WO2020174800A1 - 汚れ情報推定システム、及び空気処理装置 - Google Patents

汚れ情報推定システム、及び空気処理装置 Download PDF

Info

Publication number
WO2020174800A1
WO2020174800A1 PCT/JP2019/047459 JP2019047459W WO2020174800A1 WO 2020174800 A1 WO2020174800 A1 WO 2020174800A1 JP 2019047459 W JP2019047459 W JP 2019047459W WO 2020174800 A1 WO2020174800 A1 WO 2020174800A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
casing
estimation
heat exchanger
drain pan
Prior art date
Application number
PCT/JP2019/047459
Other languages
English (en)
French (fr)
Inventor
慧太 北川
陽一 半田
義照 野内
政弥 西村
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP19917267.7A priority Critical patent/EP3919830A4/en
Priority to AU2019432019A priority patent/AU2019432019B2/en
Priority to CN201980093123.5A priority patent/CN113490817B/zh
Publication of WO2020174800A1 publication Critical patent/WO2020174800A1/ja
Priority to US17/459,811 priority patent/US20210389015A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/873Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling refrigerant heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/39Monitoring filter performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Definitions

  • the present disclosure relates to a dirt information estimation system and an air treatment device.
  • Air processing equipment such as air conditioners and air purifiers include parts that gradually become dirty as the equipment itself operates.
  • Patent Document 1 discloses a technique for diagnosing the state of this component.
  • Patent Document 1 the state of the part is estimated (diagnosed) based on only the image of the part. It is difficult to improve the estimation accuracy only with the images of the parts.
  • the purpose of the present disclosure is to improve the estimation accuracy of the components of the air treatment device.
  • a first aspect of the present disclosure is an image capturing unit (72) that captures an image of a component inside a casing (20) of an air treatment device (10), image data captured by the image capturing unit (72), and the air treatment.
  • the operating data and/or environmental data of the air treatment device are used to estimate the contamination information of the components. As a result, the accuracy of estimating the stain information is improved.
  • the estimation unit (81) includes a plurality of pieces of the image data obtained by the imaging unit (72) capturing the constituent components a plurality of times as time passes.
  • the estimation unit (81) can grasp the transition of contamination of the component parts, so that the estimation accuracy of contamination information can be more easily improved.
  • a third aspect of the present disclosure is the dirt information estimation system according to the first aspect or the second aspect, wherein the environmental data includes data relating to the air quality sucked into the casing (20). Is.
  • Air quality can affect the growth of bacteria and mold. By using the data regarding the air quality for estimating the dirt information, the accuracy of estimating the dirt information can be easily improved.
  • a fourth aspect of the present disclosure is characterized in that, in any one of the first to third aspects, the environmental data includes data relating to an installation location of the air treatment device (10). It is an information estimation system.
  • the installation location of the air treatment device (10) may affect how the components are soiled and the degree of contamination.
  • the estimation accuracy of the stain information can be easily improved.
  • the operation data includes the temperature of the heat exchanger (43) included in the casing (20), the casing. (20) Control parameters used to drive the fan (40) contained inside, the angle of the flap (103) provided on the casing (20), the flow of refrigerant into the heat exchanger (43) is stopped. And a rotation speed of the drain pump (60) included in the casing (20) and an operating time of the air treatment device (10). ..
  • the temperature of the heat exchanger (43) may affect not only bacteria and mold but also the condition of the heat exchanger (43) itself or its surrounding components.
  • the control parameters used to drive the fan (40) are useful for grasping the state of components around the fan (40).
  • the angle of the flap (103) is useful for grasping the state of the flap (103) itself and the state of the inside of the casing (20).
  • the time during which the refrigerant does not flow into the heat exchanger (43), the rotation speed of the drain pump (60), and the operating time of the air treatment device (10) are also useful for grasping the internal state of the casing (20). Since at least one of these pieces of information is used for estimating the stain information, the estimation accuracy of the stain information can be easily improved.
  • a sixth aspect of the present disclosure is the method according to any one of the first to fifth aspects, wherein the stain information is the stain degree of the component, the type of stain of the component, and the stain on the component. And the necessity of maintenance of the component, and the time when the component should be maintained, the stain information estimating system is characterized by including:
  • a seventh aspect of the present disclosure is the stain information estimation system according to the sixth aspect, further including a notifying unit (92, 93) for notifying the stain information.
  • An eighth aspect of the present disclosure is an air treatment device, characterized in that the dirt information estimation system (70) according to any one of the first to seventh aspects is incorporated.
  • the air treatment device is any one of an air conditioner, a humidity controller, an air cleaner and a ventilation device, and the component parts of the air conditioner include a drain pan (50), a fan (40), At least one of the heat exchanger (43), the air filter, the inner wall of the duct, the suction part (61) of the drain pump (60), and the drain pipe of the drain pump (60) is included, and the humidity control device and the above
  • the component of the air cleaner includes at least one of a humidification tank and a water receiver installed below the humidification tank, and the component of the ventilation device includes a total heat exchanger. It is an air treatment device characterized by being included.
  • FIG. 1 is a plan view showing the internal structure of the air conditioner.
  • FIG. 2 is a front view of the air conditioner.
  • FIG. 3 is a vertical cross-sectional view showing the internal structure of the air conditioner.
  • FIG. 4 is a perspective view showing a schematic configuration of the air conditioner in a front view.
  • FIG. 5 is a perspective view showing a structure inside the inspection lid.
  • FIG. 6 is a schematic diagram of the configuration of the stain information estimation system.
  • FIG. 7 is a flowchart of the operation of the stain information estimation system.
  • FIG. 8 is a vertical cross-sectional view showing the internal structure of the air conditioning apparatus according to the modification.
  • the air treatment device is an air conditioner (10) that adjusts at least the temperature in the room.
  • the air conditioner (10) of FIG. 1 adjusts the temperature of air (RA) and supplies the temperature-adjusted air to the room as supply air (SA).
  • the air conditioner (10) performs cooling operation and heating operation.
  • the air conditioner (10) includes an indoor unit (11).
  • the indoor unit (11) is installed in the space above the ceiling.
  • the indoor unit (11) is connected to the outdoor unit via a refrigerant pipe.
  • a refrigerant circuit is formed in the air conditioner (10). Illustration of the outdoor unit is omitted.
  • a vapor compression refrigeration cycle is performed by circulating the refrigerant.
  • the compressor, the outdoor heat exchanger, the expansion valve, and the indoor heat exchanger (43) are connected.
  • the first refrigeration cycle and the second refrigeration cycle are switched and performed.
  • the first refrigeration cycle is performed during cooling operation.
  • the first refrigeration cycle is a cooling cycle in which the outdoor heat exchanger is a radiator or a condenser and the indoor heat exchanger (43) is an evaporator.
  • the second refrigeration cycle is performed during heating operation.
  • the second refrigeration cycle is a heating cycle in which the indoor heat exchanger (43) is a radiator or a condenser and the outdoor heat exchanger is an evaporator.
  • the configuration of the indoor unit (11) will be described with reference to FIGS. 1 to 4.
  • the indoor unit (11) includes a casing (20), a fan (40), an indoor heat exchanger (43), a drain pan (50) and a drain pump (60).
  • the casing (20) is installed above the ceiling.
  • the fan (40), the indoor heat exchanger (43), the drain pan (50) and the drain pump (60) are arranged inside the casing (20).
  • the fan (40), indoor heat exchanger (43), drain pan (50) and drain pump (60) are components of the air conditioner (10).
  • the casing (20) is formed in a rectangular parallelepiped hollow box shape.
  • the casing (20) includes a top plate (21), a bottom plate (22), a front plate (23), a rear plate (24), a first side plate (25) and a second side plate (26).
  • the front plate (23) and the rear plate (24) face each other.
  • the first side plate (25) and the second side plate (26) face each other.
  • the front plate (23) faces the maintenance space (15).
  • the maintenance space (15) is a work space for a service agent.
  • An inspection port (27) is formed in the front plate (23).
  • An inspection lid (28) is detachably attached to the inspection port (27).
  • a drain pan (50) is arranged inside the inspection port (27). The inspection port (27) and the drain pan (50) overlap each other when viewed in the thickness direction of the front plate (23). The service operator can visually recognize the drain pan (50) through the inspection port (27).
  • a suction port (31) is formed on the first side plate (25).
  • a filter (not shown) is provided near the suction port (31) inside the casing (20).
  • a suction duct is connected to the suction port (31). The inflow end of the suction duct is connected to the indoor space.
  • An outlet (32) is formed in the second side plate (26).
  • An outlet duct is connected to the outlet (32). The outflow end of the blowout duct is connected to the indoor air.
  • an air flow path (33) is formed between the suction port (31) and the air outlet (32). Illustration of the suction duct and the outlet duct is omitted.
  • FIG. 1 illustrates a case where three fans (40) are arranged in the air flow path (33).
  • each fan (40) is a sirocco type fan.
  • the three fans (40) are connected to each other by a rotating shaft (41) and driven by one motor (42).
  • the indoor heat exchanger (43) is arranged near the second side plate (26) in the air flow path (33).
  • the indoor heat exchanger (43) is a fin-and-tube heat exchanger is illustrated.
  • the indoor heat exchanger (43) is arranged obliquely with respect to the vertical direction.
  • the indoor heat exchanger (43) in the first refrigeration cycle cools the air. At this time, water in the air is condensed to generate condensed water.
  • the indoor heat exchanger (43) in the second refrigeration cycle heats the air.
  • the drain pan (50) is installed on the bottom plate (22) inside the casing (20).
  • the drain pan (50) is arranged in the air flow path (33).
  • the drain pan (50) is arranged below the indoor heat exchanger (43).
  • the drain pan (50) is a tray for receiving water. Specifically, the drain pan (50) receives condensed water generated near the indoor heat exchanger (43).
  • the drain pan (50) has a first side wall (51), a second side wall (52) and a bottom portion (53).
  • the first side wall (51) is located upstream of the air flow with respect to the indoor heat exchanger (43).
  • the second side wall (52) is located downstream of the air flow with respect to the indoor heat exchanger (43).
  • the bottom portion (53) is formed over the first side wall (51) and the second side wall (52).
  • a recess (54) is formed in the bottom (53). The bottom surface of the recess (54) is the lowest position in the height direction of the drain pan (50).
  • the drain pan (50) is made of resin material or metal.
  • the surface color of at least the bottom portion (53) of the drain pan (50) is a relatively light color such as white or beige. In other words, the color brightness of at least the bottom portion (53) of the drain pan (50) is relatively high.
  • the drain pump (60) is arranged inside the drain pan (50).
  • the drain pump (60) is a pump that discharges water in the drain pan (50).
  • a suction portion (61) for sucking water is provided below the drain pump (60).
  • the drain pump (60) is arranged so that the suction portion (61) is arranged inside the recess (54) of the drain pan (50).
  • a water outlet (62) through which water flows is formed.
  • the water outlet (62) opens toward the bottom surface of the recess (54).
  • a drain pipe (63) is connected to the upper part of the drain pump (60).
  • the drain pipe (63) is connected to the discharge side of the drain pump (60).
  • the drain pipe (63) penetrates the upper part of the front plate (23) of the casing (20) in the thickness direction of the front plate (23).
  • the drain pump (60) When the drain pump (60) operates, the water collected in the drain pan is sucked into the suction part (61) of the drain pump (60). The sucked water is discharged from the drain pump (60). The discharged water is discharged to the outside of the casing (20) through the drain pipe (63).
  • the indoor unit (11) includes an electrical component box (16).
  • the electrical component box (16) is located near the front plate (23) and the fan (40).
  • a printed circuit board (17) is housed inside the electrical component box (16).
  • a control unit (18), a storage unit (19) and a power supply unit are mounted on the printed circuit board (17).
  • the control unit (18) is composed of a microcomputer including a CPU and memory.
  • the control section (18) controls the driving of the components of the air conditioner (10) and the operation of the air conditioner (10) itself.
  • the storage unit (19) is composed of semiconductor memory.
  • the storage unit (19) stores log data regarding driving and control of components of the air conditioner (10) and log data regarding operation of the air conditioner (10) itself.
  • the storage unit (19) also stores data representing the installation location of the air conditioner (10).
  • the data indicating the installation location of the air conditioner (10) is input by a service provider or the like via the remote controller of the air conditioner (10) when the air conditioner (10) is installed.
  • the power supply unit generates a power supply for supplying to the components that require electric power for driving, among the components that make up the air conditioner (10).
  • the electrical equipment box (16) includes a box body (16a) whose front side opens, and an electrical equipment lid (16b) that opens and closes the opening surface of the box body (16a).
  • the electrical component lid (16b) constitutes a part of the front plate (23). By removing the electrical component lid (16b), the inside of the electrical component box (16) is exposed to the maintenance space (15).
  • the air conditioner (10) is provided with a suction air sensor, an air quality sensor, a heat exchange sensor, a pipe temperature sensor, and a drain pan sensor.
  • the control section (18) is connected to these sensors.
  • the detection result of each sensor is input to the control unit (18).
  • the detection result of each sensor is used in various control operations by the control unit (18).
  • the suction air sensor is installed near the suction port (31) and detects the temperature and humidity of the air (RA) sucked into the casing (20).
  • the air quality sensor is provided inside the casing (20) and near the suction port (31), and detects the air quality of the air (RA) sucked into the casing (20) through a filter (not shown).
  • the air quality includes the amount of dust contained in the air (RA) and VOC (Volatile Organic Compounds).
  • the heat exchange sensor is provided on the surface of the indoor heat exchanger (43) and detects the temperature of the indoor heat exchanger (43).
  • the pipe temperature sensor is provided in at least one of the vicinity of the liquid pipe and the vicinity of the gas pipe of the refrigerant circuit, and detects the temperature of the corresponding pipe.
