exemple au niveau de l’étage moléculaire par exemple par au moins un trou.
On prévoit par exemple que le canal débouche dans une partie supérieure du stator Holweck, à l’entrée de l’étage moléculaire. L’axe du canal débouche du stator Holweck à une distance de l’étage turbomoléculaire par exemple inférieure au quart de la hauteur du stator Holweck. L’étage moléculaire peut ainsi être purgé quasiment entièrement.
Le canal peut également déboucher dans une partie inférieure du stator Holweck, à la sortie de l’étage moléculaire, par exemple à une distance de l’étage turbomoléculaire supérieure à la moitié de la hauteur du stator Holweck, notamment pour les applications où un dépôt est constaté dans la moitié inférieure du stator Holweck.
Le débit de gaz de purge injecté est par exemple supérieur ou égal à 0,1689 Pa.m3/s (ou lOOsccm).
La pompe à vide turbomoléculaire peut comporter en outre un dispositif d’injection additionnel d’un gaz de purge configuré pour injecter un gaz de purge additionnel au niveau des paliers de la pompe à vide turbomoléculaire situés sous la jupe Holweck. Le dispositif d’injection additionnel d’un gaz de purge permet de refroidir le moteur et permet de balayer les éléments de pivoterie de la pompe à vide turbomoléculaire, en particulier les paliers, la connectique électrique, les soudures et les roulements de secours. Le balayage de ces éléments par le gaz de purge additionnel permet de les protéger des gaz pompés potentiellement agressifs.
Par exemple, le dispositif d’injection additionnel d’un gaz de purge comporte une ou plusieurs amenées configurées pour amener un gaz de purge additionnel dans une cavité recevant une extrémité d’un arbre configuré pour entraîner en rotation le rotor.
Le débit de gaz de purge additionnel est par exemple inférieur au débit de gaz de purge du dispositif d’injection de gaz de purge, tel qu’inférieur ou égal à 0,08446 Pa.m3/s (ou 50 sccm).
Selon un exemple de réalisation, la pompe à vide turbomoléculaire comporte une canalisation commune pour l’amenée du dispositif d’injection additionnel d’un gaz de purge et le canal du dispositif d’injection d’un gaz de purge. On peut ainsi limiter le nombre de raccords à la source de gaz de purge sur la pompe à vide turbomoléculaire.
Le rotor comporte par exemple plus de quatre étages de pales, tel qu’entre quatre et huit étages de pales.
Au moins un canal débouche par exemple au niveau de l’étage turbomoléculaire par exemple par au moins un trou.
Le canal débouche par exemple au niveau d’un des trois derniers étages de pales dans la direction de circulation des gaz pompés. On évite ainsi également les dépôts éventuels dans les derniers étages de compression de l’étage turbomoléculaire.
L’invention a aussi pour objet un procédé de purge d’une pompe à vide turbomoléculaire telle que décrite précédemment dans lequel le débit du gaz de purge injecté dans le chemin de passage des gaz pompés, en aval d’au moins un étage de pales du rotor, est inférieur à un seuil déterminé pour que la différence entre la pression à l’aspiration sans injection du gaz de purge et avec injection d’un gaz de purge soit inférieure à 0,066 Pa (soit environ 0,5 mTorr).
Le gaz de purge est par exemple de l’azote.
Le seuil déterminé du débit du gaz de purge injecté est par exemple de 0,76 Pa.m3/s (soit environ 450 sccm).
Présentation des dessins
D'autres avantages et caractéristiques apparaîtront à la lecture de la description suivante d'un mode de réalisation particulier de l’invention, mais nullement limitatif, ainsi que des dessins annexés sur lesquels:
[Fig. 1] montre une vue schématique d’une pompe à vide turbomoléculaire selon un premier exemple de réalisation.
[Fig. 2] montre une vue en coupe axiale de la pompe à vide turbomoléculaire de la figure 1.
[Fig. 3] montre une vue partielle d’un stator Holweck de la pompe à vide turbomoléculaire de la figure 2.
