WO2020171133A1 - 冷凍機油及び冷凍機用作動流体組成物 - Google Patents

冷凍機油及び冷凍機用作動流体組成物 Download PDF

Info

Publication number
WO2020171133A1
WO2020171133A1 PCT/JP2020/006606 JP2020006606W WO2020171133A1 WO 2020171133 A1 WO2020171133 A1 WO 2020171133A1 JP 2020006606 W JP2020006606 W JP 2020006606W WO 2020171133 A1 WO2020171133 A1 WO 2020171133A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
less
refrigerating machine
machine oil
mass
Prior art date
Application number
PCT/JP2020/006606
Other languages
English (en)
French (fr)
Inventor
洋平 庄野
達貴 中島
章吾 橋本
祐也 水谷
英俊 尾形
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to JP2021502101A priority Critical patent/JP7404333B2/ja
Priority to US17/422,948 priority patent/US20220064562A1/en
Priority to CN202080006811.6A priority patent/CN113166669A/zh
Priority to KR1020217028975A priority patent/KR20210125541A/ko
Publication of WO2020171133A1 publication Critical patent/WO2020171133A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/08Ammonium or amine salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • C10M137/105Thio derivatives not containing metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • C10M2207/301Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/101Containing Hydrofluorocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • the present invention relates to a refrigerating machine oil and a working fluid composition for a refrigerating machine.
  • Refrigerators such as refrigerators, car air conditioners, room air conditioners, and vending machines are equipped with a compressor for circulating the refrigerant in the refrigeration cycle. Then, the compressor is filled with refrigerating machine oil for lubricating the sliding member. Refrigerating machine oil is required to have characteristics such as wear resistance and stability.
  • Refrigerating machine oil generally contains a base oil and additives selected according to the required characteristics as described above. For example, phosphorus-based antiwear agents are added to refrigerating machine oils that require improved wear resistance (see Patent Document 1).
  • Patent Document 1 The phosphorus-based antiwear agent as disclosed in Patent Document 1 can improve the wear resistance of the refrigerating machine oil, but may impair the stability of the refrigerating machine oil due to its high activity. There is.
  • an object of the present invention is to provide a refrigerating machine oil having excellent stability in addition to wear resistance.
  • one aspect of the present invention is a refrigerating machine oil containing a base oil, a dithiophosphoric acid ester, and an amine salt of an acidic phosphoric acid ester.
  • the dithiophosphoric acid ester may be a compound represented by the following formula (A-1).
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group
  • R 3 represents a monovalent organic group.
  • at least one of R 1 and R 2 represents a monovalent hydrocarbon group.
  • the mass ratio of the content of the dithiophosphoric acid ester to the total content of the amine salt of the dithiophosphoric acid ester and the acidic phosphoric acid ester may be 0.1 or more and 0.9 or less.
  • the refrigerating machine oil may have a sulfur content of 0.2 mass% or less.
  • Refrigerating machine oil may be used with refrigerants containing fluorohydrocarbon refrigerants.
  • Another aspect of the present invention is a working fluid composition for a refrigerating machine, which contains the refrigerating machine oil described above and a refrigerant.
  • the refrigerant may contain a fluorohydrocarbon refrigerant.
  • One embodiment of the present invention is a refrigerating machine oil containing a base oil (lubricating base oil), a dithiophosphoric acid ester, and an amine salt of an acidic phosphoric acid ester.
  • Examples of the base oil include hydrocarbon oil and oxygen-containing oil.
  • Examples of the hydrocarbon oil include mineral oil type hydrocarbon oils and synthetic type hydrocarbon oils.
  • Examples of the oxygen-containing oil include esters, ethers, carbonates, ketones, silicones, polysiloxanes and the like.
  • Mineral oil type hydrocarbon oil is a lubricant oil fraction obtained by atmospheric distillation and reduced pressure distillation of crude oil such as paraffin type and naphthene type, solvent-removing, solvent refining, hydrorefining, hydrocracking, solvent depressurizing. It may be a paraffinic mineral oil, a naphthenic mineral oil, or the like, which can be obtained by refining by a method such as wax, hydrodewaxing, clay treatment, and sulfuric acid washing. These purification methods may be used alone or in combination of two or more.
  • Examples of synthetic hydrocarbon oils include alkylbenzene, alkylnaphthalene, poly ⁇ -olefin (PAO), polybutene, ethylene- ⁇ -olefin copolymer and the like.
  • the alkylbenzene may be at least one selected from the group consisting of the following alkylbenzene (X) and alkylbenzene (Y).
  • Alkylbenzene (X) Alkylbenzene having 1 to 4 alkyl groups having 1 to 19 carbon atoms and having 9 to 19 carbon atoms in total of the alkyl groups (preferably 1 alkyl group having 1 to 15 carbon atoms).
  • Alkylbenzene having 4 to 4 and having 9 to 15 total carbon atoms in the alkyl group Alkylbenzene (Y): An alkylbenzene having 1 to 4 alkyl groups having 1 to 40 carbon atoms and having a total carbon number of 20 to 40 of the alkyl groups (preferably 1 alkyl group having 1 to 30 carbon atoms). An alkylbenzene having 4 to 4 and having a total alkyl group carbon number of 20 to 30)
  • alkyl group having 1 to 19 carbon atoms in the alkylbenzene (X) include a methyl group, an ethyl group, a propyl group (including all isomers, the same applies hereinafter), a butyl group, a pentyl group, and a hexyl group.
  • alkyl groups may be linear or branched, and are preferably branched from the viewpoint of stability, viscosity characteristics and the like.
  • the alkyl group is more preferably a branched alkyl group derived from an oligomer of an olefin such as propylene, butene or isobutylene, particularly from the viewpoint of availability.
  • the number of alkyl groups in the alkylbenzene (X) is 1 to 4, and from the viewpoint of stability and availability, it is preferably 1 or 2 (that is, monoalkylbenzene, dialkylbenzene, or a mixture thereof). is there.
  • the alkylbenzene (X) may be an alkylbenzene having a single structure, and has a condition that it has 1 to 4 alkyl groups having 1 to 19 carbon atoms and the total number of carbon atoms of the alkyl groups is 9 to 19
  • the alkylbenzene may be a mixture of alkylbenzenes having different structures.
  • alkyl group having 1 to 40 carbon atoms contained in the alkylbenzene (Y) include a methyl group, an ethyl group, a propyl group (including all isomers, the same applies hereinafter), a butyl group, a pentyl group, and a hexyl group.
  • alkyl groups may be linear or branched, and are preferably branched from the viewpoint of stability, viscosity characteristics and the like.
  • the alkyl group is more preferably a branched alkyl group derived from an oligomer of an olefin such as propylene, butene or isobutylene, particularly from the viewpoint of availability.
  • the alkyl group is more preferably a straight chain or branched chain derived from a straight chain alkylating agent such as a straight chain paraffin, a straight chain ⁇ -olefin or a halide thereof in view of a higher flash point. It is an alkyl group, more preferably a branched alkyl group.
  • the number of alkyl groups in the alkylbenzene (Y) is 1 to 4, and from the viewpoint of stability and availability, it is preferably 1 or 2 (that is, monoalkylbenzene, dialkylbenzene, or a mixture thereof). is there.
  • the alkylbenzene (Y) may be an alkylbenzene having a single structure, and has a condition that it has 1 to 4 alkyl groups having 1 to 40 carbon atoms and the total number of carbon atoms of the alkyl groups is 20 to 40.
  • the alkylbenzene may be a mixture of alkylbenzenes having different structures.
  • Poly- ⁇ -olefin is a compound obtained, for example, by polymerizing several molecules of a linear olefin having a carbon number of 6 to 18 and having a double bond only at one end, and then hydrogenating.
  • the poly- ⁇ -olefin may be, for example, isoparaffin having a molecular weight distribution centered on a trimer or tetramer of ⁇ -decene having 10 carbon atoms or ⁇ -dodecene having 12 carbon atoms.
  • ester examples include aromatic ester, dibasic acid ester, polyol ester, complex ester, carbonic acid ester and a mixture thereof.
  • the ester is preferably a polyol ester or a complex ester.
  • Polyol ester is an ester of polyhydric alcohol and fatty acid.
  • the fatty acid is preferably a saturated fatty acid.
  • the carbon number of the fatty acid is preferably 4 to 20, more preferably 4 to 18, even more preferably 4 to 9, and particularly preferably 5 to 9.
  • the polyol ester may be a partial ester in which a part of the hydroxyl groups of the polyhydric alcohol is not esterified and remains as a hydroxyl group, or may be a complete ester in which all the hydroxyl groups are esterified. It may be a mixture of an ester and a complete ester.
  • the hydroxyl value of the polyol ester is preferably 10 mgKOH/g or less, more preferably 5 mgKOH/g or less, and further preferably 3 mgKOH/g or less.
  • the proportion of fatty acids having 4 to 20 carbon atoms in the fatty acids constituting the polyol ester is preferably 20 to 100 mol %, more preferably 50 to 100 mol %, further preferably 70 to 100 mol %, and particularly preferably 90. Is up to 100 mol %.
  • fatty acid having 4 to 20 carbon atoms include butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid. , Hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid and icosanoic acid. These fatty acids may be linear or branched.
  • the fatty acid is preferably a fatty acid having a branch at the ⁇ -position and/or the ⁇ -position, and more preferably 2-methylpropanoic acid, 2-methylbutanoic acid, 2-methylpentanoic acid, 2-methylhexanoic acid, 2-ethyl Selected from pentanoic acid, 2-methylheptanoic acid, 2-ethylhexanoic acid, 3,5,5-trimethylhexanoic acid and 2-ethylhexadecanoic acid, more preferably 2-methylpropanoic acid and 3,5,5- It is selected from trimethylhexanoic acid.
  • the fatty acids preferably include branched fatty acids having 4 to 9 carbon atoms among these fatty acids.
  • the proportion of the branched fatty acid having 4 to 9 carbon atoms in the fatty acid is preferably 20 to 100 mol %, more preferably 50 to 100 mol %, further preferably 70 to 100 mol %, and particularly preferably 90 to 100 mol %. is there.
  • the fatty acids may contain fatty acids other than C4-20 fatty acids.
  • the fatty acids other than the fatty acids having 4 to 20 carbon atoms may be fatty acids having 21 to 24 carbon atoms, for example.
  • the fatty acid having 21 to 24 carbon atoms may be henicosanoic acid, docosanoic acid, tricosanoic acid, tetracosanoic acid, etc., and may be linear or branched.
  • the polyhydric alcohol constituting the polyol ester is preferably a polyhydric alcohol having 2 to 6 hydroxyl groups.
  • the carbon number of the polyhydric alcohol is preferably 4-12, more preferably 5-10.
  • the polyhydric alcohol is preferably a hindered substance such as neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, dipentaerythritol.
  • Alcohol which is particularly excellent in compatibility with a refrigerant and hydrolysis stability, is more preferably pentaerythritol, dipentaerythritol, or a mixed alcohol of pentaerythritol and dipentaerythritol.
  • the complex ester is, for example, an ester synthesized by the following method (C1) or (C2).
  • C1 A molar ratio of the polyhydric alcohol and the polybasic acid is adjusted to synthesize an ester intermediate in which a part of the carboxyl group of the polybasic acid is not esterified and remains, and then the remaining carboxyl group is Method of esterifying with monohydric alcohol
  • C2 A molar ratio of polyhydric alcohol and polybasic acid is adjusted to synthesize an ester intermediate in which a part of hydroxyl groups of the polyhydric alcohol remains without being esterified,
  • the complex ester obtained by the method (C1) can suppress generation of a strong acid due to hydrolysis when used as a refrigerating machine oil, it is more stable than the complex ester obtained by the method (C2). Tends to be superior. Therefore, the complex ester is preferably a complex ester obtained by the method (C1) having higher stability.
  • the complex ester preferably has at least one selected from polyhydric alcohols having 2 to 4 hydroxyl groups, at least one selected from polybasic acids having 6 to 12 carbon atoms, and 4 to 18 carbon atoms. It is an ester synthesized from a monohydric alcohol and at least one selected from monohydric fatty acids having 2 to 12 carbon atoms.
  • polyhydric alcohol having 2 to 4 hydroxyl groups examples include neopentyl glycol, trimethylolpropane, pentaerythritol and the like.
  • the polyhydric alcohol having 2 to 4 hydroxyl groups is preferably neopentyl glycol and trimethylol, from the viewpoint of securing a suitable viscosity when using a complex ester as a base oil and obtaining good low-temperature characteristics. It is selected from propane and is more preferably neopentyl glycol from the viewpoint that viscosity can be adjusted widely.
  • the polyhydric alcohol constituting the complex ester is preferably a polyhydric alcohol having 2 to 4 hydroxyl groups and a dihydric alcohol having 2 to 10 carbon atoms other than neopentyl glycol. Is further contained.
  • the dihydric alcohol having 2 to 10 carbon atoms other than neopentyl glycol ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, 2-methyl-1,3-propanediol, 3-methyl-1,5 -Pentanediol, 2,2-diethyl-1,3-pentanediol and the like.
  • the dihydric alcohol is preferably butanediol from the viewpoint of excellent properties of the base oil.
  • butanediol examples include 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 2,3-butanediol.
  • the butanediol is preferably selected from 1,3-butanediol and 1,4-butanediol from the viewpoint of obtaining good characteristics.
  • the amount of the dihydric alcohol having 2 to 10 carbon atoms other than neopentyl glycol is preferably 1.2 mol or less, more preferably 0.8 mol, based on 1 mol of the polyhydric alcohol having 2 to 4 hydroxyl groups. It is less than or equal to mol, and more preferably less than or equal to 0.4.
  • polybasic acids having 6 to 12 carbon atoms examples include adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid and trimellitic acid.
  • the polybasic acid is preferably selected from adipic acid and sebacic acid, and more preferably adipic acid, from the viewpoint of excellent balance of the properties of the synthesized ester and easy availability.
  • the amount of the polybasic acid having 6 to 12 carbon atoms is preferably 0.4 mol to 4 mol, more preferably 0.5 mol to 3 with respect to 1 mol of the polyhydric alcohol having 2 to 4 hydroxyl groups. The amount is more preferably 0.6 mol to 2.5 mol.
  • Examples of monohydric alcohols having 4 to 18 carbon atoms include butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, dodecanol and oleyl alcohol. These monohydric alcohols may be linear or branched.
  • the monohydric alcohol having 4 to 18 carbon atoms is preferably a monohydric alcohol having 6 to 10 carbon atoms, and more preferably a monohydric alcohol having 8 to 10 carbon atoms, from the viewpoint of the balance of properties.
  • the monohydric alcohol is more preferably selected from 2-ethylhexanol and 3,5,5-trimethylhexanol from the viewpoint of improving the low temperature characteristics of the synthesized complex ester.
  • Examples of monovalent fatty acids having 2 to 12 carbon atoms include ethanoic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid and dodecanoic acid. These monovalent fatty acids may be linear or branched.
  • the monovalent fatty acid having 2 to 12 carbon atoms is preferably a monovalent fatty acid having 8 to 10 carbon atoms, and of these, 2-ethylhexanoic acid and 3,5,5-trimethyl are more preferable from the viewpoint of low temperature characteristics. Hexanoic acid.
  • ethers include polyvinyl ether, polyalkylene glycol, polyphenyl ether, perfluoroether and mixtures thereof.
  • the ether is preferably selected from polyvinyl ether and polyalkylene glycol, more preferably polyvinyl ether.
  • Polyvinyl ether has a structural unit represented by the following formula (1).
  • R 50 , R 51 and R 52 which may be the same or different, each represents a hydrogen atom or a hydrocarbon group
  • R 53 is a divalent hydrocarbon group or a divalent ether-bonded oxygen.
  • R 54 represents a hydrocarbon group
  • m represents an integer of 0 or more.
  • a plurality of R 53 may be the same or different from each other.
  • the hydrocarbon group represented by R 50 , R 51 and R 52 has preferably 1 or more, more preferably 2 or more, further preferably 3 or more, and preferably 8 or less, more preferably 7 or more. Or less, more preferably 6 or less. At least one of R 50 , R 51 and R 52 is preferably a hydrogen atom, and more preferably all of R 50 , R 51 and R 52 are hydrogen atoms.
  • the carbon number of the divalent hydrocarbon group and the ether bond oxygen-containing hydrocarbon group represented by R 53 is preferably 1 or more, more preferably 2 or more, still more preferably 3 or more, and preferably 10 or less. , More preferably 8 or less, still more preferably 6 or less.
  • the divalent ether bond oxygen-containing hydrocarbon group represented by R 53 may be, for example, a hydrocarbon group having oxygen in the side chain which forms an ether bond.
  • R 54 is preferably a hydrocarbon group having 1 to 20 carbon atoms.
  • this hydrocarbon group include an alkyl group, a cycloalkyl group, a phenyl group, an aryl group, and an arylalkyl group.
  • the hydrocarbon group is preferably an alkyl group, more preferably an alkyl group having 1 to 5 carbon atoms.
  • M is preferably 0 or more, more preferably 1 or more, still more preferably 2 or more, and preferably 20 or less, more preferably 18 or less, still more preferably 16 or less.
  • the average value of m in all structural units constituting the polyvinyl ether is preferably 0-10.
  • the polyvinyl ether may be a homopolymer composed of one kind selected from the structural units represented by the formula (1), or composed of two or more kinds selected from the structural units represented by the formula (1). Or a copolymer composed of the structural unit represented by the formula (1) and another structural unit.
