WO2020174907A1 - タングステンの回収方法 - Google Patents

タングステンの回収方法 Download PDF

Info

Publication number
WO2020174907A1
WO2020174907A1 PCT/JP2020/001010 JP2020001010W WO2020174907A1 WO 2020174907 A1 WO2020174907 A1 WO 2020174907A1 JP 2020001010 W JP2020001010 W JP 2020001010W WO 2020174907 A1 WO2020174907 A1 WO 2020174907A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten
leaching
silicon
concentration
raw material
Prior art date
Application number
PCT/JP2020/001010
Other languages
English (en)
French (fr)
Inventor
大輔 原口
淳二 阿部
裕樹 永井
Original Assignee
三菱マテリアル株式会社
日本新金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, 日本新金属株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN202080015850.2A priority Critical patent/CN113454248A/zh
Priority to EP20762479.2A priority patent/EP3933058A4/en
Priority to US17/431,296 priority patent/US20220136082A1/en
Publication of WO2020174907A1 publication Critical patent/WO2020174907A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/36Obtaining tungsten
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for efficiently and selectively recovering tungsten from a tungsten raw material containing silicon together with tungsten.
  • tungsten is used not only for cemented carbide tools for cutting applications, but also for various materials such as electrode materials, electronic materials such as wiring materials, and tungsten catalysts, and the demand for tungsten is increasing year by year.
  • the resource of tungsten raw material is limited, and stable supply thereof is an issue.
  • it is required to efficiently recover and effectively utilize tungsten from various materials including tungsten, such as tungsten scrap.
  • Some of the tungsten scrap contains silicon in an amount of 2 to 50 1/ ⁇ %, and in order to effectively recover tungsten from a material with a high silicon content, silicon must be efficiently separated. It is necessary to selectively recover only tungsten.
  • the conventional method has problems that the processing cost is high and the tungsten recovery rate is low.
  • the following method has been conventionally known as a method for selectively recovering only tungsten from a tungsten raw material having a large amount of silicon.
  • Patent Document 2 Baking (oxidizing roasting step), adding an alkaline solution to the roasted product to leaching tungsten (leaching step), and recovering tungsten from the solution.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 1 6-8 9 2 19
  • Patent Document 2 Patent No. 5 3 4 4 1 5 4 Publication
  • Patent Document 3 Patent No. 5 3 4 4 1 7 0 Publication
  • Patent Document 1 utilizes that tungsten carbide (O) does not react with hydrofluoric acid, and leaches silicon with hydrofluoric acid (1 to 1). Further, the method of Patent Document 2 utilizes that ⁇ do not react with the 3_Rei 1-1, and leaching the silicon by 3_Rei 1-1. In each case, silicon in the tungsten raw material was first leached to separate it from the ⁇ -containing residue, Oxidation and roasting of the contained residue The place of the oxidized tungsten ( ⁇ ⁇ / ⁇ 3) is a method of alkaline leaching.
  • tungsten sludge or the like when tungsten sludge or the like is used as the tungsten raw material, since the tungsten sludge or the like contains an oil component such as cutting oil, it is highly viscous and has low handleability and is difficult to be suspended in an aqueous solution. .. Therefore, it is easy to prolong the treatment time by leaching silicon by suspending it in a chemical solution before removing the oil by roasting treatment. In addition, there is a problem in that equipment is likely to be damaged due to adhesion of oil.
  • Patent Document 3 The method of Patent Document 3 is The raw material containing silicon and silicon is first oxidized and roasted to oxidize ⁇ / ⁇ to ⁇ / ⁇ 3, and leaching treatment is performed by 3 0 1 to 1 to leach silicon together with tungsten. Is treated to remove silicon. That is, the leachate to ⁇ 3_Rei 3 1 ⁇ 2 added 2 calcium hydroxide ⁇ 3 ( ⁇ 1-1) to - 1 to 1 2 ⁇ is precipitated, and removal of the silicon which solid-liquid separation to ..
  • a tungsten recovery method is a tungsten recovery method that solves the above problems of conventional methods, and efficiently and selectively recovers tungsten from a tungsten raw material containing silicon together with tungsten. Provide a method.
  • One aspect of the present invention relates to the following tungsten recovery method.
  • a method for recovering tungsten which comprises leaching tungsten while suppressing leaching of silicon by weakly leaching a weak alkaline compound
  • the tungsten sludge is ⁇ ⁇ 3 25 to 35 3 ⁇ 4 ⁇ %, ⁇ ⁇ ⁇ / ⁇ 4 15 to 20%, The method for recovering tungsten as described in the above [4], which is an oxidized roasted product containing.
  • the tungsten recovery method does not need to perform a complicated treatment process such as leaching of silicon and solid-liquid separation to leaching of tungsten and solid-liquid separation, and the treatment process is simple. .. Therefore, processing time can be shortened, processing equipment can be simplified, and productivity can be improved. Furthermore, since the number of solid-liquid separations is small, it is possible to suppress the loss of tungsten by transferring to a residue due to coprecipitation, adsorption, or adhesion of tungsten.
  • the method for recovering tungsten according to one aspect of the present invention does not use a chemical such as hydrogen fluoride, so that the chemical cost can be reduced and the processing operation can be performed safely. ⁇ 02020/174907 5 ⁇ (: 171?2020/001010
  • the method for recovering tungsten according to one aspect of the present invention does not use the chemical agent of the calcium compound as in the conventional method, no extra precipitation is generated, and it is possible to save the trouble such as wastewater treatment and sludge disposal. , Processing costs and environmental burden can be reduced.
  • FIG. 1 is a process step diagram showing an example of a recovery method according to an embodiment of the present invention.
  • FIG. 1 is a process step diagram showing an example of a recovery method according to the first embodiment of the present invention.
  • the tungsten recovery method is a method of selectively leaching and recovering tungsten from a tungsten raw material containing silicon together with tungsten oxide.
  • a tungsten raw material an oxidized roasted product such as tungsten carbide (O) and a tungsten sludge containing silicon can be used.
  • the tungsten sludge containing ⁇ and silicon include a recovery sludge of cutting waste slurry discharged from the process of using a cemented carbide tool.