[Fig. 4] montre une vue similaire à la figure 2 pour un deuxième exemple de réalisation.
Sur ces figures, les éléments identiques portent les mêmes numéros de référence.
Les réalisations suivantes sont des exemples. Bien que la description se réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas nécessairement que chaque référence concerne le même mode de réalisation, ou que les caractéristiques s'appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées ou interchangées pour fournir d'autres réalisations.
On entend par « en amont », un élément qui est placé avant un autre par rapport au sens de circulation du gaz. A contrario, on entend par « en aval », un élément placé après un autre par rapport au sens de circulation du gaz à pomper, l’élément situé en amont étant à une pression plus basse que l’élément situé en aval. Les figures 1 et 2 illustrent un premier exemple de réalisation d’une pompe à vide turbomoléculaire 1.
La pompe à vide turbomoléculaire 1 comporte un stator 2 dans lequel un rotor 3 est configuré pour tourner à grande vitesse en rotation axiale, par exemple une rotation à plus de vingt mille tours par minute.
La pompe à vide turbomoléculaire 1 comporte un étage turbomoléculaire 4 et un étage moléculaire 5 situé en aval de l’étage turbomoléculaire 4 dans la direction de circulation des gaz pompés provenant d’une aspiration 6 de la pompe à vide turbomoléculaire 1 (représentée par les flèches F1 sur la figure 2). Les gaz pompés entrent par l’aspiration 6, traversent d’abord l’étage turbomoléculaire 4, puis l’étage moléculaire 5, pour être ensuite évacués vers un refoulement 8 de la pompe à vide turbomoléculaire 1. Le refoulement 8 est raccordé à un pompage primaire.
Une bride annulaire d’entrée 7 entoure par exemple l’aspiration 6 pour raccorder la pompe à vide 1 à une enceinte dont on souhaite abaisser la pression.
Dans l’étage turbomoléculaire 4, le rotor 3 comporte au moins deux étages de pales 9 et le stator 2 comporte au moins un étage d’ailettes 10. Les étages de pales 9 et d’ailettes 10 se succèdent axialement le long de l’axe de rotation l-l du rotor 3 dans l’étage turbomoléculaire 4. Le rotor 3 comporte par exemple plus de quatre étages de pales 9, comme par exemple entre quatre et huit étages de pales 9 (six dans l’exemple illustré sur la figure 2).
Chaque étage de pales 9 du rotor 3 comporte des pales inclinées qui partent en direction sensiblement radiale d’un moyeu 11 du rotor 3 fixé à un arbre 12 de la pompe à vide turbomoléculaire 1. Les pales sont réparties régulièrement en périphérie du moyeu 11.
Chaque étage d’ailettes 10 du stator 2 comporte une couronne de laquelle partent, en direction sensiblement radiale, des ailettes inclinées, réparties régulièrement sur le pourtour intérieur de la couronne. Les ailettes d’un étage d’ailettes 10 du stator 2 viennent s’engager entre les pales de deux étages de pales 9 du rotor 3 successifs. Les pales du rotor 3 et les ailettes du stator 2 sont inclinées pour guider les molécules de gaz pompés vers l’étage moléculaire 5.
Dans l’étage moléculaire 5, le rotor 3 comporte une jupe Holweck 13, formée par un cylindre lisse, qui tourne en regard de rainures hélicoïdales 14 d’un stator Holweck 15 du stator 2 (figure 3). Les rainures hélicoïdales 14 du stator 2 permettent de comprimer et guider les gaz pompés vers le refoulement 8 (figure 2).
Le rotor 3 peut être réalisé d’une seule pièce (monobloc) ou il peut être un assemblage de plusieurs pièces. Il est par exemple en matériau aluminium. Il est fixé à l’arbre 12 entraîné en rotation dans le stator 2 par un moteur 16 interne de la pompe à vide turbomoléculaire 1. Le moteur 16 est par exemple agencé sous une cloche 17 du stator 2, elle-même agencée sous la jupe Holweck 13 du rotor 3. Le rotor 3 est guidé latéralement et axialement par des paliers 18 magnétiques ou mécaniques. La pompe à vide 1 peut également comporter des roulements de secours 19.