  • the drain pan sensor is provided inside the drain pan (50) and detects the water level and the temperature in the drain pan (50).
  • a stay (65) is provided on the inner surface of the inspection lid (28).
  • the stay (65) is a support member to which a camera (72) described later is attached, and is fixed to the inspection lid (28).
  • the base end of the stay (65) may be fastened to the inner surface of the inspection lid (28) via a fastening member.
  • a camera (72) is detachably attached to the stay (65). As a result, the camera (72) is supported on the inner surface of the inspection lid (28).
  • the camera (72) is placed inside the casing (20) of the air conditioner (10) with the imaging direction of the camera (72) facing the imaging target. It will be installed.
  • the camera (72) may move so that the lens (73) of the camera (72) faces the imaging target.
  • the basic operation of the air conditioner (10) will be described.
  • the air conditioner (10) performs cooling operation and heating operation.
  • the refrigerant compressed by the compressor of the outdoor unit radiates heat (condenses) in the outdoor heat exchanger and is decompressed by the expansion valve.
  • the depressurized refrigerant is evaporated in the indoor heat exchanger (43) of the indoor unit (11) and is compressed again by the compressor.
  • the drain pan (50) When the air is cooled to below the dew point temperature in the indoor heat exchanger (43), the moisture in the air condenses.
  • the condensed water is received by the drain pan (50).
  • the condensed water received by the drain pan (50) is discharged to the outside of the casing (20) by the drain pump (60).
  • the refrigerant compressed by the compressor of the outdoor unit radiates heat (condenses) in the indoor heat exchanger (43) of the indoor unit (11) and is decompressed by the expansion valve.
  • the depressurized refrigerant evaporates in the outdoor heat exchanger of the outdoor unit and is compressed again by the compressor.
  • the indoor heat exchanger (43) the refrigerant radiates heat to the air to heat the air.
  • the heated air passes through the air outlet (32) and is then supplied to the indoor space as supply air (SA).
  • a stain information estimation system (70) for estimating stains such as bacteria and mold on the drain pan (50) is constructed.
  • the dirt information estimation system (70) in FIG. 6 includes a camera (72), a computing device (80), a communication terminal (90), and a communication unit (100).
  • the camera (72) corresponds to an imaging section and is located inside the air conditioner (10).
  • the air conditioner (10), the arithmetic unit (80), the communication terminal (90) and the communication unit (100) are communicably connected via the network N.
  • the camera (72) images the drain pan (50) that is an imaging target, and outputs the imaged image data.
  • the camera (72) has a lens (73) and a light source (74).
  • the lens (73) faces the inside of the drain pan (50) while the camera (72) is attached to the inner surface of the inspection lid (28).
  • the light source (74) emits light toward the drain pan (50) while the camera (72) is capturing an image. This is because the inside of the casing (20) is relatively dark and a certain amount of light is required for imaging.
  • the camera (72) may take an image according to the operation of the service provider, or may take an image automatically every predetermined time.
  • the image data captured by the camera (72) is sequentially transmitted to the arithmetic unit (80).
  • the arithmetic unit (80) mainly estimates various kinds of information regarding dirt on the drain pan (50). In the following, various types of information regarding dirt will be referred to as “dirt information”.
  • the computing device (80) is a cloud server composed of a computer including a storage unit (88) and a CPU (89).
  • the storage section (88) is composed of a semiconductor memory, SSD, HDD and the like.
  • the arithmetic unit (80) acquires image data, operation data of the air conditioner (10) and environmental data from the air conditioner (10) via the network N.
  • the image data is image data of the drain pan (50) captured by the camera (72).
  • the environmental data is data on the environment in which the air conditioner (10) is installed.
  • the arithmetic unit (80) transmits the dirt information, which is the estimation result estimated by itself, to the communication terminal (90) via the network N.
  • the dirt information may be transmitted to the communication terminal (90) at the estimated timing, or may be transmitted to the communication terminal (90) in response to a transmission request from the communication terminal (90).
  • the arithmetic unit (80) is a device different from the air conditioner (10) is illustrated.
  • the arithmetic unit (80) may be incorporated in the air conditioner (10) like the control unit (18).
  • the CPU (89) of the arithmetic unit (80) functions as an estimation unit (81).
  • the estimation unit (81) mainly estimates the stain information of the drain pan (50) based on the image data, the operation data, and the environmental data.
  • the estimation unit (81) has an estimation model (82).
  • the estimation model (82) is a dedicated model that calculates dirt information by calculation.
  • the estimation model (82) is constructed in advance as a multi-layered neural network which has acquired classification ability by machine learning. Creation and learning of the estimation model (82) will be described in “(Method of creating estimation model)”.
  • the dirt information includes at least one of the following (a1) to (a6).
  • the above (a2) is the information that shows the dirt of the drain pan (50) due to oil, mold, bacteria, scale, and dust.
  • the above (a3) is information indicating which part of the drain pan (50) is dirty.
  • the above (a4) is information that is determined based on the degree of contamination in (a1) above, and is information that indicates whether maintenance is required.
  • the estimation unit (81) determines that maintenance of the air conditioner (10) is necessary.
  • the estimation unit (81) determines that maintenance of the air conditioner (10) is unnecessary.
  • the above (a5) is information that indicates at least one of the name of the component that requires maintenance, the name of the drug recommended for use in maintenance, and the specific process of maintenance. For example, if the stain on the drain pan (50) is due to black mold, it is recommended to use a chemical containing hypochlorite for the maintenance of the drain pan (50). If the stain on the drain pan (50) is caused by the stain on the indoor heat exchanger (43), the drain pan (50) and the indoor heat exchanger (43) are subject to maintenance.
  • the above (a6) is information that represents the timing of recommending maintenance of the air conditioner (10) in terms of time or the period from the present. For example, the above timing is expressed as “immediately”, “around June 2020", or "three months later”.
  • At least one of the following (b1) to (b10) is included in the operation data.
  • (B1) Operating time of the air conditioner (10) During the cooling operation, the condensed water generated in the indoor heat exchanger (43) is stored in the drain pan (50). When the operation of the air conditioner (10) is stopped in this state, the condensed water starts to evaporate. Then, the humidity inside the casing (20) increases, and the inside of the casing (20) becomes an environment where molds and bacteria are likely to propagate.
  • the estimation unit (81) can grasp the stored amount of condensed water by using the operating time of the air conditioner (10) as the operation data in the estimation operation.
  • the above (b1) is useful for grasping the amounts of mold and bacteria in the above (a2) and estimating the above (a1).
  • the estimation unit (81) keeps track of the time of cleaning the inside of the casing (20) so that the dirt before the cleaning is removed. You can judge the factor that disappeared.
  • the factors include that the dirt is naturally removed by the flow of air and/or condensed water passing through the inside of the casing (20), and that the dirt is removed by the cleaning.
  • the estimation unit (81) can determine the presence of stains that can be removed by cleaning and the presence of stains that cannot be removed, depending on the time when the inside of the casing (20) has been cleaned. This helps in estimating (a4) above.
  • the estimation unit (81) can know how dirty the casing (20) was, depending on the time when the inside of the casing (20) was cleaned. This helps in estimating (a6) above.
  • the rotational speed of the drain pump (60) is the rotational speed of the motor that drives the drain pump (60).
  • the current value of the drain pump (60) is the current value flowing in the motor.
  • the load applied to the motor changes depending on the amount of the condensed water in the drain pan (50) sucked up by the drain pump (60), the viscosity of the condensed water sucked up, and the like.
  • the rotation speed and current value of the drain pump (60) change according to this load.
  • the estimation unit (81) uses the rotation speed and the current value of the drain pump (60) as the operation data in the estimation operation to determine the amount and the viscosity of the condensed water in the drain pan (50), the dust and the biogas in the condensed water, and the like. Whether or not the film is mixed can be determined. This determination improves the accuracy of the above estimations (a1) to (a6).
  • the estimation unit (81) can grasp the work amount of the indoor unit (11) based on the strict difference between the temperature and humidity of the air (RA) and the temperature and humidity inside the casing (20). Based on this work amount, the estimation unit (81) can estimate not only the drain pan (50) but also the degree of contamination of the indoor heat exchanger (43). This work amount is useful for grasping the amount of condensed water generated in the indoor heat exchanger (43).
  • (B5) Temperature of the indoor heat exchanger (43) detected by the heat exchange sensor
  • the temperature and humidity of the air have a large effect on bacteria and mold.
  • the estimation unit (81) can more accurately grasp the state of the air around the drain pan (50) by using the temperature of the indoor heat exchanger (43) as the operation data in the estimation operation. Therefore, the temperature of the indoor heat exchanger (43) is useful for estimating the stain information in (a1) to (a6) above.
  • the filter near the suction port (31) is clogged or the indoor heat exchanger (43) is dirty, the amount of air (RA) sucked into the casing (20) will decrease and the wind speed will become uneven. There are cases. This phenomenon deteriorates the performance of the indoor heat exchanger (43), lowers the temperature of the indoor heat exchanger (43) during the cooling operation, and raises the temperature of the indoor heat exchanger (43) during the heating operation. Therefore, the temperature of the indoor heat exchanger (43) is useful not only for grasping not only the drain pan (50) but also the degree of contamination of the indoor heat exchanger (43) and the clogging of the filter.
  • the clogging of the filter causes stagnation of the air flow in the casing (20), which can be a factor for the growth of mold and bacteria in the drain pan (50). Therefore, grasping the clogging of the filter is useful for estimating the stain information (a1) to (a6) of the drain pan (50).
  • the estimation unit (81) By using the temperature and humidity of the air (RA) in addition to the temperature of the indoor heat exchanger (43) as the operation data, the estimation unit (81) causes the estimation unit (81) to generate the amount of condensed water in the indoor heat exchanger (43). Can be grasped. By estimating the amount of condensed water generated and the amount of condensed water sucked up and discharged by the drain pump (60), the estimation unit (81) can detect the abnormality of the drain pump (60) as accurately as possible. You can also grasp. Understanding the presence or absence of an abnormality in the drain pump (60) is useful for estimating the above (a1) to (a6) of the drain pan (50).
  • the estimation unit (81) can grasp each distribution of temperature and humidity inside the casing (20) as accurately as possible by using the air volume of the air (SA) as the operation data in the estimation operation. This grasp is useful for estimating (a1) to (a6) of the drain pan (50).
  • the amount of bacteria and mold growth is related to the amount of dust that flows into the casing (20).
  • the estimation unit (81) can grasp the inflow amount of the dust amount to some extent by using the air volume of the air (SA) as the operation data in the estimation operation, and can grasp the growth amount of bacteria and mold.
  • SA air volume of the air
  • Control parameters used to drive the fan (40) include the current value flowing in the motor (42) of the fan (40) and the rotation of the fan (40). Includes numbers.
  • the clogging of the filter located near the suction port (31) increases the pressure loss in the casing (20).
  • the increase in pressure loss increases the current value flowing through the motor (42) of the fan (40). Therefore, the estimation unit (81) can grasp the clogging of the filter from the current value. Understanding the clogging of the filter is also useful for estimating the dirt information (a1) to (a6) in the drain pan (50).
  • the temperature of the indoor heat exchanger (43) may not be uniform.
  • the estimation unit (81) can grasp the temperature distribution of the indoor heat exchanger (43) as accurately as possible by using the liquid pipe temperature and/or the gas pipe temperature as the operation data in the estimation operation. This grasping also helps to grasp the state of the air inside the casing (20) more accurately.
  • the estimation unit (81) uses the liquid pipe temperature or the gas pipe temperature as the operation data for the estimation operation, and thus the air volume of the air (RA), the air velocity distribution of the air (RA), the state of the indoor heat exchanger (43), etc. Can be grasped. These grasps are useful for improving the accuracy of the drain pan (50) in the above (a1) to (a6).
  • the bacterial breeding status changes depending on the degree of condensation on the liquid pipe.
  • Using the liquid pipe temperature as the operation data in the estimation operation is useful for estimating the contamination information inside the casing (20) including the drain pan (50).
  • the estimation unit (81) can estimate the growth state of bacteria as accurately as possible by using the temperature of the condensed water in the drain pan (50) as the operation data in the estimation operation. This estimation is useful for the estimation of (a2) above.
  • the type of bacteria that easily grow depends on the water temperature.
  • the estimation unit (81) can easily estimate the type of bacteria in (a2) above.
  • the estimation unit (81) can grasp the degree of clogging of the drain pump (60) by using the water level of the drain pan (50) as the operation data in the estimation operation.
  • the degree of clogging of the drain pump (60) is useful in estimating (a1) to (a6) above.
  • the operation mode in which bacteria may grow refers to a mode in which condensed water continues to accumulate in the drain pan (50) for a predetermined time or longer and new condensed water is not supplied to the drain pan (50).
  • the predetermined time is set to a relatively long time.
  • the following (I) to (IV) correspond to operation modes in which bacteria may grow.
  • At least one of the following (c1) and (c2) is included in the environmental data.
  • Air quality detected by the air quality sensor The air quality is VOC and dust such as oil mist contained in the air.
  • VOCs such as oil mist and the amount of dust become nutrients for bacteria and mold.
  • RA intake air
  • the air quality sucked into the casing (20) changes according to the degree of clogging of the filter near the suction port (31).
  • Using the air quality as the environmental data in the estimation operation is useful not only for the dirt information of the drain pan (50) but also for estimating the degree of clogging of the filter.
  • the estimation unit (81) uses not only the drain pan (50) but also the filter and the indoor heat exchanger (43) by using both the operation data (b1) and the environmental data (c1) in the estimation operation. The degree can also be estimated.