  • polyvinyl ether is a copolymer, it is possible to further improve the lubricity, insulation, hygroscopicity, etc. while satisfying the compatibility of the refrigerating machine oil with the refrigerant. At this time, various characteristics of the refrigerating machine oil can be made to be desired by appropriately selecting the kind of the monomer as the raw material, the kind of the initiator, the ratio of the structural units in the copolymer, and the like.
  • the copolymer may be either a block copolymer or a random copolymer.
  • the copolymer is preferably a structural unit (1-1) represented by the above formula (1) and in which R 54 is an alkyl group having 1 to 3 carbon atoms, and And a structural unit (1-2) represented by formula (1) and R 54 is an alkyl group having 3 to 20 carbon atoms.
  • the carbon number of R 54 in the structural unit (1-2) is preferably 3 to 10, more preferably 3 to 8.
  • R 54 in the structural unit (1-1) is particularly preferably an ethyl group
  • R 54 in the structural unit (1-2) is particularly preferably an isobutyl group.
  • the molar ratio of the structural unit (1-1) to the structural unit (1-2) is preferably It is 5:95 to 95:5, more preferably 20:80 to 90:10, and further preferably 70:30 to 90:10.
  • the compatibility with the refrigerant can be further improved and the hygroscopicity tends to be low.
  • the polyvinyl ether may be composed of only the structural unit represented by the above formula (1), or may be a copolymer further having a structural unit represented by the following formula (2). .. In this case, the copolymer may be either a block copolymer or a random copolymer.
  • R 55 to R 58 which may be the same or different, each represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • Polyvinyl ether is, for example, a polymer of a vinyl ether monomer corresponding to the structural unit represented by the formula (1), or a vinyl ether monomer corresponding to the structural unit represented by the formula (1) and a compound represented by the formula (2). Produced by copolymerization with a hydrocarbon monomer having an olefinic double bond corresponding to the structural unit.
  • the vinyl ether-based monomer corresponding to the structural unit represented by the formula (1) is preferably a monomer represented by the following formula (3). Wherein (3), R 50, R 51, R 52, R 53, R 54 and m are each formula (1) in R 50, R 51, R 52 , R 53, R 54 and m the same as Indicates the definition content.
  • the polyvinyl ether preferably has the following terminal structure (I) or (II).
  • R 59 , R 60 and R 61 which may be the same or different, each represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R 62 represents 2 to 1 carbon atoms.
  • R 63 represents a hydrocarbon group having 1 to 20 carbon atoms
  • m represents the same definition as m in the formula (1). .. When m is 2 or more, a plurality of R 62's may be the same or different.
  • R 64 , R 65 , R 66 and R 67 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 68 , R 69 and R 70 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R 71 is 2 having 1 to 10 carbon atoms.
  • R 71 is 2 having 1 to 10 carbon atoms.
  • R 72 represents a hydrocarbon group having 1 to 20 carbon atoms
  • m represents the same definition as m in the formula (1). ..
  • a plurality of R 71's may be the same or different.
  • R 73 , R 74 , R 75 and R 76 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 77 , R 78, and R 79 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.
  • polyvinyl ethers of (P1), (P2), (P3), (P4) and (P5) listed below are particularly suitable as the base oil.
  • P1 One end has the structure represented by formula (4) or (5) and the other end has the structure represented by formula (6) or (7), and R 50 and R in formula (1)
  • R 50 , R 51 and R 52 in the formula (1) are all hydrogen atoms, m is an integer of 0 to 4, R 53 is a divalent hydrocarbon group having 2 to 4 carbon atoms, and R 54 is 1 carbon atom.
  • Polyvinyl ether having up to 20 hydrocarbon groups.
  • R 50 , R 51 and R 52 in formula (1) Is a hydrogen atom, m is an integer of 0 to 4, R 53 is a divalent hydrocarbon group having 2 to 4 carbon atoms, and R 54 is a hydrocarbon group having 1 to 20 carbon atoms.
  • R 50 , R 51, and R 52 in formula (1) are all hydrogen atoms, m is an integer of 0 to 4, R 53 is a divalent hydrocarbon group having 2 to 4 carbon atoms, and R 54 is 1 carbon atom.
  • Polyvinyl ether having up to 20 hydrocarbon groups.
  • (P5) A structural unit which is any of the above (P1), (P2), (P3) and (P4), wherein R 54 in the formula (1) is a hydrocarbon group having 1 to 3 carbon atoms and the R Polyvinyl ether having a structural unit in which 54 is a hydrocarbon group having 3 to 20 carbon atoms.
  • the weight average molecular weight of the polyvinyl ether is preferably 500 or more, more preferably 600 or more, and preferably 3000 or less, more preferably 2000 or less, still more preferably 1500 or less.
  • the weight average molecular weight of polyvinyl ether is 500 or more, the refrigerating machine oil has excellent lubricity in the coexistence of a refrigerant.
  • the weight average molecular weight is 3,000 or less, the composition range showing compatibility with the refrigerant under low temperature conditions becomes wide, and poor lubrication of the refrigerant compressor and inhibition of heat exchange in the evaporator can be suppressed.
  • the number average molecular weight of polyvinyl ether is preferably 500 or more, more preferably 600 or more, and preferably 3000 or less, more preferably 2000 or less, still more preferably 1500 or less.
  • the number average molecular weight of polyvinyl ether is 500 or more, the refrigerating machine oil has excellent lubricity in the presence of a refrigerant.
  • the number average molecular weight is 3,000 or less, the composition range showing compatibility with the refrigerant under low temperature conditions becomes wide, and it is possible to suppress poor lubrication of the refrigerant compressor and inhibition of heat exchange in the evaporator.
  • the weight average molecular weight and the number average molecular weight of polyvinyl ether mean the weight average molecular weight and the number average molecular weight (converted to polystyrene (standard sample)) obtained by GPC analysis, respectively.
  • the weight average molecular weight and the number average molecular weight can be measured as follows, for example.
  • the degree of unsaturation of the polyvinyl ether is preferably 0.04 meq/g or less, more preferably 0.03 meq/g or less, still more preferably 0.02 meq/g or less.
  • the peroxide value of the polyvinyl ether is preferably 10.0 meq/kg or less, more preferably 5.0 meq/kg or less, still more preferably 1.0 meq/kg or less.
  • the carbonyl value of the polyvinyl ether is preferably 100 ppm by weight or less, more preferably 50 ppm by weight or less, further preferably 20 ppm by weight or less.
  • the hydroxyl value of the polyvinyl ether is preferably 10 mgKOH/g or less, more preferably 5 mgKOH/g or less, still more preferably 3 mgKOH/g or less.
  • the unsaturation, peroxide value, and carbonyl value in this specification refer to values measured by the standard oil and fat analysis test method established by the Japan Oil Chemists' Society. That is, the degree of unsaturation in the present specification was determined by reacting a sample with a Wis solution (ICl-acetic acid solution), leaving it in the dark, and then reducing excess ICl to iodine, and titrating the iodine content with sodium thiosulfate. Then, the iodine value is calculated, and the iodine value is converted to vinyl equivalent (meq/g).
  • Wis solution ICl-acetic acid solution
  • the peroxide value in this specification is a value (meq/kg) obtained by adding potassium iodide to a sample, titrating the produced free iodine with sodium thiosulfate, and converting this free iodine into milliequivalents per 1 kg of the sample.
  • the carbonyl value in the present specification is a calibration value obtained by using cinnamaldehyde as a standard substance in advance by measuring the absorbance at 480 nm of this sample by causing 2,4-dinitrophenylhydrazine to act on the sample to generate a quinoid ion having a color-forming property.
  • the hydroxyl value in the present specification means a hydroxyl value measured according to JIS K0070:1992.
  • polyalkylene glycol examples include polyethylene glycol, polypropylene glycol, polybutylene glycol and the like.
  • Polyalkylene glycol has oxyethylene, oxypropylene, oxybutylene, etc. as a structural unit.
  • the polyalkylene glycol having these structural units can be obtained by ring-opening polymerization using ethylene oxide, propylene oxide and butylene oxide, which are monomers, as raw materials.
  • Examples of the polyalkylene glycol include compounds represented by the following formula (9).
  • R ⁇ represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an acyl group having 2 to 10 carbon atoms, or a residue of a compound having 2 to 8 hydroxyl groups
  • R ⁇ represents the number of carbon atoms.
  • 2 to 4 represents an alkylene group
  • R ⁇ represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an acyl group having 2 to 10 carbon atoms
  • f represents an integer of 1 to 80
  • g represents 1 to 8 Represents the integer.
  • the alkyl group represented by R ⁇ and R ⁇ may be linear, branched or cyclic.
  • the alkyl group has preferably 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms. If the alkyl group has 10 or less carbon atoms, the refrigerating machine oil tends to have excellent compatibility with the refrigerant.
  • the alkyl group portion of the acyl group represented by R ⁇ and R ⁇ may be linear, branched or cyclic.
  • the carbon number of the acyl group is preferably 2 to 10, more preferably 2 to 6.
  • the acyl group has 10 or less carbon atoms, the refrigerating machine oil has excellent compatibility with the refrigerant, and phase separation tends not to occur easily.
  • the groups represented by R ⁇ and R ⁇ are both alkyl groups or both are acyl groups
  • the groups represented by R ⁇ and R ⁇ may be the same or different.
  • g is 2 or more, a plurality of groups represented by R ⁇ and R ⁇ in the same molecule may be the same or different.
  • R ⁇ When the group represented by R ⁇ is the residue of a compound having 2 to 8 hydroxyl groups, this compound may be linear or cyclic.
  • R ⁇ and R ⁇ are preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, and further preferably a methyl group.
  • both R ⁇ and R ⁇ are preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms, and further preferably a methyl group.
  • one of R ⁇ and R ⁇ is an alkyl group (more preferably an alkyl group having 1 to 4 carbon atoms), and the other is a hydrogen atom, and more preferably One is a methyl group and the other is a hydrogen atom.
  • both R ⁇ and R ⁇ are preferably hydrogen atoms.
  • R ⁇ represents an alkylene group having 2 to 4 carbon atoms, and specific examples of such an alkylene group include an ethylene group, a propylene group and a butylene group.
  • Examples of the oxyalkylene group of the repeating unit represented by OR ⁇ include an oxyethylene group, an oxypropylene group and an oxybutylene group.
  • the oxyalkylene group represented by (OR ⁇ ) f may be composed of one kind of oxyalkylene group, or may be composed of two or more kinds of oxyalkylene groups.
  • the polyalkylene glycol represented by the formula (9) is preferably a copolymer containing an oxyethylene group (EO) and an oxypropylene group (PO), from the viewpoint of excellent compatibility with a refrigerant and viscosity-temperature characteristics. Is.
  • the ratio (EO/(PO+EO)) of oxyethylene groups in the total of oxyethylene groups and oxypropylene groups is preferably 0.1 to 0.8 from the viewpoint of excellent baking load and viscosity-temperature characteristics. , And more preferably 0.3 to 0.6.
  • EO/(PO+EO) is preferably 0 to 0.5, more preferably 0 to 0.2, and further preferably 0 (that is, propylene oxide homopolymer). Is.
  • f represents the number of repetitions (degree of polymerization) of the oxyalkylene group OR ⁇ and is an integer of 1 to 80.
  • g is an integer of 1 to 8.
  • R ⁇ is an alkyl group or an acyl group
  • g is 1.
  • R ⁇ is a residue of a compound having 2 to 8 hydroxyl groups
  • g is the number of hydroxyl groups of the compound.
  • the average value of the product of f and g (f ⁇ g) is preferably 6 to 80 from the viewpoint of satisfying the required performance as a refrigerating machine oil in a well-balanced manner.
  • the weight average molecular weight of the polyalkylene glycol is preferably 500 or more, more preferably 600 or more, and preferably 3000 or less, more preferably 2000 or less, still more preferably 1500 or less.
  • the weight average molecular weight of the polyalkylene glycol is 500 or more
  • the refrigerating machine oil has excellent lubricity in the presence of a refrigerant.
  • the weight average molecular weight is 3,000 or less, the composition range of the refrigerating machine oil that is compatible with the refrigerant under low temperature conditions becomes wide, and it is possible to suppress poor lubrication of the refrigerant compressor and inhibition of heat exchange in the evaporator.
  • the number average molecular weight of the polyalkylene glycol is preferably 500 or more, more preferably 600 or more, preferably 3000 or less, more preferably 2000 or less, still more preferably 1500 or less.
  • the refrigerating machine oil has excellent lubricity in the presence of a refrigerant.
  • the number average molecular weight is 3,000 or less, the composition range of the refrigerating machine oil showing compatibility with the refrigerant under low temperature conditions becomes wide, and poor lubrication of the refrigerant compressor and inhibition of heat exchange in the evaporator can be suppressed.
  • the weight average molecular weight and the number average molecular weight of the polyalkylene glycol mean the weight average molecular weight and the number average molecular weight (polypropylene glycol (standard sample) conversion value) obtained by GPC analysis, respectively.
  • the weight average molecular weight and the number average molecular weight can be measured as follows, for example.
  • the hydroxyl value of the polyalkylene glycol is preferably 100 mgKOH/g or less, more preferably 50 mgKOH/g or less, further preferably 30 mgKOH/g or less, and most preferably 10 mgKOH/g or less.
  • Polyalkylene glycol can be synthesized using a known method (“Alkylene oxide polymer”, Mita Shibata et al., Kaibundou, published November 20, 1990). For example, an alcohol (R ⁇ OH; R ⁇ formula (9) R alpha and represent the same definition in) etherified or esterified into by addition polymerization of one or more predetermined alkylene oxide, further terminal hydroxyl groups By doing so, the polyalkylene glycol represented by the formula (9) is obtained.
  • the polyalkylene glycol obtained may be either a random copolymer or a block copolymer, but tends to be more excellent in oxidation stability and lubricity. From the viewpoint of the above, a block copolymer is preferable, and a random copolymer is preferable from the viewpoint of having a better low temperature fluidity.
  • the degree of unsaturation of the polyalkylene glycol is preferably 0.04 meq/g or less, more preferably 0.03 meq/g or less, still more preferably 0.02 meq/g or less.
  • the peroxide value is preferably 10.0 meq/kg or less, more preferably 5.0 meq/kg or less, and further preferably 1.0 meq/kg or less.
  • the carbonyl value is preferably 100 ppm by weight or less, more preferably 50 ppm by weight or less, and further preferably 20 ppm by weight or less.
  • the base oil is preferably at least one selected from oxygen-containing oils, more preferably at least one selected from esters and ethers, and even more preferably esters.
  • the kinematic viscosity of the base oil at 40° C. is preferably 3 mm 2 /s or more, more preferably 4 mm 2 /s or more, still more preferably 5 mm 2 /s or more.
  • the kinematic viscosity of the base oil at 40° C. is preferably 1000 mm 2 /s or less, more preferably 500 mm 2 /s or less, still more preferably 400 mm 2 /s or less.
  • the kinematic viscosity of the base oil at 100° C. is preferably 1 mm 2 /s or more, more preferably 2 mm 2 /s or more.
  • the kinematic viscosity of the base oil at 100° C. is preferably 100 mm 2 /s or less, more preferably 50 mm 2 /s or less.
  • the kinematic viscosity in this specification means the kinematic viscosity measured according to JIS K2283:2000.
  • the content of the base oil may be 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more based on the total amount of the refrigerating machine oil.
  • Refrigerating machine oil further contains a dithiophosphoric acid ester in addition to the base oil.
  • the dithiophosphoric acid ester is a compound having a partial structure represented by the following formula (a).
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group. However, at least one of R 1 and R 2 represents a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group represented by R 1 or R 2 is preferably a chain (linear or branched) or cyclic alkyl group, and more preferably a chain (linear or branched) alkyl group. Group, more preferably a branched alkyl group.
  • the monovalent hydrocarbon group (alkyl group) represented by R 1 or R 2 may have 3 or more or 4 or more carbon atoms, and 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, or It may be 4 or less, and may be 4. Both R 1 and R 2 are preferably monovalent hydrocarbon groups.
  • the dithiophosphoric acid ester is, for example, a compound represented by the following formula (A-1).
  • A-1 R 1 and R 2 have the same meanings as R 1 and R 2 in the formula (a)
  • R 3 represents a monovalent organic group.
  • the monovalent organic group represented by R 3 is preferably an organic group composed of carbon atoms, hydrogen atoms and oxygen atoms.
  • the organic group preferably has a carboxyl group or an ester group.
  • the dithiophosphoric acid ester is preferably a compound (dithiophosphoryl carboxylic acid or its derivative) represented by the following formula (A-2) from the viewpoint of further improving the wear resistance of the refrigerating machine oil.
  • A-2 R 1 and R 2 have the same meanings as R 1 and R 2 in the formula (a)
  • R 4 represents a divalent hydrocarbon group
  • R 5 is a hydrogen atom or a monovalent Represents a hydrocarbon group.
  • the divalent hydrocarbon group represented by R 4 may be, for example, a linear or branched alkylene group, and is preferably a branched alkylene group.