Le stator 2 est par exemple en matériau aluminium et réalisé par l’assemblage de plusieurs pièces.
La pompe à vide turbomoléculaire 1 peut également comporter des moyens de contrôle de la température du stator 2 pour chauffer le stator 2 à une température de consigne, notamment inférieure à 120°C, tel que de 90°C.
La pompe à vide turbomoléculaire 1 comporte en outre un dispositif d’injection de gaz de purge 21 comprenant au moins un canal 20 ménagé dans le stator 2 et débouchant entre le rotor 3 et le stator 2, pour injecter un gaz de purge dans le chemin de passage des gaz pompés provenant de l’aspiration 6, en aval d’au moins un étage de pales 9 (figures 2 et 3).
Les pressions partielles des gaz condensables peuvent ainsi être abaissées pour rester en-dessous des valeurs de condensation. Cela permet de limiter les risques de dépôt dans la pompe à vide turbomoléculaire 1 et d’allonger la durée entre deux maintenances.
Injecter un gaz de purge en aval d’au moins un étage de pales 9 permet en outre d’éviter la rétrodiffusion du gaz de purge dans l’enceinte à mettre sous vide.
Un autre avantage important est que l’abaissement de la pression partielle des gaz susceptibles de se déposer dans la pompe à vide turbomoléculaire 1 permet d’augmenter le flux de gaz à pomper pour une même température de consigne de chauffage du stator 2. Il est donc possible d’augmenter le flux des gaz pompés sans risques de dépôts supplémentaires du fait de l’abaissement des pressions partielles et sans risques mécaniques pour le rotor 3.
Le gaz de purge est par exemple de l’air ou de l’azote. Le débit de gaz de purge injecté est par exemple supérieur ou égal à 0,1689 Pa.m3/s (ou 100 sccm).
Le dispositif d’injection de gaz de purge 21 est configuré pour que le débit du gaz de purge injecté soit inférieur à un seuil déterminé afin que, en fonctionnement, la différence entre la pression à l’aspiration 6 de la pompe à vide turbomoléculaire 1 sans injection du gaz de purge et avec injection d’un gaz de purge soit inférieure à 0,066 Pa (soit environ 0,5 mTorr). L’injection du gaz de purge dans le chemin de passage des gaz pompés n’engendre ainsi pas ou très peu de modifications des performances de pompage à l’aspiration 6 de la pompe à vide turbomoléculaire 1.
Pour le pompage de gaz de poids intermédiaire, tel que de l’azote, le seuil déterminé du débit du gaz de purge injecté est par exemple 0,76 Pa.m3/s (soit environ 450 sccm).
Pour le pompage de gaz plus lourds, tel que de l’argon, le seuil déterminé du débit du gaz de purge injecté est par exemple 1 ,3512 Pa.m3/s (soit environ 800 sccm).
Pour le pompage de gaz plus légers, tel que de l’hélium, le seuil déterminé du débit du gaz de purge injecté est par exemple 0,06756 Pa.m3/s (soit environ 40 sccm).
Les seuils déterminés du débit du gaz de purge injecté permettent ainsi de ne pas modifier les performances de pompage à l’aspiration 6 de la pompe à vide turbomoléculaire 1.
On peut prévoir plusieurs canaux 20 ménagés dans le stator 2 débouchant autour du rotor 3 par un ou plusieurs trous, par exemple circulaires.
Le dispositif d’injection de gaz de purge 21 peut en outre comporter au moins un raccord 25 situé à l’entrée du au moins un canal 20 et à l’extérieur du stator 2, pour raccorder le au moins un canal 20 à une source de gaz de purge externe. Le dispositif d’injection d’un gaz de purge 21 peut également comporter un gicleur (ou orifice calibré) ou un contrôleur de débit pour régler le débit de gaz de purge.
Selon un premier exemple de réalisation représenté sur les figures 1 à 3, le canal 20 débouche au niveau de l’étage moléculaire 5.