  • the recovery sludge of cutting wastes in addition to the tungsten carbide-derived carbide tools component ( ⁇ ) or cobalt (hundred), diatomaceous earth which is used as a filter aid during the solid-liquid separation and recovery (3 ⁇ 2) It is mixed.
  • the tungsten recovery method according to this embodiment uses a weak alkaline compound as the leaching agent.
  • Weak alkaline compounds include sodium carbonate and aqueous ammonia. ⁇ 02020/174907 6 ⁇ (: 171-12020/001010
  • sodium phosphate or the like can be used.
  • tungsten oxide ( ⁇ 3) reacts as follows [3], it is leached caused the sodium tungstate (3 2 ⁇ ⁇ ⁇ 4).
  • silicon since it is difficult for silicon to be leached by the weak alkaline compound, tungsten can be leached selectively.
  • the amount of the weak alkaline compound used is 1.
  • tungsten raw material such as an oxidized roasted product of tungsten sludge
  • a weak alkaline compound such as sodium carbonate
  • the solid content of the slurry is 1 ⁇ _ ⁇ 6009 eighth range is good, and more preferably in the range of 300 to 350 9 / 1_.
  • leaching temperature is 1 00 ° ⁇ As well, more preferably 1 50 ° ⁇ ⁇ 200 ° ⁇ .
  • the leaching time is 2.5 to 3.5 hours.
  • the leaching step 301 for example, by using 1.5 to 3.0 times the molar equivalent of sodium carbonate with respect to the amount of tungsten oxide in the raw material, the leaching of tungsten is promoted while suppressing the leaching of silicon.
  • ⁇ / ⁇ 3 leach rate is 90% or more, and the ratio of the leachate's concentration of 3 and ⁇ /0 3 (3 ⁇ [98]/ ⁇ / ⁇ 3 [9/1] ) Is suppressed to less than 0.004, and a leachate can be obtained.
  • the concentration ratio of 3 [9 8]/ ⁇ / ⁇ 3 [ 9 8] in the liquid is less than 0.005, the concentration of 3 [ 3 ] is low enough to prevent reprecipitation of 3 in the leachate. It can be prevented.
  • the concentration ratio of the 3 l[9 8]/ ⁇ /0 3 [ 9 8] concentration of the leachate is 0.00 ⁇ 02020/174907 7 ⁇ (: 171?2020/001010
  • the leachate and the leach residue are solid-liquid separated and collected. Since this leachate contains almost no silicon, tungsten can be efficiently recovered.
  • water is added to the recovered leach residue to perform repulp washing (303) to wash out the leachate adhering to the residue, and this is subjected to solid-liquid separation (304) to collect the after-wash liquid (secondary leachate). it can be recovered tungsten (3 2 ⁇ 4) contained in the washing solution after (secondary leachate). Repurge cleaning (303) of the leach residue may be performed as necessary.
  • the weak alkali leaching suppresses the leaching of silicon and leaches the tungsten. Therefore, most of the silicon is separated as a residue during the leaching of tungsten. Therefore, a tungsten leachate with a very low silicon concentration can be obtained.
  • the tungsten recovery method according to the present embodiment does not need to perform a complicated treatment process such as leaching of silicon and solid-liquid separation to leaching of tungsten and solid-liquid separation, and the treatment process is simple. Therefore, processing time can be shortened, processing equipment can be simplified, and productivity can be improved. Furthermore, since the number of solid-liquid separations is small, it is possible to prevent tungsten from being lost due to coprecipitation, adsorption, adhesion, etc. of tungsten.
  • the tungsten recovery method according to the present embodiment uses a chemical such as hydrogen fluoride. ⁇ 02020/174907 8 ⁇ (: 171?2020/001010
  • the tungsten recovery method according to the present embodiment does not use the chemical agent of the calcium compound as in the conventional method, no extra precipitation is generated, and the wastewater treatment and sludge disposal can be omitted, and the treatment cost can be reduced. And environmental load can be reduced.
  • ⁇ 3 concentration of tungsten material and leach residue was determined in accordance with the measuring method prescribed in Standards ( "1 11/1 8128 tungsten quantification method in the ore).
  • the 3 I concentration was measured by fluorescent X-ray analysis.
  • the 0 3 concentration and 3) concentration in the leachate were measured by the 18 1 8 analysis.
  • the 3 ⁇ /0 3 concentration ratio of the leachate was 3 [9 8]/ ⁇ /0 3 [ 9 8] ratio.
  • the amount of leachate after leaching is The composition is ⁇ /0 3 Concentration 1 57.2 9 8th, 3 Concentration 0.2 1 9 8th, 3 ⁇ / ⁇ 3 Concentration ratio is 0.001 3.
  • the dried leaching residue 6 8.0 9, ⁇ ⁇ / ⁇ 3 concentration of the leaching residue is 6. was 4%. From this result, the 03 leaching rate was 95.1%, and a high leaching rate was obtained.
  • Leaching was carried out in the same manner as in Example 1 under other conditions.
  • the liquid amount of exudate after leaching is 55 composition ⁇ ⁇ / 0 3 concentration 1 57.59 eight, 3 I concentration 0.22 9 eight, 3 ⁇ ⁇ / ⁇ 3 concentration ratio is 0.001 4, 3 ⁇ degree target The ratio of 3 ⁇ / ⁇ / ⁇ 3 was 0.004, which was sufficiently lower.
  • dry leach residue is 66.5 9, ⁇ ⁇ / ⁇ 3 concentration of the leach residue is 3. Met.
  • et al. ⁇ ⁇ / ⁇ 3 leaching rate is 1% 97., to obtain a high leaching rate.
  • Example 2 Example 2
  • the amount of leachate after leaching is The composition is ⁇ /0 3 concentration 1 56.9 9 8 and 3 I concentration 0.239 8 and 3 ⁇ / ⁇ 3 concentration ratio is 0.0015.
  • the concentration was sufficiently lower than the target ratio of 3 / / ⁇ / ⁇ 3 concentration of 0.004.
  • the dried leaching residue is 64.1 9, ⁇ ⁇ / ⁇ 3 concentration of the leaching residue is 2. Met.
  • et al. ⁇ ⁇ / ⁇ 3 leaching rate is 98.5%, to obtain a high leaching rate.
  • the amount of leachate after leaching is Composition ⁇ ⁇ / ⁇ 3 concentration 1 40.7 9 eight, 3 I concentration ⁇ . 1 6 9 eight, 3 ⁇ ⁇ / ⁇ 3 concentration ratio is 0.001 2, 3 ⁇ degree 3 ⁇ ⁇ / ⁇ 3 concentration of target It was well below the ratio of 0.004.
  • dried leach residue 7 1.2 9, ⁇ 3 concentration of the leaching residue is 2 1. Met.
  • Example Leaching was performed as in 1.
  • the liquid amount of exudate after leaching 530,111 Mr composition is ⁇ 3 concentration 1 65.2 9 eight, dried leach residue 68.6 9, ⁇ ⁇ / ⁇ 3 concentration of the leaching residue is 2. Met.
  • the leachate concentration of 3 was 42.998, and a large amount of silicon was leached.
  • the concentration ratio of 3 ⁇ / ⁇ / ⁇ 3 was as high as 0.26, which was not suitable for selectively leaching tungsten by suppressing silicon leaching.
  • the present invention provides a method for efficiently recovering tungsten from a tungsten raw material containing silicon together with tungsten.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