  • the carbon number of the divalent hydrocarbon group (alkylene group) represented by R 4 may be 1 or more, 2 or more, or 3 or more, and 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, It may be 5 or less, 4 or less, or 3 or less, may be 4, or may be 3.
  • the monovalent hydrocarbon group represented by R 5 may be, for example, a linear or branched alkyl group.
  • the hydrocarbon group (alkyl group) represented by R 5 may have 1 or more or 2 or more carbon atoms, and 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, or It may be 3 or less.
  • R 5 is preferably a hydrogen atom from the viewpoint of further improving the wear resistance of the refrigerating machine oil (a large effect of improving the wear resistance can be obtained even if the content of the dithiophosphate ester is small).
  • the dithiophosphate ester is more preferably the following formula (A-3) from the viewpoint of further improving the wear resistance of the refrigerating machine oil (a large effect of improving the wear resistance can be obtained even if the content of the dithiophosphate ester is small).
  • the alkyl group represented by R 6 or R 7 may be linear or branched, and is preferably linear.
  • the carbon number of the alkyl group may be, for example, 1 or more, 4 or less, 3 or less, or 2 or less, and may be 1.
  • At least one of R 6 and R 7 is preferably an alkyl group. More preferably, one of R 6 and R 7 is an alkyl group and the other is a hydrogen atom. That is, the dithiophosphate ester is more preferably a compound represented by the following formula (A-4) or (A-5), from the viewpoint of further improving the wear resistance of the refrigerating machine oil.
  • Formula (A-4) and in (A-5) R 1 and R 2 have the same meanings as R 1 and R 2 in the formula (a), R R 6 and R 7 in the formula (A-3) 6 And R 7 have the same meaning.
  • the content of the dithiophosphate ester may be 0.001% by mass or more, 0.005% by mass or more, or 0.01% by mass or more, based on the total amount of the refrigerating machine oil, 5% by mass or less, 1% by mass or less, It may be 0.9 mass% or less, 0.7 mass% or less, 0.5 mass% or less, 0.3 mass% or less, 0.1 mass% or less, or 0.06 mass% or less.
  • the refrigerator oil further contains an amine salt of an acidic phosphoric acid ester in addition to the base oil and the dithiophosphoric acid ester.
  • the amine salt of an acidic phosphoric acid ester is, for example, a salt of an acidic phosphoric acid ester represented by the following formula (B-1) and an amine represented by the following formula (B-2).
  • R 11 represents a monovalent hydrocarbon group
  • n represents 1 or 2.
  • R 12 , R 13 and R 14 each independently represent a hydrogen atom or a monovalent hydrocarbon group. However, at least one of R 12 , R 13 and R 14 represents a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group represented by R 11 may be an alkyl group or an alkenyl group, and is preferably an alkyl group.
  • the alkyl group and alkenyl group may be linear or branched, and preferably linear.
  • the carbon number of the monovalent hydrocarbon group (alkyl group or alkenyl group) may be 1 or more, 2 or more, 3 or more, or 4 or more, and 18 or less, 16 or less, 14 or less, 12 or less, 10 or less, Alternatively, it may be 8 or less.
  • n is 2, two R 11 present in one molecule may be the same or different from each other.
  • the monovalent hydrocarbon group represented by R 12 , R 13 or R 14 may be an alkyl group or an alkenyl group, and is preferably an alkyl group.
  • the alkyl group and alkenyl group may be linear or branched, and preferably branched.
  • the carbon number of the monovalent hydrocarbon group (alkyl group or alkenyl group) may be 1 or more, 3 or more, 5 or more, 7 or more, 9 or more, or 11 or more, and 20 or less, 18 or less, 16 or less, Alternatively, it may be 14 or less.
  • the acidic phosphoric acid ester and the amine may be added to a base oil or the like in a state of forming a salt, and the acidic phosphoric acid ester and the amine May be separately added to the base oil or the like.
  • the content of the amine salt of the acidic phosphate ester may be 0.005% by mass or more, 0.01% by mass or more, or 0.02% by mass or more, based on the total amount of the refrigerating machine oil, 1% by mass or less, 0 It may be 0.2% by mass or less, or 0.1% by mass or less.
  • Mass ratio of content of dithiophosphoric acid ester to total content of amine salt of dithiophosphoric acid ester and acidic phosphoric acid ester (content of dithiophosphoric acid ester (mass)/total content of amine salt of dithiophosphoric acid ester and acidic phosphoric acid ester)
  • the amount (mass) is preferably 0.1 or more or 0.2 or more, more preferably 0.3 or more, 0.4 or more, or 0 from the viewpoint of further improving the stability of the refrigerating machine oil.
  • the mass ratio is preferably 0.9 or less, 0.8 or less, or 0.7 or less, more preferably 0.6 or less or 0. It is 5 or less, and more preferably 0.4 or less or 0.35 or less.
  • the refrigerating machine oil may further contain other phosphorus antiwear agents other than amine salts of dithiophosphoric acid esters and acidic phosphoric acid esters from the viewpoint of further improving antiwear properties.
  • Other phosphorus-based antiwear agents may be phosphoric acid ester, acidic phosphoric acid ester, thiophosphoric acid ester (monothiophosphoric acid ester), chlorinated phosphoric acid ester, phosphorous acid ester and the like.
  • the content of the other phosphorus-based antiwear agent may be 0.01% by mass or more, 0.05% by mass or more, or 0.1% by mass or more, based on the total amount of the refrigerating machine oil, 2% by mass or less, 1 It may be 0.5% by mass or less, or 1% by mass or less.
  • the refrigerating machine oil preferably further contains a thiophosphoric acid ester, more preferably a thiophosphoric acid triester, from the viewpoint of further improving the wear resistance.
  • Thiophosphoric acid triester is preferably a compound represented by the following formula (C).
  • R 21 , R 22 and R 23 each independently represent a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group represented by R 21 , R 22 or R 23 may be an alkyl group or an aryl group, preferably an aryl group, and more preferably a phenyl group.
  • the alkyl group may be linear or branched.
  • the carbon number of the monovalent hydrocarbon group (alkyl group or aryl group) may be 2 or more, 3 or more, 4 or more, 5 or more, or 6 or more, and 10 or less, 9 or less, 8 or less, or 7 or less. May be
  • the content of the thiophosphate ester may be 0.005% by mass or more, 0.01% by mass or more, or 0.02% by mass or more, based on the total amount of the refrigerating machine oil, 1% by mass or less, 0.2% by mass. Or less, or 0.1% by mass or less.
  • Refrigerating machine oil may further contain other additives.
  • additives for example, acid scavengers, antioxidants, extreme pressure agents, oiliness agents, defoamers, metal deactivators, antiwear agents other than phosphorus antiwear agents, viscosity index improvers, Examples include pour point depressants and detergent dispersants.
  • the total content of these additives may be 15% by mass or less or 10% by mass or less based on the total amount of the refrigerating machine oil.
  • the acid scavenger may be, for example, an epoxy compound or a carbodiimide compound, and is preferably an epoxy compound.
  • the epoxy compound may be a glycidyl ether type epoxy compound, a glycidyl ester type epoxy compound, an oxirane compound, an alkyloxirane compound, an alicyclic epoxy compound, an epoxidized fatty acid monoester, an epoxidized vegetable oil, or the like.
  • the antioxidant may be a phenolic antioxidant such as 2,6-di-tert-butyl-p-cresol, bisphenol A and the like.
  • the sulfur content of the refrigerating machine oil is preferably 0.2% by mass or less, more preferably 0.15% by mass or less, and further preferably 0.1% by mass or less.
  • the sulfur content of the refrigerating machine oil may be, for example, 0.01% by mass or more.
  • the sulfur content of the refrigerating machine oil can be adjusted, for example, by adjusting the content of the dithiophosphoric acid ester and the content of other additives containing sulfur (for example, the above thiophosphoric acid ester (monothiophosphoric acid ester)).
  • the sulfur content in the present specification means the sulfur content measured by the ultraviolet fluorescence method specified in JIS K2541-6:2013.
  • Kinematic viscosity at 40 ° C. of the refrigerating machine oil is preferably 3 mm 2 / s or more, more preferably 4 mm 2 / s or more, may be even more preferably at 5 mm 2 / s or more.
  • Kinematic viscosity at 40 ° C. of the refrigerating machine oil is preferably 500 mm 2 / s or less, more preferably 400 mm 2 / s or less, more preferably may be less 300 mm 2 / s.
  • the kinematic viscosity of the refrigerating machine oil at 100° C. may be preferably 1 mm 2 /s or more, more preferably 2 mm 2 /s or more.
  • the kinematic viscosity of the refrigerating machine oil at 100° C. may be preferably 100 mm 2 /s or less, more preferably 50 mm 2 /s or less.
  • the pour point of the refrigerating machine oil may be preferably -10°C or lower, more preferably -20°C or lower.
  • the pour point in this specification means the pour point measured according to JIS K2269-1987.
  • the volume resistivity of the refrigerating machine oil is preferably 1.0 ⁇ 10 9 ⁇ m or more, more preferably 1.0 ⁇ 10 10 ⁇ m or more, still more preferably 1.0 ⁇ 10 11 ⁇ m or more. You may The volume resistivity in this specification means the volume resistivity measured at 25° C. according to JIS C2101:1999.
  • the water content of the refrigerator oil may be preferably 200 ppm or less, more preferably 100 ppm or less, still more preferably 50 ppm or less, based on the total amount of the refrigerator oil.
  • the water content in this specification means the water content measured according to JIS K2275-3:2015.
  • the acid value of the refrigerating machine oil may be preferably 1.0 mgKOH/g or less, more preferably 0.1 mgKOH/g or less.
  • the acid value in the present specification means an acid value measured according to JIS K2501:2003.
  • the ash content of the refrigerating machine oil may be preferably 100 ppm or less, more preferably 50 ppm or less.
  • the ash content in this specification means the ash content measured according to JIS K2272:1998.
  • Refrigerating machine oil is used together with a refrigerant.
  • another embodiment of the present invention is a working fluid composition for refrigerator, which contains the above-mentioned refrigerator oil and a refrigerant.
  • the refrigerants include fluorohydrocarbon refrigerants, hydrocarbon refrigerants, fluorine-containing ether refrigerants such as perfluoroethers, bis(trifluoromethyl)sulfide refrigerants, trifluoroiodomethane refrigerants, and ammonia, carbon dioxide, etc. It contains at least one selected from the group consisting of natural refrigerants, and preferably contains at least one selected from the group consisting of fluorohydrocarbon refrigerants.
  • Fluorohydrocarbon refrigerants are selected from saturated fluorohydrocarbon (HFC) refrigerants and unsaturated fluorohydrocarbon (HFO) refrigerants.
  • the saturated fluorohydrocarbon refrigerant is preferably a saturated fluorohydrocarbon having 1 to 3 carbon atoms, and more preferably 1 to 2 carbon atoms.
  • the saturated fluorohydrocarbon refrigerant is appropriately selected from the above depending on the application and the required performance.
  • a preferable example is a mixture of 1/1 to 15% by mass/40 to 60% by mass.
  • the unsaturated fluorohydrocarbon (HFO) refrigerant is preferably an unsaturated fluorohydrocarbon having 2 to 3 carbon atoms, more preferably fluoropropene, and further preferably fluoropropene having 3 to 5 fluorine atoms.
  • the unsaturated fluorohydrocarbon refrigerant is preferably 1,2,3,3,3-pentafluoropropene (HFO-1225ye), 1,3,3,3-tetrafluoropropene (HFO-1234ze), 2, Any of 3,3,3-tetrafluoropropene (HFO-1234yf), 1,2,3,3-tetrafluoropropene (HFO-1234ye), and 3,3,3-trifluoropropene (HFO-1243zf) It is one kind or a mixture of two or more kinds.
  • the unsaturated fluorohydrocarbon refrigerant is preferably one or more kinds selected from HFO-1225ye, HFO-1234ze and HFO-1234yf from the viewpoint of the physical properties of the refrigerant.
  • the unsaturated fluorohydrocarbon refrigerant may be fluoroethylene, preferably 1,1,2,3-trifluoroethylene (HFO-1123).
  • the unsaturated fluorohydrocarbon refrigerant may be 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd) and may be cis-1-chloro-2,3,3,3-tetrafluoropropene. It may be any of fluoropropene (HCFO-1224yd(Z)), trans-1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd(E)) and a mixture thereof.
  • the hydrocarbon refrigerant is preferably a hydrocarbon having 1 to 5 carbon atoms, more preferably a hydrocarbon having 2 to 4 carbon atoms.
  • Specific examples of the hydrocarbon include methane, ethylene, ethane, propylene, propane (R290), cyclopropane, normal butane, isobutane, cyclobutane, methylcyclopropane, 2-methylbutane, normal pentane or two or more of these.
  • hydrocarbon refrigerants that are gaseous at 25° C. and 1 atm are preferably used, and propane, normal butane, isobutane, 2-methylbutane, or a mixture thereof is more preferably used.
  • the content of the refrigerating machine oil in the working fluid composition may be 1 part by mass or more or 2 parts by mass or more, and may be 500 parts by mass or less or 400 parts by mass or less with respect to 100 parts by mass of the refrigerant.
  • Refrigerating machine oil and working fluid compositions are air conditioners having reciprocating or rotating hermetic compressors, refrigerators, open or hermetic car air conditioners, dehumidifiers, water heaters, freezers, cold storage warehouses, vending machines. , Showcases, refrigerators for chemical plants, refrigerators having a centrifugal compressor, and the like.
  • Example 1 The following base oil, dithiophosphoric acid ester, and amine salt of acidic phosphoric acid ester, and other additives (including triphenylphosphorothionate (thiophosphoric acid triester), acid scavenger and antioxidant) 1.
  • Refrigerating machine oil was prepared by mixing with 7 mass%.
  • the types and contents of amine salts of dithiophosphoric acid esters and acidic phosphoric acid esters are as shown in Table 1, and the content of base oil is the total content of components (additives) other than base oil from the total amount of refrigerating machine oil. Is the rest after subtracting.
  • the content of each component is the content (mass %) based on the total amount of the refrigerating machine oil.
  • Table 1 shows the mass ratio (A/(A+B)) of the content of the dithiophosphate ester to the total content (A+B) of the amine salt of the dithiophosphate ester and the acidic phosphate ester, and the sulfur in the refrigerating machine oil. Minutes (mass %) are shown.
  • Base oil a mixed base oil of the following base oil 1 (70% by mass) and base oil 2 (30% by mass)
  • Base oil 1 pentaerythritol and 2-methylpropanoic acid/3,5,5-trimethylhexanoic acid And mixed fatty acid (mixing ratio (mass ratio): 60/40) and polyol ester (40° C. kinematic viscosity: 46 mm 2 /s, 100° C.
  • kinematic viscosity 6.3 mm 2 /s
  • Base oil 2 Neopentyl glycol (1 mol) and 1,4-butanediol (0.2 mol) were reacted with adipic acid (1.5 mol) to form an ester intermediate, and 3,5,5-trimethylhexanol was added. (1.1 mol) was further reacted and the remaining unreacted material was removed by distillation to obtain a complex ester (kinematic viscosity at 40° C.: 146 mm 2 /s, viscosity index: 140).
  • Dithiophosphoric acid ester A1 compound represented by the following formula (A1)
  • Dithiophosphoric acid ester A2 a compound represented by the following formula (A2)
  • Amine salt of acidic phosphoric acid ester B1 A branched alkylamine salt of mono/dihexyl phosphate having 11 to 14 carbon atoms (in the above formula (B-1), R 11 is a linear alkyl group having 6 carbon atoms (hexyl group), and n is 1 or
  • the acidic phosphoric acid ester (mixture) of 2 and two of R 12 , R 13 and R 14 in the above formula (B-2) are any of branched alkyl groups having 11 to 14 carbon atoms, and the rest Salt with an amine (mixture), one of which is a hydrogen atom)
  • Amine salt of acidic phosphoric acid ester B2 2-Ethylhexylamine salt of mono/dioleyl phosphate (in the formula (B-1), R 11 is an unsaturated alkyl group having 18 carbon atoms (oleyl group), and n is 1 or 2) (Mixture) and a salt of the above formula (B-2) with an
  • Examples 2 to 5 and Comparative Examples 1 and 2 Refrigerating machine oil was prepared in the same manner as in Example 1 except that the kinds and contents of amine salts of dithiophosphoric acid ester and acidic phosphoric acid ester were changed as shown in Table 1.
  • the abrasion resistance was evaluated by the following procedure. First, a friction test apparatus using a vane (SKH-51) as an upper test piece and a disk (SNCM220 HRC50) as a lower test piece was mounted inside a closed container. After introducing 600 g of each refrigerating machine oil into the friction test site and degassing the system under vacuum, 100 g of a refrigerant (difluoromethane (R32)) was introduced and heated. After setting the temperature in the closed container to 110° C., a wear test was performed under the conditions of a load of 1000 N and a rotation speed of 750 rpm, and after the test for 60 minutes, the amount of wear of each vane and disk was measured. The smaller the amount of wear, the better the wear resistance. The results are shown in Table 1.
  • the stability was evaluated according to JIS K2211-09 (autoclave test). Specifically, 30 g of refrigerating machine oil having a water content adjusted to 1000 ppm was weighed in an autoclave, and a catalyst (iron, copper, aluminum wire, each having an outer diameter of 1.6 mm and a length of 50 mm) and a refrigerant (difluoro) After enclosing 30 g of methane (R32), the mixture was heated to 175° C. and the acid value (JIS C2101) of the refrigerator oil after 168 hours was measured. The results are shown in Table 1.
  • Examples 1 to 5 in which the amine salts of dithiophosphoric acid ester and acidic phosphoric acid ester were used together as the phosphorus-based antiwear agent were superior to Comparative Examples 1 and 2 in which only one of them was used.
  • Excellent wear resistance and stability It is a particularly surprising effect that the stability is improved by the combined use of amine salts of dithiophosphoric acid ester and acidic phosphoric acid ester, which are known as phosphorus-based antiwear agents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)

