WO2020174845A1 - 成膜装置 - Google Patents

成膜装置 Download PDF

Info

Publication number
WO2020174845A1
WO2020174845A1 PCT/JP2019/050210 JP2019050210W WO2020174845A1 WO 2020174845 A1 WO2020174845 A1 WO 2020174845A1 JP 2019050210 W JP2019050210 W JP 2019050210W WO 2020174845 A1 WO2020174845 A1 WO 2020174845A1
Authority
WO
WIPO (PCT)
Prior art keywords
film forming
chamber
gas
shower plate
forming apparatus
Prior art date
Application number
PCT/JP2019/050210
Other languages
English (en)
French (fr)
Inventor
裕子 加藤
貴浩 矢島
文生 中村
喜信 植
祥吾 小倉
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020217013051A priority Critical patent/KR20210060614A/ko
Priority to JP2020536293A priority patent/JP6959454B2/ja
Priority to US17/287,774 priority patent/US20210395880A1/en
Priority to CN201980075217.XA priority patent/CN113039308A/zh
Publication of WO2020174845A1 publication Critical patent/WO2020174845A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45559Diffusion of reactive gas to substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating

Definitions

  • the present invention relates to a film forming apparatus for forming a resin layer made of an energy ray curable resin.
  • an energy ray curable resin such as an ultraviolet curable resin to form a resin layer on a substrate
  • the following two steps are typically performed. That is, a step of supporting a substrate by a cooling stage and supplying a source gas containing the resin onto the substrate supported by the cooling stage, and irradiating light such as ultraviolet rays onto the substrate to form a cured resin layer on the substrate. And the step of forming.
  • Patent Document 1 describes a film forming apparatus having a gas supply unit including a pipe for discharging a raw material gas.
  • an object of the present invention is to provide a film forming apparatus capable of improving film forming quality and productivity.
  • a film forming apparatus includes a chamber, a stage, a light source unit, a gas supply unit, and a heating unit.
  • the chamber has a film forming chamber.
  • the stage is arranged in the film forming chamber and supports the substrate.
  • the light source unit has an irradiation source for irradiating energy rays, and is arranged so as to face the film forming chamber.
  • the gas supply unit has a shower plate and a gas diffusion chamber.
  • the shower plate includes a first surface facing the light source unit, a second surface facing the stage, and a plurality of through holes penetrating the first surface and the second surface. The energy beam is transmitted.
  • the gas diffusion chamber diffuses a raw material gas facing the first surface and containing an energy ray curable resin which is cured by being irradiated with the energy ray.
  • the gas supply unit supplies the raw material gas from the gas diffusion chamber to the film forming chamber.
  • the heating unit heats the first surface of the shower plate.
  • the gas supply unit since the gas supply unit has the shower plate and the gas diffusion chamber, the source gas whose pressure is increased by the gas diffusion chamber is supplied to the film formation chamber from the plurality of through holes of the shower plate. Thereby, the flow rate of the source gas supplied to the film forming chamber can be made uniform, and the film thickness distribution can be made uniform. Therefore, the film forming quality can be improved. Further, the first surface of the shower plate on the gas diffusion chamber side is heated by the heating unit. As a result, it is possible to prevent the energy ray curable resin from adhering to the inner wall of the gas diffusion chamber and the through hole, suppress the decrease in the energy ray transmittance and the clogging of the through hole, and improve the productivity.
  • the heating unit may have a transparent conductive film formed on the first surface of the shower plate. As a result, the first surface is heated by resistance heating by the transparent conductive film. Therefore, it is possible to ensure the transparency of energy rays in the shower plate and facilitate maintenance of the heating unit.
  • the transparent conductive film may include ITO. This allows the transparent conductive film to have sufficient energy ray transparency.
  • the transparent conductive film may have a plurality of holes communicating with the plurality of through holes. This makes it possible to supply the source gas even when many regions of the first surface are covered with the transparent conductive film.
  • the shower plate may be made of quartz glass. As a result, it is possible to sufficiently ensure the transparency of the shower plate for energy rays.
  • the chamber is An opening for opening the film forming chamber toward the light source unit, And a top plate that closes the opening and transmits the energy rays
  • the gas diffusion chamber may be configured as a space sandwiched between the top plate and the shower plate.
  • FIG. 1 It is a schematic sectional drawing which shows the film-forming apparatus which concerns on one Embodiment of this invention. It is a schematic sectional drawing which expands and shows the shower plate and transparent conductive film shown in FIG. It is a schematic plan view which shows the said transparent conductive film. It is a schematic sectional drawing which shows the film-forming apparatus which concerns on the comparative example of this embodiment. It is a principal part sectional drawing of the film-forming apparatus which concerns on other embodiment of this invention. It is a principal part top view of the film-forming apparatus which concerns on other embodiment of this invention. It is a principal part top view of the film-forming apparatus which concerns on other embodiment of this invention. It is a principal part sectional drawing of the film-forming apparatus which concerns on other embodiment of this invention.
  • FIG. 1 is a schematic sectional view showing a film forming apparatus 100 according to an embodiment of the present invention.
  • the X-axis direction and the Y-axis direction indicate the horizontal directions orthogonal to each other
  • the Z-axis direction indicates the direction orthogonal to the X-axis direction and the Y-axis direction.
  • the film forming apparatus 100 is configured as a film forming apparatus for forming a layer made of an ultraviolet ray curable resin which is an energy ray curable resin on the substrate W.
  • the film forming apparatus 100 is an apparatus for supplying a source gas containing an ultraviolet curable resin onto the substrate W and then irradiating the substrate W with ultraviolet rays to form an ultraviolet curable resin layer.
  • the film forming apparatus 100 includes a chamber 10, a stage 15, a light source unit 20, a gas supply unit 30, and a heating unit 40.
  • the chamber 10 has a film forming chamber 11, an opening 13 formed in the upper part of the film forming chamber 11, and a top plate 12 that hermetically closes the opening 13.
  • the chamber 10 is a metal vacuum container having an open top, and has a film forming chamber 11 inside.
  • the film forming chamber 11 is configured to be able to evacuate or maintain a predetermined reduced pressure atmosphere via a vacuum evacuation system 19 connected to the bottom of the chamber 10.
  • the top plate 12 transmits ultraviolet rays UV.
  • the top plate 12 has a window portion 121 that transmits ultraviolet rays UV and a frame portion 122 that supports the window portion 121.