  • the estimation unit (81) facilitates estimation of (b2) above, and also identifies the presence or absence of a filter clogging and its cause. It will be easier.
  • the image data used by the estimation unit (81) for the estimation operation may be one or plural.
  • the estimation unit (81) uses a plurality of image data captured at predetermined time intervals to estimate stain information.
  • the estimation unit (81) uses, for estimation of the stain information, a plurality of pieces of image data obtained by the camera (72) capturing the drain pan a plurality of times over time.
  • the estimation unit (81) can grasp the transition of the change of the stain per predetermined time period by using the image data captured periodically. This grasp improves the accuracy of estimation of stain information.
  • Machine learning used in creating the neural network that is the estimation model (82) includes deep learning. There are two types of learning methods: supervised learning and unsupervised learning.
  • the neural network of the estimation model (82) learns using learning data and a discriminant function.
  • the learning data is a set of pairs of input data and teaching data corresponding to the input data.
  • the teaching data are, for example, parameters relating to identification, classification and evaluation of input data.
  • the parameters of the neural network are updated appropriately.
  • the estimation model (82) becomes a model capable of estimating the dirt information with higher accuracy.
  • a large amount of drain pan (50) image data is prepared as input data, and a label for each image data is prepared as teaching data.
  • the label shows the degree of dirt on the drain pan (50).
  • the estimation model (82) is generated and updated by learning the neural network using the image data and the label.
  • the label may be created by the builder of the dirt information estimation system (70) or automatically by AI or an image processing program.
  • the label automatically created by the AI or the image processing program may be visually recognized by the builder of the stain information estimation system (70).
  • one image data may be provided with a plurality of labels, or the label may be provided with position information of stains in the image data.
  • the image data used for learning may be rotated, enlarged, or reduced image data.
  • the image data used for learning may be image data on which noise is intentionally added, image data created by another AI, or image data in which these are combined.
  • Unsupervised learning In the case of unsupervised learning, a label indicating to which classification each of the plurality of input data belongs is not given in advance.
  • the neural network is created and updated by repeating the learning operation of grouping a plurality of input data into a plurality of classifications by clustering so that input data that are similar to each other are classified into the same classification.
  • operating data of the air conditioner (10) and environmental data are prepared, and each data is classified.
  • the classified driving data and environmental data can be used as learning data, or a set (cluster) of classified data can be used as an estimation model (82).
  • the system builder may give labels to various data used in the estimation with low accuracy.
  • the label is created so as to represent the actual stain information of the drain pan (50).
  • the communication unit (100) is an adapter for connecting the air conditioner (10) to the network N and includes a receiving unit (101) and a wireless communication unit (102).
  • the receiver (101) is a communication interface with the air conditioner (10), and receives image data, environmental data of the air conditioner (10), and operation data from the air conditioner (10).
  • the wireless communication unit (102) wirelessly transmits the environment data, the driving data, and the image data received by the receiving unit (101) to the network N.
  • the communication terminal (90) includes a smartphone, a tablet terminal, a mobile phone, a personal computer, or the like.
  • the communication terminal (90) has an operation unit (91), a display unit (92), and a voice output unit (93).
  • the operation unit (91) consists of a keyboard and touch panel.
  • the service provider or the like operates the operation unit (91) to operate predetermined application software. Through this application, a service provider or the like can cause the camera (72) to capture an image and download the captured image data to the communication terminal (90).
  • the display unit (92) is composed of, for example, a liquid crystal monitor.
  • the display unit (92) displays image data captured by the camera (72) and the stain information.
  • the service provider can visually grasp at least one of the above (a1) to (a6).
  • the voice output unit (93) is composed of a speaker. From the voice output section (93), the stain information is output as voice.
  • the service provider can listen to at least one of the above (a1) to (a6).
  • FIG. 7 shows the operation of the dirt information estimation system (70).
  • the arithmetic device (80) acquires the image data imaged in step St11.
  • the arithmetic unit (80) acquires the operation data and the environmental data from the control unit (18), the storage unit (19) and various sensors in the air conditioner (10) via the network N (step St12).
  • the operation data acquired by the arithmetic unit (80) in step St12 includes past operation data of the air conditioner (10) in addition to the current operation data of the air conditioner (10). At least one of the above (b1) to (b10) is used as the operation data. At least one of the above (c1) and (c2) is used as the environmental data.
  • the estimation unit (81) of the arithmetic unit (80) inputs the image data, driving data, and environmental data acquired in step St12 into the estimation model (82).
  • the estimation unit (81) mainly estimates the stain information of the drain pan (50) using the estimation model (82) (step St13).
  • At least one of the above (a1) to (a6) is included in the dirt information in step St13.
  • the arithmetic unit (80) transmits the stain information in step St13 to the communication terminal (90).
  • the communication terminal (90) outputs the stain information in step St13 to the display unit (92) and the voice output unit (93).
  • the display unit (92) and the voice output unit (93) notify the stain information (step St14). This allows the user such as a service provider to grasp the stain information of the drain pan (50) and clean the drain pan (50) as necessary.
  • step St14 if the camera (72) newly captures an image of the drain pan (50) (Yes in step St15), the operations after step St12 are repeated.
  • the camera (72) images the drain pan (50) which is one of the components of the air conditioner (10).
  • the estimation unit (81) mainly estimates the stain information of the drain pan (50) using the operation data and the environmental data of the air conditioner (10) in addition to the image data of the drain pan (50). As a result, the accuracy of estimating the stain information is improved.
  • the estimating unit (81) uses a plurality of image data obtained by the camera (72) capturing the drain pan (50) a plurality of times over time for estimating the stain information. As a result, the estimation unit (81) can grasp the transition of stains on the drain pan (50), and thus the estimation accuracy of stain information can be more easily improved.
  • Air quality can affect the growth of bacteria and mold.
  • the estimation accuracy of the stain information can be easily improved.
  • the installation location of the air conditioner (10) may affect how the drain pan (50) gets dirty and how dirty it is.
  • the estimation accuracy of the stain information can be easily improved.
  • the temperature of the indoor heat exchanger (43) may affect not only bacteria and mold but also the state of the indoor heat exchanger (43) itself or the components around it.
  • the control parameters used to drive the fan (40) are useful for grasping the state of components around the fan (40).
  • the time during which the refrigerant does not flow into the indoor heat exchanger (43), the rotation speed of the drain pump (60), and the operating time of the air conditioner (10) are also useful for understanding the internal state of the casing (20). .. By using at least one of these pieces of information as the operation data for estimating the stain information, the estimation accuracy of the stain information can be easily improved.
  • Dirty information includes at least one of the degree of dirt on the drain pan (50), the type of dirt, the location of dirt, the necessity of maintenance, and the time when maintenance should be performed. This dirt information is reported by the display unit (92) and the audio output unit (93). A user such as a service provider can know the stain information.
  • the dirt information estimation system (70) can also be applied to a ceiling-suspended or ceiling-mounted air conditioner (10), as shown in FIG.
  • the air conditioner (10) in FIG. 8 has an outdoor unit (not shown) and an indoor unit (11), and these are connected by a refrigerant pipe to form a refrigerant circuit.
  • the indoor unit (11) has a casing (20) installed behind the ceiling.
  • the casing (20) includes a casing body (20a) and a panel (100).
  • the casing body (20a) is formed in a rectangular box shape with an opening surface formed on the lower side.
  • the panel (100) is detachably provided on the opening surface of the casing body (20a).
  • the panel (100) has a rectangular frame-shaped panel body (101) and a suction grill (102) provided at the center of the panel body (101).
  • a single suction port (31) is formed in the center of the panel body (101).
  • a filter (31a) is provided so as to cover the suction port (31).
  • the suction grill (102) is attached to the suction port (31) below the filter (31a).
  • One blower outlet (32) is formed at each of the four side edge portions of the panel body (101). Each of the air outlets (32) extends along the four side edges.
  • a flap (103) for changing the wind direction is provided inside each outlet (32).
  • a bell mouth (104), a fan (40), an indoor heat exchanger (43), and a drain pan (50) are provided inside the casing body (20a).
  • the bell mouth (104) and the fan (40) are arranged above the suction grill (102).
  • the indoor heat exchanger (43) is arranged so as to surround the fan (40).
  • the indoor heat exchanger (43) is composed of a fin-and-tube heat exchanger.
  • the drain pan (50) is arranged below the indoor heat exchanger (43).
  • the lens (73) of the camera (72) faces the bottom of the drain pan (50).
  • the camera (72) images at least the bottom surface of the drain pan (50).
  • the dirt information estimation system (70) of FIG. 6 estimates dirt information regarding dirt of the drain pan (50).
  • the estimation unit (81) can use the angle of the flap (103) as the operation data in the estimation operation to grasp the state of the air in the casing (20) as accurately as possible.
  • the estimation unit (81) can learn the angle of the flap (103) where dust and VOCs are easily sucked. In other words, the angle of the flap (103) also serves as data when updating the estimation model (82).
  • the estimation unit (81) can estimate not only the drain pan (50) but also the stain on the flap (103) by using the angle of the flap (103) as the operation data in the estimation operation.
  • the contents of the environmental data used for the dirt information estimation operation and the contents of the dirt information are the same as above.
  • the dirt information notification operation is also the same as described above.
  • the dirt information estimation target is not limited to the drain pan (50).
  • the components other than the drain pan (50) such as the fan (40), the indoor heat exchanger (43), the air filter, the inner wall of the duct, the inner wall of the water flow path, and the like may be the estimation target.
  • the water flow path includes the suction section (61) of the drain pump (60) and the drain pipe (63) of the drain pump (60).
  • the camera (72) may further have an LED for emitting visible light in addition to the light source (74) for burning the flash.
  • the LED In the estimation of the dirt information, when the estimation unit (81) recognizes that bacteria are multiplying, the LED emits visible light toward the drain pan (50). As a result, radicals are generated in the condensed water in the drain pan (50), and the degree of bacterial growth is reduced.
  • the dirt information estimation system (70) may be incorporated in the air conditioner (10).
  • the tray that is the target of imaging may be parts other than the drain pan (50) as long as it receives water.
  • the tray may be a water pan installed below the humidification tank.
  • the water in the humidification tank is supplied to the water receiver.
  • the water in the water receiver is used to humidify the air.
  • the humidifying tank and the water receiver are mounted on, for example, an air purifier or a humidity control device.
  • the image capturing unit is not limited to the camera and may be, for example, an optical sensor.
  • the light source (74) of the camera (72) may be separate from the camera body.
  • the imaging unit may be arranged inside the casing of the outdoor unit.
  • the air treatment device may be another device as long as it has a casing through which air flows.
  • the air treatment device may be a humidity control device, a ventilation device, and an air purifier.
  • the humidity control device adjusts the humidity of the air in the target space.
  • the ventilation device ventilates the target space.
  • the air purifier purifies the air in the target space.
  • the humidity control device and the air purifier include a humidification tank and a water receiver installed below the humidification tank as components. In the case of the humidity control apparatus and the air purifier, these components may be imaged, and the estimation unit may estimate the stain information regarding the components.
  • the ventilation device ventilates the target space.
  • the ventilation device includes a total heat exchanger as a component. In the case of the ventilation device, the total heat exchanger may be the imaging target, and the estimation unit may estimate the dirt information regarding the total heat exchanger.
  • the air conditioner may be an outside air treatment system that adjusts the temperature and humidity of the taken-in outdoor air.
  • This air conditioner includes a humidifier for humidifying air.
  • the humidifier has a plurality of water absorbing members.
  • a tray for receiving the water flowing out from the humidifier is arranged below the humidifier.
  • the image capturing unit captures an image of the tray, and the estimating unit estimates the stain information regarding the tray.
  • an axial fan may be adopted.
  • the contents of the operation data used for the dirt information estimation operation include the above (b1) to (b10).
  • the estimation unit (81) can more accurately grasp the state of the air in the casing by using the above (b7) as the operation data in the estimation operation.
  • the estimation model is used more than when the rotational speed of the fan (40) is used as learning data.
  • the estimation accuracy of (82) is improved.
  • the estimation unit (81) may compare the previously estimated stain information with the newly estimated stain information. From the comparison result, the estimation unit (81) can grasp the amount of change in dirt adhesion. This change amount can be used for further learning of the estimation model (82), and the estimation accuracy of the estimation model (82) is further improved.
  • the image data used for estimation may be moving image data instead of still image data.
  • the position of the camera body or the position of the lens (73) may be changed, and the camera (72) may capture the drain pan (50) multiple times. .. In this case, the image data captured a plurality of times is used for the dirt information estimation operation.
  • the notification method may be display only or audio output only.
  • Either one of operation data and environmental data and image data may be used for the estimation operation of the dirt information.
  • the present disclosure is useful as a dirt information estimation system and an air treatment device.
  • Contamination information estimation system 72 Camera (imaging section) 81 Estimator 92 Display (Notification) 93 Audio output section (notification section) 103 flaps

