WO2020174696A1 - 動力伝達軸に用いられる管体の製造方法 - Google Patents

動力伝達軸に用いられる管体の製造方法 Download PDF

Info

Publication number
WO2020174696A1
WO2020174696A1 PCT/JP2019/010049 JP2019010049W WO2020174696A1 WO 2020174696 A1 WO2020174696 A1 WO 2020174696A1 JP 2019010049 W JP2019010049 W JP 2019010049W WO 2020174696 A1 WO2020174696 A1 WO 2020174696A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mold
power transmission
transmission shaft
manufacturing
Prior art date
Application number
PCT/JP2019/010049
Other languages
English (en)
French (fr)
Inventor
一希 大田
森 健一
貴博 中山
Original Assignee
株式会社ショーワ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ショーワ filed Critical 株式会社ショーワ
Priority to CN201980057212.4A priority Critical patent/CN112638630A/zh
Publication of WO2020174696A1 publication Critical patent/WO2020174696A1/ja
Priority to US17/186,175 priority patent/US20210180645A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/48Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling
    • B29C33/50Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling elastic or flexible
    • B29C33/505Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling elastic or flexible cores or mandrels, e.g. inflatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/22Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of main drive shafting, e.g. cardan shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/75Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/28Shaping by winding impregnated fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/06Drive shafts