On prévoit par exemple que le canal 20 débouche dans une partie supérieure du stator Holweck 15, à l’entrée de l’étage moléculaire 5 (figure 3). Par exemple, l’axe du canal 20 débouche du stator Holweck 15 à une distance d de l’étage turbomoléculaire 4 inférieure au quart de la hauteur du stator Holweck 15 (figure 2).
L’étage moléculaire 5 peut ainsi être purgé quasiment entièrement.
La pompe à vide turbomoléculaire 1 peut également comporter un dispositif d’injection additionnel d’un gaz de purge 22 configuré pour injecter un gaz de purge additionnel au niveau des paliers 18 de la pompe à vide turbomoléculaire 1 situés sous la jupe Holweck 13.
Selon un exemple de réalisation, le dispositif d’injection additionnel d’un gaz de purge 22 comporte une ou plusieurs amenées 23, configurées pour amener un gaz de purge additionnel dans une cavité 24 recevant une extrémité de l’arbre 12 entraînant en rotation le rotor 3. Le gaz de purge remonte le long de l’arbre 12 en traversant les roulements de secours 19 le cas échéant, les paliers 18, le moteur 16 et sortent de la cloche 17 du stator 2 pour circuler entre la cloche 17 et la jupe Holweck 13, sous la jupe Holweck 13, jusqu’au refoulement 8 (Flèches F2 sur la figure 2).
Le dispositif d’injection additionnel d’un gaz de purge 22 permet de refroidir le moteur 16 et permet de balayer les éléments de pivoterie de la pompe à vide turbomoléculaire 1 , en particulier les paliers 18, la connectique électrique, les soudures et les roulements de secours 19. Le balayage de ces éléments par le gaz de purge additionnel permet de les protéger des gaz pompés potentiellement agressifs.
Le débit de gaz de purge additionnel est faible. Il est par exemple inférieur ou égal au débit de gaz de purge du dispositif d’injection de gaz de purge 21 , tel que inférieur ou égal à 0,08448 Pa.m3/s (ou 50 sccm). Le dispositif d’injection additionnel d’un gaz de purge 22 peut en outre comporter un gicleur ou un contrôleur de débit pour régler le débit de gaz de purge.
Selon un exemple de réalisation, la pompe à vide turbomoléculaire 1 comporte une canalisation commune pour l’amenée 23 du dispositif d’injection additionnel d’un gaz de purge 22 et le canal 20 du dispositif d’injection d’un gaz de purge 21 de manière à limiter le nombre de raccords à la source de gaz de purge sur la pompe à vide turbomoléculaire 1. Un ou plusieurs gicleurs et/ou une ou plusieurs vannes agencés sur l’amenée 23 et/ou le canal 20 peuvent permettre de différencier le débit de purge du débit de purge additionnel.
En fonctionnement, les gaz de purge dans le chemin de passage des gaz pompés et au niveau des paliers 18 peuvent être injectés en continus.
Ils peuvent en outre être injectés de façon indépendante. En effet, le dispositif d’injection d’un gaz de purge 21 peut comporter une vanne pour stopper/autoriser l’injection d’un gaz de purge. On peut par exemple couper l’injection du gaz de purge dans le chemin de passage des gaz pompés quand les gaz pompés sont sans risques pour la pompe à vide turbomoléculaire 1 tout en laissant une injection de gaz de purge par le dispositif d’injection additionnel d’un gaz de purge 22 au niveau des paliers 18 pour leur protection.
La figure 4 illustre un deuxième exemple de réalisation.
Dans cet exemple, le canal 20 débouche au niveau de l’étage turbomoléculaire 4, en aval d’au moins un étage de pales 9. Lorsque le rotor 3 comporte plus de quatre étages de pales 9, le canal 20 débouche par exemple au niveau d’un des trois derniers étages de pales 9 dans la direction de circulation des gaz pompés F1. Par exemple et comme représenté sur la figure 4, le canal 20 débouche du stator 2 dans l’étage turbomoléculaire 4 en regard du cinquième étage de pales 9 du rotor 3, c’est-à-dire au niveau du deuxième dernier étage de pales 9 des six étages de pales 9.
On évite ainsi également les dépôts éventuels dans les derniers étages de compression de l’étage turbomoléculaire 4.