酸化タングステンと共にケイ素を含有するタングステン原料について、弱アルカリ化合物を用いることによって、ケイ素の浸出を抑制しながらタングステンを浸出することを特徴とし、タングステン浸出時にケイ素の大部分を残渣として分離し、ケイ素濃度が極めて低いタングステン浸出液を回収するタングステンの回収方法。

Description

\¥02020/174907 1 卩(:17 2020/001010
明 細 書
発明の名称 : タングステンの回収方法
技術分野
[0001 ] 本発明は、 タングステンと共にケイ素を含有するタングステン原料から効 率よくタングステンを選択的に回収する方法に関する。
本願は、 2 0 1 9年 2月 2 5日に日本に出願された特願 2 0 1 9 - 0 3 2 1 6 7号について優先権を主張し、 その内容をここに援用する。
背景技術
[0002] 近年、 タングステンは切削用途向けの超硬工具だけでなく、 電極材料、 配 線材などの電子材料やタングステン触媒など様々な材料として用いられてお り、 その需要は年々高まってきている。 一方、 タングステン原料の資源は限 られており、 その安定な供給が課題となっている。 このような背景から、 夕 ングステンスクラップなどのようにタングステンを含む様々な材料からタン グステンを効率よく回収して有効に利用することが求められている。
[0003] タングステンスクラップの中には、 ケイ素を 2〜 5〇1/^%程度含むものが あり、 ケイ素含有量の多い材料からタングステンを有効に回収するには、 ケ イ素を効率よく分離してタングステンのみを選択的に回収する必要がある。 しかしながら、 従来の方法では処理コストが嵩み、 またタングステン回収率 も低くなるという問題があった。
[0004] ケイ素量の多いタングステン原料から、 タングステンのみを選択的に回収 する方法として以下の方法が従来知られている。
( 3 ) タングステン成分とケイ酸成分を含む混合物とフッ酸含有液とを接触 させてケイ酸成分を溶出させる工程と、 該溶出工程の残渣に含まれる不溶の タングステン含有物からタングステンを回収する工程とを有するタングステ ンの回収方法。 (特開 2 0 1 6 - 8 9 2 1 9号公報:特許文献 1 )
( 13 ) タングステン成分およびシリカ成分を含む原料にアルカリ溶液を加え てシリカ成分を浸出し (シリカ浸出工程) 、 固液分離した浸出残渣を酸化焙 \¥02020/174907 2 卩(:171?2020/001010
焼し (酸化焙焼工程) 、 該焙焼物にアルカリ溶液を加えてタングステンを浸 出させ ( 浸出工程) 、 該溶液からタングステンを回収する方法。 (特許第 5 3 4 4 1 5 4号公報:特許文献 2)
(〇) タングステン成分およびシリカ成分を含む原料を酸化焙焼し、 該焙焼 物にアルカリ溶液を加えてタングステン成分、 シリカ成分を浸出させ、 タン グステン成分およびシリカ成分を含む浸出液に水酸化カルシウムを加えて液 中のシリカ成分を沈殿化し、 これを固液分離してタングステン成分の浸出液 を得る工程を有するタングステンの回収方法。 (特許第 5 3 4 4 1 7 0号公 報:特許文献 3)
先行技術文献
特許文献
[0005] 特許文献 1 :特開 2 0 1 6 - 8 9 2 1 9号公報
特許文献 2 :特許第 5 3 4 4 1 5 4号公報
特許文献 3 :特許第 5 3 4 4 1 7 0号公報
発明の概要
発明が解決しようとする課題
[0006] 特許文献 1の方法は炭化タングステン( 〇)がフッ酸と反応しないことを 利用し、 フッ酸(1~1 )によってケイ素を浸出している。 また、 特許文献 2の 方法は 〇が 3〇 1~1と反応しないことを利用し、 3〇 1~1によってケイ素 を浸出している。 何れも、 最初にタングステン原料中のケイ素を浸出して 〇含有残渣と分離し、
Figure imgf000004_0002
含有残渣を酸化焙焼して
Figure imgf000004_0001
を酸化タングス テン(\^/〇3)に変えてアルカリ浸出する方法である。 これらの方法では原料中 のケイ素を前処理的に除去するため手順としては合理的であるが、 プロセス 全体として結果的にケイ素浸出と 〇 3浸出の 2回の浸出工程と固液分離を繰 り返す。 このため、 処理工程が煩雑になり、 処理時間の長期化や処理設備の 大型化を招き、 生産性が低下しやすい。 また、 ケイ素浸出工程において、 ケ イ素と ! ! またはケイ素と 3〇 ! !を含む廃水が発生するため、 廃水処理の \¥02020/174907 3 卩(:171?2020/001010
対策が必要になる。
[0007] さらに、 タングステン原料として、 タングステンスラツジなどを用いる場 合、 タングステンスラツジなどには切削油などの油分が含まれているので、 高粘性でハンドリング性が低く、 水溶液にも懸濁し難い。 そのため焙焼処理 などによって油分を除去する前に薬液に懸濁させることによってケイ素浸出 を行うことは、 処理時間が長期化しやすい。 また油分の付着などによる設備 への損傷も発生しやすいなどの問題も招く。
[0008] 特許文献 3の方法は、
Figure imgf000005_0001
とケイ素を含有する原料を最初に酸化焙焼して \^/〇を\^/〇3に酸化させ、 3〇 1~1によって浸出処理を施してタングステンと 共にケイ素を浸出させるが、 この浸出液にケイ素を除去する処理を施してい る。 すなわち、 浸出液に水酸化カルシウム〇 3(〇 1~1)2を添加して〇 3〇 3 1 〇2 - 1~1 2〇を沈殿させ、 これを固液分離してケイ素を除去している。