Abstract

本発明の一側面は、基油と、ジチオリン酸エステルと、酸性リン酸エステルのアミン塩とを含有する、冷凍機油である。

Description

冷凍機油及び冷凍機用作動流体組成物
 本発明は、冷凍機油及び冷凍機用作動流体組成物に関する。
 冷蔵庫、カーエアコン、ルームエアコン、自動販売機などの冷凍機は、冷媒を冷凍サイクル内に循環させるための圧縮機を備える。そして、圧縮機には、摺動部材を潤滑させるための冷凍機油が充填される。冷凍機油には、耐摩耗性、安定性などの特性が求められている。
 冷凍機油は、一般的に、上記のような要求特性に応じて選択される基油及び添加剤を含有している。例えば、耐摩耗性の向上が求められる冷凍機油には、リン系摩耗防止剤が添加される(特許文献1を参照)。
国際公開第2016/072296号
 特許文献1に開示されているようなリン系摩耗防止剤は、冷凍機油の耐摩耗性を向上させることができる一方で、その活性の高さに起因して、冷凍機油の安定性を損なうおそれがある。
 そこで、本発明は、耐摩耗性に加えて安定性にも優れる冷凍機油を提供することを目的とする。
 上記課題を解決するために本発明者らが検討したところ、リン系摩耗防止剤として用いられる化合物のうち特定の2種類の化合物を併用することにより、驚くべきことに、耐摩耗性だけでなく、安定性も向上させることが可能となることを見出した。
 すなわち、本発明の一側面は、基油と、ジチオリン酸エステルと、酸性リン酸エステルのアミン塩とを含有する、冷凍機油である。
 ジチオリン酸エステルは、下記式(A-1)で表される化合物であってよい。
Figure JPOXMLDOC01-appb-C000002
式(A-1)中、R及びRはそれぞれ独立に水素原子又は1価の炭化水素基を表し、Rは1価の有機基を表す。ただし、R及びRの少なくとも一方は、1価の炭化水素基を表す。
 ジチオリン酸エステル及び酸性リン酸エステルのアミン塩の合計含有量に対するジチオリン酸エステルの含有量の質量比は、0.1以上0.9以下であってよい。
 冷凍機油の硫黄分は、0.2質量%以下であってよい。
 冷凍機油は、フッ化炭化水素冷媒を含有する冷媒と共に用いられてよい。
 本発明の他の一側面は、上記の冷凍機油と、冷媒とを含有する、冷凍機用作動流体組成物である。
 冷媒は、フッ化炭化水素冷媒を含有してよい。
 本発明によれば、耐摩耗性に加えて安定性にも優れる冷凍機油を提供することができる。
 本発明の一実施形態は、基油(潤滑油基油)と、ジチオリン酸エステルと、酸性リン酸エステルのアミン塩とを含有する、冷凍機油である。
 基油としては、炭化水素油、含酸素油等が挙げられる。炭化水素油としては、鉱油系炭化水素油及び合成系炭化水素油が例示される。含酸素油としては、エステル、エーテル、カーボネート、ケトン、シリコーン、ポリシロキサン等が例示される。
 鉱油系炭化水素油は、パラフィン系、ナフテン系等の原油を常圧蒸留及び減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤精製、水素化精製、水素化分解、溶剤脱ろう、水素化脱ろう、白土処理、硫酸洗浄などの方法で精製することによって得ることができる、パラフィン系鉱油、ナフテン系鉱油等であってよい。これらの精製方法は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 合成系炭化水素油としては、アルキルベンゼン、アルキルナフタレン、ポリα-オレフィン(PAO)、ポリブテン、エチレン-α-オレフィン共重合体等が挙げられる。
 アルキルベンゼンは、下記アルキルベンゼン(X)及びアルキルベンゼン(Y)からなる群より選ばれる少なくとも1種であってよい。
アルキルベンゼン(X):炭素数1~19のアルキル基を1~4個有し、かつそのアルキル基の合計炭素数が9~19であるアルキルベンゼン(好ましくは、炭素数1~15のアルキル基を1~4個有し、かつアルキル基の合計炭素数が9~15であるアルキルベンゼン)
アルキルベンゼン(Y):炭素数1~40のアルキル基を1~4個有し、かつそのアルキル基の合計炭素数が20~40であるアルキルベンゼン(好ましくは、炭素数1~30のアルキル基を1~4個有し、かつアルキル基の合計炭素数が20~30であるアルキルベンゼン)
 アルキルベンゼン(X)が有する炭素数1~19のアルキル基としては、具体的には例えば、メチル基、エチル基、プロピル基(すべての異性体を含む、以下同様)、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基及びエイコシル基が挙げられる。これらのアルキル基は、直鎖状であっても、分枝状であってもよく、安定性、粘度特性等の点から、好ましくは分枝状である。アルキル基は、特に入手可能性の点から、より好ましくは、プロピレン、ブテン、イソブチレン等のオレフィンのオリゴマーから誘導される分枝状アルキル基である。
 アルキルベンゼン(X)中のアルキル基の個数は、1~4個であり、安定性、入手可能性の点から、好ましくは1個又は2個(すなわちモノアルキルベンゼン、ジアルキルベンゼン、又はこれらの混合物)である。
 アルキルベンゼン(X)は、単一構造のアルキルベンゼンであってもよく、炭素数1~19のアルキル基を1~4個有し、かつアルキル基の合計炭素数が9~19であるという条件を満たすアルキルベンゼンであれば、異なる構造を有するアルキルベンゼンの混合物であってもよい。
 アルキルベンゼン(Y)が有する炭素数1~40のアルキル基としては、具体的には例えば、メチル基、エチル基、プロピル基(すべての異性体を含む、以下同様)、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、ヘキサコシル基、ヘプタコシル基、オクタコシル基、ノナコシル基、トリアコンチル基、ヘントリアコンチル基、ドトリアコンチル基、トリトリアコンチル基、テトラトリアコンチル基、ペンタトリアコンチル基、ヘキサトリアコンチル基、ヘプタトリアコンチル基、オクタトリアコンチル基、ノナトリアコンチル基及びテトラコンチル基が挙げられる。これらのアルキル基は、直鎖状であっても、分枝状であってもよく、安定性、粘度特性等の点から、好ましくは分枝状である。アルキル基は、特に入手可能性の点から、より好ましくは、プロピレン、ブテン、イソブチレン等のオレフィンのオリゴマーから誘導される分枝状アルキル基である。アルキル基は、引火点がより高い点からは、より好ましくは、直鎖パラフィン、直鎖α-オレフィン又はこれらのハロゲン化物などの直鎖状アルキル化剤から誘導される直鎖状または分枝状アルキル基であり、更に好ましくは分枝状アルキル基である。
 アルキルベンゼン(Y)中のアルキル基の個数は、1~4個であり、安定性、入手可能性の点から、好ましくは1個又は2個(すなわちモノアルキルベンゼン、ジアルキルベンゼン、又はこれらの混合物)である。
 アルキルベンゼン(Y)は、単一構造のアルキルベンゼンであってもよく、炭素数1~40のアルキル基を1~4個有し、かつアルキル基の合計炭素数が20~40であるという条件を満たすアルキルベンゼンであれば、異なる構造を有するアルキルベンゼンの混合物であってもよい。
 ポリα-オレフィン(PAO)は、例えば末端の一方にのみ二重結合を有する炭素数6~18の直鎖オレフィンの数分子を重合させ、次に水素添加して得られる化合物である。ポリα-オレフィンは、例えば炭素数10のα-デセン又は炭素数12のα-ドデセンの3量体あるいは4量体を中心とする分子量分布を有するイソパラフィンであってよい。
 エステルとしては、芳香族エステル、二塩基酸エステル、ポリオールエステル、コンプレックスエステル、炭酸エステル及びこれらの混合物等が例示される。エステルは、好ましくはポリオールエステル又はコンプレックスエステルである。
 ポリオールエステルは、多価アルコールと脂肪酸とのエステルである。脂肪酸は、好ましくは飽和脂肪酸である。脂肪酸の炭素数は、好ましくは4~20、より好ましくは4~18、更に好ましくは4~9、特に好ましくは5~9である。ポリオールエステルは、多価アルコールの水酸基の一部がエステル化されずに水酸基のまま残っている部分エステルであってもよく、全ての水酸基がエステル化された完全エステルであってもよく、また部分エステルと完全エステルとの混合物であってもよい。ポリオールエステルの水酸基価は、好ましくは10mgKOH/g以下、より好ましくは5mgKOH/g以下、更に好ましくは3mgKOH/g以下である。
 ポリオールエステルを構成する脂肪酸のうち、炭素数4~20の脂肪酸の割合は、好ましくは20~100モル%、より好ましくは50~100モル%、更に好ましくは70~100モル%、特に好ましくは90~100モル%である。
 炭素数4~20の脂肪酸としては、具体的には、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸及びイコサン酸が挙げられる。これらの脂肪酸は、直鎖状であっても分岐状であってもよい。脂肪酸は、好ましくはα位及び/又はβ位に分岐を有する脂肪酸であり、より好ましくは、2-メチルプロパン酸、2-メチルブタン酸、2-メチルペンタン酸、2-メチルヘキサン酸、2-エチルペンタン酸、2-メチルヘプタン酸、2-エチルヘキサン酸、3,5,5-トリメチルヘキサン酸及び2-エチルヘキサデカン酸から選ばれ、更に好ましくは、2-メチルプロパン酸及び3,5,5-トリメチルヘキサン酸から選ばれる。
 脂肪酸は、これらの脂肪酸のうち、好ましくは炭素数4~9の分岐脂肪酸を含む。脂肪酸に占める炭素数4~9の分岐脂肪酸の割合は、好ましくは20~100モル%、より好ましくは50~100モル%、更に好ましくは70~100モル%、特に好ましくは90~100モル%である。
 脂肪酸は、炭素数4~20の脂肪酸以外の脂肪酸を含んでいてもよい。炭素数4~20の脂肪酸以外の脂肪酸は、例えば炭素数21~24の脂肪酸であってよい。炭素数21~24の脂肪酸は、ヘンイコサン酸、ドコサン酸、トリコサン酸、テトラコサン酸等であってよく、直鎖状であっても分岐状であってもよい。
 ポリオールエステルを構成する多価アルコールは、好ましくは2~6個の水酸基を有する多価アルコールである。多価アルコールの炭素数は、好ましくは4~12、より好ましくは5~10である。多価アルコールは、好ましくは、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジペンタエリスリトールなどのヒンダードアルコールであり、冷媒との相溶性及び加水分解安定性に特に優れることから、より好ましくは、ペンタエリスリトール、ジペンタエリスリトール、又はペンタエリスリトールとジペンタエリスリトールとの混合アルコールである。
 コンプレックスエステルは、例えば以下の(C1)又は(C2)の方法で合成されるエステルである。
(C1)多価アルコールと多塩基酸とのモル比を調整して、多塩基酸のカルボキシル基の一部がエステル化されずに残存するエステル中間体を合成し、次いでその残存するカルボキシル基を一価アルコールでエステル化する方法
(C2)多価アルコールと多塩基酸とのモル比を調整して、多価アルコールの水酸基の一部がエステル化されずに残存するエステル中間体を合成し、次いでその残存する水酸基を一価脂肪酸でエステル化する方法
 上記(C1)の方法により得られるコンプレックスエステルは、冷凍機油としての使用時に加水分解に伴う強い酸の生成を抑制できるため、上記(C2)の方法により得られるコンプレックスエステルに比べて安定性の点で優れる傾向にある。そのため、コンプレックスエステルは、好ましくは、安定性のより高い上記(C1)の方法により得られるコンプレックスエステルである。
 コンプレックスエステルは、好ましくは、2~4個のヒドロキシル基を有する多価アルコールから選ばれる少なくとも1種と、炭素数6~12の多塩基酸から選ばれる少なくとも1種と、炭素数4~18の一価アルコール及び炭素数2~12の一価脂肪酸から選ばれる少なくとも1種とから合成されるエステルである。
 2~4個のヒドロキシル基を有する多価アルコールとしては、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。2~4個のヒドロキシル基を有する多価アルコールは、コンプレックスエステルを基油として用いたときに好適な粘度を確保し、良好な低温特性を得られる観点から、好ましくは、ネオペンチルグリコール及びトリメチロールプロパンから選ばれ、幅広く粘度調整のできる観点から、より好ましくはネオペンチルグリコールである。
 潤滑性に優れる観点から、コンプレックスエステルを構成する多価アルコールは、好ましくは、2~4個のヒドロキシル基を有する多価アルコールに加えて、ネオペンチルグリコール以外の炭素数2~10の二価アルコールを更に含有する。ネオペンチルグリコール以外の炭素数2~10の二価アルコールとしては、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、2-メチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2,2-ジエチル-1,3-ペンタンジオール等が挙げられる。当該二価アルコールは、基油の特性に優れる観点から、好ましくはブタンジオールである。ブタンジオールとしては、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオールなどが挙げられる。ブタンジオールは、良好な特性が得られる観点から、好ましくは1,3-ブタンジオール及び1,4-ブタンジオールから選ばれる。ネオペンチルグリコール以外の炭素数2~10の二価アルコールの量は、2~4個のヒドロキシル基を有する多価アルコール1モルに対して、好ましくは1.2モル以下、より好ましくは0.8モル以下、更に好ましくは0.4モル以下である。
 炭素数6~12の多塩基酸としては、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、トリメリット酸などが挙げられる。当該多塩基酸は、合成されたエステルの特性のバランスに優れ、入手が容易である観点から、好ましくはアジピン酸及びセバシン酸から選ばれ、より好ましくはアジピン酸である。炭素数6~12の多塩基酸の量は、2~4個のヒドロキシル基を有する多価アルコール1モルに対して、好ましくは0.4モル~4モル、より好ましくは0.5モル~3モル、更に好ましくは0.6モル~2.5モルである。
 炭素数4~18の一価アルコールとしては、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ドデカノール、オレイルアルコールなどの脂肪族アルコールが挙げられる。これらの一価アルコールは、直鎖状であっても分岐状であってもよい。炭素数4~18の一価アルコールは、特性のバランスの点から、好ましくは炭素数6~10の一価アルコールであり、より好ましくは炭素数8~10の一価アルコールである。当該一価アルコールは、合成されたコンプレックスエステルの低温特性が良好になる観点から、更に好ましくは2-エチルヘキサノール及び3,5,5-トリメチルヘキサノールから選ばれる。