Definitions

  • the present invention relates to a method for manufacturing a tubular body used for a power transmission shaft.
  • a power transmission shaft (propeller shaft) mounted on a vehicle includes a tube body extending in the front-rear direction of the vehicle, and transmits the power generated by the prime mover and decelerated by the transmission to the final reduction gear by the tube body.
  • a tubular body used for such a power transmission shaft there is a tubular body formed of fiber reinforced plastic.
  • a method of manufacturing a tubular body made of fiber reinforced plastic and used for a power transmission shaft for example, continuous fibers impregnated with a thermosetting resin are wound around a mandrel in multiple layers to form a tubular molded body. Then, the molded body is heated to cure the resin, and a tubular body is formed. Then, the mandrel is pulled out from the opening at the end of the cured tube, and the manufacturing process ends (see Patent Document 1 below).
  • the central portion has a so-called barrel shape (barrel shape) that bulges outward in the radial direction rather than both ends.
  • barrel shape barrel shape
  • the central portion of the mandrel bulges outward and cannot pass through the opening of the tubular body, and the mandrel cannot be pulled out from the tubular body. Therefore, a novel manufacturing method capable of manufacturing a tubular body without using a core material (mandrel) is desired.
  • the present invention was created in order to solve such a problem, and an object of the present invention is to provide a method for manufacturing a tubular body used for a power transmission shaft, which can produce the tubular body without using a core material. ..
  • the first invention is a method of manufacturing a tubular body made of fiber reinforced plastic and used for a power transmission shaft, in which an uncured fiber reinforced resin is arranged on a cavity surface of a mold. And a hardening step of supplying a fluid to the inside of the resin body to cure the resin of the resin body.
  • the second invention is a method for manufacturing a tubular body made of fiber reinforced plastic and used for a power transmission shaft, wherein a tubular expander in which a fiber is wound is used as a mold.
  • FIG. 3 is a cross-sectional view of a main body of a tubular body used for a power transmission shaft, cut in the axial direction.
  • It is a flow chart which shows a manufacturing process of a pipe concerning a first embodiment. It is a figure which shows the preparation process of the manufacturing process of the pipe body which concerns on 1st embodiment. It is a figure which shows the production
  • the power transmission shaft 101 is a propeller shaft mounted on an FF (Front-engine Front-drive)-based four-wheel drive vehicle.
  • a substantially cylindrical pipe body 102 extending in the front-rear direction of the vehicle, a stub yoke 103 of a cross joint joined to the front end of the pipe body 102, and a stub shaft 104 of a constant velocity joint joined to the rear end of the pipe body 102. , are provided.
  • the stub yoke 103 is a connecting member that connects the transmission mounted on the front part of the vehicle body and the tube body 102.
  • the stub shaft 104 is a connecting member that connects the final reduction gear device mounted on the rear portion of the vehicle body and the pipe body 102.
  • the power transmission shaft 101 rotates around the axis O1 and transmits the power to the final reduction gear transmission.
  • the tube body 102 is formed of carbon fiber reinforced plastic (CFRP). Inside the tube body 102, a fiber layer made of fibers extending in the circumferential direction around the axis O1 and a fiber layer made of fibers extending in the direction of the axis O1 are laminated. Therefore, the tubular body 102 has high mechanical strength and high elasticity in the direction of the axis O1. Further, PAN-based (Polyacrylonitrile) fibers are preferable as the fibers oriented in the circumferential direction, and pitch fibers are preferable as the fibers oriented in the axis O1 direction.
  • the fibers used for the fiber-reinforced plastic in the present invention are not limited to carbon fibers and may be glass fibers or aramid fibers.
  • the tube body 102 includes a main body portion 110 occupying most of the pipe body 102, a first connecting portion 120 arranged on the front side of the main body portion 110, and a second connecting portion 130 arranged on the rear side of the main body portion 110.
  • the inclined portion 140 located between the main body portion 110 and the second connection portion 130.
  • the shape of the tube body 102 is exaggerated for easy understanding of the shape of the tube body 102.
  • the first connecting portion 120 is continuous with the front end 111 of the main body 110
  • the inclined portion 140 is continuous with the rear end 112 of the main body 110.
  • the outer peripheral surface 114 and the inner peripheral surface 115 of the main body 110 have a circular sectional shape.
  • the outer diameter of the main body portion 110 is reduced from the central portion 113 toward both end portions (front end portion (other end portion) 111 and rear end portion (one end portion) 112), and the outer diameter of the central portion 113 is reduced.
  • R1 is larger than the outer diameter R2 of both end portions (the front end portion 111 and the rear end portion 112).
  • the inner diameter of the main body 110 is also reduced from the central portion 113 of the main body 110 toward both ends (the front end 111 and the rear end 112).
  • the cross-sectional shape of the outer peripheral surface 114 and the cross-sectional shape of the inner peripheral surface 115 of the main body 110 draw a gentle curve, and the central portion 113 projects outward. It has an arc shape. Therefore, the outer shape of the main body 110 has a barrel shape in which the central portion 113 bulges outward in the radial direction. Further, in the cross-sectional shape, the plate thickness of the main body part 110 becomes thinner from both end parts (the front end part 111 and the rear end part 112) toward the central part 113, and the plate thickness T1 of the central part 113 is It is thinner than the plate thickness T2 at both ends (front end 111 and rear end 112).
  • the shaft portion 103 a of the stub yoke 103 is fitted in the first connecting portion 120.
  • the outer peripheral surface of the shaft portion 103a is formed in a polygonal shape.
  • the inner peripheral surface of the first connecting portion 120 is formed in a polygonal shape following the outer peripheral surface of the shaft portion 103a. Therefore, the stub yoke 103 and the tube body 102 are configured so as not to rotate relative to each other.
  • the shaft portion 104a of the stub shaft 104 is fitted in the second connecting portion 130.
  • the inner peripheral surface of the second connecting portion 130 is formed in a polygonal shape following the outer peripheral surface of the shaft portion 104a. Therefore, the stub shaft 104 and the tubular body 102 are configured so as not to rotate relative to each other.
  • the outer diameter of the inclined portion 140 gradually decreases from the main body portion 110 toward the first connection portion 120, and has a truncated cone shape.
  • the plate thickness of the inclined portion 140 gradually decreases from the end portion on the second connection portion 130 side (rear side) toward the end portion on the main body 110 side (front side). For this reason, the plate thickness of the front end portion of the inclined portion 140 is the thinnest and constitutes a weak portion. From the above, when the vehicle is collided from the front and a collision load is input to the power transmission shaft 101, a shearing force acts on the inclined portion 140 inclined with respect to the axis O1.
  • the front end portion (fragile portion) of the inclined portion 140 is damaged. Therefore, at the time of a vehicle collision, the engine and the transmission mounted on the front portion of the vehicle body quickly move backward, and the collision energy is absorbed by the front portion of the vehicle body.
  • the central portion 113 of the main body 110 where bending stress is likely to concentrate has a large outer diameter R1 and has a predetermined bending strength.
  • the outer diameters R2 of the both end portions (the front end portion 111 and the rear end portion 112) of the main body portion 110 where the bending stress is hard to concentrate are formed to have a small outer diameter R2, thereby reducing the weight.
  • the central portion 113 of the main body 110 has a thin plate thickness T1 and is light in weight. Therefore, in the tubular body 102, the main body 110 is lightened while ensuring a predetermined bending rigidity of the central portion 113, and the bending primary resonance point of the tubular body 102 is improved.
  • a preparatory step of arranging an uncured fiber-reinforced resin in the mold 1 (step S1) and a cylindrical resin body 15 with the mold 1 closed.
  • a curing step (step S3) of heating and curing the resin, and a removal step (step S4) of removing the tubular body 102 used for the power transmission shaft 101 from the mold 1.
  • a removal step (step S4) of removing the tubular body 102 used for the power transmission shaft 101 from the mold 1.
  • Step S1 of the first embodiment a plurality of prepregs are placed on the cavity surface 4 to place the fiber reinforced resin in the mold 1.
  • the die 1 includes an upper die (not shown in FIG. 4, see FIG. 5 and subsequent figures) 2 and a lower die 3.
  • a cavity surface 4 for forming the outer shape of the tubular body 102 is formed on the lower surface of the upper mold 2 and the upper surface 3 a of the lower mold 3.
  • the cavity surface 4 according to the first embodiment is elongated in one direction. Further, in the cavity surface 4, in order from one end to the other end in the longitudinal direction, the first connecting portion forming surface 5, the main body forming surface 6, the inclined portion forming surface 7, and the second connecting portion forming surface.
  • a surface 8 is formed.
  • the first connecting portion molding surface 5 is a surface for molding the outer shape of the first connecting portion 120 of the tubular body 102.
  • the main body molding surface 6 is a surface for molding the outer shape of the main body 110.
  • the inclined portion forming surface 7 is a surface for forming the outer shape of the inclined portion 140.
  • the second connecting portion molding surface 8 is a surface for molding the outer shape of the second connecting portion 130.
  • Two communication holes 9 are formed in the lower surface of the upper mold 2 and the upper surface 3a of the lower mold 3 to communicate the inside and outside of the mold 1 when the mold is clamped.
  • One of the communication holes 9 is arranged at one end side of the molding surface 5 for the first connection portion, and the other is arranged at the other end side of the molding surface 8 for the second connection portion.
  • thermosetting resin is used as the resin of the prepreg. Further, the thermosetting resin used is in an uncured state. Although it is described as being in an uncured state, it may be in a semi-cured state. That is, even a resin that has been cured to some extent can be deformed into a shape along the cavity surface 4 of the mold 1, so that a semi-cured resin can also be used.
  • the prepreg does not have to be large enough to cover the entire cavity surface 4 by itself. In other words, it is possible to connect a plurality of sizes that can cover only a part of the cavity surface 4 and cover the entire surface of the cavity surface 4.
  • the number of laminated prepregs is adjusted so that the prepregs have a predetermined thickness after curing.
  • the prepreg placed on the molding surface 6 for the main body is placed so that the number of laminated layers decreases from both end portions in the longitudinal direction toward the central portion, and the central portion becomes thinner than the both end portions.