[0009] 特許文献 3の方法では最初に原料を酸化焙焼することによって油分が分解 されるため油分に関わる諸問題は解消されている。 しかしながら、
Figure imgf000005_0002
〇 1~1)2添加による沈殿処理の際に、 浸出液中のタングステンの一部がタング ステン酸カルシウム(〇
Figure imgf000005_0003
として沈殿し、 0 3 0 3 I 0 2 1~1 2〇沈殿 中にタングステンが移行して失われてしまうという問題がある。 さらに、 こ れらの沈殿には浸出液が必然的に付着するため、 該浸出液に含まれるタング ステンの一部がこれらの沈殿に付着してやはりタングステンの損失になる。 また、 これらの沈殿については埋立処分など別途処理をする必要があり、 追 加コストや環境負荷などを招く原因になる。 課題を解決するための手段
[0010] 本発明の一態様に係るタングステン回収方法は、 従来方法の上記問題を解 決したタングステン回収方法であって、 タングステンと共にケイ素を含有す るタングステン原料から効率よくタングステンを選択的に回収する方法を提 供する。
[001 1 ] 本発明の一態様は以下のタングステン回収方法に関する。
〔1〕 酸化タングステンと共にケイ素を含有するタングステン原料について \¥02020/174907 4 卩(:17 2020/001010
、 弱アルカリ化合物を用いた弱アルカリ浸出によって、 ケイ素の浸出を抑制 しながらタングステンを浸出することを特徴とするタングステンの回収方法
〔2〕 弱アルカリ化合物が炭酸ナトリウム、 アンモニア水、 またはリン酸ナ トリウムである上記 [1] に記載するタングステンの回収方法。
〔3〕 原料中の酸化タングステン量に対して、 1 . 5倍〜 3 . 0倍モル当量の 弱アルカリ化合物をタングステン原料に加えてタングステンを浸出する上記 [1] または上記 [2] に記載するタングステンの回収方法。
〔4〕 タングステン原料が、 炭化タングステンおよびケイ素を含むタングス テンスラツジの酸化焙焼物である上記 [1] 〜上記 [3] の何れかに記載す るタングステンの回収方法。
〔5〕 前記タングステンスラツジが、 \^〇3 2 5 ~ 3 5 ¾^%、 〇〇\^/〇4 1 5 〜 2 0 %、
Figure imgf000006_0001
を含む酸化焙焼物である上記 [4] に記 載するタングステンの回収方法。
発明の効果
[0012] 本発明の一態様に係るタングステン回収方法では、 弱アルカリ浸出によっ て、 ケイ素の浸出を抑制してタングステンを浸出するので、 タングステン浸 出時にケイ素の大部分が残渣として分離される。 従って、 ケイ素濃度が極め て低いタングステン浸出液を得ることができる。
また本発明の一態様に係るタングステン回収方法は、 ケイ素の浸出および 固液分離からタングステンの浸出および固液分離をするといったような複雑 な処理工程を実施する必要が無く、 処理工程がシンプルである。 そのため処 理時間を短縮や処理設備の簡略化をすることができ、 また生産性を高めるこ とができる。 さらに固液分離の回数が少ないことから、 タングステンの共沈 や吸着、 付着などによってタングステンが残渣に移行して損失してしまうこ とを抑制することができる。
[0013] 本発明の一態様に係るタングステン回収方法は、 フツ化水素などの薬剤を 用いないので薬剤コストを低減することができ、 処理操作を安全に行うこと \¥02020/174907 5 卩(:171?2020/001010
ができる。 さらに、 本発明の一態様に係るタングステン回収方法は、 従来方 法のようなカルシウム化合物の薬剤を使用しないので、 余分な沈殿が発生せ ず、 廃水処理や汚泥処分などの手間を省くことができ、 処理コストや環境負 荷などを軽減することができる。
図面の簡単な説明
[0014] [図 1 ]本発明の実施形態に係る回収方法の一例を示す処理工程図である。
発明を実施するための形態
[0015] 次に、 本発明の実施形態を図面に基づいて説明する。
図 1は、 本発明の第 1実施形態に係る回収方法の一例を示す処理工程図で ある。
[0016] <ケイ素含有タングステン原料 >
本実施形態に係るタングステン回収方法は、 酸化タングステンと共にケイ 素を含有するタングステン原料からタングステンを選択的に浸出して回収す る方法である。 上記タングステン原料としては、 炭化タングステン( 〇)お よびケイ素を含むタングステンスラツジなどの酸化焙焼物などを用いること ができる。 〇およびケイ素を含むタングステンスラツジとしては、 例えば 超硬工具の使用工程から排出される切削屑スラリーの回収スラツジなどが該 当する。 切削屑の回収スラツジには、 超硬工具成分由来の炭化タングステン( 〇)やコバルト(〇〇)に加え、 固液分離回収時の濾過助剤として使用されて いる珪藻土(3 丨 〇2)が混入している。
[0017] 一般に、 上記回収スラツジに含まれている
Figure imgf000007_0001
や(3〇は、 酸化焙焼すると 、 次式 [ 1 ] [ 2 ]のように反応し、 概ね \^/〇3 2 5〜 3 5(/^%、 〇〇\^/〇4 1 5 〜 2 0 «^%、
Figure imgf000007_0002
を含む焙焼物になる。
\^/〇 + 5 / 2〇2 ® \^/〇3 +〇〇2 [ 1 ]
\/\/〇 +〇0 + 3〇2 ® 〇〇\/\/〇4 +〇〇2 [ 2 ]
[0018] <弱アルカリ浸出工程 3 0 1 >
本実施形態に係るタングステン回収方法は、 浸出薬剤として弱アルカリ化 合物を用いる。 弱アルカリ化合物としては、 炭酸ナトリウム、 アンモニア水 \¥02020/174907 6 卩(:171?2020/001010