Abstract

汚れ情報推定システム(70)は、空気調和装置(10)のケーシング(20)内部のドレンパン(50)を撮像するカメラ(72)と、カメラ(72)が撮像した画像データと、空気調和装置(10)の運転データ及び/または空気調和装置(10)が設けられている環境に関する環境データとに基づいて、ドレンパン(50)の汚れに関する汚れ情報を推定する推定部(81)と、を備える。

Description

汚れ情報推定システム、及び空気処理装置
 本開示は、汚れ情報推定システム、及び空気処理装置に関する。
 空気調和装置及び空気清浄機等の空気処理装置は、自装置の稼働に伴って徐々に汚れる部品を含む。特許文献1には、この部品の状態を診断する技術が開示されている。
特開2005-292066号公報
 上記特許文献1では、上記部品の画像のみに基づいて部品の状態が推定(診断)される。部品の画像のみでは、推定精度は向上し難い。
 本開示の目的は、空気処理装置の構成部品の推定精度を向上させることである。
 本開示の第1の態様は、空気処理装置(10)のケーシング(20)内部の構成部品を撮像する撮像部(72)と、上記撮像部(72)が撮像した画像データと、上記空気処理装置(10)の運転データ及び/または上記空気処理装置(10)が設けられている環境に関する環境データとに基づいて、上記構成部品の汚れに関する汚れ情報を推定する推定部(81)と、を備えることを特徴とする汚れ情報推定システムである。
 構成部品の汚れ情報の推定には、構成部品の画像データに加えて、空気処理装置の運転データ及び/または環境データが用いられる。これにより、汚れ情報の推定精度は向上する。
 本開示の第2の態様は、第1の態様において、上記推定部(81)は、時間の経過に従って上記撮像部(72)が上記構成部品を複数回撮像した複数の上記画像データを、上記汚れ情報の推定に用いることを特徴とする汚れ情報推定システムである。
 これにより、推定部(81)は構成部品の汚れの推移を把握できるため、汚れ情報の推定精度はより向上し易くなる。
 本開示の第3の態様は、第1の態様または第2の態様において、上記環境データは、上記ケーシング(20)内部に吸い込まれた空気質に関するデータを含むことを特徴とする汚れ情報推定システムである。
 空気質は、細菌やカビの繁殖量に影響を及ぼすことがある。この空気質に関するデータが汚れ情報の推定に用いられることで、汚れ情報の推定精度は向上し易くなる。
 本開示の第4の態様は、第1の態様から第3の態様のいずれか1つにおいて、上記環境データは、上記空気処理装置(10)の据え付け場所に関するデータを含むことを特徴とする汚れ情報推定システムである。
 空気処理装置(10)の据え付け場所は、構成部品の汚れ方や汚れの程度等に影響を及ぼすことがある。この据付場所に関するデータが汚れ情報の推定に用いられることで、汚れ情報の推定精度は向上し易くなる。
 本開示の第5の態様は、第1の態様から第4の態様のいずれか1つにおいて、上記運転データは、上記ケーシング(20)内部に含まれる熱交換器(43)の温度、上記ケーシング(20)内部に含まれるファン(40)の駆動に用いられる制御パラメータ、上記ケーシング(20)に設けられたフラップ(103)の角度、上記熱交換器(43)への冷媒の流入が停止している時間、上記ケーシング(20)内部に含まれるドレンポンプ(60)の回転数、上記空気処理装置(10)の稼働時間、の少なくとも1つを含むことを特徴とする汚れ情報推定システムである。
 熱交換器(43)の温度は、細菌やカビのみならず、熱交換器(43)自体またはその周辺の構成部品の状態に影響を及ぼすことがある。ファン(40)の駆動に用いられる制御パラメータは、ファン(40)の周辺の構成部品の状態の把握等に役立つ。フラップ(103)の角度は、フラップ(103)自体の状態の把握、及び、ケーシング(20)内部の状態の把握に役立つ。熱交換器(43)への冷媒の流入が停止している時間、ドレンポンプ(60)の回転数、空気処理装置(10)の稼働時間も、ケーシング(20)内部の状態の把握に役立つ。これらの情報の少なくとも1つが汚れ情報の推定に用いられることで、汚れ情報の推定精度は向上し易くなる。
 本開示の第6の態様は、第1の態様から第5の態様のいずれか1つにおいて、上記汚れ情報は、上記構成部品の汚れ度合い、上記構成部品の汚れの種類、上記構成部品における汚れの位置、上記構成部品のメンテナンスの要否、上記構成部品のメンテナンスを行うべき時期、の少なくとも1つを含むことを特徴とする汚れ情報推定システムである。
 本開示の第7の態様は、第6の態様において、上記汚れ情報を報知する報知部(92,93)を更に備えることを特徴とする汚れ情報推定システムである。
 これにより、ユーザは、構成部品の汚れ情報を知ることができる。
 本開示の第8の態様は、第1の態様から第7の態様のいずれか1つの汚れ情報推定システム(70)が組み込まれたことを特徴とする空気処理装置である。
 本開示の第9の態様は、第8の態様において、
 上記空気処理装置は、空気調和装置、調湿装置、空気清浄機及び換気装置のいずれか一つであって、上記空気調和装置の上記構成部品には、ドレンパン(50)、ファン(40)、熱交換器(43)、エアフィルタ、ダクトの内壁、ドレンポンプ(60)の吸込部(61)、及びドレンポンプ(60)の排水管、のうち少なくとも1つが含まれ、上記調湿装置及び上記空気清浄機の上記構成部品には、加湿タンク、及び上記加湿タンクの下側に設置される水受け、のうち少なくとも1つが含まれ、上記換気装置の上記構成部品には、全熱交換器が含まれることを特徴とする空気処理装置である。
図1は、空気調和装置の内部構造を示す平面図である。 図2は、空気調和装置の正面図である。 図3は、空気調和装置の内部構造を示す縦断面図である。 図4は、空気調和装置の正面視における概略構成を示す斜視図である。 図5は、点検蓋の内側の構造を示す斜視図である。 図6は、汚れ情報推定システムの構成の模式図である。 図7は、汚れ情報推定システムの動作の流れ図である。 図8は、変形例に係る空気調和装置の内部構造を示す縦断面図である。
 以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 ≪実施形態≫
 本実施形態に係る空気処理装置は、室内の少なくとも温度を調節する空気調和装置(10)である。図1の空気調和装置(10)は、空気(RA)の温度を調節し、温度を調節した空気を供給空気(SA)として室内に供給する。空気調和装置(10)は、冷房運転と暖房運転とを行う。
 空気調和装置(10)は、室内ユニット(11)を備える。室内ユニット(11)は、天井裏の空間に設置される。室内ユニット(11)は、冷媒配管を介して室外ユニットに接続される。この接続により、空気調和装置(10)には、冷媒回路が形成される。室外ユニットの図示は、省略する。
 冷媒回路では、冷媒が循環することで蒸気圧縮式の冷凍サイクルが行われる。冷媒回路では、圧縮機、室外熱交換器、膨張弁、及び室内熱交換器(43)が接続される。冷媒回路では、第1冷凍サイクルと第2冷凍サイクルとが切り替えて行われる。
 第1冷凍サイクルは、冷房運転時に行われる。第1冷凍サイクルは、室外熱交換器を放熱器または凝縮器とし、室内熱交換器(43)を蒸発器とする冷房サイクルである。第2冷凍サイクルは、暖房運転時に行われる。第2冷凍サイクルは、室内熱交換器(43)を放熱器または凝縮器とし、室外熱交換器を蒸発器とする暖房サイクルである。
 <室内ユニットの構成>
 室内ユニット(11)の構成について、図1~図4を参照しながら説明する。室内ユニット(11)は、ケーシング(20)、ファン(40)、室内熱交換器(43)、ドレンパン(50)及びドレンポンプ(60)を備える。ケーシング(20)は、天井裏に設置される。ファン(40)、室内熱交換器(43)、ドレンパン(50)及びドレンポンプ(60)は、ケーシング(20)内部に配置される。
 ファン(40)、室内熱交換器(43)、ドレンパン(50)及びドレンポンプ(60)は、空気調和装置(10)の構成部品である。
  -ケーシング-
 ケーシング(20)は、直方体の中空箱形に形成されている。ケーシング(20)は、天板(21)、底板(22)、前板(23)、後板(24)、第1側板(25)及び第2側板(26)を含む。前板(23)及び後板(24)は、互いに対向する。第1側板(25)及び第2側板(26)は、互いに対向する。
 前板(23)は、メンテナンス用空間(15)に面している。メンテナンス用空間(15)は、サービス業者の作業用スペースである。前板(23)には、点検口(27)が形成される。点検口(27)には、点検蓋(28)が着脱可能に取り付けられる。点検口(27)の内側には、ドレンパン(50)が配置される。点検口(27)とドレンパン(50)とは、前板(23)の厚さ方向視において重なる。サービス業者は、点検口(27)を通じてドレンパン(50)を視認できる。
 第1側板(25)には、吸込口(31)が形成されている。ケーシング(20)内部の吸込口(31)付近には、フィルタ(図示せず)が設けられている。吸込口(31)には、吸込ダクトが接続される。吸込ダクトの流入端は、室内空間に繋がっている。第2側板(26)には、吹出口(32)が形成されている。吹出口(32)には、吹出ダクトが接続される。吹出ダクトの流出端は、室内空気に繋がっている。ケーシング(20)の内部には、吸込口(31)から吹出口(32)までの間に空気流路(33)が形成されている。吸込ダクト及び吹出ダクトの図示は、省略している。
  -ファン-
 ファン(40)は、空気流路(33)における第1側板(25)寄りに配置されている。図1では、空気流路(33)に、ファン(40)が3台配置されている場合を例示する。
 本実施形態では、各ファン(40)が、シロッコ型ファンである場合を例示する。3台のファン(40)は、回転軸(41)によって互いに連結され、1つのモータ(42)によって駆動される。
  -室内熱交換器-
 室内熱交換器(43)は、空気流路(33)における第2側板(26)寄りに配置されている。本実施形態では、室内熱交換器(43)が、フィンアンドチューブ式の熱交換器である場合を例示する。図3では、室内熱交換器(43)は、垂直方向に対して斜めに配置されている。
 第1冷凍サイクル中の室内熱交換器(43)は、空気を冷却する。この際、空気中の水分が結露し、凝縮水が発生する。
 第2冷凍サイクル中の室内熱交換器(43)は、空気を加熱する。
  -ドレンパン-
 ドレンパン(50)は、ケーシング(20)の内部の底板(22)に設置されている。ドレンパン(50)は、空気流路(33)に配置されている。ドレンパン(50)は、室内熱交換器(43)の下方に配置されている。ドレンパン(50)は、水を受けるトレーである。具体的には、ドレンパン(50)は、室内熱交換器(43)の近傍で発生した凝縮水を受ける。
 ドレンパン(50)は、第1側壁(51)、第2側壁(52)及び底部(53)を有する。空気流路(33)において、第1側壁(51)は、室内熱交換器(43)に対し空気流の上流側に位置する。空気流路(33)において、第2側壁(52)は、室内熱交換器(43)に対し空気流の下流側に位置する。底部(53)は、第1側壁(51)及び第2側壁(52)に亘って形成される。底部(53)には、凹部(54)が形成されている。この凹部(54)の底面は、ドレンパン(50)の高さ方向において最も低い場所である。
 ドレンパン(50)は、樹脂材料または金属で構成される。ドレンパン(50)の少なくとも底部(53)の表面の色は、白、ベージュなどの比較的薄い色である。換言すると、ドレンパン(50)の少なくとも底部(53)の色の明度は、比較的高い。
  -ドレンポンプ-
 ドレンポンプ(60)は、ドレンパン(50)の内部に配置される。ドレンポンプ(60)は、ドレンパン(50)内の水を排出するポンプである。ドレンポンプ(60)の下部には、水を吸い込む吸込部(61)が設けられている。この吸込部(61)が、ドレンパン(50)の凹部(54)の内部に配置されるように、ドレンポンプ(60)は配置されている。
 吸込部(61)の下端には、水が流入する流水口(62)が形成されている。流水口(62)は、凹部(54)の底面に向かって開口する。
 ドレンポンプ(60)の上部には、排水管(63)が接続されている。排水管(63)は、ドレンポンプ(60)の吐出側に繋がっている。排水管(63)は、ケーシング(20)の前板(23)の上部を、該前板(23)の厚さ方向に貫通する。
 ドレンポンプ(60)が運転すると、ドレンパンに溜まった水がドレンポンプ(60)の吸込部(61)に吸い込まれる。吸い込まれた水は、ドレンポンプ(60)から吐出される。吐出された水は、排水管(63)を通ってケーシング(20)の外部に排出される。
  -電装品箱-
 図1に示すように、室内ユニット(11)は、電装品箱(16)を備える。
 電装品箱(16)は、前板(23)及びファン(40)の近くに配置されている。電装品箱(16)の内部には、プリント基板(17)が収容されている。プリント基板(17)には、制御部(18)、記憶部(19)及び電源部が実装されている。
 制御部(18)は、CPU及びメモリを含むマイクロコンピュータで構成される。制御部(18)は、空気調和装置(10)の構成部品の駆動、及び、空気調和装置(10)自体の運転を制御する。