  • the mold release agent is applied before mounting the prepreg to be mounted on the cavity surface 4.
  • the semi-cylindrical resin portion 10 is formed on each cavity surface 4 of the upper mold 2 and the lower mold 3.
  • step S2 As shown in FIG. 5, in the production step (step S2) of the first embodiment, a supply pipe 11 of a heating device, which will be described later, is arranged in each communication hole 9 of the lower mold 3. Next, the expansion body 12 of the heating device is locked to the tip of the supply pipe 11 of the heating device, and the expansion body 12 is positioned above the resin portion 10 in the lower mold 3. Next, the upper die 2 is superposed on the lower die 3, the die 1 is closed, and the upper die 2 and the lower die 3 are tightened so as not to open.
  • the circumferential ends of the resin portion 10 mounted on the cavity surface 4 of the lower mold 3 and the resin portion 10 mounted on the cavity surface 4 of the upper mold 2 are in contact with each other, and the tubular resin The body 15 is generated.
  • the expandable body 12 is arranged in the center of the resin body 15.
  • the expander 12 is a cylindrical elastic member and expands according to the amount of fluid flowing into the inside.
  • a material having heat resistance to a high temperature fluid such as silicone rubber, fluororubber, or acrylic rubber is used. Both ends of the expander 12 are sealed, and the fluid supplied from the supply pipe 11 does not leak out.
  • the heating device is a device that generates and supplies a high temperature fluid.
  • the fluid supplied in the first embodiment is a liquid.
  • the temperature of the liquid is set to a temperature at which the resin body 15 can be cured (for example, 130° to 180°).
  • the liquid is supplied to the extent that the expansion body 12 expands and the outer peripheral surface of the expansion body 12 contacts the inner peripheral surface of the resin body 15.
  • the expanded expansion body 12 contacts the resin body 15, and the temperature of the liquid is transmitted to the resin body 15 via the expansion body 12.
  • the resin of the resin body 15 is hardened and becomes the power transmission shaft 101.
  • step S4 In the take-out step (step S4) of the first embodiment, the upper mold 2 is moved to open the mold 1. Further, the heating device is driven to collect the liquid supplied into the expander 12. As a result, the expander 12 has a reduced internal pressure, returns to its original shape, and becomes a tubular shape. Next, the supply pipe 11 is pulled out from the expansion body 12, and the tubular expansion body 12 is pulled out from the inside of the pipe body 102 as shown in FIG. 7. As a result, there is nothing to be locked to the power transmission shaft 101, and the tube body 102 can be taken out from the lower mold 3.
  • the so-called barrel-shaped (barrel-shaped) tube body 102 can be manufactured without using a core material.
  • the preparation step (step S1) of disposing the fiber reinforced resin in the mold 21 and the mold 21 are performed.
  • description will be made focusing on the differences from the first embodiment.
  • the semi-cylindrical resin portion 30 is formed on the cavity surfaces 24 of the upper mold 22 and the lower mold 23 by the hand layup method. That is, by placing the fiber on the cavity surface 24 of the mold 21 and applying the uncured resin (thermosetting resin) to the cavity surface 24, the fiber reinforced resin (resin portion 30) is applied to the cavity surface 24. Has formed. According to this hand layup method, it becomes possible to finely adjust the thickness of the resin portion 30 formed on the cavity surface 24.
  • the cavity surface 24 of the mold 21 is formed with a first connecting portion forming surface 5, a main body forming surface 26, an inclined portion forming surface 7, and a second connecting portion forming surface 8.
  • the main body part molding surface 26 extends from the central part toward the first connection part molding surface 5 with a first surface 26a having a constant diameter, and from the central part toward the inclined part molding surface 7.
  • a second surface 26b that gradually reduces in diameter.
  • the shape of the main body portion 210 of the tubular body 202 is such that the diameter from the central portion 213 to the front end portion 211 is constant, while the shape decreases as it goes from the central portion 213 to the rear end portion 212. It becomes a diametrical shape.
  • the heating device supplies the high temperature gas through the supply pipe 11. According to this step, the high temperature gas is supplied into the resin body 35, and the resin of the resin body 35 is cured. Further, in the curing step (step S3), the mold 21 is heated by a heater (not shown) or the like. According to this, heat can be applied to the resin body 35 from the cavity surface 24 side of the mold 21, and the heating time of the resin body 35 is shortened.
  • the tubular body 202 made of fiber reinforced plastic can be manufactured without using a core material.
  • a preparatory step of arranging the fiber-reinforced resin in the mold 41 (step S1) and a generating step of closing the mold 41 to generate the resin body 55 ( It includes a step S2), a curing step of heating and curing the resin (step S3), and a removal step of removing the tubular body 302 from the mold 41 (step S4) (see FIG. 3).
  • step S1 a preparatory step of arranging the fiber-reinforced resin in the mold 41
  • a generating step of closing the mold 41 to generate the resin body 55 It includes a step S2), a curing step of heating and curing the resin (step S3), and a removal step of removing the tubular body 302 from the mold 41 (step S4) (see FIG. 3).
  • the molding surface 5 for the first connection portion, the molding surface 46 for the main body portion, the molding surface 7 for the inclined portion, and the second connection are formed on the cavity surface 44 of the mold 41.
  • a molding surface 8 for parts is provided.
  • the body forming surface 46 has a constant diameter from one end side (first connecting portion forming surface 5) to the other end side (inclined portion forming surface 7). With this mold 41, it is possible to manufacture the tubular body 302 including the cylindrical main body 310 having a constant diameter.
  • An annular member 53 is wound around the outer peripheral side of the inflatable body 52 of the third embodiment and the end portion in the longitudinal direction.
  • the annular member 53 is formed of an elastic member such as silicone rubber, fluororubber, or acrylic rubber. According to this, when the expansion body 52 is expanded, the end portion of the expansion body 52 has a smaller expansion amount than the central portion. Therefore, the expansive body 52 presses the resin in the portions of the resin body 55 arranged on the first connecting portion molding surface 5 and the second connecting portion molding surface 8 more than necessary, and the resin flows to the other portions. , Can be prevented.
  • a preparatory step (step S11) of arranging an inflatable body 72 around which fibers 71 are wound in a mold 61 and a fluid is supplied to the inflatable body 72.
  • the step of taking out the tube 102 from the mold 61 (step S15) is included.
  • the mold 61 is prepared.
  • the die 61 includes an upper die 62 and a lower die 63.
  • the first connecting portion molding surface 65 and the main body are sequentially arranged from one end to the other end in the longitudinal direction.
  • a molding surface 66 for the portion, a molding surface 67 for the inclined portion, and a molding surface 68 for the second connection portion are formed.
  • the mold 61 is formed with a communication hole 9 for penetrating the supply pipe 11 and a spool 69 for supplying resin into the mold 61.
  • the expander 72 has the same structure as the expander 12 described in the first embodiment.
  • the fiber 71 is for strengthening the strength of the tubular body 102, and examples thereof include carbon fiber, glass fiber, and aramid fiber.
  • the method of winding the fiber 71 and the orientation of the fiber 71 are not particularly limited.
  • the expansion body 72 is arranged so that it is locked to the tip of the supply pipe 11 penetrating the communication hole 9. According to this, the expander 72 is fixed in the mold 61 in a state of being separated from the cavity surface 64.
  • step S12 the fluid is supplied from the heating device into the expander 72 via the supply pipe 11.
  • the fluid is supplied to the extent that the expander 72 expands and the outer peripheral surface of the expander 72 contacts the cavity surface 64 (see FIG. 12 ).
  • this gap serves as a flow path through which the resin flows in the supply step of the next step.
  • the temperature of the fluid is set to a temperature at which the resin does not harden in the supply process.
  • step S13 the uncured resin is supplied into the mold 61 via the spool 69. According to this, a tubular resin body 75 is formed between the outer surfaces of the expansion body 72 and the cavity surface 64, as shown in FIG.
  • step S14 the fluid in the expander 72 is discharged from one of the two supply pipes 11, and the high temperature fluid is supplied into the expander 72 by the other supply pipe 11.
  • the temperature of the supplied fluid is set to a temperature (for example, 130° to 180°) at which the resin can be cured.
  • the resin body 75 is cured to form the tubular body 102 made of fiber reinforced resin.
  • step S15 In the take-out step (step S15), the liquid in the expander 72 is recovered. As a result, the expander 72 has a reduced internal pressure, returns to its original shape, and becomes a tubular shape. Next, the mold 61 is opened, the expansion body 72 is pulled out from the tube body 102, and the tube body 102 is completed.
  • the so-called barrel-shaped (barrel-shaped) tubular body 102 can be manufactured without using a core material.
  • the present invention is not limited to the above examples.
  • the molding surface for the connection portion (the molding surface 5 for the first connection portion 5) that forms the connection portion (the first connection portion 120, the second connection portion 130) connected to the stub yoke 103 or the stub shaft 104.
  • the cross-sectional shape of the second connecting portion molding surface 8) may be polygonal. According to this, the cross-sectional shape of the first connecting portion 120 and the second connecting portion 130 is formed in a polygonal shape. Therefore, it is possible to save the labor of separately molding the first connecting portion 120 and the second connecting portion 130 into a polygonal shape.
  • the annular member 53 is used as an example of limiting the expansion amount of the inflatable body, but the expansion amount may be limited by changing the thickness of the inflatable body itself.
  • the cross-sectional shape of the main body 110 taken along the axis O1 direction is not limited to the arc shape.
  • the cross-sectional shape of the main body 110 taken along the axis O1 may be stepwise. That is, in the cavity surface of the mold, the cross-sectional shape obtained by cutting the molding surface 6 for the main body portion in the longitudinal direction may be formed stepwise.
  • the tubular body manufactured by the manufacturing method of the present invention is not limited to the above.
  • the plate thickness of the inclined portion 148 may be gradually reduced from the end portion on the main body portion 145 side (front side) toward the end portion on the second connection portion 147 side (rear side). According to this, the plate thickness of the rear end portion of the inclined portion 148 is thinnest, and the rear end portion of the inclined portion 148 constitutes the fragile portion.
  • the fragile portion may be formed by providing a concave portion on the outer peripheral surface or the inner peripheral surface of the inclined portion 148 and changing the plate thickness of a partial section.