、 またはリン酸ナトリウムなどを用いることができる。 炭酸ナトリウムやリ ン酸ナトリウムなど用いることによって、 酸化タングステン( 〇 3)は次式 [ 3] のように反応し、 タングステン酸ナトリウム( 32\^〇4)を生じて浸出 される。 一方、 弱アルカリ化合物によってケイ素は浸出され難いので、 タン グステンを選択的に浸出することができる。
\^/〇33) + 32〇〇3 (a q) +1~12〇 ® 32\^/〇4 (a q) +1~1 2〇〇3 (8 ) [3]
[0019] 弱アルカリ化合物の使用量は、 原料中の酸化タングステン量に対して、 1.
5倍〜 3.0倍モル当量が好ましく、 2.0倍〜 2.5倍モル当量がより好まし い。 この使用量が 〇 3量に対して 3.5倍モル当量以上になるとケイ素の浸 出量が増えるので、 ケイ素の浸出を抑制するには、 弱アルカリ化合物の使用 量は上記範囲 ( 1.5倍〜 3.0倍モル当量) が好ましい。
[0020] 上記タングステン原料 (タングステンスラツジの酸化焙焼物など) に水を 加えてスラリーにし、 このスラリーに炭酸ナトリウムなどの弱アルカリ化合 物を加えて浸出を行うとよい。 該スラリーの固形分濃度は 1 〇〜 6009八の 範囲が良く、 300〜 3509/1_の範囲がより好ましい。 スラリー濃度が上記 範囲より低いと薬剤費や処理量などの経済性が低下し、 スラリー濃度が上記 範囲より高いと浸出時間が長くなる。
[0021] 浸出温度は 1 00 °〇以上がよく、 1 50 °〇~ 200 °〇がより好ましい。 浸 出時間は 2.5時間〜 3.5時間程度で良い。
[0022] 上記浸出工程 301 において、 例えば、 原料中の酸化タングステン量に対 して 1.5倍〜 3.0倍モル当量の炭酸ナトリウムを用いることにより、 ケイ 素の浸出を抑制しつつ、 タングステンの浸出を促すことができ、 \^/〇3浸出率 90%以上であって、 浸出液の 3 丨濃度と \^/03濃度の比 (3 丨 [9八]/ \^/〇3[ 9/1]) を〇.〇 04未満に抑制した浸出液を得ることができる。
[0023] 一般に液中の 3 丨 [9八]/ \^/〇39八]濃度比が 0.005未満であれば、 3 丨 濃度が十分に低いので浸出液中における 3 丨の再沈殿化を防止することがで きる。 本発明の回収方法では浸出液の 3 丨 [9八]/ \^/039八]濃度比を 0.00 \¥02020/174907 7 卩(:171?2020/001010
4未満に抑制することができるので、 3 丨の再沈殿が生じない。
[0024] 3〇1~1を用いたアルカリ浸出を行うと、 次式 [4 ][ 5]に示すように、 酸 化タングステン( 〇 3)と共にケイ素が多く浸出されるので、 タングステンを 選択的に浸出することができない。
\^/〇33) +2 3〇1~1 (a q) ® 32\^/〇4 (a q) + 1~12〇 - - [4]
3 1 〇2 (3) +2 3〇1~1 (39) ® 323 1 〇 3 (3 ) + 1~12
〇 [ 5 ]
[0025] <回収工程 302>
回収工程 302では、 浸出液と浸出残渣を固液分離して回収する。 この浸 出液にはケイ素が殆ど含まれていないので、 効率よくタングステンを回収す ることができる。 一方、 回収した浸出残渣に水を加えてリパルプ洗浄 (30 3) して残渣に付着している浸出液を洗い出し、 これを固液分離 (304) して洗浄後液 (2次浸出液) を回収し、 該洗浄後液 (2次浸出液) に含まれ ているタングステン( 324)を回収することができる。 浸出残渣のリパ ルプ洗浄 (303) は必要に応じて行えば良い。
[0026] 本実施形態に係るタングステン回収方法では、 弱アルカリ浸出によって、 ケイ素の浸出を抑制してタングステンを浸出するので、 タングステン浸出時 にケイ素の大部分が残渣として分離される。 従って、 ケイ素濃度が極めて低 いタングステン浸出液を得ることができる。
また本実施形態に係るタングステン回収方法は、 ケイ素の浸出および固液 分離からタングステンの浸出および固液分離をするといったような複雑な処 理工程を実施する必要が無く、 処理工程がシンプルである。 そのため処理時 間を短縮や処理設備の簡略化をすることができ、 また生産性を高めることが できる。 さらに固液分離の回数が少ないことから、 タングステンの共沈や吸 着、 付着などによってタングステンが残渣に移行して損失してしまうことを 抑制することができる。
[0027] 本実施形態に係るタングステン回収方法は、 フッ化水素などの薬剤を用い \¥02020/174907 8 卩(:171?2020/001010
ないので薬剤コストを低減することができ、 処理操作を安全に行うことがで きる。 さらに、 本実施形態に係るタングステン回収方法は、 従来方法のよう なカルシウム化合物の薬剤を使用しないので、 余分な沈殿が発生せず、 廃水 処理や汚泥処分などの手間を省くことができ、 処理コストや環境負荷などを 軽減することができる。
実施例
[0028] 以下、 本発明に係る回収方法の実施例を比較例と共に示す。
タングステン原料および浸出残渣中の 〇 3濃度は規格に定める測定方法 ( 」1 11/1 8128 鉱石中のタングステン定量方法) に則って測定した。 また、 3 I 濃度は蛍光エックス線分析によって測定した。 浸出液中の 〇 3濃度および 3 )濃度は丨 〇 一八巳 3分析によって測定した。
ケイ素含有タングステン原料として、 \^/〇3濃度 59.
Figure imgf000010_0001
および 3 丨濃 度 1 4.7 %を含む酸化焙焼物を用いた。