Claims

REVENDICATIONS
1. Pompe à vide turbomoléculaire (1) configurée pour entraîner des gaz à pomper d’une aspiration (6) vers un refoulement (8), la pompe à vide turbomoléculaire (1) comportant :
- un stator (2) comportant au moins un étage d’ailettes (10) et un stator Holweck (15) dans lequel sont ménagées des rainures hélicoïdales (14), et
- un rotor (3) comportant :
o au moins deux étages de pales (9), les étages de pales (9) et les étages d’ailettes (10) se succédant axialement le long d’un axe de rotation (l-l) du rotor (3) dans un étage turbomoléculaire (4) de la pompe à vide turbomoléculaire (1), et
o une jupe Holweck (13) configurée pour tourner en regard des rainures hélicoïdales (14) du stator (2) dans un étage moléculaire (5) de la pompe à vide turbomoléculaire (1) situé en aval de l’étage turbomoléculaire (4) dans la direction de circulation des gaz pompés (F1),
caractérisée en ce que la pompe à vide turbomoléculaire (1) comporte en outre un dispositif d’injection de gaz de purge (21) comprenant au moins un canal (20) ménagé dans le stator (2) et débouchant entre le rotor (3) et le stator (2), pour injecter un gaz de purge dans le chemin de passage des gaz pompés, en aval d’au moins un étage de pales (9) du rotor (3), le dispositif d’injection de gaz de purge (21) étant configuré pour que le débit du gaz de purge injecté soit inférieur à un seuil déterminé afin que la différence entre la pression à l’aspiration (6) sans injection du gaz de purge et avec injection d’un gaz de purge, soit inférieure à 0,066 Pa.
2. Pompe à vide turbomoléculaire (1) selon la revendication précédente, caractérisée en ce qu’au moins un canal (20) débouche au niveau de l’étage moléculaire (5).
3. Pompe à vide turbomoléculaire (1) selon la revendication précédente, caractérisée en ce que l’axe du canal (20) débouche du stator Holweck (15) à une distance (d) de l’étage turbomoléculaire (4) inférieure au quart de la hauteur du stator Holweck (15).
4. Pompe à vide turbomoléculaire (1) selon l’une des revendications précédentes, caractérisée en ce que le débit de gaz de purge injecté est supérieur ou égal à 0,1689 Pa.m3/s.
5. Pompe à vide turbomoléculaire (1) selon l’une des revendications précédentes, caractérisée en ce qu’elle comporte en outre un dispositif d’injection additionnel d’un gaz de purge (22) configuré pour injecter un gaz de purge additionnel au niveau des paliers (18) de la pompe à vide turbomoléculaire (1) situés sous la jupe Holweck (13).
6. Pompe à vide turbomoléculaire (1) selon la revendication précédente, caractérisée en ce que le dispositif d’injection additionnel d’un gaz de purge (22) comporte une ou plusieurs amenée (23) configurées pour amener un gaz de purge additionnel dans une cavité (24) recevant une extrémité d’un arbre (12) configuré pour entraîner en rotation le rotor (3).
7. Pompe à vide turbomoléculaire (1) selon l’une des revendications 5 ou 6, caractérisée en ce que le débit de gaz de purge additionnel est inférieur ou égal au débit de gaz de purge du dispositif d’injection de gaz de purge (21).
8. Pompe à vide turbomoléculaire (1) selon l’une des revendications 6 ou 7, caractérisée en ce qu’elle comporte une canalisation commune pour l’amenée (23) et le canal (20).
9. Pompe à vide turbomoléculaire (1) selon l’une des revendications précédentes, caractérisée en ce que le rotor (3) comporte plus de quatre étages de pales (9).
10. Pompe à vide turbomoléculaire (1) selon l’une des revendications précédentes, caractérisée en ce qu’au moins un canal (20) débouche au niveau de l’étage turbomoléculaire (4).
11. Pompe à vide turbomoléculaire (1) selon les revendications 9 et 10, caractérisée en ce que le canal (20) débouche au niveau d’un des trois derniers étages de pales (9) dans la direction de circulation des gaz pompés (F1).
12. Procédé de purge d’une pompe à vide turbomoléculaire (1) selon l’une des revendications précédentes dans lequel le débit du gaz de purge injecté dans le chemin de passage des gaz pompés, en aval d’au moins un étage de pales (9) du rotor (3) est inférieur à un seuil déterminé pour que la différence entre la pression à l’aspiration (6) sans injection du gaz de purge et avec injection d’un gaz de purge, soit inférieure à 0,066 Pa.
13. Procédé de purge selon la revendication précédente dans lequel le gaz de purge est de l’azote.
14. Procédé de purge selon l’une des revendications 12 ou 13, caractérisé en ce que le seuil déterminé du débit du gaz de purge injecté est 0,76 Pa.m3/s.
PCT/EP2020/054556 2019-03-05 2020-02-20 Pompe à vide turbomoléculaire et procédé de purge WO2020178042A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080017639.4A CN113518863A (zh) 2019-03-05 2020-02-20 涡轮分子真空泵和净化方法
DE112020001075.9T DE112020001075T5 (de) 2019-03-05 2020-02-20 Turbomolekularvakuumpumpe und Spülverfahren
KR1020217027117A KR20210134315A (ko) 2019-03-05 2020-02-20 터보분자 진공 펌프 및 터보분자 진공 펌프의 퍼지 방법
JP2021552554A JP2022522883A (ja) 2019-03-05 2020-02-20 ターボ分子真空ポンプおよびそのパージ方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1902208 2019-03-05
FR1902208A FR3093544B1 (fr) 2019-03-05 2019-03-05 Pompe à vide turbomoléculaire et procédé de purge