Abstract

本発明は、繊維強化プラスチック製であって動力伝達軸に用いられる管体の製造方法であって、金型(1)のキャビティ面(4)上に未硬化の繊維強化樹脂を配置し、筒状の樹脂体(15)を生成する生成工程と、樹脂体(15)の内部に高温の流体を供給し、樹脂体(15)の樹脂を硬化させる硬化工程と、を備える。

Description

動力伝達軸に用いられる管体の製造方法
 本発明は、動力伝達軸に用いられる管体の製造方法に関する。
 車両に搭載される動力伝達軸(プロペラシャフト)は、車両の前後方向に延在する管体を備え、この管体により原動機で発生し変速機で減速された動力を終減速装置に伝達している。
 このような動力伝達軸に用いられる管体として、繊維強化プラスチックで形成されたものがある。繊維強化プラスチック製であって動力伝達軸に用いられる管体の製造方法としては、例えば、熱硬化性樹脂を含浸した連続繊維をマンドレルに何重にも巻き付けて筒状の成形体を形成する。その後、成形体を加熱し樹脂を硬化させ、筒状の管体が形成される。その後、硬化した管体の端部の開口からマンドレルを引き抜き、製造工程が終了する(下記特許文献1参照)。
特開平3-265738号公報
 ところで、管体の形状に関し、近年、両端部よりも中央部の方が径方向外側に膨らんだいわゆる樽形状(バレル形状)とすることが研究されている。
 しかしながら、樽形状のマンドレルを用いて上記形状の管体を形成しようとすると、マンドレルの中央部が外側に膨らみ、管体の開口を通過できず、管体からマンドレルを引き抜くことができない。よって、芯材(マンドレル)を用いることなく、管体を製造できる新規な製造方法が望まれている。
 本発明は、このような課題を解決するために創作されたものであり、芯材を用いることなく管体を製造できる動力伝達軸に用いられる管体の製造方法を提供することを目的とする。
 前記課題を解決するため、第一発明は、繊維強化プラスチック製であって動力伝達軸に用いられる管体の製造方法であって、金型のキャビティ面上に未硬化の繊維強化樹脂を配置し、筒状の樹脂体を生成する生成工程と、前記樹脂体の内部に流体を供給し、前記樹脂体の樹脂を硬化させる硬化工程と、を備えることを特徴とする。
 また、前記課題を解決するため、第二発明は、繊維強化プラスチック製であって動力伝達軸に用いられる管体の製造方法であって、繊維が巻回された筒状の膨張体を金型内に配置する準備工程と、前記膨張体に流体を供給し、前記膨張体を膨張させる膨張工程と、前記金型内に未硬化の樹脂を供給する供給工程と、前記未硬化の樹脂を硬化させる硬化工程と、を備えることを特徴とする。
 本発明によれば、金型に倣った形状の管体を製造できる。
動力伝達軸を側面視した側面図である。 動力伝達軸に用いられる管体の本体部を軸線方向に切った断面図である。 第一実施形態に係る管体の製造工程を示すフローチャートである。 第一実施形態に係る管体の製造工程の準備工程を示す図である。 第一実施形態に係る管体の製造工程の生成工程を示す図である。 第一実施形態に係る管体の製造工程の硬化工程を示す図である。 第一実施形態に係る管体の製造工程の取り出し工程を示す図である。 第二実施形態に係る管体の製造工程の硬化工程を示す図である。 第三実施形態に係る管体の製造工程の生成工程を示す図である。 第四実施形態に係る管体の製造工程を示すフローチャートである。 第四実施形態に係る管体の製造工程の準備工程を示す図である。 第四実施形態に係る管体の製造工程の供給工程を示す図である。
 次に、各実施形態における動力伝達軸に用いられる管体の製造方法について、図面を参照しながら説明する。各実施形態で共通する技術的要素には、共通の符号を付し、説明を省略する。最初に各製造方法で製造される動力伝達軸について説明する。
[動力伝達軸]
 図1に示すように、動力伝達軸101は、FF(Front-engine Front-drive)ベースの四輪駆動車に搭載されるプロペラシャフトである。車両の前後方向に延在する略円筒状の管体102と、管体102の前端に接合する十字軸ジョイントのスタブヨーク103と、管体102の後端に接合する等速ジョイントのスタブシャフト104と、を備えている。
 スタブヨーク103は、車体の前部に搭載された変速機と管体102とを連結する連結部材である。スタブシャフト104は、車体の後部に搭載された終減速装置と管体102とを連結する連結部材である。
 動力伝達軸101は、変速機から動力(トルク)が伝達されると軸線O1回りに回転し、その動力を終減速装置に伝達する。
 管体102は、炭素繊維強化プラスチック(CFRP)により形成されている。
 管体102の内部において、軸線O1を中心に周方向に延在する繊維からなる繊維層と、軸線O1方向に延在する繊維からなる繊維層と、が積層している。このため、管体102は、機械的強度が高く、かつ、軸線O1方向に高弾性化している。
 また、周方向に配向する繊維としてPAN系(Polyacrylonitrile)繊維が好ましく、軸線O1方向に配向する繊維としてピッチ繊維が好ましい。
 なお、本発明において繊維強化プラスチックに使用される繊維は、炭素繊維に限られず、ガラス繊維やアラミド繊維であってもよい。
 管体102は、管体102の大部分を占める本体部110と、本体部110の前側に配置された第一接続部120と、本体部110の後側に配置された第二接続部130と、本体部110と第二接続部130との間に位置する傾斜部140と、を備えている。
 なお、図2以降の図面においては、管体102の形状を分かり易くするため、管体102の形状を誇張して描写している。
 図2に示すように、本体部110の前端部111には、第一接続部120が連続し、本体部110の後端部112には、傾斜部140が連続している。
 軸線O1を法線とする平面で本体部110を切った場合、本体部110の外周面114の断面形状及び内周面115の断面形状は、円形状となっている。本体部110の外径は、中央部113から両端部(前端部(他端部)111及び後端部(一端部)112)に向うに連れて縮径しており、中央部113の外径R1は、両端部(前端部111及び後端部112)の外径R2よりも大きい。
 なお、本体部110の内径も、本体部110の中央部113から両端部(前端部111及び後端部112)に向うに連れて縮径している。
 軸線O1に沿って本体部110を切った場合、本体部110の外周面114の断面形状及び内周面115の断面形状は、緩やかな曲線を描き、中央部113が外側に向けて突出する円弧状となっている。よって、本体部110の外形は、中央部113が径方向外側に膨らむ樽形状(バレル形状)となっている。また、その断面形状において、本体部110の板厚は、両端部(前端部111及び後端部112)から中央部113に向うに連れて薄くなっており、中央部113の板厚T1は、両端部(前端部111及び後端部112)の板厚T2よりも薄い。
 図1に示すように、第一接続部120内には、スタブヨーク103のシャフト部103aが嵌め込まれている。シャフト部103aの外周面は、多角形状に形成されている。第一接続部120の内周面は、シャフト部103aの外周面に倣った多角形状に形成されている。このため、スタブヨーク103と管体102が互いに相対回転しないように構成されている。
 第二接続部130内には、スタブシャフト104のシャフト部104aが嵌め込まれている。第二接続部130の内周面は、シャフト部104aの外周面に倣った多角形状に形成されている。このため、スタブシャフト104と管体102が互いに相対回転しないように構成されている。