3浸出率は、 \^/03浸出率[%]=浸出液中の\^039]/ (浸出液中の 〇 3[9] +浸出残渣中の \^〇39]) の式によって算出した。
浸出液の 3 \^/03濃度比は 3 丨 [9八]/ \^/039八]比とした。
[0029] 〔実施例 1〕
ケイ素含有タングステン原料 (上記酸化焙焼物) 1 509をオートクレー ブ容器に仕込み、 水 500111を加えてスラリー濃度 3009八にした。 これに 炭酸ナトリウム 81.79 ( [1\132〇〇 3] / [ 〇 モル比 =2.0倍当量) を添加し、 200°〇に加熱して 1時間保持して 〇 3を浸出した。
浸出後の浸出液の液量は
Figure imgf000010_0002
組成は \^/03濃度 1 57.29八、 3 丨濃 度 0.2 19八、 3 \^/〇3濃度比は 0.001 3であり、
Figure imgf000010_0003
は目標の 3 \^〇3濃度比 0.004より十分に低かった。 また、 乾燥した浸出残渣は 6 8. 09、 浸出残渣中の \^/〇3濃度は 6. 4 %であった。 この結果から 〇 3浸出率は 95. 1 %であり、 高い浸出率を得た。
[0030] 〔実施例 2〕
炭酸ナトリウム添加量を 1 02.29 ([N 320〇 3]/[ 〇 3]モル比 = 2. \¥02020/174907 9 卩(:171?2020/001010
5倍当量) とし、 その他の条件は実施例 1 と同様にして浸出を行った。 その 結果、 浸出後の浸出液の液量は 55 組成は \^/03濃度 1 57.59八、 3 I濃度 0.229八、 3 \^/〇3濃度比は 0.001 4であり、 3 丨濃度は目標 の 3 丨 /\^/〇3濃度比 0.004よりも十分に低かった。 また、 乾燥した浸出残 渣は 66. 59、 浸出残渣中の \^/〇3濃度は 3.
Figure imgf000011_0001
であった。 この結果か ら\^/〇3浸出率は 97. 1 %であり、 高い浸出率を得た。
[0031] 〔実施例 3〕
炭酸ナトリウム添加量を 1 22.69 ([N 320〇 3]/[ 〇 3]モル比 = 3.
〇倍当量) とし、 その他の条件は実施例 1 と同様にして浸出を行った。 その 結果、 浸出後の浸出液の液量は
Figure imgf000011_0002
組成は \^/03濃度 1 56.99八、 3 I濃度 0.239八、 3 \^/〇3濃度比は 0.001 5であり、
Figure imgf000011_0003
濃度は目標 の 3 丨 /\^/〇3濃度比 0.004よりも十分に低かった。 また、 乾燥した浸出残 渣は 64. 1 9、 浸出残渣中の \^/〇3濃度は 2.
Figure imgf000011_0004
であった。 この結果か ら\^/〇3浸出率は98.5%であり、 高い浸出率を得た。
[0032] 〔実施例 4〕
炭酸ナトリウム添加量を 57.29 ([ 32〇〇3]/[\^/〇3]モル比= 1.4 倍当量) とし、 その他の条件は実施例 1 と同様にして浸出を行った。 その結 果、 浸出後の浸出液の液量は
Figure imgf000011_0005
組成は \^/〇3濃度 1 40.79八、 3 I 濃度〇. 1 69八、 3 \^/〇3濃度比は 0.001 2であり、 3 丨濃度は目標の 3 \^/〇3濃度比 0.004より十分に低かった。 しかし、 乾燥した浸出残渣 は 7 1. 29、 浸出残渣中の 〇 3濃度は 2 1.
Figure imgf000011_0006
であった。 この結果か ら\^/〇3浸出率は 83.2%であり、 〇 3浸出率を 95%以上に高めるには、 [ 32〇〇3]/[\^/〇3]モル比は1.5倍当量以上が好ましいことが確認された
[0033] 〔実施例 5〕
炭酸ナトリウムに代えてリン酸ナトリウムを用い、 その添加量を 1 58.0 9 ([!\! 32〇〇3]/[\^/〇3]=2.5倍当量) とし、 その他の条件は実施例 1 と 同様にして浸出を彳了った。 その結果、 浸出後の浸出液の液量は 580(111_、 組 \¥02020/174907 10 卩(:171?2020/001010
成は \^/〇3濃度 1 49.69八、 3 丨濃度 0.209八、 3 \^/〇3濃度比は〇. 001 3であり、 3 I濃度は目標の 3 I /\^/〇3濃度比〇.004よりも十分に 低かった。 また、 乾燥した浸出残渣は 66. 99、 浸出残渣中の \^/〇3濃度は 4. 11/^%であった。 この結果から 〇 3浸出率は 96.9%であり、 高い浸 出率を得た。
[0034] 〔比較例 1〕
炭酸ナトリウムに代えて水酸化ナトリウムを用い、 その添加量を 6 1.79 ([ 32〇〇3]/[\^/〇3]モル比 =4.0倍当量) とし、 その他の条件について は実施例 1 と同様にして浸出を行った。 その結果、 浸出後の浸出液の液量は 530111し 組成は 〇 3濃度 1 65.29八であり、 乾燥した浸出残渣は 68. 69、 浸出残渣中の \^/〇3濃度は 2.
Figure imgf000012_0001
であった。 この結果から \^/〇3浸 出率は 98. 1 %であった。 しかし、 浸出液の 3 丨濃度は 42.99八であり、 多量のケイ素が浸出された。 この結果、 3 丨 /\^/〇3濃度比は 0.26と高くな り、 ケイ素浸出を抑制してタングステンを選択的に浸出するには不適切であ つた。
[0035]
[表 1 ]
Figure imgf000013_0001
産業上の利用可能性
[0036] 本発明は、 タングステンと共にケイ素を含有するタングステン原料から効 率よくタングステンを選択的に回収する方法を提供する。