 記憶部(19)は、半導体メモリで構成される。記憶部(19)には、空気調和装置(10)の構成部品の駆動及び制御に関するログデータ、空気調和装置(10)自体の運転に関するログデータが記憶されている。記憶部(19)には、空気調和装置(10)の据付場所を表すデータも、記憶されている。空気調和装置(10)の据付場所を表すデータは、空気調和装置(10)が据え付けられた際に、空気調和装置(10)のリモートコントローラ等を介して、サービス業者等によって入力される。
 電源部は、空気調和装置(10)を構成する構成部品のうち、駆動に電力を要する構成部品に供給するための電源を生成する。
 電装品箱(16)は、前側が開口する箱本体(16a)と、箱本体(16a)の開口面を開閉する電装品蓋(16b)とを含む。電装品蓋(16b)は、前板(23)の一部を構成する。電装品蓋(16b)を取り外すことで、電装品箱(16)の内部がメンテナンス用空間(15)に露出される。
 図示していないが、空気調和装置(10)には、吸込空気用センサ、空気質センサ、熱交換センサ、管温度センサ、ドレンパン用センサ、が設けられている。上記制御部(18)は、これらのセンサに接続されている。制御部(18)には、各センサの検知結果が入力される。各センサの検知結果は、制御部(18)による各種制御動作にて利用される。
 吸込空気用センサは、吸込口(31)付近に設けられ、ケーシング(20)内に吸い込まれる空気(RA)の温度及び湿度を検知する。空気質センサは、ケーシング(20)内部かつ吸込口(31)付近に設けられ、フィルタ(図示せず)を介してケーシング(20)内部に吸い込まれた空気(RA)の空気質を検知する。空気質には、当該空気(RA)に含まれる粉じん量、VOC(Volatile Organic Compounds)が含まれる。
 熱交換センサは、室内熱交換器(43)の表面に設けられ、室内熱交換器(43)の温度を検知する。管温度センサは、冷媒回路の液管付近及びガス管付近の少なくとも1つに設けられ、対応する管の温度を検知する。ドレンパン用センサは、ドレンパン(50)の内部に設けられ、ドレンパン(50)内の水位及び温度を検知する。
  ―ステー―
 図5に示すように、点検蓋(28)の内面には、ステー(65)が設けられている。ステー(65)は、後述するカメラ(72)が取り付けられる支持部材であって、点検蓋(28)に固定されている。ステー(65)の基端は、点検蓋(28)の内面に締結部材を介して締結されてもよい。ステー(65)には、カメラ(72)が着脱可能に取り付けられる。これにより、点検蓋(28)の内面には、カメラ(72)が支持される。
 点検口(27)に点検蓋(28)が取りつけられると、カメラ(72)の撮像方向が撮像対象を向いた状態で、カメラ(72)は空気調和装置(10)のケーシング(20)内部に取り付けられた状態となる。
 なお、カメラ(72)のレンズ(73)が撮像対象を向くように、カメラ(72)が動いても良い。
 <空気調和装置の運転動作>
 空気調和装置(10)の基本的な運転動作を説明する。空気調和装置(10)は、冷房運転と暖房運転とを行う。
 冷房運転では、室外ユニットの圧縮機で圧縮された冷媒が、室外熱交換器で放熱(凝縮)し、膨張弁で減圧される。減圧された冷媒は、室内ユニット(11)の室内熱交換器(43)で蒸発し、圧縮機で再び圧縮される。
 ファン(40)が運転されると、空気(RA)が吸込口(31)から空気流路(33)に吸い込まれる。空気流路(33)の空気は、室内熱交換器(43)を通過する。室内熱交換器(43)では、冷媒が空気から吸熱することで、この空気が冷却される。冷却された空気は、吹出口(32)を通過した後、供給空気(SA)として室内空間へ供給される。
 室内熱交換器(43)で空気が露点温度以下にまで冷却されると、空気中の水分が凝縮する。この凝縮水は、ドレンパン(50)に受け止められる。ドレンパン(50)で受け止められた凝縮水は、ドレンポンプ(60)によってケーシング(20)の外部へ排出される。
 暖房運転では、室外ユニットの圧縮機で圧縮された冷媒が、室内ユニット(11)の室内熱交換器(43)で放熱(凝縮)し、膨張弁で減圧される。減圧された冷媒は、室外ユニットの室外熱交換器で蒸発し、圧縮機で再び圧縮される。室内熱交換器(43)では、冷媒が空気に放熱し、該空気が加熱される。加熱された空気は、吹出口(32)を通過した後、供給空気(SA)として室内空間へ供給される。
 <汚れ情報推定システムの構成>
 上述したように、冷房運転中、ドレンパン(50)には凝縮水が溜まるため、ドレンパン(50)には細菌やカビが発生及び繁殖することがある。そこで、本実施形態では、ドレンパン(50)の細菌やカビ等の汚れを推定する汚れ情報推定システム(70)が、構築されている。
 図6の汚れ情報推定システム(70)は、カメラ(72)と、演算装置(80)と、通信端末(90)と、通信ユニット(100)とを備える。カメラ(72)は、撮像部に相当し、空気調和装置(10)内部に位置する。
 空気調和装置(10)、演算装置(80)、通信端末(90)及び通信ユニット(100)は、ネットワークNを介して通信可能に接続されている。
  -カメラ-
 カメラ(72)は、撮像対象であるドレンパン(50)を撮像し、撮像した画像データを出力する。
 カメラ(72)は、レンズ(73)及び光源(74)を有する。
 レンズ(73)には、広角レンズ、魚眼レンズ等が採用される。カメラ(72)が点検蓋(28)の内面に取り付けられている状態の間、レンズ(73)は、ドレンパン(50)の内部を向く。
 カメラ(72)が撮像を行っている間、光源(74)は、ドレンパン(50)に向かって発光する。ケーシング(20)内部は比較的暗く、撮像にはある程度の光が必要だからである。
 カメラ(72)は、サービス業者の操作に従って撮像してもよいし、所定時間毎に自動で撮像してもよい。カメラ(72)が撮像した画像データは、演算装置(80)に逐次送信される。
  -演算装置-
 演算装置(80)は、主に、ドレンパン(50)の汚れに関する様々な情報を推定する。以下では、汚れに関する様々な情報を、「汚れ情報」と云う。
 演算装置(80)は、記憶部(88)及びCPU(89)等からなるコンピュータで構成されたクラウドサーバである。記憶部(88)は、半導体メモリ、SSD、HDD等で構成される。
 演算装置(80)は、画像データ、空気調和装置(10)の運転データ及び環境データを、ネットワークNを介して空気調和装置(10)から取得する。画像データは、カメラ(72)によって撮像されたドレンパン(50)の画像のデータである。環境データは、空気調和装置(10)が設けられている環境に関するデータである。演算装置(80)は、自身が推定した推定結果である汚れ情報を、ネットワークNを介して通信端末(90)に送信する。
 演算装置(80)が取得した各種データ、及び、上記汚れ情報は、記憶部(88)に記憶される。汚れ情報は、推定したタイミングで通信端末(90)に送信されてもよいし、通信端末(90)からの送信要求に応じて該通信端末(90)に送信されてもよい。
 本実施形態では、演算装置(80)が、空気調和装置(10)とは別の装置である場合を例示している。演算装置(80)は、制御部(18)のように、空気調和装置(10)内に組み込まれていてもよい。
 演算装置(80)のCPU(89)は、推定部(81)として機能する。推定部(81)は、画像データと、運転データと、環境データとに基づいて、主にドレンパン(50)の汚れ情報を推定する。推定部(81)は、推定モデル(82)を有する。
 推定モデル(82)は、汚れ情報を演算にて求める専用モデルである。推定モデル(82)は、機械学習により分類能力を獲得した、多階層のニューラルネットワークとして、予め構築されている。推定モデル(82)の作成及び学習については、“(推定モデルの作成方法)”にて説明する。
  (汚れ情報の内容)
 汚れ情報としては、以下の(a1)~(a6)の少なくとも1つが含まれる。
 (a1)汚れ度合い
 (a2)汚れの種類及び量
 (a3)汚れの位置
 (a4)メンテナンスの要否
 (a5)メンテナンスが必要な場合は、メンテナンス方法
 (a6)メンテナンスを行うべきタイミング
 上記(a1)は、現在のドレンパン(50)がどの程度汚れているかを表す情報である。上記(a1)には、ドレンパン(50)が今後どの程度汚れる可能性があるかが、更に含まれていても良い。
 上記(a2)は、ドレンパン(50)の汚れが、油、カビ、細菌、水垢、及びホコリのうち、何によるものかを表す情報である。
 上記(a3)は、ドレンパン(50)のうち、どの部分が汚れているのかを示す情報である。
 上記(a4)は、上記(a1)の汚れ度合いを基に判定される情報であって、メンテナンスが必要であるか否かを表す情報である。汚れ度合いが閾値を超えている場合、推定部(81)は、空気調和装置(10)のメンテナンスが必要と判定する。汚れ度合いが閾値以下の場合、推定部(81)は、空気調和装置(10)のメンテナンスが不要と判定する。
 上記(a5)は、メンテナンスが必要な構成部品の名称、メンテナンスにおいて使用を推奨する薬剤の名称、メンテナンスの具体的な工程のうち、少なくとも1つを表す情報である。例えば、ドレンパン(50)の汚れが黒カビによるものであれば、ドレンパン(50)のメンテナンスには次亜塩素酸塩を含む薬剤の使用が推奨される。ドレンパン(50)の汚れが、室内熱交換器(43)の汚れに起因するものであれば、ドレンパン(50)及び室内熱交換器(43)がメンテナンス対象となる。
 上記(a6)は、空気調和装置(10)のメンテナンスを推奨するタイミングを、時期または現在からの期間にて表す情報である。例えば、上記タイミングは、メンテナンスを“今すぐ”“2020年6月頃”“3ヶ月後”と表される。
  (運転データの内容)
 以下では、推定動作に用いられる運転データの内容について、具体的に説明する。
 運転データには、以下の(b1)~(b10)の少なくとも1つが挙げられる。
 (b1)空気調和装置(10)の稼働時間
 冷房運転中、室内熱交換器(43)にて発生した凝縮水は、ドレンパン(50)に貯留される。この状態で空気調和装置(10)が運転を停止すると、凝縮水は蒸発し始める。すると、ケーシング(20)内部の湿度は上昇し、ケーシング(20)内部はカビや細菌が繁殖しやすい環境となる。推定部(81)は、空気調和装置(10)の稼働時間を運転データとして推定動作に用いることにより、凝縮水の貯留量を把握できる。上記(b1)は、上記(a2)におけるカビ及び細菌の量の把握、及び上記(a1)の推定に役立つ。
 (b2)ケーシング(20)内部の清掃をこれまでに実施した時期
 推定部(81)は、ケーシング(20)内部の清掃をこれまでに実施した時期を把握することにより、当該清掃以前の汚れがなくなった要因を判断できる。当該要因には、ケーシング(20)内部を通過する空気及び/または凝縮水の流れによって汚れが自然に除去されたこと、清掃により汚れが除去されたこと、が含まれる。
 ケーシング(20)内部の清掃をこれまでに実施した時期に応じて、推定部(81)は、清掃により除去可能な汚れと除去不可能な汚れとの存在を把握できる。これは、上記(a4)の推定に役立つ。ケーシング(20)内部の清掃をこれまでに実施した時期に応じて、推定部(81)は、どの程度汚れている時に清掃が行われたのかを把握できる。これは、上記(a6)を推定する際に役立つ。
 (b3)ドレンポンプ(60)の回転数及び電流値
 ドレンポンプ(60)の回転数は、ドレンポンプ(60)を駆動するモータの回転数である。ドレンポンプ(60)の電流値は、上記モータに流れる電流値である。ドレンパン(50)内の凝縮水をドレンポンプ(60)が吸い上げる量や、吸い上げられる凝縮水の粘度等に応じて、上記モータにかかる負荷は変化する。この負荷に応じて、ドレンポンプ(60)の回転数及び電流値は、変化する。
 従って、推定部(81)は、ドレンポンプ(60)の回転数及び電流値を運転データとして推定動作に用いることで、ドレンパン(50)の凝縮水の量、粘度、凝縮水内におけるごみ及びバイオフィルムの混入の有無等を、判定できる。この判定は、上記(a1)~(a6)の推定の精度を向上させる。
 (b4)吸込空気用センサが検知した空気(RA)の温度及び湿度
 空気(RA)の温度及び湿度は、ケーシング(20)内の温度及び湿度に近似できる。細菌やカビの繁殖量は、ケーシング(20)内の温度及び湿度に応じて変化する。ケーシング(20)内に吸い込まれた空気(RA)の温度及び湿度が運転データとして推定動作に用いられることで、上記(a2)におけるカビや細菌の繁殖状況、及び上記(a1)の推定精度は向上する。
 空気(RA)の温度及び湿度と、ケーシング(20)内の温度及び湿度との厳密な差に基づいて、推定部(81)は、室内ユニット(11)の仕事量を把握できる。この仕事量に基づき、推定部(81)は、ドレンパン(50)のみならず、室内熱交換器(43)の汚れ度合い等も推定できる。この仕事量は、室内熱交換器(43)における凝縮水の発生量の把握にも役立つ。
 (b5)熱交換センサが検知した室内熱交換器(43)の温度
 空気の温度及び湿度が細菌やカビに与える影響は大きい。細菌やカビの増殖状況を把握するためには、ドレンパン(50)の周囲の空気の状態を正確に把握することが望ましい。推定部(81)は、室内熱交換器(43)の温度を運転データとして推定動作に用いることで、ドレンパン(50)の周囲の空気の状態をより正確に把握できる。そのため、室内熱交換器(43)の温度は、上記(a1)~(a6)の汚れ情報の推定に役立つ。