 炭素数2~12の一価脂肪酸としては、エタン酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸などが挙げられる。これらの一価脂肪酸は、直鎖状であっても分岐状であってもよい。炭素数2~12の一価脂肪酸は、好ましくは炭素数8~10の一価脂肪酸であり、これらの中でも低温特性の観点から、より好ましくは2-エチルヘキサン酸及び3,5,5-トリメチルヘキサン酸である。
 エーテルとしては、ポリビニルエーテル、ポリアルキレングリコール、ポリフェニルエーテル、パーフルオロエーテル及びこれらの混合物などが例示される。エーテルは、好ましくはポリビニルエーテル及びポリアルキレングリコールから選ばれ、より好ましくはポリビニルエーテルである。
 ポリビニルエーテルは、下記式(1)で表される構造単位を有する。
Figure JPOXMLDOC01-appb-C000003
式(1)中、R50、R51及びR52は互いに同一でも異なっていてもよく、それぞれ水素原子又は炭化水素基を表し、R53は2価の炭化水素基又は2価のエーテル結合酸素含有炭化水素基を表し、R54は炭化水素基を表し、mは0以上の整数を表す。mが2以上である場合には、複数のR53は互いに同一でも異なっていてもよい。
 R50、R51及びR52で表される炭化水素基の炭素数は、好ましくは1以上、より好ましくは2以上、更に好ましくは3以上であり、また、好ましくは8以下、より好ましくは7以下、更に好ましくは6以下である。R50、R51及びR52の少なくとも1つが水素原子であることが好ましく、R50、R51及びR52の全てが水素原子であることがより好ましい。
 R53で表される2価の炭化水素基及びエーテル結合酸素含有炭化水素基の炭素数は、好ましくは1以上、より好ましくは2以上、更に好ましくは3以上であり、また、好ましくは10以下、より好ましくは8以下、更に好ましくは6以下である。R53で示される2価のエーテル結合酸素含有炭化水素基は、例えばエーテル結合を形成する酸素を側鎖に有する炭化水素基であってもよい。
 R54は、好ましくは炭素数1~20の炭化水素基である。この炭化水素基としては、アルキル基、シクロアルキル基、フェニル基、アリール基、アリールアルキル基などが挙げられる。当該炭化水素基は、好ましくはアルキル基、より好ましくは炭素数1~5のアルキル基である。
 mは、好ましくは0以上、より好ましくは1以上、更に好ましくは2以上であり、また、好ましくは20以下、より好ましくは18以下、更に好ましくは16以下である。ポリビニルエーテルを構成する全構造単位におけるmの平均値は、好ましくは0~10である。
 ポリビニルエーテルは、式(1)で表される構造単位から選ばれる1種で構成される単独重合体であってもよく、式(1)で表される構造単位から選ばれる2種以上で構成される共重合体であってもよく、式(1)で表される構造単位と他の構造単位とで構成される共重合体であってもよい。ポリビニルエーテルが共重合体であることにより、冷凍機油の冷媒との相溶性を満足しつつ、潤滑性、絶縁性、吸湿性等を一層向上させることができる。この際、原料となるモノマーの種類、開始剤の種類、共重合体における構造単位の比率等を適宜選択することにより、上記の冷凍機油の諸特性を所望のものとすることが可能となる。共重合体は、ブロック共重合体又はランダム共重合体のいずれであってもよい。
 ポリビニルエーテルが共重合体である場合、当該共重合体は、好ましくは上記式(1)で表され且つR54が炭素数1~3のアルキル基である構造単位(1-1)と、上記式(1)で表され且つR54が炭素数3~20のアルキル基である構造単位(1-2)と、を有する。構造単位(1-2)におけるR54の炭素数は、好ましくは3~10、更に好ましくは3~8である。構造単位(1-1)におけるR54は特に好ましくはエチル基であり、構造単位(1-2)におけるR54は、特に好ましくはイソブチル基である。ポリビニルエーテルが上記の構造単位(1-1)及び(1-2)を有する共重合体である場合、構造単位(1-1)と構造単位(1-2)とのモル比は、好ましくは5:95~95:5、より好ましくは20:80~90:10、更に好ましくは70:30~90:10である。当該モル比が上記範囲内であると、冷媒との相溶性をより向上させることができ、かつ吸湿性を低くすることができる傾向にある。
 ポリビニルエーテルは、上記式(1)で表される構造単位のみで構成されるものであってもよいが、下記式(2)で表される構造単位を更に有する共重合体であってもよい。この場合、共重合体はブロック共重合体又はランダム共重合体のいずれであってもよい。
Figure JPOXMLDOC01-appb-C000004
式(2)中、R55~R58は互いに同一でも異なっていてもよく、それぞれ水素原子又は炭素数1~20の炭化水素基を表す。
 ポリビニルエーテルは、例えば、式(1)で表される構造単位に対応するビニルエーテル系モノマーの重合、又は、式(1)で表される構造単位に対応するビニルエーテル系モノマーと式(2)で表される構造単位に対応するオレフィン性二重結合を有する炭化水素モノマーとの共重合により製造される。式(1)で表される構造単位に対応するビニルエーテル系モノマーとしては、下記式(3)で表されるモノマーが好適である。
Figure JPOXMLDOC01-appb-C000005
式(3)中、R50、R51、R52、R53、R54及びmは、それぞれ式(1)中のR50、R51、R52、R53、R54及びmと同一の定義内容を示す。
 ポリビニルエーテルは、好ましくは、以下の末端構造(I)又は(II)を有する。
 (I)一方の末端が、式(4)又は(5)で表され、かつ他方の末端が式(6)又は(7)で表される構造。
Figure JPOXMLDOC01-appb-C000006
式(4)中、R59、R60及びR61は互いに同一でも異なっていてもよく、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、R62は炭素数1~10の2価の炭化水素基又は2価のエーテル結合酸素含有炭化水素基を示し、R63は炭素数1~20の炭化水素基を示し、mは式(1)中のmと同一の定義内容を示す。mが2以上の場合には、複数のR62は互いに同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000007
式(5)中、R64、R65、R66及びR67は互いに同一でも異なっていてもよく、それぞれ水素原子又は炭素数1~20の炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000008
式(6)中、R68,R69及びR70は互いに同一でも異なっていてもよく、それぞれ水素原子又は炭素数1~8の炭化水素基を示し、R71は炭素数1~10の2価の炭化水素基又は2価のエーテル結合酸素含有炭化水素基を示し、R72は炭素数1~20の炭化水素基を示し、mは式(1)中のmと同一の定義内容を示す。mが2以上の場合には、複数のR71は互いに同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000009
式(7)中、R73、R74、R75及びR76は互いに同一でも異なっていてもよく、それぞれ水素原子又は炭素数1~20の炭化水素基を示す。
 (II)一方の末端が上記式(4)又は(5)で表され、かつ他方の末端が下記式(8)で表される構造。
Figure JPOXMLDOC01-appb-C000010
式(8)中、R77、R78及びR79は互いに同一でも異なっていてもよく、それぞれ水素原子又は炭素数1~8の炭化水素基を示す。
 このようなポリビニルエーテルの中でも、以下に挙げる(P1),(P2),(P3),(P4)及び(P5)のポリビニルエーテルが基油として特に好適である。
(P1)一方の末端が式(4)又は(5)で表され、かつ他方の末端が式(6)又は(7)で表される構造を有し、式(1)におけるR50、R51及びR52がいずれも水素原子、mが0~4の整数、R53が炭素数2~4の2価の炭化水素基、R54が炭素数1~20の炭化水素基であるポリビニルエーテル。
(P2)式(1)で表される構造単位のみを有するものであって、一方の末端が式(4)で表され、かつ他方の末端が式(6)で表される構造を有し、式(1)におけるR50、R51及びR52がいずれも水素原子、mが0~4の整数、R53が炭素数2~4の2価の炭化水素基、R54が炭素数1~20の炭化水素基であるポリビニルエーテル。
(P3)一方の末端が式(4)又は(5)で表され、かつ他方の末端が式(8)で表される構造を有し、式(1)におけるR50、R51及びR52がいずれも水素原子、mが0~4の整数、R53が炭素数2~4の2価の炭化水素基、R54が炭素数1~20の炭化水素基であるポリビニルエーテル。
(P4)式(1)で表される構造単位のみを有するものであって、一方の末端が式(5)で表され、かつ他方の末端が式(8)で表される構造を有し、式(1)におけるR50、R51及びR52がいずれも水素原子、mが0~4の整数、R53が炭素数2~4の二価の炭化水素基、R54が炭素数1~20の炭化水素基であるポリビニルエーテル。
(P5)上記(P1),(P2),(P3)及び(P4)のいずれかであって、式(1)におけるR54が炭素数1~3の炭化水素基である構造単位と該R54が炭素数3~20の炭化水素基である構造単位とを有するポリビニルエーテル。
 ポリビニルエーテルの重量平均分子量は、好ましくは500以上、より好ましくは600以上であり、また、好ましくは3000以下、より好ましくは2000以下、更に好ましくは1500以下である。ポリビニルエーテルの重量平均分子量が500以上であると、冷凍機油は冷媒共存下での潤滑性に優れる。重量平均分子量が3000以下であると、低温条件下で冷媒に対して相溶性を示す組成範囲が広くなり、冷媒圧縮機の潤滑不良や蒸発器における熱交換の阻害を抑制できる。
 ポリビニルエーテルの数平均分子量は、好ましくは500以上、より好ましくは600以上であり、また、好ましくは3000以下、より好ましくは2000以下、更に好ましくは1500以下である。ポリビニルエーテルの数平均分子量が500以上であると、冷凍機油は冷媒共存下での潤滑性に優れる。数平均分子量が3000以下であると、低温条件下で冷媒に対して相溶性を示す組成範囲が広くなり、冷媒圧縮機の潤滑不良や蒸発器における熱交換の阻害を抑制できる。
 ポリビニルエーテルの重量平均分子量及び数平均分子量は、それぞれGPC分析により得られる重量平均分子量及び数平均分子量(ポリスチレン(標準試料)換算値)を意味する。重量平均分子量及び数平均分子量は、例えば以下のように測定することができる。
 溶剤としてクロロホルムを使用し、希釈してポリビニルエーテル濃度を1質量%とした溶液を調製する。その溶液を、GPC装置(Waters Alliance2695)を用いて分析を行う。溶剤の流速は1ml/min、分析可能分子量100から10000のカラムを使用し、屈折率検出器を用いて分析を実施する。なお、分子量が明確なポリスチレン標準を用いてカラム保持時間と分子量との関係を求め、検量線を別途作成した上で、得られた保持時間から試料の分子量を決定する。
 ポリビニルエーテルの不飽和度は、好ましくは0.04meq/g以下、より好ましくは0.03meq/g以下、更に好ましくは0.02meq/g以下である。ポリビニルエーテルの過酸化物価は、好ましくは10.0meq/kg以下、より好ましくは5.0meq/kg以下、更に好ましくは1.0meq/kg以下である。ポリビニルエーテルのカルボニル価は、好ましくは100重量ppm以下、より好ましくは50重量ppm以下、更に好ましくは20重量ppm以下である。ポリビニルエーテルの水酸基価は、好ましくは10mgKOH/g以下、より好ましくは5mgKOH/g以下、更に好ましくは3mgKOH/g以下である。
 本明細書における不飽和度、過酸化物価及びカルボニル価は、それぞれ日本油化学会制定の基準油脂分析試験法により測定した値をいう。すなわち、本明細書における不飽和度は、試料にウィス液(ICl-酢酸溶液)を反応させ、暗所に放置し、その後、過剰のIClをヨウ素に還元し、ヨウ素分をチオ硫酸ナトリウムで滴定してヨウ素価を算出し、このヨウ素価をビニル当量に換算した値(meq/g)をいう。本明細書における過酸化物価は、試料にヨウ化カリウムを加え、生じた遊離のヨウ素をチオ硫酸ナトリウムで滴定し、この遊離のヨウ素を試料1kgに対するミリ当量数に換算した値(meq/kg)をいう。本明細書におけるカルボニル価は、試料に2,4-ジニトロフェニルヒドラジンを作用させ、発色性あるキノイドイオンを生ぜしめ、この試料の480nmにおける吸光度を測定し、予めシンナムアルデヒドを標準物質として求めた検量線を基に、カルボニル量に換算した値(重量ppm)をいう。本明細書における水酸基価は、JIS K0070:1992に準拠して測定された水酸基価を意味する。
 ポリアルキレングリコールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールなどが例示される。ポリアルキレングリコールは、オキシエチレン、オキシプロピレン、オキシブチレン等を構造単位として有する。これらの構造単位を有するポリアルキレングリコールは、それぞれモノマーであるエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドを原料として、開環重合により得ることができる。
 ポリアルキレングリコールとしては、例えば下記式(9)で表される化合物が挙げられる。
 Rα-[(ORβ-ORγ    (9)
式(9)中、Rαは水素原子、炭素数1~10のアルキル基、炭素数2~10のアシル基又は2~8個の水酸基を有する化合物の残基を表し、Rβは炭素数2~4のアルキレン基を表し、Rγは水素原子、炭素数1~10のアルキル基又は炭素数2~10のアシル基を表し、fは1~80の整数を表し、gは1~8の整数を表す。
 Rα、Rγで表されるアルキル基は、直鎖状、分枝状及び環状のいずれであってもよい。当該アルキル基の炭素数は、好ましくは1~10であり、より好ましくは1~6である。アルキル基の炭素数が10以下であると、冷凍機油は冷媒との相溶性に優れる傾向にある。
 Rα、Rγで表されるアシル基のアルキル基部分は直鎖状、分枝状及び環状のいずれであってもよい。アシル基の炭素数は、好ましくは2~10であり、より好ましくは2~6である。当該アシル基の炭素数が10以下であると、冷凍機油は冷媒との相溶性に優れ、相分離が生じにくい傾向にある。