  • the window 121 is made of an ultraviolet-transparent material such as quartz glass, and the frame 122 is made of a metal material such as an aluminum alloy.
  • the number of windows 121 is not particularly limited, and may be two or more, or may be singular.
  • stage 15 The stage 15 is arranged in the film forming chamber 11 and configured to support the substrate W.
  • the stage 15 is cooled by, for example, a cooling medium such as cooling water.
  • the substrate W cooled to the predetermined temperature or lower may be transported to the film forming chamber 11.
  • the substrate W is a glass substrate, but it may be a semiconductor substrate.
  • the shape and size of the substrate are not particularly limited, and may be rectangular or circular. Elements may be formed in advance on the film formation surface of the substrate W.
  • the resin layer formed on the substrate W functions as a protective film for the element.
  • the light source unit 20 has a cover 21 and an irradiation source 22.
  • the cover 21 is disposed on the top plate 12 and has a light source chamber 23 that houses an irradiation source 22.
  • the light source chamber 23 has, for example, an air atmosphere.
  • the irradiation source 22 is a light source that irradiates the stage 15 with ultraviolet rays UV as energy rays through the window 121 of the top plate 12, and is typically configured by an ultraviolet lamp.
  • the irradiation source 22 may be a light source module in which a plurality of LEDs (Light Emitting Diodes) that emit ultraviolet UV are arranged in a matrix.
  • the gas supply unit 30 supplies a raw material gas containing a resin (ultraviolet curable resin) that is cured by being irradiated with ultraviolet rays UV to the film forming chamber 11.
  • the gas supply unit 30 has a shower plate 31 and a gas diffusion chamber 32.
  • the shower plate 31 has a plate shape and is made of an ultraviolet-transparent material such as quartz glass.
  • the shower plate 31 is fixed to the inner wall surface of the chamber 10 via an appropriate fixing member.
  • the shower plate 31 has a first surface 311 facing the light source unit 20, a second surface 312 facing the stage 15, and a plurality of through holes 313 penetrating the first surface 311 and the second surface 312. With.
  • the plurality of through-holes 313 penetrate the shower plate 31 in the thickness direction and allow the gas diffusion chamber 32 and the film forming chamber 11 to communicate with each other.
  • the through hole 313 is configured so that the source gas can be supplied from the gas diffusion chamber 32 to the film forming chamber 11.
  • the plurality of through holes 313 may be formed at regular intervals in the plane, or may be formed at different intervals.
  • the diameter of each through hole 313 may be the same or different.
  • the gas diffusion chamber 32 diffuses the raw material gas.
  • the gas diffusion chamber 32 is configured as a space sandwiched between the top plate 12 and the shower plate 31, and is partitioned by the top plate 12, the shower plate 31, and the side wall of the chamber 10.
  • the raw material gas is introduced into the gas diffusion chamber 32 through the raw material gas generation unit 101.
  • the ultraviolet curable resin material for example, acrylic resin can be used. It is also possible to add a polymerization initiator or the like to the above resin for use.
  • the raw material gas containing such a resin is generated by the raw material gas generation unit 101 installed outside the chamber 10.
  • the raw material gas generation unit 101 introduces the raw material gas containing the resin into the gas diffusion chamber 32 of the gas supply unit 30 via the pipe 130.
  • the raw material gas generation unit 101 includes a resin material supply line 110, a vaporizer 120, and a pipe 130.
  • the resin material supply line 110 has a tank 111 filled with a liquid resin material, and a pipe 112 that conveys the resin material from the tank 111 to the vaporizer 120.
  • a carrier gas made of an inert gas such as nitrogen is used to convey the resin material from the tank 111 to the vaporizer 120.
  • a valve V1 and a liquid flow rate controller (not shown) can be attached to the pipe 112.
  • the raw material gas generated in the vaporizer 120 is supplied to the gas diffusion chamber 32 of the gas supply unit 30 via the pipe 130.
  • a valve V2 is attached to the pipe 130, and the flow of gas into the gas diffusion chamber 32 can be adjusted. Further, it is possible to control the flow rate of the gas flowing into the gas diffusion chamber 32 by attaching a flow rate controller (not shown).
  • the film forming apparatus 100 further includes a heating unit 40 that heats the first surface 311 of the shower plate 31.
  • the heating unit 40 has a transparent conductive film 41 formed on the first surface 311 of the shower plate 31 and a wiring 42 connected to the transparent conductive film 41.
  • the heating unit 40 is configured to be able to heat the gas diffusion chamber 32 and the shower plate 31 to an appropriate temperature equal to or higher than the vaporization temperature of the resin material by resistance heating of the transparent conductive film 41.
  • the wiring 42 may be connected to, for example, a control unit 50 of the film forming apparatus 100, which will be described later, as shown in FIG. 1, or may be connected to another power supply device.
  • the transparent conductive film 41 includes, for example, ITO (indium tin oxide).
  • ITO indium tin oxide
  • FIG. 2 is an enlarged schematic cross-sectional view showing the shower plate 31 and the transparent conductive film 41 formed thereon.
  • FIG. 3 is a schematic plan view showing the transparent conductive film 41 formed on the shower plate 31.
  • the transparent conductive film 41 is configured to cover the entire first surface 311 of the shower plate 31 in this embodiment. Even in this configuration, the transparent conductive film 41 has a plurality of holes 411 communicating with the plurality of through holes 313 in order to secure the supply of the source gas.
  • the plurality of holes 411 are provided corresponding to the respective through holes 313, and have substantially the same diameter as the corresponding respective through holes 313.
  • the film forming apparatus 100 further includes a control unit 50.
  • the control unit 50 is typically composed of a computer and controls each unit of the film forming apparatus 100.
  • the film forming step includes a step of supplying a raw material gas containing an ultraviolet curable resin and a step of curing the ultraviolet resin layer.
  • the film forming chamber 11 is adjusted to a predetermined degree of vacuum by the vacuum exhaust system 19, and the substrate W is placed on the stage 15 cooled to a predetermined temperature or lower.
  • the gas supply unit 30 is heated by the heating unit 40 to a temperature equal to or higher than the vaporization temperature of the ultraviolet curable resin.
  • the raw material gas containing the ultraviolet curable resin generated in the raw material gas generation unit 101 is introduced into the gas supply unit 30 via the pipe 130.
  • the source gas introduced into the gas supply unit 30 diffuses in the gas diffusion chamber 32 and is supplied to the entire surface of the substrate W on the stage 15 via the plurality of through holes 313 of the shower plate 31.