 吸込口(31)付近のフィルタが詰まっていたり、室内熱交換器(43)が汚れていたりすると、ケーシング(20)内に吸い込まれる空気(RA)の風量の低下、及び、風速の偏りが生じる場合がある。この現象は、室内熱交換器(43)の性能を低下させ、冷房運転中の室内熱交換器(43)の温度低下、暖房運転中の室内熱交換器(43)の温度上昇を招く。そのため、室内熱交換器(43)の温度は、ドレンパン(50)のみならず、室内熱交換器(43)の汚れ度合いや、フィルタの詰まり状態の把握も役立つ。
 フィルタの詰まりは、ケーシング(20)内の空気流のよどみを招き、ドレンパン(50)におけるカビや細菌の増殖の要因となり得る。従って、フィルタの詰まりの把握は、ドレンパン(50)の上記(a1)~(a6)の汚れ情報の推定にも役立つ。
 運転データとして、室内熱交換器(43)の温度に加えて、空気(RA)の温度及び湿度を用いることにより、推定部(81)は、室内熱交換器(43)における凝縮水の発生量を把握することができる。推定部(81)は、凝縮水の発生量と、ドレンポンプ(60)によって吸い上げられ排水された凝縮水の量とを把握することで、ドレンポンプ(60)の異常の有無を、できるだけ正確に把握することもできる。ドレンポンプ(60)の異常の有無の把握は、ドレンパン(50)の上記(a1)~(a6)の推定に役立つ。
 (b6)吹出口(32)から吹き出される空気(SA)の風量
 ケーシング(20)内の温度及び湿度それぞれの分布には、ムラがある。推定部(81)は、空気(SA)の風量を運転データとして推定動作に用いることで、ケーシング(20)内部の温度及び湿度の各分布をできるだけ正確に把握できる。この把握は、ドレンパン(50)の(a1)~(a6)の推定に役立つ。
 また、細菌やカビの増殖量は、ケーシング(20)内へ流入する粉じん量等と関係がある。推定部(81)は、空気(SA)の風量を運転データとして推定動作に用いることで、粉じん量の流入量をある程度把握して、細菌やカビの増殖量を把握することができる。
 (b7)ファン(40)の駆動に用いられる制御パラメータ
 ファン(40)の駆動に用いられる制御パラメータには、ファン(40)のモータ(42)に流れる電流値、及び、ファン(40)の回転数が含まれる。
 吸込口(31)付近に位置するフィルタの詰まりは、ケーシング(20)における圧力損失を増大させる。圧力損失の増大は、ファン(40)のモータ(42)に流れる電流値を増大させる。従って、推定部(81)は、上記電流値からフィルタの詰まり等を把握できる。フィルタの詰まりの把握は、ドレンパン(50)の上記(a1)~(a6)の汚れ情報の推定にも役立つ。
 (b8)管温度センサが検知した液管温度及び/またはガス管温度
 室内熱交換器(43)の温度は、一様でない場合がある。推定部(81)は、液管温度及び/またはガス管温度を運転データとして推定動作に用いることで、室内熱交換器(43)の温度分布をできるだけ正確に把握できる。この把握は、ケーシング(20)内部の空気の状態のより正確な把握にも役立つ。
 既に述べたように、室内熱交換器(43)が汚れ、空気(RA)の風量の低下及び風速の偏り等は、室内熱交換器(43)の性能を低下させる。室内熱交換器(43)の性能の低下は、液管温度及びガス管温度に変化を及ぼす。推定部(81)は、液管温度またはガス管温度を運転データとして推定動作に用いることにより、空気(RA)の風量、空気(RA)の風速分布、室内熱交換器(43)の状態等を把握できる。これらの把握は、ドレンパン(50)の上記(a1)~(a6)の精度向上に役立つ。
 更に、液管の結露の度合いによっても、細菌の繁殖状態は変化する。液管温度を運転データとして推定動作に用いることは、ドレンパン(50)を含むケーシング(20)内部の汚れ情報の推定に役立つ。
 (b9)ドレンパン用センサが検知したドレンパン(50)内の水位及び温度
 細菌の増殖速度は、水温に依存する。推定部(81)は、ドレンパン(50)内の凝縮水の温度を運転データとして推定動作に用いることにより、細菌の増殖状態をできるだけ正確に推定できる。この推定は、上記(a2)の推定に役立つ。
 水温により、増殖しやすい細菌の種類は異なる。推定部(81)は、ドレンパン(50)内の凝縮水の温度を運転データとして推定動作に用いることにより、上記(a2)の細菌の種類を推測し易くなる。
 ドレンポンプ(60)が詰まると、ドレンパン(50)から凝縮水が排出されにくくなり、ドレンパン(50)内の水位は上昇する。推定部(81)は、ドレンパン(50)の水位を運転データとして推定動作に用いることにより、ドレンポンプ(60)の詰まり度合いを把握できる。ドレンポンプ(60)の詰まり度合いは、上記(a1)~(a6)の推定に役立つ。
 (b10)細菌が増殖する可能性のある運転モードの有無
 ドレンパン(50)の主な汚れの原因の一つである細菌は、凝縮水中で繁殖する。凝縮水がドレンパン(50)からケーシング(20)外部に排出され続けている間、細菌はこの凝縮水と共にケーシング(20)外部に排出される。新しくドレンパン(50)に流入する凝縮水の温度は、比較的低い。そのため、凝縮水がドレンパン(50)からケーシング(20)外部に排出され続けている間、細菌の増殖は抑えられる。
 空気調和装置(10)が運転停止中もしくは凝縮水の発生しない運転を実行中の場合で、かつ、ケーシング(20)内部の温度が上昇した場合は、細菌の増殖が予想される。そのため、細菌が増殖する可能性のある運転モードの有無を、運転データとして推定動作に用いることは、上記(b1)~(b6)の推定に役立つ。
 細菌が増殖する可能性のある運転モードとは、凝縮水がドレンパン(50)内に所定時間以上溜まり続け、かつ、新たな凝縮水がドレンパン(50)に供給されない状態となるモードを云う。上記所定時間は、比較的長時間に設定される。下記(I)~(IV)は、細菌が増殖する可能性のある運転モードに該当する。
(I)冷房運転中であって室内熱交換器(43)から凝縮水が発生している状態中に、空気調和装置(10)が運転を停止した場合
(II)冷房運転中であって室内熱交換器(43)から凝縮水が発生している状態中に、室内の負荷が低下または設定温度が変更したため、空気調和装置(10)がサーモオフし続ける場合
(III)冷房運転中であって室内熱交換器(43)から凝縮水が発生している状態中に、室内の湿度が低下し、その結果凝縮水の発生が停止した場合
(IV)冷房運転中であって室内熱交換器(43)から凝縮水が発生している状態中に、設定温度の変更によって室内熱交換器(43)の温度が上昇し、その結果凝縮水の発生が停止した場合
 上記(II)の“サーモオフ”とは、室内熱交換器(43)への冷媒の流入を停止させて、室内熱交換器(43)における空気が冷媒により冷却されることを停止する運転動作をいう。サーモオフし続けている時間も、運転データとして推定動作に用いることができる。
  (環境データの内容)
 以下では、推定動作に用いられる環境データの内容について、具体的に説明する。
 環境データには、以下の(c1)(c2)の少なくとも1つが挙げられる。
 (c1)空気質センサが検知した空気質
 空気質は、空気中に含まれるオイルミスト等のVOC及び粉じんである。
 オイルミスト等のVOC及び粉じん量は、細菌やカビの栄養素となる。吸い込み空気(RA)の空気質を、環境データとして推定動作に用いることは、上記(a2)における細菌やカビの増殖状況、及び、上記(a1)の推定に役立つ。
 ケーシング(20)内に吸い込まれる空気質は、吸込口(31)付近のフィルタの詰まり具合に応じて変化する。空気質を環境データとして推定動作に用いることは、ドレンパン(50)の汚れ情報のみならず、上記フィルタの詰まり度合いの推定にも役立つ。
 空気調和装置(10)の稼働時間が長い程、ケーシング(20)に吸い込まれるVOC及び粉じん量は多くなる。上記(b1)の運転データ及び上記(c1)の環境データを共に推定動作に用いることで、推定部(81)は、ドレンパン(50)のみならず、フィルタや室内熱交換器(43)の汚れ度合いも、推定できる。
 (c2)記憶部(19)に記憶されている、空気調和装置(10)の据付場所
 室内ユニット(11)の汚れ方は、空気調和装置(10)が据え付けられている環境に応じて異なる。例えば、空気調和装置(10)の設置場所が焼肉店である場合、大量の煙と油とがケーシング(20)内に吸い込まれる。フィルタや室内熱交換器(43)には油が付着し易くなり、付着した油を要因とした細菌やカビが発生し易くなる。空気調和装置(10)の設置場所が美容院である場合、パーマ液等の、揮発性の比較的高い薬剤がケーシング(20)内に吸い込まれる。この場合も、細菌やカビが発生し易くなる。
 推定部(81)は、空気調和装置(10)の据付場所を環境データとして推定動作に用いることにより、上記(b2)を推定し易くなる他、フィルタ等の詰まりの有無とその原因を特定し易くなる。
  (画像データについて)
 推定部(81)が、推定動作に用いる画像データは、1つであってもよいし、複数であってもよい。
 カメラ(72)が所定時間毎に自動で撮像する場合、推定部(81)は、所定時間毎に撮像された複数の画像データを、汚れ情報の推定に用いる。換言すれば、推定部(81)は、時間の経過に従ってカメラ(72)がドレンパンを複数回撮像した複数の画像データを、汚れ情報の推定に用いる。定期的に撮像された画像データを用いることにより、推定部(81)は、所定時間あたりの汚れの変化の推移を把握できる。この把握は、汚れ情報の推定の精度を向上させる。
  (推定モデルの作成及び学習方法)
 推定部(81)が推定動作にて用いる推定モデル(82)の、作成及び学習方法について説明する。
 推定モデル(82)であるニューラルネットワークの作成にあたり、用いられる機械学習には、ディープラーニング等がある。学習方法には、教師あり学習と教師なし学習との2種類がある。
  -教師あり学習-
 教師あり学習の場合、推定モデル(82)のニューラルネットワークは、学習データと識別関数とを用いて学習する。学習データとは、入力データと、それに対応する教示データとの対の集合である。教示データは、例えば、入力データの識別、分類及び評価に関するパラメータである。この学習を繰り返すことで、ニューラルネットワークのパラメータは適宜更新される。これにより、推定モデル(82)は、汚れ情報をより精度良く推定可能なモデルとなる。
 例えば、入力データとして、ドレンパン(50)の画像データが大量に用意され、教示データとして、各画像データに対するラベルが用意される。ラベルは、ドレンパン(50)の汚れ度合いを示すものである。この画像データ及びラベルを用いてニューラルネットワークを学習させることで、推定モデル(82)が生成及び更新される。
 教師あり学習によるニューラルネットワークの作成及び更新では、画像データのみならず、運転データ及び環境データが、入力データとして用いられる。
 ラベルの作成は、汚れ情報推定システム(70)の構築者が行っても良いし、AIまたは画像処理プログラムにより自動で行っても良い。AIまたは画像処理プログラムにより自動的で作成されたラベルを、汚れ情報推定システム(70)の構築者が視認してもよい。
 なお、1つの画像データに、複数のラベルが付与されたり、ラベルには、画像データ内における汚れの位置情報が付与されたりしてもよい。
 学習に用いる画像データは、回転、拡大、縮小させた画像データであってもよい。学習に用いる画像データは、故意にノイズをのせた画像データ、他のAIによって作成された画像データ、これらが組合せられた画像データ、であってもよい。
  -教師なし学習-
 教師なし学習の場合、複数の入力データそれぞれがどの分類に属するかを表したラベルは、事前に付与されない。クラスタリングにより、互いに類似する入力データが同じ分類となるように、複数の入力データを複数の分類にグループ化する学習動作が繰り返されることで、ニューラルネットワークが作成及び更新される。
 例えば、入力データとして、空気調和装置(10)の運転データ及び環境データが用意され、各データについて分類が行われる。分類された運転データ及び環境データを、学習データとして用いたり、分類後のデータの集合(クラスター)を推定モデル(82)として用いたりすることができる。
 教師なし学習によるニューラルネットワークの作成及び更新では、運転データ及び環境データのみならず、画像データも、学習データとして用いられる。
 作成された推定モデル(82)を用いての推定結果が、ドレンパン(50)の実際の汚れ情報と乖離している場合、推定モデル(82)の精度が比較的低いことが想定される。この場合、システムの構築者は、精度の低い推定にて用いられた各種データにラベルを付与してもよい。当該ラベルは、ドレンパン(50)の実際の汚れ情報を表すものとなるように作成される。このラベルと、当該ラベルに対応する各種データとを用いて、推定モデル(82)が更新されることにより、推定モデル(82)の精度の更なる向上が図れる。
  -通信ユニット-
 通信ユニット(100)は、空気調和装置(10)をネットワークNに接続するためのアダプタであって、受信部(101)と無線通信部(102)とを含む。受信部(101)は、空気調和装置(10)との通信インターフェースであって、画像データ、空気調和装置(10)の環境データ及び運転データを、空気調和装置(10)から受信する。無線通信部(102)は、受信部(101)が受信した環境データ、運転データ及び画像データを、無線にてネットワークNに送信する。
