WO2020171001A1 - 細胞培養チップ - Google Patents
細胞培養チップ Download PDFInfo
- Publication number
- WO2020171001A1 WO2020171001A1 PCT/JP2020/005980 JP2020005980W WO2020171001A1 WO 2020171001 A1 WO2020171001 A1 WO 2020171001A1 JP 2020005980 W JP2020005980 W JP 2020005980W WO 2020171001 A1 WO2020171001 A1 WO 2020171001A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base portion
- cell culture
- opening groove
- culture chip
- void
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/12—Well or multiwell plates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/34—Internal compartments or partitions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/16—Microfluidic devices; Capillary tubes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/06—Plates; Walls; Drawers; Multilayer plates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/10—Hollow fibers or tubes
Definitions
- the present invention relates to a cell culture chip.
- a cell culture chip also called “biochip” or “microchip” having a micro flow channel, which is difficult with the conventional method, can create a three-dimensional (three-dimensional) cell culture/experimental environment. Is proposed.
- Patent Document 1 discloses a resin structure that can be used in a cell culture chip.
- FIG. 23 is a cross-sectional view schematically showing the resin structure disclosed in Patent Document 1 (hereinafter referred to as “cell culture chip”).
- the cell culture chip 100 has a first substrate 110 and a second substrate 120, and is formed by bonding these two substrates. Both the first substrate 110 and the second substrate 120 are made of polymethylmethacrylate (acrylic resin).
- FIG. 24 is a drawing schematically showing a state before the two substrates (110, 120) are bonded together.
- the first substrate 110 is formed in a flat plate shape.
- the second substrate 120 has a recess 123 for forming a space for culturing cells, and openings (121, 122) for forming a flow path of a culture solution. More specifically, the recess 123 is formed on the surface 120a side of the second substrate 120. Further, the openings 121 and 122 are formed such that one ends thereof are exposed on the surface 120b side of the second substrate 120, penetrate the second substrate 120, and reach the recess 123.
- the thin film 101 made of a polymer material is applied on one surface 110a of the first substrate 110 by a spin coating method (spin coating method). Then, the surface 120a of the second substrate is pressed against the surface 110a of the first substrate 110 on which the thin film 101 is applied in a heating environment.
- the thin film 101 functions as an adhesive that bonds the first substrate 110 and the second substrate 120 together.
- the recess 123 forms a space (culture space) sandwiched between the substrates (110, 120). That is, a flow path (micro flow path) is formed by the openings (121, 122) and the recess 123.
- a flow path microwave flow path
- the cells may be cultured under various culture conditions to verify the cell status.
- different cell culture chips have been used for each culture condition.
- a cell culture chip capable of supporting various measurements such as simultaneous measurement of a plurality of samples and a large number of measurements with different measurement methods has been studied. From the viewpoint of forming many microchannels in one cell culture chip, one cell culture chip becomes larger than the conventional one.
- a conventional cell culture chip has a size of about 25 mm ⁇ 75 mm in length and width.
- such a large cell culture chip is, for example, about 85 mm ⁇ 128 mm in length and width, and the thickness of each of the two substrates forming the microchip is, for example, several mm or more.
- one second substrate 120 needs to have a recess 123 for forming a flow path.
- the second substrate 120 having such recesses 123 and openings (121, 122) can be manufactured by injection molding.
- the second substrate 120 after molding is likely to warp.
- the second substrate 120 having the shape in which the recesses 123 and the openings (121, 122) are formed is manufactured by injection molding, when the resin is poured, the formation regions of the recesses 123 and the openings (121, 122) are formed. The molds are pressed against each other so that the resin does not flow into. For this reason, a streak pattern called a weld line may be formed in a portion where the resins that have sneak around the mold and re-associate with each other are slightly cooled and then re-associate with each other. For this reason, large irregularities called undulations may occur on the surface of the second substrate 120.
- the second substrate 120 in such a warped or undulated state is bonded to the first substrate 110, bonding failure may occur or air bubbles may enter depending on the location.
- the height of the microchannel (the vertical length of the concave portion 123 in FIG. 23 in the vertical direction on the paper surface) may change depending on the location. Such a state is not preferable because when culturing cells, the culture conditions differ for each culture space, and the flow rate and reaction rate of the sample to be circulated in the microchannel deviate from the intended design value. ..
- the position of the height of the microchannel may be different depending on the place.
- culturing cells in a plurality of micro-channels (in a culture space) mounted on one cell culture chip it is possible to continuously observe (shoot) the condition of the cells cultured in each culture space. Done.