  • the ultraviolet curable resin in the source gas supplied to the surface of the substrate W is condensed and deposited on the surface of the substrate W cooled to a temperature equal to or lower than the condensation temperature.
  • the supply of the raw material gas is stopped, and the ultraviolet rays UV are irradiated from the irradiation source 22 of the light source unit 20 toward the stage 15 of the stage 15.
  • the gas supply unit 30 is made of a material that transmits ultraviolet light
  • the substrate W on the stage 15 is irradiated with a sufficient amount of ultraviolet light UV through the gas supply unit 30.
  • a cured product layer of the ultraviolet curable resin is formed on the substrate W.
  • the substrate W is unloaded from the film forming chamber 11, and a new undeposited substrate W is loaded into the film forming chamber. Then, the above-mentioned steps are similarly performed. Accordingly, the ultraviolet curable resin layer having a predetermined thickness can be formed on the substrate W with one film forming apparatus.
  • the raw material gas is supplied to the gas diffusion chamber 32, and the entire inside of the gas diffusion chamber 32 is maintained at a certain pressure or higher by the raw material gas.
  • the gas supply unit does not have a shower plate and is composed of a plurality of gas discharge pipes or the like, the flow rate of the raw material gas between the portion near the raw material gas generation unit 101 and the far end portion. And a difference in pressure occurs. Therefore, the flow rate of the raw material gas discharged from the gas discharge pipe has a distribution, and it becomes difficult to make the film thickness distribution in the plane of the ultraviolet curable resin layer uniform.
  • the pressure of the raw material gas inside the gas diffusion chamber 32 can be made more uniform.
  • the flow rates of the source gases in the through hole 313 in the central portion of the shower plate 31 and the through holes 313 in the peripheral portion can be maintained substantially constant. Therefore, the film thickness distribution of the resin layer formed on the substrate W can be made uniform, and the film formation quality can be improved.
  • the heating unit 40 heats the first surface 311 of the shower plate 31.
  • This can prevent the ultraviolet curable resin layer from being deposited on the inner wall of the gas diffusion chamber 32 and the through hole 313. Therefore, the decrease of the ultraviolet ray transmittance due to the deposited resin layer is prevented, and the stable ultraviolet ray transmission amount is maintained for a long time. That is, it is possible to provide a film forming apparatus 100 that can prevent a decrease in film forming efficiency for a long time and is excellent in productivity.
  • the heating portion 40 prevents the resin layer from being deposited on the gas diffusion chamber 32 and the shower plate 31, it is possible to prevent particles generated by peeling the deposited resin layer. Thereby, the inside of the film forming chamber 11 can be maintained in a clean state and the maintenance can be facilitated. Further, the heating unit 40 can prevent the peeled resin from adhering to the substrate W during film formation, and can further improve the film formation quality.
  • the heating unit 40 has a transparent conductive film 41 configured to cover the entire first surface 311 of the shower plate 31.
  • the surface of the shower plate 31 can be heated more uniformly while maintaining the transparency of the ultraviolet rays UV in the shower plate 31. Therefore, it is possible to more effectively prevent the deposition of the resin layer on the inner wall of the gas diffusion chamber 32 and the through hole 313.
  • the heating unit 40 is configured integrally with the shower plate 31, no separate maintenance is required for the heating unit 40. Thereby, the maintenance of the film forming apparatus 100 can be made easier.
  • the transparent conductive film 41 has the hole 411 communicating with the through hole 313, the through hole 313 can be effectively heated while maintaining the function of supplying the source gas in the through hole 313. Therefore, it is possible to more reliably prevent the clogging of the through hole 313 due to the attached resin.
  • the configuration of the shower plate 31 is not limited to the above.
  • the gas supply unit 30 has a plurality of shower plates 31, a frame 33 that supports the plurality of shower plates 31, and a gas diffusion chamber 32. May be. By dividing the shower plate 31, the size of each shower plate 31 can be reduced, and the manufacturing cost of the gas supply unit 30 can be reduced.
  • the gas diffusion chamber 32 of the gas supply unit 30 is formed by the shower plate 31 and the top plate 12 of the chamber 10, the configuration is not limited to this.
  • the gas supply unit 30 may have a shower head 34 having a shower plate 31, as shown in the cross-sectional view of the main part of FIG.
  • the shower head 34 is arranged between the stage 15 of the film forming chamber 11 and the top plate 12, and the gas diffusion chamber 32 is formed therein.
  • the shower plate 31 and the surface 34 a on the top plate 12 side are made of a material having ultraviolet transparency. Even with such a configuration, the film thickness distribution of the ultraviolet curable resin layer in the substrate W can be made uniform.
  • the through holes 313 of the shower plate 31 and the holes 411 of the transparent conductive film 41 are not limited to the arrangement shown in FIG. 3, and may be a staggered arrangement as shown in FIG. 6, for example. Alternatively, other arrangements may be possible.
  • the transparent conductive film 41 is not limited to the configuration that covers the entire first surface 311.
  • the transparent conductive film 41 may be formed in a band-shaped pattern.
  • the transparent conductive film 41 may be formed between the adjacent through holes 313 as shown in FIG. 7.
  • the hole 411 may be provided at a position corresponding to the through hole 313.
  • the transparent conductive film 41 is not limited to the band-shaped pattern and may be formed in any other pattern.
  • the heating unit 40 is not limited to the configuration having the transparent conductive film 41, and for example, as shown in the cross-sectional view of the main part of FIG. 8, a heater such as the resistance heating wire 43 arranged on the first surface 311 side is used. You may have.
  • the resistance heating wire 43 can be, for example, a printed wiring formed by a printing method.
  • the heating unit 40 may have a heating source for heating the inner wall of the film forming chamber 11, the top plate 12 and the like in addition to the transparent conductive film 41.
  • the energy rays are ultraviolet rays
  • the energy rays are not limited to this.
  • the energy rays are not limited to this.
  • the irradiation source may be an oscillator or the like. It is also possible to use an energy beam as an electron beam and an irradiation source as an electron beam source.
  • the film forming apparatus according to the above embodiment is also possible to use as a part of an in-line type or cluster type film forming apparatus having a plurality of chambers.
  • a device By using such a device, it becomes easier to manufacture an element having a plurality of layers such as a light emitting element. Further, with such a device, cost reduction, space saving, and further improvement in productivity can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