 Rα、Rγで表される基が、ともにアルキル基である場合、あるいはともにアシル基である場合、Rα、Rγで表される基は同一でも異なっていてもよい。gが2以上の場合、同一分子中の複数のRα、Rγで表される基は同一でも異なっていてもよい。
 Rαで表される基が2~8個の水酸基を有する化合物の残基である場合、この化合物は鎖状であっても環状であってもよい。
 Rα、Rγのうちの少なくとも1つは、相溶性に優れる観点から、好ましくはアルキル基、より好ましくは炭素数1~4のアルキル基、更に好ましくはメチル基である。熱・化学安定性に優れる観点からは、RαとRγとの両方が、好ましくはアルキル基、より好ましくは炭素数1~4のアルキル基、更に好ましくはメチル基である。製造容易性及びコストの観点からは、好ましくはRα及びRγのいずれか一方がアルキル基(より好ましくは炭素数1~4のアルキル基)であり、かつ他方が水素原子であり、より好ましくは一方がメチル基であり、かつ他方が水素原子である。潤滑性及びスラッジ溶解性に優れる観点からは、好ましくはRα及びRγの両方が水素原子である。
 Rβは炭素数2~4のアルキレン基を表し、このようなアルキレン基としては、具体的には、エチレン基、プロピレン基、ブチレン基等が挙げられる。また、ORβで表される繰り返し単位のオキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、オキシブチレン基が挙げられる。(ORβで表されるオキシアルキレン基は、1種のオキシアルキレン基で構成されていてもよく、2種以上のオキシアルキレン基で構成されていてもよい。
 式(9)で表されるポリアルキレングリコールは、冷媒との相溶性及び粘度-温度特性に優れる観点から、好ましくは、オキシエチレン基(EO)とオキシプロピレン基(PO)とを含む共重合体である。この場合、焼付荷重、粘度-温度特性に優れる観点から、オキシエチレン基とオキシプロピレン基との総和に占めるオキシエチレン基の割合(EO/(PO+EO))は、好ましくは0.1~0.8、より好ましくは0.3~0.6である。吸湿性や熱・酸化安定性に優れる観点からは、EO/(PO+EO)は、好ましくは0~0.5、より好ましくは0~0.2、更に好ましくは0(すなわちプロピレンオキサイド単独重合体)である。
 fは、オキシアルキレン基ORβの繰り返し数(重合度)を表し、1~80の整数である。gは1~8の整数である。例えばRαがアルキル基またはアシル基である場合、gは1である。Rαが2~8個の水酸基を有する化合物の残基である場合、gは当該化合物が有する水酸基の数となる。
 式(9)で表されるポリアルキレングリコールにおいて、fとgとの積(f×g)の平均値は、冷凍機油としての要求性能をバランスよく満たす観点から、好ましくは6~80である。
 ポリアルキレングリコールの重量平均分子量は、好ましくは500以上、より好ましくは600以上であり、また、好ましくは3000以下、より好ましくは2000以下、更に好ましくは1500以下である。ポリアルキレングリコールの重量平均分子量が500以上であると、冷凍機油は冷媒共存下での潤滑性に優れる。重量平均分子量が3000以下であると、冷凍機油は低温条件下で冷媒に対して相溶性を示す組成範囲が広くなり、冷媒圧縮機の潤滑不良や蒸発器における熱交換の阻害を抑制できる。
 ポリアルキレングリコールの数平均分子量は、好ましくは500以上、より好ましくは600以上であり、また、好ましくは3000以下、より好ましくは2000以下、更に好ましくは1500以下である。ポリアルキレングリコールの数平均分子量が500以上であると、冷凍機油は冷媒共存下での潤滑性に優れる。数平均分子量が3000以下であると、冷凍機油は低温条件下で冷媒に対して相溶性を示す組成範囲が広くなり、冷媒圧縮機の潤滑不良や蒸発器における熱交換の阻害を抑制できる。
 ポリアルキレングリコールの重量平均分子量及び数平均分子量は、それぞれGPC分析により得られる重量平均分子量及び数平均分子量(ポリプロピレングリコール(標準試料)換算値)を意味する。重量平均分子量及び数平均分子量は、例えば以下のように測定することができる。
 溶剤としてクロロホルムを使用し、希釈してポリアルキレングリコール濃度を1質量%とした溶液を調製する。その溶液を、GPC装置(Waters Alliance2695)を用いて分析を行う。溶剤の流速は1ml/min、分析可能分子量100から10000のカラムを使用し、屈折率検出器を用いて分析を実施する。なお、分子量が明確なポリアルキレングリコール標準を用いてカラム保持時間と分子量との関係を求め、検量線を別途作成した上で、得られた保持時間から試料の分子量を決定する。
 ポリアルキレングリコールの水酸基価は、好ましくは100mgKOH/g以下、より好ましくは50mgKOH/g以下、更に好ましくは30mgKOH/g以下、最も好ましくは10mgKOH/g以下である。
 ポリアルキレングリコールは、公知の方法を用いて合成することができる(「アルキレンオキシド重合体」、柴田満太他、海文堂、平成2年11月20日発行)。例えば、アルコール(RαOH;Rαは式(9)中のRαと同一の定義内容を表す)に所定のアルキレンオキサイドの1種以上を付加重合させ、さらに末端水酸基をエーテル化もしくはエステル化することによって、式(9)で表されるポリアルキレングリコールが得られる。上記の製造工程において2種以上のアルキレンオキサイドを使用する場合、得られるポリアルキレングリコールは、ランダム共重合体及びブロック共重合体のいずれであってもよいが、酸化安定性及び潤滑性により優れる傾向にある点からは、好ましくはブロック共重合体であり、より低温流動性に優れる傾向にある点からは、好ましくはランダム共重合体である。
 ポリアルキレングリコールの不飽和度は、好ましくは0.04meq/g以下、より好ましくは0.03meq/g以下、更に好ましくは0.02meq/g以下である。過酸化物価は、好ましくは10.0meq/kg以下、より好ましくは5.0meq/kg以下、更に好ましくは1.0meq/kg以下である。カルボニル価は、好ましくは100重量ppm以下、より好ましくは50重量ppm以下、更に好ましくは20重量ppm以下である。
 基油は、好ましくは含酸素油から選ばれる少なくとも1種であり、より好ましくはエステル及びエーテルから選ばれる少なくとも1種であり、更に好ましくはエステルである。
 基油の40℃における動粘度は、好ましくは3mm/s以上、より好ましくは4mm/s以上、更に好ましくは5mm/s以上である。基油の40℃における動粘度は、好ましくは1000mm/s以下、より好ましくは500mm/s以下、更に好ましくは400mm/s以下である。基油の100℃における動粘度は、好ましくは1mm/s以上、より好ましくは2mm/s以上である。基油の100℃における動粘度は、好ましくは100mm/s以下、より好ましくは50mm/s以下である。本明細書における動粘度は、JIS K2283:2000に準拠して測定された動粘度を意味する。
 基油の含有量は、冷凍機油全量基準で、50質量%以上、60質量%以上、70質量%以上、80質量%以上、又は90質量%以上であってよい。
 冷凍機油は、基油に加えて、ジチオリン酸エステルを更に含有する。ジチオリン酸エステルは、下記式(a)で表される部分構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000011
式(a)中、R及びRは、それぞれ独立に水素原子又は1価の炭化水素基を表す。ただし、R及びRの少なくとも一方は、1価の炭化水素基を表す。
 R又はRで表される1価の炭化水素基は、好ましくは鎖状(直鎖状又は分岐状)又は環状のアルキル基、より好ましくは鎖状(直鎖状又は分岐状)のアルキル基、更に好ましくは分岐状のアルキル基を表す。R又はRで表される1価の炭化水素基(アルキル基)の炭素数は、3以上又は4以上であってよく、9以下、8以下、7以下、6以下、5以下、又は4以下であってよく、4であってもよい。R及びRの両方が1価の炭化水素基であることが好ましい。
 ジチオリン酸エステルは、例えば下記式(A-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000012
式(A-1)中、R及びRは式(a)におけるR及びRと同義であり、Rは1価の有機基を表す。
 Rで表される1価の有機基は、好ましくは、炭素原子、水素原子及び酸素原子で構成される有機基である。当該有機基は、好ましくは、カルボキシル基又はエステル基を有している。
 ジチオリン酸エステルは、冷凍機油の耐摩耗性を更に向上させる観点から、好ましくは下記式(A-2)で表される化合物(ジチオホスホリル化カルボン酸又はその誘導体)である。
Figure JPOXMLDOC01-appb-C000013
式(A-2)中、R及びRは式(a)におけるR及びRと同義であり、Rは2価の炭化水素基を表し、Rは水素原子又は1価の炭化水素基を表す。
 Rで表される2価の炭化水素基は、例えば直鎖状又は分岐状のアルキレン基であってよく、好ましくは分岐状のアルキレン基である。Rで表される2価の炭化水素基(アルキレン基)の炭素数は、1以上、2以上、又は3以上であってよく、10以下、9以下、8以下、7以下、6以下、5以下、4以下、又は3以下であってよく、4であってもよく、3であってもよい。
 Rで表される1価の炭化水素基は、例えば直鎖状又は分岐状のアルキル基であってよい。Rで表される炭化水素基(アルキル基)の炭素数は、1以上又は2以上であってよく、10以下、9以下、8以下、7以下、6以下、5以下、4以下、又は3以下であってよい。Rは、冷凍機油の耐摩耗性を更に向上させる(ジチオリン酸エステルの含有量が少なくても大きな耐摩耗性向上の効果が得られる)観点から、好ましくは水素原子である。
 ジチオリン酸エステルは、冷凍機油の耐摩耗性を更に向上させる(ジチオリン酸エステルの含有量が少なくても大きな耐摩耗性向上の効果が得られる)観点から、より好ましくは下記式(A-3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000014
式(A-3)中、R及びRは式(a)におけるR及びRと同義であり、R及びRは、それぞれ独立に水素原子又はアルキル基を表す。
 R又はRで表されるアルキル基は、直鎖状及び分岐状のいずれであってもよく、好ましくは直鎖状である。アルキル基の炭素数は、例えば、1以上であってよく、4以下、3以下、又は2以下であってよく、1であってもよい。R及びRの少なくとも一方がアルキル基であることが好ましい。R及びRの一方がアルキル基であり、他方が水素原子であることがより好ましい。すなわち、ジチオリン酸エステルは、冷凍機油の耐摩耗性を更に向上させる観点から、更に好ましくは下記式(A-4)又は(A-5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000015
式(A-4)及び(A-5)中、R及びRは式(a)におけるR及びRと同義であり、R及びRは式(A-3)におけるR及びRと同義である。
 ジチオリン酸エステルの含有量は、冷凍機油全量基準で、0.001質量%以上、0.005質量%以上、又は0.01質量%以上であってよく、5質量%以下、1質量%以下、0.9質量%以下、0.7質量%以下、0.5質量%以下、0.3質量%以下、0.1質量%以下、又は0.06質量%以下であってよい。
 冷凍機油は、基油及びジチオリン酸エステルに加えて、酸性リン酸エステルのアミン塩を更に含有する。酸性リン酸エステルのアミン塩は、例えば、下記式(B-1)で表される酸性リン酸エステルと、下記式(B-2)で表されるアミンとの塩である。
Figure JPOXMLDOC01-appb-C000016
式(B-1)中、R11は1価の炭化水素基を表し、nは1又は2を表す。式(B-2)中、R12、R13及びR14は、それぞれ独立に水素原子又は1価の炭化水素基を表す。ただし、R12、R13及びR14の少なくとも一つは、1価の炭化水素基を表す。
 R11で表される1価の炭化水素基は、アルキル基又はアルケニル基であってよく、好ましくはアルキル基である。当該アルキル基及びアルケニル基は、直鎖状であっても分岐状であってもよく、好ましくは直鎖状である。1価の炭化水素基(アルキル基又はアルケニル基)の炭素数は、1以上、2以上、3以上、又は4以上であってよく、18以下、16以下、14以下、12以下、10以下、又は8以下であってよい。nが2である場合、1分子中に2つ存在するR11は、互いに同一であっても異なっていてもよい。
 R12、R13又はR14で表される1価の炭化水素基は、アルキル基又はアルケニル基であってよく、好ましくはアルキル基である。当該アルキル基及びアルケニル基は、直鎖状であっても分岐状であってもよく、好ましくは分岐状である。1価の炭化水素基(アルキル基又はアルケニル基)の炭素数は、1以上、3以上、5以上、7以上、9以上、又は11以上であってよく、20以下、18以下、16以下、又は14以下であってよい。
 酸性リン酸エステルのアミン塩を含有する冷凍機油を調製する際、酸性リン酸エステルとアミンとが塩を形成している状態で基油等に添加してもよく、酸性リン酸エステルとアミンとをそれぞれ別個に基油等に添加してもよい。
 酸性リン酸エステルのアミン塩の含有量は、冷凍機油全量基準で、0.005質量%以上、0.01質量%以上、又は0.02質量%以上であってよく、1質量%以下、0.2質量%以下、又は0.1質量%以下であってよい。
 冷凍機油中のジチオリン酸エステル及び酸性リン酸エステルのアミン塩の含有量の比を調整することにより、冷凍機油の耐摩耗性及び安定性を更に向上させることができる。ジチオリン酸エステル及び酸性リン酸エステルのアミン塩の合計含有量に対するジチオリン酸エステルの含有量の質量比(ジチオリン酸エステルの含有量(質量)/ジチオリン酸エステル及び酸性リン酸エステルのアミン塩の合計含有量(質量))は、冷凍機油の安定性を更に向上させる観点から、好ましくは、0.1以上又は0.2以上であり、より好ましくは、0.3以上、0.4以上、又は0.5以上であり、更に好ましくは0.55以上又は0.6以上である。当該質量比は、冷凍機油の耐摩耗性を更に向上させる観点から、好ましくは、0.9以下、0.8以下、又は0.7以下であり、より好ましくは、0.6以下又は0.5以下であり、更に好ましくは、0.4以下又は0.35以下である。
 冷凍機油は、耐摩耗性を更に向上させる観点から、ジチオリン酸エステル及び酸性リン酸エステルのアミン塩以外のその他のリン系摩耗防止剤を更に含有してもよい。その他のリン系摩耗防止剤は、リン酸エステル、酸性リン酸エステル、チオリン酸エステル(モノチオリン酸エステル)、塩素化リン酸エステル、亜リン酸エステル等であってよい。