 傾斜部140の外径は、本体部110から第一接続部120に向かうに連れて次第に縮径し、円錐台形状となっている。傾斜部140の板厚は、第二接続部130側(後側)の端部から本体部110側(前側)の端部に向かうに連れて漸次薄くなっている。このため、傾斜部140のうち前端部の板厚が最も薄く、脆弱部を構成している。
 以上から、車両が前方から衝突されて動力伝達軸101に衝突荷重が入力すると、軸線O1に対して傾斜する傾斜部140にせん断力が作用する。そして、傾斜部140に作用するせん断力が所定値を超えると、傾斜部140の前端部(脆弱部)が破損する。このため、車両衝突時、車体の前部に搭載されたエンジンや変速機は速やかに後退し、衝突エネルギーは車体の前部により吸収される。
 上記した管体102について、曲げ応力が集中し易い本体部110の中央部113は、外径R1が大径に形成され、所定の曲げ強度を有している。一方で、曲げ応力が集中し難い本体部110の両端部(前端部111及び後端部112)は、外径R2が小径に形成され、軽量化している。また、本体部110の中央部113は、板厚T1が薄く軽量化している。よって、管体102は、中央部113の所定の曲げ剛性を確保しつつ本体部110が軽量化しており、管体102の曲げ一次共振点が向上している。
[第一実施形態]
 図3に示すように、第一実施形態における製造方法は、金型1内に未硬化の繊維強化樹脂を配置する準備工程(ステップS1)と、金型1を閉じて筒状の樹脂体15を生成する生成工程(ステップS2)と、加熱して樹脂を硬化させる硬化工程(ステップS3)と、金型1から動力伝達軸101に用いられる管体102を取り出す取り出し工程(ステップS4)と、を含んでいる。
(準備工程)
 図4に示すように、第一実施形態の準備工程(ステップS1)は、キャビティ面4上に複数枚のプリプレグを載置することで、金型1内に繊維強化樹脂を配置している。
 金型1は、上型(図4において不図示。図5以降参照)2と下型3を備えている。上型2の下面と下型3の上面3aには、管体102の外形を形成するためのキャビティ面4が形成されている。
 第一実施形態に係るキャビティ面4は、一方向に長く形成されている。また、キャビティ面4には、長手方向の一端から他端に向って順に、第一接続部用成形面5、本体部用成形面6、傾斜部用成形面7、並びに第二接続部用成形面8が形成されている。
 第一接続部用成形面5は、管体102の第一接続部120の外形を成形する面である。本体部用成形面6は、本体部110の外形を成形する面である。傾斜部用成形面7は、傾斜部140の外形を成形する面である。第二接続部用成形面8は、第二接続部130の外形を成形する面である。
 上型2の下面及び下型3の上面3aには、型締した際に金型1内と外部とを連通する連通孔9が2つ形成されている。
 連通孔9のうち1つは、第一接続部用成形面5の一端側に配置され、もう1つは第二接続部用成形面8の他端側に配置されている。
 プリプレグの樹脂として、熱硬化性樹脂が使用されている。
 また、熱硬化性樹脂は、未硬化状態のものが使用されている。
 尚、未硬化状態のものと記載をしているが、半硬化状態のものでもよい。つまり、ある程度硬化している樹脂であっても、金型1のキャビティ面4に沿った形状に変形できるため、半硬化した状態のものも使用することができる。
 プリプレグは、単体でキャビティ面4の全てを覆うことができる大きさのものでなくてもよい。つまり、キャビティ面4の一部のみを覆うことができる大きさのものを複数繋ぎ合わせてキャビティ面4の全面を覆うようにしてもよい。
 プリプレグに関し、硬化後に所定の厚みとなるように積層する枚数を調整する。例えば、本体部用成形面6に載置されるプリプレグは、長手方向の両端部から中央部に向って積層数が低減するように載置し、中央部が両端部よりも肉薄となるようにする。
 また、準備工程においては、キャビティ面4上に載置するプリプレグを載置する前に離型剤を塗る。
 そして、当該工程によれば、図4に示すように、上型2及び下型3のそれぞれのキャビティ面4に、半円筒形の樹脂部10が形成される。
(生成工程)
 図5に示すように、第一実施形態の生成工程(ステップS2)は、下型3の各連通孔9内に後述する加熱装置の供給管11を配置する。次に、加熱装置の供給管11の先端に加熱装置の膨張体12を係止させ、下型3内の樹脂部10の上方に膨張体12を位置させる。次に、下型3に上型2を重ね合わせて金型1を閉じ、上型2と下型3とが開かないように締め付ける。
 当該工程によれば、下型3のキャビティ面4に載置する樹脂部10と上型2のキャビティ面4に載置する樹脂部10の周方向の端部同士が接触し、筒状の樹脂体15が生成される。また、樹脂体15内の中央部に膨張体12が配置される。
(硬化工程)
 図6に示すように、第一実施形態の硬化工程(ステップS3)は、供給管11を介して加熱装置から膨張体12内に高温の流体を供給し、樹脂体15の樹脂を硬化させる工程である。
 膨張体12は、筒状の弾性部材であり、内部に流入する流体の量に応じて膨張する。弾性部材は、シリコーンゴムや、フッ素ゴム、アクリルゴムなど、高温の流体に耐熱性を有する材料が使用されている。なお、膨張体12は、両端が封止されており、供給管11から供給された流体が漏出しない。
 加熱装置は、高温の流体を生成し供給する装置である。また、第一実施形態において供給される流体は液体である。液体の温度は樹脂体15を硬化できる温度(例えば130°~180°)に設定されている。また、液体は、膨張体12が膨張し、膨張体12の外周面が樹脂体15の内周面に当接する程度に供給する。
 当該工程によれば、図6に示すように、膨張した膨張体12が樹脂体15に当接し、液体の温度が膨張体12を介して樹脂体15に伝わる。結果、樹脂体15の樹脂が硬化し、動力伝達軸101となる。
(取り出し工程)
 第一実施形態の取り出し工程(ステップS4)は、上型2を移動させて金型1を開く。また、加熱装置を駆動させて膨張体12内に供給した液体を回収する。これにより、膨張体12は、内圧が低下し、元の形状に復帰し筒状となる。次に、膨張体12から供給管11を引き抜くとともに、図7に示すように、筒状となった膨張体12を管体102内から引き抜く。この結果、動力伝達軸101に係止するものがなく、下型3から管体102を取り出すことができる。
 以上から、第一実施形態によれば、芯材を用いることなく、いわゆる樽形状(バレル形状)の管体102を製造することができる。
[第二実施形態]
 図8に示すように、第二実施形態における動力伝達軸201に用いられる管体202の製造方法は、金型21内に繊維強化樹脂を配置する準備工程(ステップS1)と、金型21を閉じて筒状の樹脂体35を生成する生成工程(ステップS2)と、加熱して樹脂を硬化させる硬化工程(ステップS3)と、金型21から動力伝達軸201を取り出す取り出し工程(ステップS4)と、を含んでいる(図3参照)。
 以下、第一実施形態との相違点に絞って説明する。
 第二実施形態の準備工程(ステップS1)において、ハンドレイアップ方法により上型22及び下型23のキャビティ面24上に半円筒状の樹脂部30を形成している。つまり、金型21のキャビティ面24上に、繊維を載置するとともにキャビティ面24に未硬化の樹脂(熱硬化樹脂)を塗布することで、繊維強化樹脂(樹脂部30)をキャビティ面24に形成している。このハンドレイアップ法によれば、キャビティ面24上に形成される樹脂部30の厚みの微調整を行うことが可能となる。