- the height position of the bottom surface of the channel differs depending on the location, it becomes necessary to focus on each culture space when photographing the entire cell culture chip, which complicates the work.
- the present invention is a cell culture chip in which a plurality of culture spaces are mounted, the warpage is small, and the change in height position of the culture space depending on the location is suppressed as compared with the conventional cell culture chip.
- the purpose is to realize.
- the cell culture chip according to the present invention includes a bottom substrate and a base portion bonded to the bottom substrate.
- the base portion is A first surface, and a second surface facing the first surface, Dispersed in a direction parallel to the first surface and arranged at a plurality of locations, a plurality of first portions for forming a culture space, In a region where the first portion is not formed, a gap that penetrates the base portion from the first surface and reaches the second surface is included.
- the first part is A recessed region formed so as to extend in a direction parallel to the first surface on the first surface side, A plurality of opening grooves formed so as to penetrate the base portion to reach the second surface from a plurality of locations in the recessed region.
- At least a part of the end of the void in the direction parallel to the first surface is located inside the outer edge of the base portion.
- the bottom substrate and the first surface of the base portion are bonded to each other to form a culture space in which the recessed region is sandwiched between the bottom substrate and the base portion.
- the base has a void that extends from the first surface to the second surface, so that the base has high flexibility. Further, when the base portion and the bottom substrate are bonded together, both surfaces (first surface and second surface) of the base portion are substantially divided into a plurality of small sections by the voids. That is, the action of deformation that occurs with the pressing at the time of bonding to a certain small section is unlikely to affect other small sections. As a result, even if the base portion has waviness or warpage due to injection molding, the entire surface can be pressed with a uniform pressure in the pressing step when the base portion is bonded to the bottom substrate, so that the waviness or warpage can be achieved. Can be resolved.
- the void is formed so as to penetrate the base portion, when the base portion and the bottom substrate are superposed, the upper surface of the bottom substrate can be visually recognized through the void. For this reason, the alignment when the base portion and the bottom substrate are bonded together is facilitated.
- the void after the bottom substrate and the base portion are bonded together remains as a groove reaching from the upper surface side of the base portion to the upper surface of the bottom substrate, so that the humidity of the culture space is adjusted. This has the effect that a liquid such as water can be stored in this groove.
- the base portion can be made of a resin material such as polymethylmethacrylate (PMMA), polycarbonate (PC), cycloolefin copolymer (COC), cycloolefin polymer (COP), polystyrene (PS), silicone, and acrylic.
- the bottom substrate can be made of a glass material such as quartz glass other than the resin material.
- the base portion is composed of a rectangular base substrate which is a substrate different from the bottom substrate, When viewed from a direction orthogonal to the first surface, the plurality of first portions are the first direction parallel to the first side portion forming the outer edge portion of the base portion, and the outer edge portion.
- the void may be formed by extending in the first direction at a position between regions where the plurality of first portions are arranged in the first direction.
- both surfaces (first surface and second surface) of the base portion are substantially divided into a plurality of small sections in the second direction by the void formed by stretching in the first direction.
- the void may be formed by extending in the first direction at a position outside the region in which the plurality of first portions are arranged in the first direction in the second direction. ..
- one end of the void in the first direction may reach the first side.
- the flexibility of the base portion is further improved, and the warping and bending can be eliminated by a smaller pressing force in the pressing step during bonding.
- the plurality of opening grooves are configured to include a first opening groove and a second opening groove formed at a position separated from the first opening groove in the second direction,
- the recessed region may be formed to extend in the second direction so as to connect the first opening groove and the second opening groove.
- the resin When the base part is manufactured by injection molding, the resin is poured into the formation region of the opening groove while the molds are pressed against each other from both sides. Therefore, the resin flows while avoiding the region where the molds are pressed against each other. At this time, the resin may re-associate with each other by wrapping around the mold to form a streak pattern called a weld line.
- the extending direction of the void is the first direction
- the extending direction of the recessed region that is, the two opening grooves (first opening groove and second opening groove) communicating with the recessed region
- the separating direction is the second direction. That is, the extending direction of the void is different from the extending direction of the recessed region.
- the void is formed so as to penetrate the first surface and the second surface. Therefore, when the base portion including the void is manufactured by injection molding, the void forming region also has two voids. The resin is flown while being pressed by the mold. That is, the resin flows from the second side portion side in the extending direction of the void, that is, in the first direction.