上記成膜装置は、成膜室を有するチャンバと、基板を支持するステージと、光源ユニットと、ガス供給部と、加熱部と、を具備する。上記光源ユニットは、エネルギ線を照射する照射源を有し、前記成膜室と対向して配置される。上記ガス供給部は、シャワープレートと、ガス拡散室と、を有する。上記シャワープレートは、上記光源ユニットに対向する第1の面と、上記ステージに対向する第2の面と、上記第1の面及び上記第2の面を貫通する複数の貫通孔と、を含み上記エネルギ線を透過させる。上記ガス拡散室は、上記第1の面に面し上記エネルギ線の照射を受けて硬化するエネルギ線硬化樹脂を含む原料ガスを拡散させる。上記ガス供給部は、上記原料ガスを上記ガス拡散室から上記成膜室に供給する。上記加熱部は、上記シャワープレートの上記第1の面を加熱する。

Description

成膜装置
 本発明は、エネルギ線硬化樹脂からなる樹脂層を形成する成膜装置に関する。
 紫外線硬化樹脂等のエネルギ線硬化樹脂を硬化して樹脂層を基板上に形成する際、典型的には、以下の2工程が行われる。すなわち、冷却ステージによって基板を支持し、当該樹脂を含む原料ガスを冷却ステージに支持された基板上に供給する工程と、基板上に紫外線等の光を照射し、基板上に硬化した樹脂層を形成する工程とである。
 特に最近では、このような複数の工程をそれぞれ別の真空チャンバで行うことはせず、基板上に原料ガスを供給する工程と、紫外線等によって基板上に硬化した樹脂層を形成する工程とを1つの真空チャンバ内で行う成膜装置が提供されている。例えば、特許文献1には、原料ガスを吐出する配管を含むガス供給部を有する成膜装置が記載されている。
特開2013-064187号公報
 しかしながら、特許文献1に記載の成膜装置では、原料ガスが配管から吐出される場合、基板上に形成された樹脂層の膜厚分布に偏りが生じ、所望の成膜品質が得られないことがあった。また、配管等のガス供給部における樹脂の堆積により、生産性が低下する可能性があった。
 以上のような事情に鑑み、本発明の目的は、成膜品質及び生産性を向上させることが可能な成膜装置を提供することにある。
 上記目的を達成するため、本発明の一形態に係る成膜装置は、チャンバと、ステージと、光源ユニットと、ガス供給部と、加熱部と、を具備する。
 上記チャンバは、成膜室を有する。
 上記ステージは、上記成膜室に配置され、基板を支持する。
 上記光源ユニットは、エネルギ線を照射する照射源を有し、前記成膜室と対向して配置される。
 上記ガス供給部は、シャワープレートと、ガス拡散室と、を有する。
 上記シャワープレートは、上記光源ユニットに対向する第1の面と、上記ステージに対向する第2の面と、上記第1の面及び上記第2の面を貫通する複数の貫通孔と、を含み上記エネルギ線を透過させる。
 上記ガス拡散室は、上記第1の面に面し上記エネルギ線の照射を受けて硬化するエネルギ線硬化樹脂を含む原料ガスを拡散させる。
 上記ガス供給部は、上記原料ガスを上記ガス拡散室から上記成膜室に供給する。
 上記加熱部は、上記シャワープレートの上記第1の面を加熱する。
 この構成では、ガス供給部がシャワープレートとガス拡散室とを有するため、ガス拡散室によって圧力が高められた原料ガスがシャワープレートの複数の貫通孔から成膜室に供給される。これにより、成膜室に供給される原料ガスの流量を均一化でき、膜厚分布を均一化することができる。したがって、成膜品質を高めることができる。さらに、シャワープレートのガス拡散室側の第1の面が加熱部によって加熱される。これにより、ガス拡散室の内壁及び貫通孔におけるエネルギ線硬化樹脂の付着を防止でき、エネルギ線の透過率の低下や貫通孔の詰まりを抑え、生産性を高めることができる。
 上記加熱部は、上記シャワープレートの上記第1の面に形成された透明導電膜を有していてもよい。
 これにより、透明導電膜による抵抗加熱によって第1の面が加熱される。したがって、シャワープレートにおけるエネルギ線の透過性を確保できるとともに、加熱部のメンテナンスを容易にすることができる。
 例えば、上記透明導電膜が、ITOを含んでいてもよい。
 これにより、透明導電膜が十分なエネルギ線透過性を得られる。
 また、上記透明導電膜は、上記複数の貫通孔と連通する複数の孔を有していてもよい。
 これにより、透明導電膜によって第1の面の多くの領域が被覆された場合でも、原料ガスを供給することが可能となる。
 例えば、上記シャワープレートは、石英ガラスで構成されてもよい。
 これにより、シャワープレートのエネルギ線に対する透過性を十分に確保することができる。
 具体的な構成として、上記チャンバは、
 上記成膜室を上記光源ユニットに向けて開放する開口部と、
 上記開口部を閉塞し上記エネルギ線を透過させる天板と、をさらに有し、
 上記ガス拡散室は、上記天板と上記シャワープレートとに挟まれた空間として構成されてもよい。
 これにより、チャンバの天板を利用してガス拡散室を形成することができ、部品点数を低下させることができる。したがって、メンテナンスの容易な構成とすることができる。
 以上述べたように、本発明によれば、成膜品質及び生産性を向上させることができる。