Claims

\¥0 2020/174907 12 卩(:17 2020 /001010 請求の範囲
[請求項 1 ] 酸化タングステンと共にケイ素を含有するタングステン原料につい て、 弱アルカリ化合物を用いた弱アルカリ浸出によって、 ケイ素の浸 出を抑制しながらタングステンを浸出することを特徴とするタングス テンの回収方法。
[請求項 2] 弱アルカリ化合物が炭酸ナトリウム、 アンモニア水、 またはリン酸 ナトリウムである請求項 1 に記載するタングステンの回収方法。
[請求項 3] 原料中の酸化タングステン量に対して、 1 . 5倍〜 3 . 0倍モル当量 の弱アルカリ化合物をタングステン原料に加えてタングステンを浸出 する請求項 1 または請求項 2に記載するタングステンの回収方法。
[請求項 4] タングステン原料が、 炭化タングステンおよびケイ素を含むタング ステンスラッジの酸化焙焼物である請求項 1〜請求項 3の何れかに記 載するタングステンの回収方法。
[請求項 5] 前記タングステンスラツジが、 \/\/〇3 2 5〜 3 5 ¾\/†%、 〇〇\/\/〇 4
1 5〜 2 0 «^%、
Figure imgf000014_0001
を含む酸化焙焼物である請 求項 4に記載するタングステンの回収方法。
PCT/JP2020/001010 2019-02-25 2020-01-15 タングステンの回収方法 WO2020174907A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080015850.2A CN113454248A (zh) 2019-02-25 2020-01-15 钨的回收方法
EP20762479.2A EP3933058A4 (en) 2019-02-25 2020-01-15 PROCESS FOR RECOVERING TUNGSTEN
US17/431,296 US20220136082A1 (en) 2019-02-25 2020-01-15 Tungsten recovery method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-032167 2019-02-25
JP2019032167A JP7206009B2 (ja) 2019-02-25 2019-02-25 タングステンの回収方法

Publications (1)

Publication Number Publication Date
WO2020174907A1 true WO2020174907A1 (ja) 2020-09-03

Family

ID=72239292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001010 WO2020174907A1 (ja) 2019-02-25 2020-01-15 タングステンの回収方法

Country Status (5)