Publications (1)

Publication Number Publication Date
WO2020178042A1 true WO2020178042A1 (fr) 2020-09-10

Family

ID=66776629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/054556 WO2020178042A1 (fr) 2019-03-05 2020-02-20 Pompe à vide turbomoléculaire et procédé de purge

Country Status (7)

Country Link
JP (1) JP2022522883A (fr)
KR (1) KR20210134315A (fr)
CN (1) CN113518863A (fr)
DE (1) DE112020001075T5 (fr)
FR (1) FR3093544B1 (fr)
TW (1) TW202040008A (fr)
WO (1) WO2020178042A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113586392A (zh) * 2021-09-10 2021-11-02 北京中科科仪股份有限公司 一种真空泵
JP2023180545A (ja) * 2022-06-09 2023-12-21 エドワーズ株式会社 真空ポンプ、及び真空排気システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985828A1 (fr) * 1998-09-10 2000-03-15 Alcatel Procédé et dispositif pour éviter les dépôts dans une pompe turbomoléculaire à palier magnétique ou gazeux
EP1510697A1 (fr) * 2003-08-29 2005-03-02 Alcatel Pompe à vide
US20180058457A1 (en) * 2015-02-23 2018-03-01 Edwards Limited Gas supply apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143297A (ja) * 1984-08-06 1986-03-01 Osaka Shinku Kiki Seisakusho:Kk 分子ポンプのガスパ−ジ装置
JPH0459393U (fr) * 1990-09-29 1992-05-21
JP3201348B2 (ja) * 1998-05-25 2001-08-20 株式会社島津製作所 ターボ分子ポンプ
JP4156830B2 (ja) * 2001-12-13 2008-09-24 エドワーズ株式会社 真空ポンプ
FR2845737B1 (fr) * 2002-10-11 2005-01-14 Cit Alcatel Pompe turbomoleculaire a jupe composite
JP5190214B2 (ja) * 2007-03-29 2013-04-24 東京エレクトロン株式会社 ターボ分子ポンプ、基板処理装置、及びターボ分子ポンプの堆積物付着抑制方法
JP2009275578A (ja) * 2008-05-14 2009-11-26 Shimadzu Corp 磁気軸受式ターボ分子ポンプおよび真空システム
JP2014037809A (ja) * 2012-08-17 2014-02-27 Shimadzu Corp 真空ポンプおよび真空ポンプの運転方法
JP6735526B2 (ja) * 2013-08-30 2020-08-05 エドワーズ株式会社 真空ポンプ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985828A1 (fr) * 1998-09-10 2000-03-15 Alcatel Procédé et dispositif pour éviter les dépôts dans une pompe turbomoléculaire à palier magnétique ou gazeux
EP1510697A1 (fr) * 2003-08-29 2005-03-02 Alcatel Pompe à vide
US20180058457A1 (en) * 2015-02-23 2018-03-01 Edwards Limited Gas supply apparatus