 その他のリン系摩耗防止剤の含有量は、冷凍機油全量基準で、0.01質量%以上、0.05質量%以上、又は0.1質量%以上であってよく、2質量%以下、1.5質量%以下、又は1質量%以下であってよい。
 冷凍機油は、その他のリン系摩耗防止剤の中でも、耐摩耗性を更に向上させる観点から、好ましくはチオリン酸エステル、より好ましくはチオリン酸トリエステルを更に含有する。チオリン酸トリエステルは、好ましくは、下記式(C)で表される化合物である。
Figure JPOXMLDOC01-appb-C000017
式(C)中、R21、R22及びR23は、それぞれ独立に1価の炭化水素基を表す。
 R21、R22又はR23で表される1価の炭化水素基は、アルキル基又はアリール基であってよく、好ましくはアリール基であり、より好ましくはフェニル基である。アルキル基は、直鎖状であっても分岐状であってもよい。1価の炭化水素基(アルキル基又はアリール基)の炭素数は、2以上、3以上、4以上、5以上、又は6以上であってよく、10以下、9以下、8以下、又は7以下であってよい。
 チオリン酸エステルの含有量は、冷凍機油全量基準で、0.005質量%以上、0.01質量%以上、又は0.02質量%以上であってよく、1質量%以下、0.2質量%以下、又は0.1質量%以下であってよい。
 冷凍機油は、その他の添加剤を更に含有してもよい。その他の添加剤としては、例えば、酸捕捉剤、酸化防止剤、極圧剤、油性剤、消泡剤、金属不活性化剤、リン系摩耗防止剤以外の摩耗防止剤、粘度指数向上剤、流動点降下剤、清浄分散剤などが挙げられる。これらの添加剤の合計含有量は、冷凍機油全量基準で、15質量%以下又は10質量%以下であってよい。
 酸捕捉剤は、例えば、エポキシ化合物、カルボジイミド化合物等であってよく、好ましくはエポキシ化合物である。エポキシ化合物は、グリシジルエーテル型エポキシ化合物、グリシジルエステル型エポキシ化合物、オキシラン化合物、アルキルオキシラン化合物、脂環式エポキシ化合物、エポキシ化脂肪酸モノエステル、エポキシ化植物油等であってよい。酸化防止剤は、2,6-ジ-tert-ブチル-p-クレゾール、ビスフェノールA等のフェノール系酸化防止剤であってよい。
 冷凍機油の硫黄分は、冷凍機油の安定性を更に向上させる観点から、好ましくは0.2質量%以下、より好ましくは0.15質量%以下、更に好ましくは0.1質量%以下である。冷凍機油の硫黄分は、例えば、0.01質量%以上であってよい。冷凍機油の硫黄分は、例えば、ジチオリン酸エステルの含有量や、その他の硫黄を含む添加剤(例えば上記チオリン酸エステル(モノチオリン酸エステル))の含有量を調整することにより調整できる。本明細書における硫黄分は、JIS K2541-6:2013で規定される紫外蛍光法によって測定された硫黄分を意味する。
 冷凍機油の40℃における動粘度は、好ましくは3mm/s以上、より好ましくは4mm/s以上、更に好ましくは5mm/s以上であってよい。冷凍機油の40℃における動粘度は、好ましくは500mm/s以下、より好ましくは400mm/s以下、更に好ましくは300mm/s以下であってよい。
 冷凍機油の100℃における動粘度は、好ましくは1mm/s以上、より好ましくは2mm/s以上であってよい。冷凍機油の100℃における動粘度は、好ましくは100mm/s以下、より好ましくは50mm/s以下であってよい。
 冷凍機油の流動点は、好ましくは-10℃以下、より好ましくは-20℃以下であってよい。本明細書における流動点は、JIS K2269-1987に準拠して測定された流動点を意味する。
 冷凍機油の体積抵抗率は、好ましくは1.0×10Ω・m以上、より好ましくは1.0×1010Ω・m以上、更に好ましくは1.0×1011Ω・m以上であってよい。本明細書における体積抵抗率は、JIS C2101:1999に準拠して測定された25℃での体積抵抗率を意味する。
 冷凍機油の水分含有量は、冷凍機油全量基準で、好ましくは200ppm以下、より好ましくは100ppm以下、更に好ましくは50ppm以下であってよい。本明細書における水分含有量は、JIS K2275-3:2015に準拠して測定された水分含有量を意味する。
 冷凍機油の酸価は、好ましくは1.0mgKOH/g以下、より好ましくは0.1mgKOH/g以下であってよい。本明細書における酸価は、JIS K2501:2003に準拠して測定された酸価を意味する。
 冷凍機油の灰分は、好ましくは100ppm以下、より好ましくは50ppm以下であってよい。本明細書における灰分は、JIS K2272:1998に準拠して測定された灰分を意味する。
 冷凍機油は、冷媒と共に用いられる。言い換えれば、本発明の他の一実施形態は、上記の冷凍機油と冷媒とを含有する冷凍機用作動流体組成物である。冷媒は、フッ化炭化水素冷媒、炭化水素冷媒、パーフルオロエーテル類等の含フッ素エーテル系冷媒、ビス(トリフルオロメチル)サルファイド冷媒、3フッ化ヨウ化メタン冷媒、及び、アンモニア、二酸化炭素等の自然系冷媒からなる群より選ばれる少なくとも1種を含有し、好ましくはフッ化炭化水素冷媒からなる群より選ばれる少なくとも1種を含有する。
 フッ化炭化水素冷媒は、飽和フッ化炭化水素(HFC)冷媒及び不飽和フッ化炭化水素(HFO)冷媒から選ばれる。飽和フッ化炭化水素冷媒としては、好ましくは炭素数1~3、より好ましくは1~2の飽和フッ化炭化水素が挙げられる。具体的には、ジフルオロメタン(R32)、トリフルオロメタン(R23)、ペンタフルオロエタン(R125)、1,1,2,2-テトラフルオロエタン(R134)、1,1,1,2-テトラフルオロエタン(R134a)、1,1,1-トリフルオロエタン(R143a)、1,1-ジフルオロエタン(R152a)、フルオロエタン(R161)、1,1,1,2,3,3,3-ヘプタフルオロプロパン(R227ea)、1,1,1,2,3,3-ヘキサフルオロプロパン(R236ea)、1,1,1,3,3,3-ヘキサフルオロプロパン(R236fa)、1,1,1,3,3-ペンタフルオロプロパン(R245fa)、および1,1,1,3,3-ペンタフルオロブタン(R365mfc)、又はこれらの2種以上の混合物が挙げられる。
 飽和フッ化炭化水素冷媒としては、上記の中から用途や要求性能に応じて適宜選択されるが、例えばR32単独;R23単独;R134a単独;R125単独;R134a/R32=60~80質量%/40~20質量%の混合物;R32/R125=40~70質量%/60~30質量%の混合物;R125/R143a=40~60質量%/60~40質量%の混合物;R134a/R32/R125=60質量%/30質量%/10質量%の混合物;R134a/R32/R125=40~70質量%/15~35質量%/5~40質量%の混合物;R125/R134a/R143a=35~55質量%/1~15質量%/40~60質量%の混合物などが好ましい例として挙げられる。さらに具体的には、R134a/R32=70/30質量%の混合物;R32/R125=60/40質量%の混合物;R32/R125=50/50質量%の混合物(R410A);R32/R125=45/55質量%の混合物(R410B);R125/R143a=50/50質量%の混合物(R507C);R32/R125/R134a=30/10/60質量%の混合物;R32/R125/R134a=23/25/52質量%の混合物(R407C);R32/R125/R134a=25/15/60質量%の混合物(R407E);R125/R134a/R143a=44/4/52質量%の混合物(R404A)などを用いることができる。
 不飽和フッ化炭化水素(HFO)冷媒は、好ましくは炭素数2~3の不飽和フッ化炭化水素、より好ましくはフルオロプロペン、更に好ましくはフッ素数が3~5のフルオロプロペンである。不飽和フッ化炭化水素冷媒は、好ましくは、1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye)、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,2,3,3-テトラフルオロプロペン(HFO-1234ye)、及び3,3,3-トリフルオロプロペン(HFO-1243zf)のいずれか1種又は2種以上の混合物である。不飽和フッ化炭化水素冷媒は、冷媒物性の観点からは、好ましくは、HFO-1225ye、HFO-1234ze及びHFO-1234yfから選ばれる1種又は2種以上である。不飽和フッ化炭化水素冷媒は、フルオロエチレンであってもよく、好ましくは1,1,2,3-トリフルオロエチレン(HFO-1123)であってもよい。不飽和フッ化炭化水素冷媒は、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)であってもよく、シス-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(Z))、トランス-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(E))及びこれらの混合物のいずれであってもよい。
 炭化水素冷媒は、好ましくは炭素数1~5の炭化水素、より好ましくは炭素数2~4の炭化水素である。炭化水素としては、具体的には例えば、メタン、エチレン、エタン、プロピレン、プロパン(R290)、シクロプロパン、ノルマルブタン、イソブタン、シクロブタン、メチルシクロプロパン、2-メチルブタン、ノルマルペンタン又はこれらの2種以上の混合物が挙げられる。これらの中でも、25℃、1気圧で気体の炭化水素冷媒が好ましく用いられ、プロパン、ノルマルブタン、イソブタン、2-メチルブタン又はこれらの混合物がより好ましく用いられる。
 作動流体組成物における冷凍機油の含有量は、冷媒100質量部に対して、1質量部以上又は2質量部以上であってよく、500質量部以下又は400質量部以下であってよい。
 冷凍機油及び作動流体組成物は、往復動式や回転式の密閉型圧縮機を有するエアコン、冷蔵庫、開放型又は密閉型のカーエアコン、除湿機、給湯器、冷凍庫、冷凍冷蔵倉庫、自動販売機、ショーケース、化学プラント等の冷凍機、遠心式の圧縮機を有する冷凍機等に好適に用いられる。
 以下、実施例に基づいて本発明を更に具体的に説明するが、本発明は実施例に限定されるものではない。
(実施例1)
 以下に示す基油、ジチオリン酸エステル、及び酸性リン酸エステルのアミン塩と、その他の添加剤(トリフェニルホスホロチオネート(チオリン酸トリエステル)、酸捕捉剤及び酸化防止剤を含む)1.7質量%とを混合して、冷凍機油を調製した。ジチオリン酸エステル及び酸性リン酸エステルのアミン塩の種類及び含有量は表1に示すとおりであり、基油の含有量は、冷凍機油全量から基油以外の成分(添加剤)の含有量の合計を差し引いた残部である。なお、各成分の含有量は、冷凍機油全量を基準とした含有量(質量%)である。また、表1には、ジチオリン酸エステル及び酸性リン酸エステルのアミン塩の合計含有量(A+B)に対するジチオリン酸エステルの含有量の質量比(A/(A+B))、並びに、冷凍機油中の硫黄分(質量%)を示した。
 基油:下記の基油1(70質量%)と基油2(30質量%)との混合基油
  基油1:ペンタエリスリトールと、2-メチルプロパン酸/3,5,5-トリメチルヘキサン酸との混合脂肪酸(混合比(質量比):60/40)とのポリオールエステル(40℃動粘度:46mm/s、100℃動粘度:6.3mm/s)
  基油2:ネオペンチルグリコール(1モル)及び1,4-ブタンジオール(0.2モル)にアジピン酸(1.5モル)を反応させたエステル中間体に、3,5,5-トリメチルヘキサノール(1.1モル)を更に反応させ、残存した未反応物を蒸留で除去して得たコンプレックスエステル(40℃動粘度:146mm/s、粘度指数:140)
 ジチオリン酸エステルA1:下記式(A1)で表される化合物
Figure JPOXMLDOC01-appb-C000018
 ジチオリン酸エステルA2:下記式(A2)で表される化合物
Figure JPOXMLDOC01-appb-C000019
 酸性リン酸エステルのアミン塩B1:
モノ/ジヘキシルリン酸エステルの炭素数11~14の分岐アルキルアミン塩(上記式(B-1)において、R11が炭素数6の直鎖状アルキル基(ヘキシル基)であり、nが1又は2である酸性リン酸エステル(混合物)と、上記式(B-2)において、R12、R13及びR14のうち2つが炭素数11~14の分岐状アルキル基のいずれかであり、残りの1つが水素原子であるアミン(混合物)との塩)
 酸性リン酸エステルのアミン塩B2:
モノ/ジオレイルリン酸エステルの2-エチルヘキシルアミン塩(上記式(B-1)において、R11が炭素数18の不飽和アルキル基(オレイル基)であり、nが1又は2である酸性リン酸エステル(混合物)と、上記式(B-2)において、R12、R13及びR14のうち1つが2-エチルヘキシル基であり、残りの2つが水素原子であるアミンとの塩)
(実施例2~5及び比較例1,2)
 ジチオリン酸エステル及び酸性リン酸エステルのアミン塩の種類及び含有量を表1に示すとおりに変更した以外は、実施例1と同様にして冷凍機油を調製した。
[耐摩耗性の評価]
 以下の手順で耐摩耗性を評価した。まず、上側試験片としてベーン(SKH-51)、下側試験片としてディスク(SNCM220 HRC50)を用いた摩擦試験装置を、密閉容器の内部に装着した。摩擦試験部位に各冷凍機油600gを導入し、系内を真空脱気した後、冷媒(ジフルオロメタン(R32))100gを導入して加熱した。密閉容器内の温度を110℃とした後、負荷荷重1000N、回転数750rpmの条件で摩耗試験を行い、60分間の試験後ベーン及びディスクのそれぞれの摩耗量を計測した。摩耗量の値が小さいほど、耐摩耗性に優れていることを意味する。結果を表1に示す。
[安定性の評価]
 安定性の評価は、JIS K2211-09(オートクレーブテスト)に準拠して行った。具体的には、水分含有量を1000ppmに調整した冷凍機油30gをオートクレーブに秤取し、触媒(鉄、銅、アルミの線、いずれも外径1.6mm×長さ50mm)と、冷媒(ジフルオロメタン(R32))30gとを封入した後、175℃に加熱し、168時間後の冷凍機油の酸価(JIS C2101)を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000020
 表1から分かるとおり、リン系摩耗防止剤としてジチオリン酸エステル及び酸性リン酸エステルのアミン塩を併用した実施例1~5は、いずれか一方のみを用いた比較例1,2に比べて、耐摩耗性及び安定性に優れている。リン系摩耗防止剤として知られているジチオリン酸エステル及び酸性リン酸エステルのアミン塩の併用により安定性が向上することは、特に驚くべき効果である。