  -通信端末-
 通信端末(90)は、スマートフォン、タブレット端末、携帯電話、パーソナルコンピュータ等で構成される。通信端末(90)は、操作部(91)、表示部(92)及び音声出力部(93)を有する。
 操作部(91)は、キーボードやタッチパネル等で構成される。サービス業者等は、操作部(91)を操作して、所定のアプリケーションソフトを操作する。このアプリケーションを介して、サービス業者等は、カメラ(72)の撮像を実行させたり、撮像された画像データを通信端末(90)にダウンロードしたりできる。
 表示部(92)は、例えば液晶モニタで構成される。表示部(92)には、カメラ(72)で撮像された画像データ、及び、上記汚れ情報が表示される。サービス業者は、上記(a1)~(a6)の少なくとも1つを、視覚にて把握できる。
 音声出力部(93)は、スピーカで構成される。音声出力部(93)からは、上記汚れ情報が音声にて出力される。サービス業者は、上記(a1)~(a6)の少なくとも1つを、聞くことができる。
 <汚れ情報推定システムの動作>
 図7は、汚れ情報推定システム(70)の動作を表す。
 カメラ(72)がドレンパン(50)を撮像すると(ステップSt11)、演算装置(80)は、ステップSt11にて撮像された画像データを取得する。演算装置(80)は、運転データ及び環境データを、空気調和装置(10)内の制御部(18)、記憶部(19)及び各種センサからネットワークNを介して取得する(ステップSt12)。
 ステップSt12にて演算装置(80)が取得する運転データには、空気調和装置(10)の現時点での運転データの他に、空気調和装置(10)の過去の運転データが含まれる。運転データとしては、上記(b1)~(b10)の少なくとも1つが用いられる。環境データとしては、上記(c1)(c2)の少なくとも1つが用いられる。
 演算装置(80)の推定部(81)は、ステップSt12で取得した画像データ、運転データ及び環境データを、推定モデル(82)に入力する。推定部(81)は、この推定モデル(82)を用いて、主にドレンパン(50)の汚れ情報を推定する(ステップSt13)。
 ステップSt13の汚れ情報には、上記(a1)~(a6)の少なくとも1つが含まれる。演算装置(80)は、ステップSt13の汚れ情報を、通信端末(90)に送信する。
 通信端末(90)は、ステップSt13の汚れ情報を、表示部(92)及び音声出力部(93)に出力する。表示部(92)及び音声出力部(93)は、汚れ情報を報知する(ステップSt14)。これにより、サービス業者等のユーザは、ドレンパン(50)の汚れ情報を把握し、必要に応じて、ドレンパン(50)の清掃等を行うことができる。
 ステップSt14の後、カメラ(72)がドレンパン(50)を新たに撮像した場合(ステップSt15のYes)、ステップSt12以降の動作が繰り返される。
 <効果>
 カメラ(72)は、空気調和装置(10)の構成部品の1つであるドレンパン(50)を撮像する。推定部(81)は、ドレンパン(50)の画像データに加えて、空気調和装置(10)の運転データ及び環境データを用いて、主にドレンパン(50)の汚れ情報を推定する。これにより、汚れ情報の推定精度は向上する。
 推定部(81)は、時間の経過に従ってカメラ(72)がドレンパン(50)を複数回撮像した複数の画像データを、汚れ情報の推定に用いる。これにより、推定部(81)はドレンパン(50)の汚れの推移を把握できるため、汚れ情報の推定精度はより向上し易くなる。
 空気質は、細菌やカビの繁殖量に影響を及ぼすことがある。この空気質に関するデータが環境データとして、汚れ情報の推定に用いられることで、汚れ情報の推定精度は向上し易くなる。
 空気調和装置(10)の据え付け場所は、ドレンパン(50)の汚れ方や汚れの程度等に影響を及ぼすことがある。この据付場所に関するデータが、環境データとして汚れ情報の推定に用いられることで、汚れ情報の推定精度は向上し易くなる。
 室内熱交換器(43)の温度は、細菌やカビのみならず、室内熱交換器(43)自体またはその周辺の構成部品の状態に影響を及ぼすことがある。ファン(40)の駆動に用いられる制御パラメータは、ファン(40)の周辺の構成部品の状態の把握等に役立つ。室内熱交換器(43)への冷媒の流入が停止している時間、ドレンポンプ(60)の回転数、空気調和装置(10)の稼働時間も、ケーシング(20)内部の状態の把握に役立つ。これらの情報の少なくとも1つが、運転データとして汚れ情報の推定に用いられることで、汚れ情報の推定精度は向上し易くなる。
 汚れ情報は、ドレンパン(50)の汚れ度合い、汚れの種類、汚れの位置、メンテナンスの要否、メンテナンスを行うべき時期、の少なくとも1つを含む。この汚れ情報は、表示部(92)及び音声出力部(93)によって報知される。サービス業者等のユーザは、これらの汚れ情報を知ることができる。
 <変形例>
 汚れ情報推定システム(70)は、図8に示すように、天井吊り式ないし天井埋め込み式の空気調和装置(10)にも適用できる。
 図8の空気調和装置(10)は、室外ユニット(図示省略)と、室内ユニット(11)とを有し、これらが冷媒配管で接続されることで、冷媒回路が構成される。
 室内ユニット(11)は、天井裏に設置されるケーシング(20)を備えている。ケーシング(20)は、ケーシング本体(20a)と、パネル(100)とを備える。ケーシング本体(20a)は、下側に開口面が形成される矩形箱状に形成される。パネル(100)は、ケーシング本体(20a)の開口面に着脱可能に設けられる。パネル(100)は、矩形枠状のパネル本体(101)と、パネル本体(101)の中央に設けられる吸込グリル(102)とを有する。
 パネル本体(101)の中央には1つの吸込口(31)が形成される。吸込口(31)を覆うように、フィルタ(31a)が設けられている。吸込グリル(102)は、フィルタ(31a)の下方に、吸込口(31)に取り付けられる。パネル本体(101)の4つの側縁部には、それぞれ吹出口(32)が1つずつ形成される。各吹出口(32)は、4つの側縁に沿うように延びている。各吹出口(32)の内部には、風向を変更するフラップ(103)がそれぞれ設けられる。
 ケーシング本体(20a)の内部には、ベルマウス(104)と、ファン(40)と、室内熱交換器(43)と、ドレンパン(50)とが設けられる。ベルマウス(104)及びファン(40)は、吸込グリル(102)の上方に配置される。室内熱交換器(43)は、ファン(40)の周囲を囲むように配置される。室内熱交換器(43)は、フィンアンドチューブ式の熱交換器で構成される。ドレンパン(50)は、室内熱交換器(43)の下側に配置される。
 カメラ(72)のレンズ(73)は、ドレンパン(50)の底面を向く。カメラ(72)は、ドレンパン(50)の少なくとも底面を撮像する。
 図8の空気調和装置(10)でも、図6の汚れ情報推定システム(70)は、ドレンパン(50)の汚れに関する汚れ情報を推定する。
 図8の空気調和装置(10)では、汚れ情報の推定動作に用いられる運転データの内容として、上記(b1)~(b10)に加えて、以下の(b11)が挙げられる。
 (b11)フラップ(103)の角度
 フラップ(103)の角度により、ケーシング(20)内の風量が変化する。推定部(81)は、フラップ(103)の角度を、運転データとして推定動作に用いることで、ケーシング(20)内の空気の状態をできるだけ正確に把握できる。
 フラップ(103)の角度を変更すると、室内への空気の流れも変化し、室内ユニット(11)へ吸い込まれる空気の流れも変化する。フラップ(103)の角度を学習データとして利用することで、推定部(81)は、粉じん及びVOCが吸い込まれやすいフラップ(103)の角度を学習できる。換言すれば、フラップ(103)の角度は、推定モデル(82)を更新する際のデータとしても役立つ。
 湿った空気がフラップ(103)に接触している場合、そのフラップ(103)にカビが生える可能性がある。推定部(81)は、フラップ(103)の角度を運転データとして推定動作に用いることで、ドレンパン(50)のみならず、フラップ(103)の汚れも推定できる。
 図8の空気調和装置(10)において、汚れ情報の推定動作に用いられる環境データの内容、及び、汚れ情報の内容は、上記と同様である。汚れ情報の報知動作も、上記と同様である。
 ≪その他の実施形態≫
 汚れ情報の推定対象は、ドレンパン(50)に限定されない。ファン(40)、室内熱交換器(43)、エアフィルタ、ダクトの内壁、水流路の内壁等、ドレンパン(50)以外の構成部品が、推定対象であってもよい。水流路とは、ドレンポンプ(60)の吸込部(61)、及び、ドレンポンプ(60)の排水管(63)を含む。
 カメラ(72)は、フラッシュを焚くための光源(74)以外に、可視光を発するためのLEDを更に有していても良い。汚れ情報の推定において、細菌が繁殖していると推定部(81)が把握した場合、LEDは、ドレンパン(50)に向けて可視光を発する。これにより、ドレンパン(50)内の凝縮水にはラジカルが発生し、細菌の繁殖の程度が軽減される。
 汚れ情報推定システム(70)は、空気調和装置(10)内に組み込まれていてもよい。
 撮像対象であるトレーは、水を受けるものであれば、ドレンパン(50)以外の部品であってもよい。トレーは、加湿タンクの下側に設置される水受けであってもよい。水受けには、加湿タンク内の水が供給される。水受け内の水は、空気の加湿に利用される。加湿タンク及び水受けは、例えば空気清浄機や調湿装置に搭載される。
 撮像部は、カメラに限定されず、例えば光学センサであってもよい。
 カメラ(72)の光源(74)は、カメラ本体と別体であってもよい。
 撮像部は、室外ユニットのケーシングの内部に配置されてもよい。
 空気処理装置は、空気が流れるケーシングを有する装置であれば、他の装置であってもよい。空気処理装置は、調湿装置、換気装置、及び空気清浄機であってもよい。調湿装置は、対象空間の空気の湿度を調節する。換気装置は、対象空間を換気する。空気清浄機は、対象空間の空気を浄化する。
 調湿装置及び空気清浄機には、構成部品として、加湿タンク、及び加湿タンクの下側に設置される水受け、が含まれる。調湿装置および空気清浄機の場合、これらの構成部品が撮像対象となり、推定部は、当該構成部品に関する汚れ情報を推定してもよい。換気装置は、対象空間を換気する。換気装置には、構成部品として、全熱交換器が含まれる。換気装置の場合、全熱交換器が、撮像対象となり、推定部は、全熱交換器に関する汚れ情報を推定してもよい。
 例えば、空気調和装置は、取り込んだ室外空気の温度及び湿度を調節する、外気処理方式であってもよい。この空気調和装置は、空気を加湿するための加湿器を備える。加湿器は、複数の吸水部材を有する。この場合、加湿器の下方に、加湿器から流出した水を受けるトレーが配置される。撮像部は、このトレーを撮像し、推定部は、トレーに関する汚れ情報を推定する。
 空気処理装置の種類によっては、軸流ファンが採用される場合がある。この場合も、汚れ情報の推定動作に用いられる運転データの内容として、上記(b1)~(b10)が挙げられる。軸流ファンにおいて、圧力損失が比較的大きくなったり、ファンの回転数が比較的高くなったりした場合、軸流ファンの遠心方向の空気の流れが増大する。そのため、推定部(81)は、上記(b7)を運転データとして推定動作に用いることで、ケーシング内の空気の様子を、より正確に把握できる。
 推定モデル(82)の学習の際に、ファン(40)のモータ(42)に流れる電流値が学習データとして用いられる場合、ファン(40)の回転数を学習データとして用いる場合よりも、推定モデル(82)の推定精度は向上する。
 推定部(81)は、推定モデル(82)を用いてドレンパン(50)の汚れ情報を推定する際、前回推定した汚れ情報と新たに推定した汚れ情報とを比較してもよい。その比較結果から、推定部(81)は、汚れ付着の変化量を把握できる。この変化量は、推定モデル(82)の更なる学習に用いることができ、推定モデル(82)の推定精度は更に向上する。
 推定に利用される画像データは、静止画データではなく、動画データであってもよい。
 ドレンパン(50)の全体像が1つの画像に入らない場合、カメラ本体の位置またはレンズ(73)の位置を変えて、カメラ(72)は、複数回にわたってドレンパン(50)を撮像してもよい。この場合、複数回にわたって撮像された画像データが、汚れ情報の推定動作に利用される。
 汚れ情報の報知は、必須ではない。汚れ情報が報知される場合、報知方法は、表示のみ、音声出力のみであってもよい。
 汚れ情報の推定動作には、運転データ及び環境データのいずれか一方と、画像データとが用いられても良い。換言すれば、汚れ情報の推定動作に用いられるデータの組合せには、運転データと画像データ、環境データと画像データ、運転データと環境データと画像データ、の3つが挙げられる。
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
 以上説明したように、本開示は、汚れ情報推定システム、及び空気処理装置として有用である。
70 汚れ情報推定システム
72 カメラ(撮像部)
81 推定部
92 表示部(報知部)
93 音声出力部(報知部)
103 フラップ