Also Published As

Publication number Publication date
KR20210134315A (ko) 2021-11-09
JP2022522883A (ja) 2022-04-20
CN113518863A (zh) 2021-10-19
FR3093544B1 (fr) 2021-03-12
FR3093544A1 (fr) 2020-09-11
DE112020001075T5 (de) 2022-01-05
TW202040008A (zh) 2020-11-01

Similar Documents

Publication Publication Date Title
EP2875240B1 (fr) Procede et dispositif de pompage d'une chambre de procedes
EP1505261B1 (fr) Dispositif de contrôle de jeu dans une turbine a gaz
CA2719472C (fr) Dispositif et procede d'equilibrage de pression dans une enceinte palier de turboreacteur
WO2020178042A1 (fr) Pompe à vide turbomoléculaire et procédé de purge
FR2619162A1 (fr) Joint de trajet d'ecoulement sans contact
EP3680451B1 (fr) Rotor, turbine équipée d'un tel rotor et turbomachine équipée d'une telle turbine
WO2009138581A2 (fr) Rotor de compresseur d'une turbomach ine comportant des moyens de prelevement d'air centripete
EP2473741A1 (fr) Compresseur de turbomachine ayant des injecteurs d'air
EP1703084A1 (fr) Dispositif de variation de la section de col d'un distributeur de turbine
EP3325776B1 (fr) Aeronef comportant une turbomachine integree au fuselage arriere a alimentation variable
FR2932550A1 (fr) Appareil pour empecher le carburant d'entrer dans une cavite d'air d'ecran thermique d'un injecteur de carburant
FR2672341A1 (fr) Pompe a carburant a deux etages.
EP3721093A1 (fr) Pompe comprenant un systeme d'equilibrage axial
FR2726329A1 (fr) Appareil pour refouler du carburant d'un reservoir dans un moteur a combustion interne
EP3781791B1 (fr) Distributeur de turbine pour turbomachine, comprenant un système passif de réintroduction de gaz de fuite dans une veine d'écoulement des gaz
FR3134435A1 (fr) Pompe à vide
FR2794817A1 (fr) Compresseur radial avec fenetes en paroi
FR2939852A1 (fr) Etage d'aubes statoriques dans un compresseur
FR3101115A1 (fr) Procédé de chauffage d’un stator et pompe à vide turbomoléculaire ou moléculaire
WO2021008834A1 (fr) Groupe de pompage
FR3068079B1 (fr) Dispositif de joint hydraulique a amorcage ameliore
FR3116310A1 (fr) Pompe à vide turbomoléculaire et procédé de fabrication d’un rotor
WO2023213458A1 (fr) Pompe à vide turbomoléculaire et procédé d'assemblage
EP1348871A1 (fr) Pompe pour faible débit et grande hauteur d'aspiration
FR3025260B1 (fr) Compresseur centrifuge a resistance amelioree

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20705719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552554

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20705719

Country of ref document: EP

Kind code of ref document: A1