本発明の一実施形態に係る成膜装置を示す概略断面図である。 図1に示すシャワープレート及び透明導電膜を拡大して示す概略断面図である。 上記透明導電膜を示す概略平面図である。 本実施形態の比較例に係る成膜装置を示す概略断面図である。 本発明のさらに他の実施形態に係る成膜装置の要部断面図である。 本発明のさらに他の実施形態に係る成膜装置の要部平面図である。 本発明のさらに他の実施形態に係る成膜装置の要部平面図である。 本発明のさらに他の実施形態に係る成膜装置の要部断面図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。
 図1は、本発明の一実施形態に係る成膜装置100を示す概略断面図である。図においてX軸方向及びY軸方向は互いに直交する水平方向を示し、Z軸方向はX軸方向及びY軸方向に直交する方向を示している。
[成膜装置]
 成膜装置100は、基板W上に、エネルギ線硬化樹脂である紫外線硬化樹脂からなる層を形成するための成膜装置として構成されている。成膜装置100は、紫外線硬化樹脂を含む原料ガスを基板W上に供給した後、基板W上に紫外線を照射して紫外線硬化樹脂層を形成するための装置である。
 成膜装置100は、チャンバ10と、ステージ15と、光源ユニット20と、ガス供給部30と、加熱部40と、を備える。
 (チャンバ)
 チャンバ10は、成膜室11と、成膜室11の上部に形成された開口部13と、開口部13を気密に閉塞する天板12と、を有する。
 チャンバ10は、上部が開口する金属製の真空容器であり、内部に成膜室11を有する。成膜室11は、チャンバ10の底部に接続された真空排気系19を介して所定の減圧雰囲気に排気または維持することが可能に構成される。
 天板12は、紫外線UVを透過させる。例えば、天板12は、紫外線UVを透過させる窓部121と、窓部121を支持する枠部122とを有する。窓部121は、石英ガラス等の紫外線透過性材料で構成され、枠部122はアルミニウム合金等の金属材料で構成される。窓部121の数は特に限定されず、2つ以上であってもよいし、単数であってもよい。
 (ステージ)
 ステージ15は、成膜室11に配置され、基板Wを支持することが可能に構成される。ステージ15は、例えば、冷却水等の冷却媒体により冷却される。なお、上記所定温度以下に冷却された基板Wが成膜室11に搬送されるように構成されてもよい。
 基板Wは、ガラス基板であるが、半導体基板であってもよい。基板の形状や大きさは特に限定されず、矩形でもよいし円形でもよい。基板Wの成膜面には、あらかじめ素子が形成されていてもよい。この場合、基板Wに成膜される樹脂層は、上記素子の保護膜として機能する。
 (光源ユニット)
 光源ユニット20は、カバー21と、照射源22とを有する。カバー21は、天板12の上に配置され、照射源22を収容する光源室23を有する。光源室23は、例えば、大気雰囲気である。照射源22は、ステージ15に向けて、天板12の窓部121を介してエネルギ線としての紫外線UVを照射する光源であり、典型的には、紫外線ランプで構成される。これに限られず、照射源22には、紫外線UVを発光する複数のLED(Light Emitting Diode)がマトリクス状に配列された光源モジュールが採用されてもよい。
 (ガス供給部)
 ガス供給部30は、紫外線UVの照射を受けて硬化する樹脂(紫外線硬化樹脂)を含む原料ガスを成膜室11へ供給する。ガス供給部30は、シャワープレート31と、ガス拡散室32とを有する。
 シャワープレート31は、板形状を有し、石英ガラス等の紫外線透過性材料で構成される。シャワープレート31は、適宜の固定部材を介してチャンバ10の内壁面に固定される。
 シャワープレート31は、光源ユニット20に対向する第1の面311と、ステージ15に対向する第2の面312と、第1の面311及び第2の面312を貫通する複数の貫通孔313と、を有する。
 複数の貫通孔313は、シャワープレート31を厚み方向に貫通し、ガス拡散室32と成膜室11とを相互に連通させる。貫通孔313は、原料ガスをガス拡散室32から成膜室11へ供給することが可能に構成される。複数の貫通孔313は、面内において一定の間隔をあけて形成されていてもよいし、異なった間隔をあけて形成されていてもよい。また、各貫通孔313の径は、同一であってもよいし、異なっていてもよい。
 ガス拡散室32は、原料ガスを拡散させる。例えば、ガス拡散室32は、天板12とシャワープレート31とに挟まれた空間として構成され、天板12とシャワープレート31とチャンバ10の側壁とによって区画されている。ガス拡散室32には、原料ガス生成部101を介して上記原料ガスが導入される。
 紫外線硬化樹脂材料としては、例えば、アクリル系樹脂を用いることができる。また、上記樹脂には重合開始剤等を添加して用いることも可能である。このような樹脂を含む原料ガスは、チャンバ10の外部に設置される原料ガス生成部101によって生成される。原料ガス生成部101は、配管130を介して、ガス供給部30のガス拡散室32へ上記樹脂を含む原料ガスを導入する。
 原料ガス生成部101は、樹脂材料供給ライン110と、気化器120と、配管130とを有する。