 金型21のキャビティ面24には、第一接続部用成形面5、本体部用成形面26、傾斜部用成形面7、並びに第二接続部用成形面8が形成されている。
 ここで、本体部用成形面26は、中央部から第一接続部用成形面5に向って径が一定に形成された第一面26aと、中央部から傾斜部用成形面7に向って次第に縮径する第二面26bと、を備えている。
 この金型21によれば、管体202の本体部210の形状は、中央部213から前端部211までの径が一定となる一方で、中央部213から後端部212に向うに連れて縮径した形状となる。
 第二実施形態の硬化工程(ステップS3)において、加熱装置は、供給管11を介して高温の気体を供給している。当該工程によれば、高温の気体が樹脂体35内に供給され、樹脂体35の樹脂が硬化する。
 さらに、硬化工程(ステップS3)においては、図示しないヒータなどにより金型21を加熱している。これによれば、金型21のキャビティ面24側から樹脂体35に熱を加えることができ、樹脂体35の加熱時間が短縮する。
 第二実施形態によれば、芯材を用いることなく、繊維強化プラスチック製の管体202を製造することができる。
[第三実施形態]
 図9に示すように、第三実施形態における製造方法は、金型41内に繊維強化樹脂を配置する準備工程(ステップS1)と、金型41を閉じて樹脂体55を生成する生成工程(ステップS2)と、加熱して樹脂を硬化させる硬化工程(ステップS3)と、金型41から管体302を取り出す取り出し工程(ステップS4)と、を含んでいる(図3参照)。
 以下、第一実施形態との変更点に絞って説明する。
 第三実施形態の準備工程(ステップS1)において、金型41のキャビティ面44には、第一接続部用成形面5、本体部用成形面46、傾斜部用成形面7、並びに第二接続部用成形面8を備えている。本体部用成形面46は、一端側(第一接続部用成形面5)から他端側(傾斜部用成形面7)にかけて径が一定に形成されている。この金型41によれば、径が一定に形成された円筒状の本体部310を備える管体302を製造できる。
 第三実施形態の膨張体52の外周側であって長手方向の端部には、環状部材53が巻き付けられている。環状部材53は、例えば、シリコーンゴムや、フッ素ゴム、アクリルゴムなど弾性部材で形成されている。
 これによれば、膨張体52の膨張時、膨張体52の端部は中央部よりも膨張量が小さくなる。このため、樹脂体55のうち第一接続部用成形面5及び第二接続部用成形面8に配置された部分の樹脂を膨張体52が必要以上に押圧して他の部分に樹脂が流れる、ということを防止できる。
[第四実施形態]
 図10に示すように、第四実施形態における製造方法は、繊維71が巻回された膨張体72を金型61内に配置する準備工程(ステップS11)と、膨張体72に流体を供給し膨張体72を膨張させる膨張工程(ステップS12)と、金型61内に未硬化の樹脂を供給する供給工程(ステップS13)と、未硬化の樹脂を硬化させる硬化工程(ステップS14)と、金型61から管体102を取り出す取り出し工程(ステップS15)と、を含んでいる。
(準備工程)
 準備工程(ステップS11)は金型61を準備する。図11に示すように、金型61は、上型62と下型63を備えている。上型62と下型63のキャビティ面64には、第一実施形態で説明した金型1と同様に、長手方向の一端から他端に向って順に、第一接続部用成形面65、本体部用成形面66、傾斜部用成形面67、並びに第二接続部用成形面68が形成されている。
 また、金型61には、供給管11を貫通させるための連通孔9と、金型61内に樹脂を供給するためのスプール69が形成されている。
 膨張体72は、第一実施形態で説明した膨張体12と同一構造のものである。繊維71は、管体102の強度を強化するためのものであり、炭素繊維、ガラス繊維やアラミド繊維が挙げられる。なお、繊維71の巻き付け方法や繊維71の配向等については特に限定されない。
 膨張体72の配置は、連通孔9を貫通する供給管11の先端に係止させる。これによれば、膨張体72は、キャビティ面64から離間した状態で金型61内に固定される。
(膨張工程)
 膨張工程(ステップS12)において、供給管11を介して加熱装置から膨張体72内に流体を供給する。流体は、膨張体72が膨張し、膨張体72の外周面がキャビティ面64に当接する程度に供給する(図12参照)。なお、膨張体72に巻回された繊維71間には隙間が形成されているところ、当該膨張工程によりこの隙間が大きくなる。よって、この隙間が次工程の供給工程で樹脂が流れる流路となる。また、流体の温度は、供給工程で樹脂が硬化しない温度に設定されている。
(供給工程)
 供給工程(ステップS13)において、スプール69を介して未硬化の樹脂を金型61内に供給する。これによれば、繊維71間の隙間を流れ、図12に示すように、膨張体72の外周面とキャビティ面64との間に筒状の樹脂体75が形成される。
(硬化工程)
 硬化工程(ステップS14)において、2つの供給管11のうち一方で膨張体72内の流体を排出しつつ、他方の供給管11で高温の流体を膨張体72内に供給する。ここで、供給する流体の温度は樹脂を硬化できる温度(例えば130°~180°)に設定されている。当該工程によれば、樹脂体75が硬化して繊維強化樹脂製の管体102が形成される。
(取り出し工程)
 取り出し工程(ステップS15)は、膨張体72内の液体を回収する。これにより、膨張体72は、内圧が低下し、元の形状に復帰し筒状となる。次いで、金型61を開いて管体102から膨張体72を引き抜き管体102が完成する。
 以上から、第四実施形態によれば、芯材を用いることなく、いわゆる樽形状(バレル形状)の管体102を製造することができる。
 以上、各実施形態について説明したが、本発明は上記した例に限定されない。
 例えば、金型のキャビティ面において、スタブヨーク103又はスタブシャフト104と接続する接続部(第一接続部120,第二接続部130)を形成する接続部用成形面(第一接続部用成形面5、第二接続部用成形面8)の断面形状を多角形状にしてもよい。これによれば、第一接続部120及び第二接続部130の断面形状が多角形状に形成される。よって、別途に第一接続部120及び第二接続部130を多角形状に成形する手間を省くことができる。
 また、膨張体の膨張量を制限する例として、環状部材53を用いているが、そのほかに、膨張体自体の厚みを変えることで膨張量を制限するようにしてもよい。
 また、本発明の管体に関し、軸線O1方向に沿って切った本体部110の断面形状は円弧状のものに限定されない。例えば、軸線O1に沿って切った本体部110の断面形状が階段状となっていてもよい。つまり、金型のキャビティ面において、本体部用成形面6を長手方向に切った断面形状を階段状に形成してもよい。
 また、本発明の製造方法で製造される管体は、上記したものに限定されない。例えば、傾斜部148に関し、板厚が本体部145側(前側)の端部から第二接続部147側(後側)の端部に向かうに連れて漸次薄くなっていてもよい。これによれば、傾斜部148のうち後端部の板厚が最も薄くなり、傾斜部148の後端部が脆弱部を構成する。若しくは、傾斜部148の外周面又は内周面に凹部を設けて一部区間の板厚を変化させて脆弱部を形成してもよい。
 1,21,41,61 金型
 4,24,44,64 キャビティ面
 6,26,46,66 本体部用成形面
 10,30 樹脂部
 11  供給管
 12,52,72 膨張体
 15,35、55,75 樹脂体
 101,201,301 動力伝達軸