- the resin that wraps around avoiding this mold is May re-associate at a position displaced in the first direction. Since this position is a position displaced in the direction parallel to the first surface with respect to the recessed region forming the culture space, even if a weld line occurs, the observation of the cultured cells is affected. Hateful.
- the resin that has flowed while avoiding the portion of the mold for forming the first opening groove is There is a possibility of reassociation at a position on the second opening groove side with respect to the first opening groove.
- This position is a region where the recessed region is to be formed in the direction parallel to the first surface. Therefore, when a weld line is generated at such a position, when viewed from the direction orthogonal to the first surface, the recessed region forming the culture space and the weld line overlap with each other, which makes it difficult to observe the cells being cultured. There is a risk.
- the base portion is An outer edge portion having a rectangular frame shape, and including an opposing first side portion and an opposing second side portion, A connecting portion that extends and connects the facing first side portions in a second direction parallel to the second side portion, Having a plate shape including the first surface and the second surface, a plurality of them are arranged dispersedly at a plurality of positions between the connecting portion and the outer edge portion while being connected to a part of the connecting portion. And has an island part, The first portion is formed on the island portion, The void may be formed in a region sandwiched between the outer edge portion and the connecting portion at a position outside the island portion.
- the first portion formed in the island portion is bonded to the bottom substrate, so that the recessed region included in the first portion constitutes the culture space. Further, a void that penetrates the entire island portion is formed at a position outside the island portion, and the base portion is substantially divided into a plurality of small sections by each island portion. For this reason, also in this configuration, the effect of the deformation caused by the pressing at the time of bonding to one small section (island section) is unlikely to affect the other small section (island section).
- a space sandwiched between the outer edge portion and the connecting portion is formed at a position outside the island portion. Therefore, when the bottom substrate and the base portion are bonded together, a groove sandwiched between the outer edge portion, the connecting portion, and the bottom substrate is formed outside the first portion (that is, the culture space) including the opening groove and the recessed region. To be done. According to such a configuration, there is an effect that a liquid such as water can be stored in this groove for adjusting the humidity of the culture space.
- the base portion has a plurality of first connecting portions that are formed apart from each other in a first direction parallel to the first side portion,
- the island portion may be formed at a position sandwiched between the connecting portions that are adjacent to each other in the first direction.
- the plurality of opening grooves provided in the first portion formed in the island portion are a first opening groove and a second opening groove formed at a position separated from the first opening groove in the second direction.
- Is composed of The recessed area provided in the first portion formed in the island portion may be formed to extend in the second direction so as to connect the first opening groove and the second opening groove. I do not care.
- the present invention it is possible to realize a cell culture chip in which a plurality of culture spaces are mounted, but the warp is small and the change in the height position of the culture space depending on the place is suppressed more than ever before.
- FIG. 2 is a sectional view taken along line A1-A1 in FIG.
- FIG. 2 is a sectional view taken along line A2-A2 in FIG.
- FIG. 2B is a view illustrating a bottom substrate and a base portion separated from FIG. 2A. It is a partially expanded view of FIG.
- the cell culture chip of the first embodiment it is a plan view schematically showing the structure of the base portion before being bonded to the bottom substrate.
- FIG. 2B is a schematic cross-sectional view showing the cell culture chip in a state in which the culture solution has been injected, following FIG. 2A.
- FIG. 6 is a drawing schematically showing the shape of a mold used when the base portion is manufactured by injection molding, following FIG. 5. It is drawing which shows typically the flow of resin at the time of injection molding.
- FIG. 6 is a drawing schematically showing another shape of a mold used when the base part is manufactured by injection molding, following FIG. 5.
- FIG. 11 is a sectional view taken along line A3-A3 in FIG. It is a top view which shows typically another structure of 1st embodiment of the cell culture chip of this invention. It is a top view which shows typically another structure of 1st embodiment of the cell culture chip of this invention.
- FIG. 16 is a sectional view taken along line B1-B1 in FIG. 15.
- FIG. 16 is a sectional view taken along line B2-B2 in FIG. 15.
- the cell culture chip of the second embodiment it is a plan view schematically showing the structure of the base portion before being bonded to the bottom substrate. It is drawing which shows typically the shape of the metal mold
- FIG. 24 is a view showing two substrates separated from each other included in the cell culture chip shown in FIG. 23.
- FIG. 1 is a plan view schematically showing the structure of the cell culture chip according to this embodiment.