 樹脂材料供給ライン110は、液状の樹脂材料が充填されたタンク111と、タンク111から樹脂材料を気化器120へ搬送する配管112とを有する。タンク111から気化器120への樹脂材料の搬送には、例えば窒素などの不活性ガスからなるキャリアガスが用いられる。また、配管112には、バルブV1や、図示しない液体流量制御器等を取り付けることも可能である。
 気化器120で生成された原料ガスは、配管130を介してガス供給部30のガス拡散室32へ供給される。配管130にはバルブV2が取り付けられており、ガス拡散室32へのガスの流入が調節可能である。さらに図示しない流量制御器を取り付けることによって、ガス拡散室32へ流入するガスの流量を制御することも可能である。
 ここで、ガス拡散室32に導入された原料ガスが気化温度未満に冷却された場合、ガス拡散室32の内壁や貫通孔313の内部に、当該原料ガスに含まれる樹脂材料が堆積することがある。これを防止するため、成膜装置100は、シャワープレート31の第1の面311を加熱する加熱部40をさらに有する。
 (加熱部)
 加熱部40は、本実施形態において、シャワープレート31の第1の面311に形成された透明導電膜41と、透明導電膜41に接続された配線42と、を有する。加熱部40は、透明導電膜41の抵抗加熱によって、上記樹脂材料の気化温度以上の適宜の温度にガス拡散室32及びシャワープレート31を加熱することが可能に構成される。配線42は、例えば、図1に示すように成膜装置100の後述する制御部50に接続されていてもよいし、別の電源装置に接続されていてもよい。
 透明導電膜41は、例えばITO(酸化インジウム錫)を含む。これにより、ステージ15に対するエネルギ線の透過性を十分に確保しつつ、ガス拡散室32及びシャワープレート31を加熱することができる。
 図2は、シャワープレート31及びそれに形成された透明導電膜41を拡大して示す概略断面図である。図3は、シャワープレート31に形成された透明導電膜41を示す概略平面図である。
 透明導電膜41は、本実施形態において、シャワープレート31の第1の面311全体を覆うように構成される。この構成でも原料ガスの供給を確保するため、透明導電膜41は、複数の貫通孔313と連通する複数の孔411を有する。複数の孔411は、各貫通孔313に対応して設けられ、対応する各貫通孔313と略同一の径を有する。
 成膜装置100は、制御部50をさらに備える。制御部50は、典型的には、コンピュータで構成され、成膜装置100の各部を制御する。
[成膜方法]
 続いて、以上のように構成される本実施形態の成膜装置100を用いた成膜方法について説明する。
 (成膜工程)
 成膜工程では、紫外線硬化樹脂を含む原料ガスの供給工程と、紫外線樹脂層の硬化工程とを有する。
 成膜工程では、成膜室11は、真空排気系19によって所定の真空度に調圧されており、基板Wは、所定温度以下に冷却されたステージ15に配置されている。ガス供給部30は、加熱部40によって紫外線硬化樹脂の気化温度以上の温度に加熱されている。
 原料ガスの供給工程では、原料ガス生成部101で生成された紫外線硬化樹脂を含む原料ガスが、配管130を介してガス供給部30へ導入される。ガス供給部30に導入された原料ガスは、ガス拡散室32において拡散し、シャワープレート31の複数の貫通孔313を介してステージ15上の基板Wの全面に供給される。基板Wの表面に供給された原料ガス中の紫外線硬化樹脂は、その凝縮温度以下の温度に冷却された基板Wの表面で凝縮し、堆積する。
 紫外線硬化樹脂の硬化工程では、原料ガスの供給が停止し、光源ユニット20の照射源22からステージ15のステージ15に向けて紫外線UVが照射される。ガス供給部30は紫外線を透過させる材料で構成されているため、ガス供給部30を介してステージ15上の基板Wに十分な量の紫外線UVが照射される。これにより、基板W上に紫外線硬化樹脂の硬化物層が形成される。
 硬化工程の完了後、基板Wは成膜室11から搬出され、新たに未成膜の基板Wが成膜室に搬入される。そして上述の各工程が同様に実施される。これにより、一台の成膜装置で、基板W上に所定厚みの紫外線硬化樹脂層を形成することができる。
[本実施形態の作用効果]
 本実施形態では、原料ガスがガス拡散室32に供給され、ガス拡散室32の内部全体が原料ガスによって一定の圧力以上に維持される。仮に、ガス供給部がシャワープレートを有さず、複数のガス吐出配管等によって構成されていた場合には、原料ガス生成部101に近い部分と、遠い端部との間で、原料ガスの流量及び圧力に差が生じる。このため、ガス吐出配管から吐出される原料ガスの流量に分布が生じ、紫外線硬化樹脂層の面内における膜厚分布を均一化することは難しくなる。
 一方、本実施形態では、ガス拡散室32の内部の原料ガスの圧力をより均一化することができる。これにより、シャワープレート31の中央部における貫通孔313と、周縁部における貫通孔313とにおける原料ガスの流量を、ほぼ一定に維持することができる。したがって、基板W上に成膜される樹脂層の膜厚分布を均一化でき、成膜品質を高めることができる。