Country Link
US (1) US20220136082A1 (ja)
EP (1) EP3933058A4 (ja)
JP (1) JP7206009B2 (ja)
CN (1) CN113454248A (ja)
WO (1) WO2020174907A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921649B (zh) * 2022-03-22 2023-11-10 湖北绿钨资源循环有限公司 一种回收含钨废料中可溶性钨酸盐的方法
CN115072927B (zh) * 2022-08-01 2023-06-09 中南大学 一种从钨冶炼废水中回收钨的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839160B1 (ja) * 1969-03-17 1973-11-21
JPS5344170B2 (ja) 1974-12-11 1978-11-27
JPS5344154B2 (ja) 1973-12-28 1978-11-27
US4351808A (en) * 1981-01-19 1982-09-28 Amax Inc. Autoclave soda digestion of scheelite concentrates
JP2004002927A (ja) * 2002-05-31 2004-01-08 Mitsui Mining & Smelting Co Ltd 超硬質合金スクラップの処理方法
JP2011047013A (ja) * 2009-08-28 2011-03-10 Mitsubishi Materials Corp タングステンの回収処理方法
JP2013159788A (ja) * 2012-02-01 2013-08-19 Jx Nippon Mining & Metals Corp 酸化タングステンの製造方法及びそれを用いたタングステンの製造方法
CN104372169A (zh) * 2014-12-04 2015-02-25 中南大学 一种从高钡钨矿中提取钨的方法
JP2016089219A (ja) 2014-11-05 2016-05-23 日清鋼業株式会社 タングステンの回収方法
JP2019032167A (ja) 2017-08-04 2019-02-28 日置電機株式会社 波形表示装置および波形表示用プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320095A (en) * 1981-01-19 1982-03-16 Amax Inc. Autoclave soda digestion of refractory scheelite concentrates
US4325919A (en) * 1981-01-19 1982-04-20 Amax Inc. Autoclave soda digestion of scheelite concentrates with feedback control
US4508701A (en) * 1983-03-31 1985-04-02 Union Carbide Corporation Extraction of tungsten from spent or scrap catalyst materials
EP2450312A1 (en) * 2010-11-03 2012-05-09 Montanuniversität Leoben Recovery of tungsten from waste material by ammonium leaching
RU2504592C1 (ru) * 2012-11-19 2014-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ получения вольфрамата натрия
CN108754123B (zh) * 2018-06-22 2019-10-15 中南大学 一种处理白钨矿的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839160B1 (ja) * 1969-03-17 1973-11-21
JPS5344154B2 (ja) 1973-12-28 1978-11-27
JPS5344170B2 (ja) 1974-12-11 1978-11-27
US4351808A (en) * 1981-01-19 1982-09-28 Amax Inc. Autoclave soda digestion of scheelite concentrates
JP2004002927A (ja) * 2002-05-31 2004-01-08 Mitsui Mining & Smelting Co Ltd 超硬質合金スクラップの処理方法
JP2011047013A (ja) * 2009-08-28 2011-03-10 Mitsubishi Materials Corp タングステンの回収処理方法
JP2013159788A (ja) * 2012-02-01 2013-08-19 Jx Nippon Mining & Metals Corp 酸化タングステンの製造方法及びそれを用いたタングステンの製造方法
JP2016089219A (ja) 2014-11-05 2016-05-23 日清鋼業株式会社 タングステンの回収方法
CN104372169A (zh) * 2014-12-04 2015-02-25 中南大学 一种从高钡钨矿中提取钨的方法
JP2019032167A (ja) 2017-08-04 2019-02-28 日置電機株式会社 波形表示装置および波形表示用プログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SATOSHI HATTORI, NORI SAITO, TAKASHI OGI, TOSHIYUKI NOMURA, YASUHIRO NISHI, RYOJI ICHIMURA: "Z105: Hydrothermal leaching of tungsten from low-grade scheelite by alkaline water solution", LECTURE ABSTRACTS OF FALL ANNUAL RESEARCH PRESENTATION OF THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN, vol. 41, 30 November 2008 (2008-11-30) - 18 September 2009 (2009-09-18), Tokyo, pages 1064, XP009529719 *
See also references of EP3933058A4

Also Published As

Publication number Publication date
US20220136082A1 (en) 2022-05-05
CN113454248A (zh) 2021-09-28
EP3933058A4 (en) 2023-03-22
EP3933058A1 (en) 2022-01-05
JP2020132989A (ja) 2020-08-31
JP7206009B2 (ja) 2023-01-17

Similar Documents

Publication Publication Date Title
JP5893145B2 (ja) 酸化亜鉛の精製方法
JP5138737B2 (ja) 廃酸石膏の製造方法
WO2020174907A1 (ja) タングステンの回収方法
Wang et al. Metal mobility and toxicity of zinc hydrometallurgical residues
JP2013139595A (ja) 鉛製錬由来の銅含有不純物塊からの有価物の回収方法
JP4826532B2 (ja) 溶融飛灰の処理方法
KR20200098539A (ko) 폐수의 처리 방법
JP2016180151A (ja) スカンジウムの回収方法
JP4980399B2 (ja) 銅転炉ダストの処理方法
JP2012197492A (ja) In含有排水泥の浸出液からのCu、Co及びNiの回収方法
WO2017110572A1 (ja) 硫化剤の除去方法
JP5821775B2 (ja) 銅製錬煙灰の処理方法
JP6015824B2 (ja) 銅製錬煙灰の処理方法
JP2020132988A (ja) タングステンの回収方法
RU2180927C2 (ru) Способы извлечения ценных металлов из тантал-ниобиевых руд, содержащих нерастворимые фториды
JP2007056367A (ja) ブラスト粒子からインジウムを回収する方法
WO2014096548A1 (en) Method and arrangement for removing fluoride from sulfate solutions
JP2003236503A (ja) 鉛分を含む廃棄物の処理方法
JP7415226B2 (ja) 金属カドミウムの製造方法
JP5854065B2 (ja) スカンジウム回収方法
JP2018159109A (ja) 金属酸化鉱の製錬方法
JP2022136747A (ja) ハロゲン除去方法
JPH08245218A (ja) レアアースメタルの分離方法
JP2021001392A (ja) カドミウム溶液の製造方法
JP2011126766A (ja) タングステン酸アンモニウム溶液の精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020762479

Country of ref document: EP

Effective date: 20210927