Claims (9)

  1.  空気処理装置(10)のケーシング(20)内部の構成部品を撮像する撮像部(72)と、
     上記撮像部(72)が撮像した画像データと、上記空気処理装置(10)の運転データ及び/または上記空気処理装置(10)が設けられている環境に関する環境データとに基づいて、上記構成部品の汚れに関する汚れ情報を推定する推定部(81)と、
    を備えることを特徴とする汚れ情報推定システム。
  2.  請求項1において、
     上記推定部(81)は、時間の経過に従って上記撮像部(72)が上記構成部品を複数回撮像した複数の上記画像データを、上記汚れ情報の推定に用いる
    ことを特徴とする汚れ情報推定システム。
  3.  請求項1または請求項2において、
     上記環境データは、上記ケーシング(20)内部に吸い込まれた空気質に関するデータを含む
    ことを特徴とする汚れ情報推定システム。
  4.  請求項1から請求項3のいずれか1項において、
     上記環境データは、上記空気処理装置(10)の据え付け場所に関するデータを含む
    ことを特徴とする汚れ情報推定システム。
  5.  請求項1から請求項4のいずれか1項において、
     上記運転データは、上記ケーシング(20)内部に含まれる熱交換器(43)の温度、上記ケーシング(20)内部に含まれるファン(40)の駆動に用いられる制御パラメータ、上記ケーシング(20)に設けられたフラップ(103)の角度、上記熱交換器(43)への冷媒の流入が停止している時間、上記ケーシング(20)内部に含まれるドレンポンプ(60)の回転数、上記空気処理装置(10)の稼働時間、の少なくとも1つを含む
    ことを特徴とする汚れ情報推定システム。
  6.  請求項1から請求項5のいずれか1項において、
     上記汚れ情報は、上記構成部品の汚れ度合い、上記構成部品の汚れの種類、上記構成部品における汚れの位置、上記構成部品のメンテナンスの要否、上記構成部品のメンテナンスを行うべき時期、の少なくとも1つを含む
    ことを特徴とする汚れ情報推定システム。
  7.  請求項6において、
     上記汚れ情報を報知する報知部(92,93)
    を更に備えることを特徴とする汚れ情報推定システム。
  8.  請求項1から請求項7のいずれか1項に記載の汚れ情報推定システム(70)が組み込まれたことを特徴とする空気処理装置。
  9.  請求項8において、
     上記空気処理装置は、空気調和装置、調湿装置、空気清浄機及び換気装置のいずれか一つであって、
     上記空気調和装置の上記構成部品には、ドレンパン(50)、ファン(40)、熱交換器(43)、エアフィルタ、ダクトの内壁、ドレンポンプ(60)の吸込部(61)、及びドレンポンプ(60)の排水管、のうち少なくとも1つが含まれ、
     上記調湿装置及び上記空気清浄機の上記構成部品には、加湿タンク、及び上記加湿タンクの下側に設置される水受け、のうち少なくとも1つが含まれ、
     上記換気装置の上記構成部品には、全熱交換器が含まれる
    ことを特徴とする空気処理装置。
PCT/JP2019/047459 2019-02-27 2019-12-04 汚れ情報推定システム、及び空気処理装置 WO2020174800A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19917267.7A EP3919830A4 (en) 2019-02-27 2019-12-04 CONTAMINATION INFORMATION ESTIMATION SYSTEM AND AIR HANDLING DEVICE
AU2019432019A AU2019432019B2 (en) 2019-02-27 2019-12-04 Contamination information estimation system and air treatment device
CN201980093123.5A CN113490817B (zh) 2019-02-27 2019-12-04 污染信息推定系统以及空气处理装置
US17/459,811 US20210389015A1 (en) 2019-02-27 2021-08-27 Contamination information estimation system and air treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-034591 2019-02-27
JP2019034591A JP6944962B2 (ja) 2019-02-27 2019-02-27 汚れ情報推定システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/459,811 Continuation US20210389015A1 (en) 2019-02-27 2021-08-27 Contamination information estimation system and air treatment device

Publications (1)

Publication Number Publication Date
WO2020174800A1 true WO2020174800A1 (ja) 2020-09-03

Family

ID=72239002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047459 WO2020174800A1 (ja) 2019-02-27 2019-12-04 汚れ情報推定システム、及び空気処理装置

Country Status (6)

Country Link
US (1) US20210389015A1 (ja)
EP (1) EP3919830A4 (ja)
JP (1) JP6944962B2 (ja)
CN (1) CN113490817B (ja)
AU (1) AU2019432019B2 (ja)
WO (1) WO2020174800A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022049747A1 (ja) * 2020-09-05 2022-03-10
JP7339570B1 (ja) 2022-05-20 2023-09-06 ダイキン工業株式会社 予測装置、冷凍システム、予測方法及び予測プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7410412B2 (ja) * 2021-01-29 2024-01-10 ダイキン工業株式会社 空気処理装置のカメラの固定方法、および空気処理装置
JP2024032510A (ja) * 2022-08-29 2024-03-12 ダイキン工業株式会社 予測システム、予測方法、及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224425A (ja) * 1996-01-16 1996-09-03 Rinnai Corp フィルタ目詰まり検知方法
JP2002007550A (ja) * 2000-06-21 2002-01-11 Akazawa Akira 清掃管理システム
JP2005292066A (ja) 2004-04-05 2005-10-20 Daikin Ind Ltd 状態診断装置、状態診断プログラムおよび状態診断システム。
JP2018114948A (ja) * 2017-01-20 2018-07-26 株式会社デンソー 車両用空調装置
JP2018179446A (ja) * 2017-04-18 2018-11-15 日立ジョンソンコントロールズ空調株式会社 空気調和機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244676B2 (ja) * 2003-03-28 2009-03-25 三菱電機株式会社 車両空調管理システム
JP2005180830A (ja) * 2003-12-19 2005-07-07 Fmi Itou Shoten:Kk 汚染状況検出装置
JP2007046864A (ja) * 2005-08-11 2007-02-22 Daikin Ind Ltd 保守支援システム
JP4494358B2 (ja) * 2006-03-24 2010-06-30 三菱電機ビルテクノサービス株式会社 空調機内部観察装置
KR102617992B1 (ko) * 2016-12-27 2023-12-26 한화비전 주식회사 예측 진단 장치 및 감시 시스템
JP6296633B1 (ja) * 2017-04-28 2018-03-20 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN107818560A (zh) * 2017-09-27 2018-03-20 珠海格力电器股份有限公司 一种净化器的处理方法和装置
CN108053390A (zh) * 2017-10-31 2018-05-18 珠海格力电器股份有限公司 洗衣机内筒清理处理方法及装置
US11480354B2 (en) * 2017-11-15 2022-10-25 Mitsubishi Electric Corporation Air-conditioning management system, air conditioner, air-conditioning management device, air-conditioning management method, and program
CN108195028B (zh) * 2017-11-29 2019-09-20 珠海格力电器股份有限公司 空气调节设备清洁信息的推送方法及装置
CN108253587B (zh) * 2017-11-29 2019-08-06 珠海格力电器股份有限公司 空气清洁度的调整方法及装置
CN109100306A (zh) * 2018-07-31 2018-12-28 广东美的制冷设备有限公司 洁净度检测方法、装置及计算机可读存储介质
CN109358546B (zh) * 2018-10-29 2020-01-07 珠海格力电器股份有限公司 家用电器的控制方法、装置和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224425A (ja) * 1996-01-16 1996-09-03 Rinnai Corp フィルタ目詰まり検知方法
JP2002007550A (ja) * 2000-06-21 2002-01-11 Akazawa Akira 清掃管理システム
JP2005292066A (ja) 2004-04-05 2005-10-20 Daikin Ind Ltd 状態診断装置、状態診断プログラムおよび状態診断システム。
JP2018114948A (ja) * 2017-01-20 2018-07-26 株式会社デンソー 車両用空調装置
JP2018179446A (ja) * 2017-04-18 2018-11-15 日立ジョンソンコントロールズ空調株式会社 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3919830A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022049747A1 (ja) * 2020-09-05 2022-03-10
WO2022049747A1 (ja) * 2020-09-05 2022-03-10 三菱電機株式会社 保守管理システム、保守支援装置、保守管理方法、および保守管理プログラム
JP7442657B2 (ja) 2020-09-05 2024-03-04 三菱電機株式会社 保守管理システム、保守支援装置、保守管理方法、および保守管理プログラム
JP7339570B1 (ja) 2022-05-20 2023-09-06 ダイキン工業株式会社 予測装置、冷凍システム、予測方法及び予測プログラム
WO2023223594A1 (ja) * 2022-05-20 2023-11-23 ダイキン工業株式会社 予測装置、冷凍システム、予測方法及び予測プログラム
JP2023170830A (ja) * 2022-05-20 2023-12-01 ダイキン工業株式会社 予測装置、冷凍システム、予測方法及び予測プログラム

Also Published As

Publication number Publication date
AU2019432019A1 (en) 2021-09-09
CN113490817B (zh) 2023-05-09
CN113490817A (zh) 2021-10-08
AU2019432019B2 (en) 2022-08-25
JP6944962B2 (ja) 2021-10-06
US20210389015A1 (en) 2021-12-16
EP3919830A4 (en) 2022-05-18
JP2020139673A (ja) 2020-09-03
EP3919830A1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
WO2020174800A1 (ja) 汚れ情報推定システム、及び空気処理装置
JP7346161B2 (ja) 空気処理装置
US11499728B2 (en) Air processing device
CN109916034B (zh) 空调器自清洁控制方法
JP6813043B2 (ja) 汚れ情報推定システム
JP6642670B1 (ja) 空気調和装置および送風ファンの回転速度調整方法
JP2007071210A (ja) 流体送り装置
US11480357B2 (en) Air treatment device
JPWO2016051570A1 (ja) 空気清浄機
CN110486889A (zh) 空调器及其控制方法
US20230137712A1 (en) Image processing device, air treatment system, image processing program, and image processing method
JP7421129B2 (ja) 画像処理装置、空気処理システム、画像処理プログラム、及び画像処理方法
JP7421128B2 (ja) 画像処理装置、空気処理システム、画像処理プログラム、及び画像処理方法
JP4147549B2 (ja) 空気調和機
JP7464145B2 (ja) 除湿機
WO2022190447A1 (ja) 除湿機
JP2023039464A (ja) 空調システム
CN110966722A (zh) 一种基于bim的暖通空调制冷设备的异物检测方法
JP2013249979A (ja) 加湿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019432019

Country of ref document: AU

Date of ref document: 20191204

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019917267

Country of ref document: EP

Effective date: 20210903