 また、本実施形態では、加熱部40がシャワープレート31の第1の面311を加熱する。これにより、ガス拡散室32の内壁や貫通孔313における紫外線硬化樹脂層の堆積を防止することができる。したがって、堆積された樹脂層に起因する紫外線透過率の低下が防止され、長時間にわたり安定した紫外線の透過量が維持される。すなわち、長時間にわたり成膜効率の低下を防止でき、生産性に優れた成膜装置100を提供することができる。
 また、加熱部40によってガス拡散室32及びシャワープレート31における樹脂層の堆積が防止されることで、堆積された樹脂層が剥がれて生じるパーティクルも防止することができる。これにより、成膜室11内をクリーンな状態に維持でき、メンテナンスを容易にすることができる。また、加熱部40により、剥がれた樹脂が成膜中の基板W上に付着することを防止でき、成膜品質をさらに向上させることができる。
 さらに、加熱部40は、シャワープレート31の第1の面311全体を覆うように構成された透明導電膜41を有する。これにより、シャワープレート31における紫外線UVの透過性は維持しつつ、シャワープレート31の面内をより均一に加熱することができる。したがって、ガス拡散室32の内壁や貫通孔313における樹脂層の堆積をより効果的に防止することができる。
 これに加えて、加熱部40がシャワープレート31と一体に構成されるため、加熱部40に対する別途のメンテナンスが不要となる。これにより、成膜装置100のメンテナンスをより容易にすることができる。
 また、透明導電膜41が貫通孔313と連通する孔411を有することで、貫通孔313における原料ガスの供給機能を維持しつつ、貫通孔313を効果的に加熱することができる。したがって、付着した樹脂に伴う貫通孔313の詰まりをより確実に防止できる。
[他の実施形態]
 シャワープレート31の構成は上記に限定されない。
 例えば、図4の要部断面図に示すように、ガス供給部30が、複数のシャワープレート31と、複数のシャワープレート31を支持する枠部33と、ガス拡散室32と、を有していてもよい。シャワープレート31が分割されることで、各シャワープレート31のサイズを縮小でき、ガス供給部30の製造コストを低下させることができる。
 また、ガス供給部30のガス拡散室32が、シャワープレート31とチャンバ10の天板12とによって形成されると説明したが、この構成に限定されない。例えば、図5の要部断面図に示すように、ガス供給部30が、シャワープレート31を備えたシャワーヘッド34を有していてもよい。シャワーヘッド34は、成膜室11のステージ15と天板12との間に配置され、内部にガス拡散室32が形成される。またシャワーヘッド34では、シャワープレート31と、天板12側の面34aとが、紫外線透過性を有する材料で構成される。このような構成でも、基板W内における紫外線硬化樹脂層の膜厚分布を均一化することができる。
 シャワープレート31の貫通孔313及び透明導電膜41の孔411は、図3で示す配置に限定されず、例えば図6に示すような千鳥配置であってもよい。あるいは、その他の配置であってもよい。
 また、透明導電膜41は、第1の面311全体を覆う構成に限定されない。例えば図7の概略平面図に示すように、透明導電膜41は、帯状のパターンで形成されていてもよい。この場合、透明導電膜41は、図7に示すように、隣接する貫通孔313の間に形成されていてもよい。また、透明導電膜41が、貫通孔313を覆うように構成される場合は、貫通孔313に対応する位置に孔411を有していてもよい。透明導電膜41は、帯状のパターンに限定されず、その他の任意のパターンで形成されてもよい。
 また、加熱部40は、透明導電膜41を有する構成に限定されず、例えば図8の要部断面図に示すように、第1の面311側に配置された抵抗加熱線43等のヒータを有していてもよい。抵抗加熱線43は、例えば、印刷法によって形成されたプリント配線とすることができる。
 さらに、加熱部40は、透明導電膜41に加えて、成膜室11の内壁や天板12等を加熱する加熱源を有していてもよい。
 以上、本発明の各実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
 以上の実施形態では、エネルギ線が紫外線の例を示したが、これに限られない。例えば13MHz、27MHz程度の高周波電源から発生される電磁波を用いることも可能である。この場合、照射源は発振器等とすることができる。また、エネルギ線を電子ビームとし、照射源を電子ビーム源とすることも可能である。
 さらに、以上の実施形態に係る成膜装置を、例えば複数のチャンバを有するインライン式あるいはクラスタ式の成膜装置の一部として用いることも可能である。このような装置を用いることで、発光素子のような複数の層を有する素子等を作製することがより容易になる。また、このような装置によって、低コスト化、省スペース化及びさらなる生産性の向上を実現することができる。
 10…チャンバ
 11…成膜室
 12…天板
 13…開口部
 15…ステージ
 20…光源ユニット
 22…照射源
 30…ガス供給部
 31…シャワープレート
 32…ガス拡散室
 40…加熱部
 41…透明導電膜
 100…成膜装置
 311…第1の面
 312…第2の面
 313…貫通孔
 411…孔