Claims (7)

  1.  基油と、ジチオリン酸エステルと、酸性リン酸エステルのアミン塩とを含有する、冷凍機油。
  2.  前記ジチオリン酸エステルが、下記式(A-1)で表される化合物である、請求項1に記載の冷凍機油。
    Figure JPOXMLDOC01-appb-C000001
    [式(A-1)中、R及びRはそれぞれ独立に水素原子又は1価の炭化水素基を表し、Rは1価の有機基を表す。ただし、R及びRの少なくとも一方は、1価の炭化水素基を表す。]
  3.  前記ジチオリン酸エステル及び前記酸性リン酸エステルのアミン塩の合計含有量に対する前記ジチオリン酸エステルの含有量の質量比が、0.1以上0.9以下である、請求項1又は2に記載の冷凍機油。
  4.  前記冷凍機油の硫黄分が0.2質量%以下である、請求項1~3のいずれか一項に記載の冷凍機油。
  5.  フッ化炭化水素冷媒を含有する冷媒と共に用いられる、請求項1~4のいずれか一項に記載の冷凍機油。
  6.  請求項1~5のいずれか一項に記載の冷凍機油と、冷媒とを含有する、冷凍機用作動流体組成物。
  7.  前記冷媒がフッ化炭化水素冷媒を含有する、請求項6に記載の作動流体組成物。
PCT/JP2020/006606 2019-02-22 2020-02-19 冷凍機油及び冷凍機用作動流体組成物 WO2020171133A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021502101A JP7404333B2 (ja) 2019-02-22 2020-02-19 冷凍機油及び冷凍機用作動流体組成物
US17/422,948 US20220064562A1 (en) 2019-02-22 2020-02-19 Refrigerator oil and refrigerator working fluid composition
CN202080006811.6A CN113166669A (zh) 2019-02-22 2020-02-19 冷冻机油及冷冻机用工作流体组合物
KR1020217028975A KR20210125541A (ko) 2019-02-22 2020-02-19 냉동기유 및 냉동기용 작동 유체 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019030628 2019-02-22
JP2019-030628 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020171133A1 true WO2020171133A1 (ja) 2020-08-27

Family

ID=72144944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006606 WO2020171133A1 (ja) 2019-02-22 2020-02-19 冷凍機油及び冷凍機用作動流体組成物

Country Status (6)

Country Link
US (1) US20220064562A1 (ja)
JP (1) JP7404333B2 (ja)
KR (1) KR20210125541A (ja)
CN (1) CN113166669A (ja)
TW (1) TW202039809A (ja)
WO (1) WO2020171133A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491246B (zh) * 2022-09-16 2023-09-12 珠海格力电器股份有限公司 冷冻机油、工作流体组合物及应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975995A (ja) * 1982-10-25 1984-04-28 Showa Shell Sekiyu Kk 耐摩耗性、極圧性及び摩擦特性にすぐれた潤滑組成物
JPH10102079A (ja) * 1996-09-27 1998-04-21 Sanyo Electric Co Ltd 潤滑油組成物
JP2000063866A (ja) * 1998-08-20 2000-02-29 Showa Shell Sekiyu Kk 潤滑油組成物
JP2002294271A (ja) * 2001-01-24 2002-10-09 Nippon Oil Corp 潤滑油組成物
JP2004083891A (ja) * 2002-06-28 2004-03-18 Nippon Oil Corp 潤滑油組成物
JP2007254607A (ja) * 2006-03-23 2007-10-04 Nippon Oil Corp 二酸化炭素冷媒用冷凍機油組成物
JP2011046880A (ja) * 2009-08-28 2011-03-10 Jx Nippon Oil & Energy Corp 冷凍機油および冷凍機用作動流体組成物
JP2012111803A (ja) * 2010-11-19 2012-06-14 Jx Nippon Oil & Energy Corp アルミニウム系材料を備えた摺動部用潤滑油組成物及び潤滑方法
WO2018021533A1 (ja) * 2016-07-28 2018-02-01 Jxtgエネルギー株式会社 冷凍機油
WO2018181203A1 (ja) * 2017-03-31 2018-10-04 Jxtgエネルギー株式会社 潤滑油用添加剤、潤滑油組成物、及び摺動機構

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756346B1 (en) * 1998-08-20 2004-06-29 Shell Oil Company Lubricating oil composition useful in hydraulic fluids
JP4493373B2 (ja) * 2004-03-04 2010-06-30 新日本石油株式会社 冷凍機油組成物
EP2041250A1 (en) * 2006-07-19 2009-04-01 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
EP2740784A1 (en) * 2009-08-28 2014-06-11 JX Nippon Oil & Energy Corporation Refrigerant oil for freezers and operating fluid composition for freezers
JP2012211338A (ja) * 2012-07-13 2012-11-01 Idemitsu Kosan Co Ltd 潤滑油基油及びその製造方法、並びに該基油を含有する潤滑油組成物
AU2014245378A1 (en) * 2013-03-29 2015-10-15 Idemitsu Kosan Co.,Ltd. Lubricant oil composition
WO2015025977A1 (ja) * 2013-08-23 2015-02-26 出光興産株式会社 緩衝器用潤滑油組成物
CN107001967B (zh) 2014-11-04 2020-08-21 Jxtg能源株式会社 冷冻机油
JPWO2018052088A1 (ja) * 2016-09-15 2019-07-04 Jxtgエネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975995A (ja) * 1982-10-25 1984-04-28 Showa Shell Sekiyu Kk 耐摩耗性、極圧性及び摩擦特性にすぐれた潤滑組成物
JPH10102079A (ja) * 1996-09-27 1998-04-21 Sanyo Electric Co Ltd 潤滑油組成物
JP2000063866A (ja) * 1998-08-20 2000-02-29 Showa Shell Sekiyu Kk 潤滑油組成物
JP2002294271A (ja) * 2001-01-24 2002-10-09 Nippon Oil Corp 潤滑油組成物
JP2004083891A (ja) * 2002-06-28 2004-03-18 Nippon Oil Corp 潤滑油組成物
JP2007254607A (ja) * 2006-03-23 2007-10-04 Nippon Oil Corp 二酸化炭素冷媒用冷凍機油組成物
JP2011046880A (ja) * 2009-08-28 2011-03-10 Jx Nippon Oil & Energy Corp 冷凍機油および冷凍機用作動流体組成物
JP2012111803A (ja) * 2010-11-19 2012-06-14 Jx Nippon Oil & Energy Corp アルミニウム系材料を備えた摺動部用潤滑油組成物及び潤滑方法
WO2018021533A1 (ja) * 2016-07-28 2018-02-01 Jxtgエネルギー株式会社 冷凍機油
WO2018181203A1 (ja) * 2017-03-31 2018-10-04 Jxtgエネルギー株式会社 潤滑油用添加剤、潤滑油組成物、及び摺動機構

Also Published As

Publication number Publication date
TW202039809A (zh) 2020-11-01
JPWO2020171133A1 (ja) 2021-12-16
CN113166669A (zh) 2021-07-23
US20220064562A1 (en) 2022-03-03
JP7404333B2 (ja) 2023-12-25
KR20210125541A (ko) 2021-10-18

Similar Documents

Publication Publication Date Title
US11001779B2 (en) Refrigerator oil and refrigerator working fluid composition
JP6964586B2 (ja) 冷凍機油
JP6705834B2 (ja) 冷凍機油
JP7455109B2 (ja) 冷凍機油及び冷凍機用作動流体組成物
JP6796423B2 (ja) 冷凍機油
JP6679396B2 (ja) 冷凍機油
JP7404333B2 (ja) 冷凍機油及び冷凍機用作動流体組成物
JP6796438B2 (ja) 冷凍機油及び冷凍機用作動流体組成物
JP6796439B2 (ja) 潤滑油組成物及び冷凍機用作動流体組成物
JP7470648B2 (ja) 冷凍機油及び冷凍機油の製造方法
JP7432512B2 (ja) 冷凍機油
TWI853881B (zh) 冷凍機油及冷凍機油之製造方法
US11485926B2 (en) Refrigerant oil and method for producing refrigerant oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502101

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217028975

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20759026

Country of ref document: EP

Kind code of ref document: A1