Claims (8)

  1.  繊維強化プラスチック製であって動力伝達軸に用いられる管体の製造方法であって、
     金型のキャビティ面上に未硬化の繊維強化樹脂を配置し、筒状の樹脂体を生成する生成工程と、
     前記樹脂体の内部に流体を供給し、前記樹脂体の樹脂を硬化させる硬化工程と、
     を備えることを特徴とする動力伝達軸に用いられる管体の製造方法。
  2.  前記生成工程において、前記樹脂体の内部に膨張体を配置し、
     前記硬化工程において、前記膨張体内に前記樹脂体が硬化する温度の前記流体を供給し、前記膨張体が膨張して前記樹脂体に当接することを特徴とする請求項1に記載の動力伝達軸に用いられる管体の製造方法。
  3.  繊維強化プラスチック製であって動力伝達軸に用いられる管体の製造方法であって、
     繊維が巻回された筒状の膨張体を金型内に配置する準備工程と、
     前記膨張体に流体を供給し、前記膨張体を膨張させる膨張工程と、
     前記金型内に未硬化の樹脂を供給する供給工程と、
     前記未硬化の樹脂を硬化させる硬化工程と、を備えることを特徴とする動力伝達軸に用いられる管体の製造方法。
  4.  前記硬化工程において、さらに前記金型を加熱することを特徴とする請求項1から請求項3のいずれか1項に記載の動力伝達軸に用いられる管体の製造方法。
  5.  前記金型のキャビティ面は、前記管体の本体部を成形する本体部用成形面を有し、
     前記本体部用成形面は、中央部から端部に向うに連れて次第に縮径していることを特徴とする請求項1から請求項4のいずれか1項に記載の動力伝達軸に用いられる管体の製造方法。
  6.  前記金型のキャビティ面は、前記管体の本体部を成形する本体部用成形面を有し、
     前記本体部用成形面は、中央部から一端部に向うに連れて次第に縮径する一方で、前記中央部から他端部までの径が一定となっていることを特徴とする請求項1から請求項4のいずれか1項に記載の動力伝達軸に用いられる管体の製造方法。
  7.  前記金型のキャビティ面は、前記管体の本体部を成形する本体部用成形面を有し、
     前記本体部用成形面は、一端部から他端部までの径が一定となっていることを特徴とする請求項1から請求項4のいずれか1項に記載の動力伝達軸に用いられる管体の製造方法。
  8.  前記金型のキャビティ面は、前記管体の接続部を成形する接続部用成形面を有し、
     前記接続部用成形面は、断面形状が多角形状となっていることを特徴とする請求項1から請求項7のいずれか1項に記載の動力伝達軸に用いられる管体の製造方法。
PCT/JP2019/010049 2019-02-27 2019-03-12 動力伝達軸に用いられる管体の製造方法 WO2020174696A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980057212.4A CN112638630A (zh) 2019-02-27 2019-03-12 用于传动轴的管体的制造方法
US17/186,175 US20210180645A1 (en) 2019-02-27 2021-02-26 Method for manufacturing tube body used in power transmission shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-033777 2019-02-27
JP2019033777A JP6563147B1 (ja) 2019-02-27 2019-02-27 動力伝達軸に用いられる管体の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/186,175 Continuation US20210180645A1 (en) 2019-02-27 2021-02-26 Method for manufacturing tube body used in power transmission shaft

Publications (1)