Claims (6)

  1.  成膜室を有するチャンバと、
     前記成膜室に配置され、基板を支持するステージと、
     エネルギ線を照射する照射源を有し、前記成膜室と対向して配置された光源ユニットと、
     前記光源ユニットに対向する第1の面と、前記ステージに対向する第2の面と、前記第1の面及び前記第2の面を貫通する複数の貫通孔と、を含み前記エネルギ線を透過させるシャワープレートと、前記第1の面に面し前記エネルギ線の照射を受けて硬化するエネルギ線硬化樹脂を含む原料ガスを拡散させるガス拡散室と、を有し、前記原料ガスを前記ガス拡散室から前記成膜室に供給するガス供給部と、
     前記シャワープレートの前記第1の面を加熱する加熱部と
     を具備する成膜装置。
  2.  請求項1に記載の成膜装置であって、
     前記加熱部は、前記シャワープレートの前記第1の面に形成された透明導電膜を有する
     成膜装置。
  3.  請求項2に記載の成膜装置であって、
     前記透明導電膜が、ITOを含む
     成膜装置。
  4.  請求項2又は3に記載の成膜装置であって、
     前記透明導電膜は、前記複数の貫通孔と連通する複数の孔を有する
     成膜装置。
  5.  請求項1から4のうちいずれか一項に記載の成膜装置であって、
     前記シャワープレートは、石英ガラスで構成される
     成膜装置。
  6.  請求項1から5のうちいずれか一項に記載の成膜装置であって、
     前記チャンバは、
     前記成膜室を前記光源ユニットに向けて開放する開口部と、
     前記開口部を閉塞し前記エネルギ線を透過させる天板と、をさらに有し、
     前記ガス拡散室は、前記天板と前記シャワープレートとに挟まれた空間として構成される
     成膜装置。
PCT/JP2019/050210 2019-02-25 2019-12-20 成膜装置 WO2020174845A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217013051A KR20210060614A (ko) 2019-02-25 2019-12-20 막 형성 장치
JP2020536293A JP6959454B2 (ja) 2019-02-25 2019-12-20 成膜装置
US17/287,774 US20210395880A1 (en) 2019-02-25 2019-12-20 Deposition apparatus
CN201980075217.XA CN113039308A (zh) 2019-02-25 2019-12-20 成膜装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-031832 2019-02-25
JP2019031832 2019-02-25

Publications (1)

Publication Number Publication Date
WO2020174845A1 true WO2020174845A1 (ja) 2020-09-03

Family

ID=72239245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050210 WO2020174845A1 (ja) 2019-02-25 2019-12-20 成膜装置

Country Status (6)

Country Link
US (1) US20210395880A1 (ja)
JP (1) JP6959454B2 (ja)
KR (1) KR20210060614A (ja)
CN (1) CN113039308A (ja)
TW (1) TWI758683B (ja)
WO (1) WO2020174845A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11696964B2 (en) * 2020-04-06 2023-07-11 Soulnano Limited Ultraviolet device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273815A (ja) * 1985-05-30 1986-12-04 トヨタ自動車株式会社 有色透明導電膜の形成方法
JPH05107526A (ja) * 1991-10-15 1993-04-30 Canon Inc 透明パネルヒーターおよび透明パネルヒーターを設けた液晶表示装置
JP2013064187A (ja) * 2011-09-20 2013-04-11 Ulvac Japan Ltd 成膜装置及び成膜方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667631A (en) * 1996-06-28 1997-09-16 Lam Research Corporation Dry etching of transparent electrodes in a low pressure plasma reactor
JP2007242291A (ja) * 2006-03-06 2007-09-20 Ichikoh Ind Ltd 車両用灯具
US20080241377A1 (en) * 2007-03-29 2008-10-02 Tokyo Electron Limited Vapor deposition system and method of operating
CN107636192B (zh) * 2015-06-16 2020-12-18 株式会社爱发科 成膜方法和成膜装置
US11130286B2 (en) * 2016-09-07 2021-09-28 Canon Kabushiki Kaisha Three-dimensional manufacturing apparatus, three-dimensional manufactured object producing method, and container for three-dimensional manufacturing apparatus
KR102249249B1 (ko) * 2017-02-21 2021-05-07 가부시키가이샤 아루박 수지막의 형성 방법 및 수지막의 성막 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61273815A (ja) * 1985-05-30 1986-12-04 トヨタ自動車株式会社 有色透明導電膜の形成方法
JPH05107526A (ja) * 1991-10-15 1993-04-30 Canon Inc 透明パネルヒーターおよび透明パネルヒーターを設けた液晶表示装置
JP2013064187A (ja) * 2011-09-20 2013-04-11 Ulvac Japan Ltd 成膜装置及び成膜方法

Also Published As

Publication number Publication date
KR20210060614A (ko) 2021-05-26
JP6959454B2 (ja) 2021-11-02
TW202033820A (zh) 2020-09-16
TWI758683B (zh) 2022-03-21
CN113039308A (zh) 2021-06-25
US20210395880A1 (en) 2021-12-23
JPWO2020174845A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
JP5981115B2 (ja) 成膜装置
US20130333619A1 (en) Organic thin film forming apparatus
KR101321807B1 (ko) 증착 헤드 및 성막 장치
JP4238772B2 (ja) 載置台構造及び熱処理装置
JP5436429B2 (ja) 熱処理装置及び熱処理方法
WO2020174845A1 (ja) 成膜装置
JP2004307939A (ja) 熱処理装置
CN106896538B (zh) Uv掩膜板及其制作方法与框胶固化系统
JP7250575B2 (ja) 成膜装置
JP7117396B2 (ja) 成膜装置および成膜方法
JP7093850B2 (ja) 成膜装置及び成膜方法
JP3224238B2 (ja) 薄膜形成装置
JP6034548B2 (ja) 有機膜形成装置及び有機膜形成方法
JP5564573B2 (ja) 保護膜形成方法、表面平坦化方法
JP2010212430A (ja) 原子層成長装置
JPH0598447A (ja) 光cvd装置
JP2020177986A (ja) 成膜装置及び成膜方法
KR20090001184A (ko) 기판을 균일하게 가열하기 위한 램프히터 및 이를 이용한기판가열장치
TW201842693A (zh) 元件結構體之製造方法
KR20170116378A (ko) 그래핀 제조방법
JPH0433329A (ja) 光cvd装置
KR20140022664A (ko) 플라스틱 기판의 제조 장치 및 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020536293

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217013051

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917044

Country of ref document: EP

Kind code of ref document: A1