Publication Number Publication Date
WO2020174696A1 true WO2020174696A1 (ja) 2020-09-03

Family

ID=67692143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010049 WO2020174696A1 (ja) 2019-02-27 2019-03-12 動力伝達軸に用いられる管体の製造方法

Country Status (4)

Country Link
US (1) US20210180645A1 (ja)
JP (1) JP6563147B1 (ja)
CN (1) CN112638630A (ja)
WO (1) WO2020174696A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138364A (ja) * 2019-02-27 2020-09-03 株式会社ショーワ 動力伝達軸に用いられる管体の製造方法
CN113775634A (zh) * 2021-09-01 2021-12-10 江苏集萃碳纤维及复合材料应用技术研究院有限公司 复合材料传动轴及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166519A (ja) * 1986-12-27 1988-07-09 Hitachi Constr Mach Co Ltd 繊維強化樹脂製棒状体
JPH10299786A (ja) * 1997-02-26 1998-11-10 Toyota Motor Corp 回転シャフトの結合構造
JP2003094448A (ja) * 2001-09-25 2003-04-03 Toray Ind Inc Frp中空構造体の製造方法
JP2005111773A (ja) * 2003-10-07 2005-04-28 Toho Tenax Co Ltd 複合管状体の製造方法
JP2012196921A (ja) * 2011-03-23 2012-10-18 Toray Ind Inc 繊維強化複合材料、およびその製造方法
EP3381668A1 (en) * 2017-03-31 2018-10-03 Crompton Technology Group Limited Composite shaft

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970495A (en) * 1974-07-24 1976-07-20 Fiber Science, Inc. Method of making a tubular shaft of helically wound filaments
JPS5952051B2 (ja) * 1981-10-13 1984-12-18 日立造船株式会社 繊維強化樹脂曲管の成形方法
CA1189333A (en) * 1981-11-05 1985-06-25 Alexander H. Galaniuk Variable diameter driveshaft
JPS5950216A (ja) * 1982-09-16 1984-03-23 Honda Motor Co Ltd 繊維強化合成樹脂製駆動軸とその製造方法
JPH01154730A (ja) * 1987-12-11 1989-06-16 Mazda Motor Corp 動力伝達軸の製造方法
JP2000108210A (ja) * 1998-10-02 2000-04-18 Toyota Autom Loom Works Ltd Frp製筒部品の製造方法及び中子
JP2001153126A (ja) * 1999-11-26 2001-06-08 Toray Ind Inc 段付構造frp製プロペラシャフト
JP2002143958A (ja) * 2000-11-06 2002-05-21 Tube Foming Co Ltd 伝動軸とその製造方法
JP2003001717A (ja) * 2001-06-25 2003-01-08 Toyota Industries Corp プロペラシャフト用のfrp製パイプ
JP2005016619A (ja) * 2003-06-25 2005-01-20 Toyota Industries Corp 中太プロペラシャフト及びその製造方法
DE10353674B3 (de) * 2003-11-17 2005-08-11 Gkn Driveline Deutschland Gmbh Mehrteilige Längsantriebswelle
JP4558091B1 (ja) * 2009-10-29 2010-10-06 株式会社イノアックコーポレーション 繊維強化成形体及びその製造方法
JP2013228094A (ja) * 2012-03-28 2013-11-07 Toray Ind Inc プロペラシャフト
JP6367659B2 (ja) * 2014-09-18 2018-08-01 日立オートモティブシステムズ株式会社 動力伝達軸及び車両用プロペラシャフト
KR101818626B1 (ko) * 2016-06-30 2018-01-16 한국과학기술원 신뢰성과 생산성이 향상된 하이브리드 프로펠러 샤프트의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166519A (ja) * 1986-12-27 1988-07-09 Hitachi Constr Mach Co Ltd 繊維強化樹脂製棒状体
JPH10299786A (ja) * 1997-02-26 1998-11-10 Toyota Motor Corp 回転シャフトの結合構造
JP2003094448A (ja) * 2001-09-25 2003-04-03 Toray Ind Inc Frp中空構造体の製造方法
JP2005111773A (ja) * 2003-10-07 2005-04-28 Toho Tenax Co Ltd 複合管状体の製造方法
JP2012196921A (ja) * 2011-03-23 2012-10-18 Toray Ind Inc 繊維強化複合材料、およびその製造方法
EP3381668A1 (en) * 2017-03-31 2018-10-03 Crompton Technology Group Limited Composite shaft

Also Published As

Publication number Publication date
JP6563147B1 (ja) 2019-08-21
US20210180645A1 (en) 2021-06-17
CN112638630A (zh) 2021-04-09
JP2020138345A (ja) 2020-09-03

Similar Documents

Publication Publication Date Title
EP2189274A1 (en) Process for producing tube member made of fiber-reinforced resin
WO2020174696A1 (ja) 動力伝達軸に用いられる管体の製造方法
JP6873369B1 (ja) 繊維強化樹脂製管体の製造方法
EP0146447B1 (fr) Procédé pour réaliser un taraudage dans un tube ou une bielle en un matériau composité
JP2008138671A (ja) 取付けフランジを有する構造体で使用するための装置
WO2001002131A1 (en) Method of producing channeled wall apparatus
WO2020174694A1 (ja) マンドレル
JP2020138343A (ja) 動力伝達軸に用いられる管体の製造方法
JP2011167951A (ja) 金属/frpパイプの製造方法及び金属/frpパイプ、並びに、金属/frpパイプの熱残留応力除去方法
JP7426680B2 (ja) 繊維強化樹脂管体の製造方法
GB2222653A (en) Hollow tubular structures of fibre reinforced plastics material and method for their production
WO2021039637A1 (ja) 構造体の製造方法及び構造体
JP2019031080A (ja) ワークを加圧成形するための成形ダイならびにワークを加圧成形するための成形ダイを製造する方法
JPH0259328A (ja) Frp容器の製造方法
JP6547081B1 (ja) 動力伝達軸の製造方法
WO2023238300A1 (ja) 推進軸用炭素繊維強化樹脂製筒体
WO2020174693A1 (ja) マンドレル及び動力伝達軸に用いられる管体の製造方法
CN112976615B (zh) 热塑复材管的制造装置及制造方法
JP2017532508A (ja) トランスミッションシャフトおよびそれを作るための方法
JP2023146718A (ja) 繊維強化樹脂管体の製造方法
JP4896753B2 (ja) 伝動ベルトの製造方法
US20030114232A1 (en) Enhanced strength composite drive shaft
JP2020138364A (ja) 動力伝達軸に用いられる管体の製造方法
JP2023136190A (ja) マンドレル及び繊維強化樹脂管体の製造方法
JP2023031426A (ja) 繊維強化樹脂製構造物の製造に用いられる金型装置及び繊維強化樹脂製構造物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917456

Country of ref document: EP

Kind code of ref document: A1