- 2A is a sectional view taken along the line A1-A1 in FIG. 1
- FIG. 2B is a sectional view taken along the line A2-A2 in FIG.
- the cell culture chip 1 includes a bottom substrate 10 and a base portion 20. As shown in FIGS. 2A and 2B, the base portion 20 is attached to the upper surface of the bottom substrate 10.
- the surface on which the bottom substrate 10 and the base portion 20 are bonded together is referred to as the XY plane, and the direction orthogonal to this XY plane is referred to as the Z direction.
- FIG. 3 is a view showing the bottom substrate 10 and the base portion 20 separated from FIG. 2A.
- FIG. 4 is an enlarged view of a region indicated by reference numeral 25 in FIG. This area corresponds to the "first portion 25" described later.
- FIG. 5 is a schematic plan view of the base portion 20 before being bonded to the bottom substrate 10 as seen from the top surface (the surface opposite to the bonding surface). In addition, in FIG. 5, in order to emphasize the outer edge portion of the base body portion 20, the outer edge portion is indicated by a thick line.
- the base portion 20 has a substrate shape in which an outer edge portion is constituted by a pair of first side portions 31 parallel to the X direction and a pair of second side portions 32 parallel to the Y direction. That is, in the present embodiment, the base portion 20 constitutes a “base substrate”.
- the X direction corresponds to the “first direction” and the Y direction corresponds to the “second direction”.
- the base portion 20 has a slit-shaped void 2 extending in the X direction.
- the voids 2 are formed at a plurality of locations separated in the Y direction.
- the base portion 20 is for forming a culture space, which includes an opening groove (21, 22) and a recessed region 23 in a small section 3 partitioned by a void 2 formed at positions separated in the Y direction.
- this area is referred to as "first portion 25".
- the opening groove 21 corresponds to the “first opening groove”
- the opening groove 22 corresponds to the “second opening groove”.
- a plurality of first portions 25 are arranged in the same small section 3 (3a) so as to be separated in the X direction. Further, the plurality of first portions 25 are also arranged in the X direction in the different small sections 3 (3b) separated in the Y direction. That is, in the present embodiment, the plurality of first portions 25 are formed on the base body 20 in a matrix in a state of being aligned in the X direction and the Y direction.
- the first portion 25 includes the opening groove (21, 22) and the recessed area 23.
- the opening grooves (21, 22) are through holes penetrating the base portion 20 in the Z direction, and are formed at different positions on the XY plane. That is, one end of the opening groove 21 and one end of the opening groove 22 are exposed at different positions on the second surface 20b of the base portion 20.
- the recess area 23 is a recess formed on the first surface 20a side of the base body 20 and is connected to the opening groove 21 and the opening groove 22. That is, unlike the opening grooves (21, 22), the recessed region 23 does not penetrate the base portion 20, so that the recessed region 23 is not exposed on the second surface 20b side of the base portion 20. In FIGS. 1, 4, and 5, the recessed region 23 is shown by a broken line to show that the recessed region 23 is not exposed on the second surface 20b side of the base portion 20.
- the opening groove (21, 22) has a shape having an inclined surface whose opening area decreases as it advances from the second surface 20b side to the first surface 20a side.
- the shape shown in FIG. 3 is merely an example, and various shapes can be adopted.
- the opening grooves (21, 22) may have a shape having the same opening area between the second surface 20b and the first surface 20a in the Z direction.
- the opening groove 21 and the opening groove 22 forming the same first portion 25 are formed at positions separated from each other in the Y direction.
- the recessed region 23 has a shape extending in the Y direction so as to connect the opening groove 21 and the opening groove 22 formed at positions separated in the Y direction.
- both ends (2a, 2b) of the void 2 are located inside the second side portion 32.
- the void 2 penetrates the base portion 20 so as to reach the second surface 20b from the first surface 20a. That is, the void 2 forms a slit-shaped groove extending in the X direction inside the outer edge of the base body 20 (see FIGS. 2B and 5).
- the base portion 20 is made of a resin material that can be injection-molded. More specifically, the base portion 20 is made of a resin material such as polymethylmethacrylate (PMMA), polycarbonate (PC), cycloolefin copolymer (COC), cycloolefin polymer (COP), polystyrene (PS), silicone, and acrylic. ..
- the bottom substrate 10 may be formed of a glass material such as quartz glass other than the above resin material. It is preferable that both the base portion 20 and the bottom substrate 10 are made of a material having a light transmitting property from the viewpoint of easiness in observing cells in culture.
- the recessed region 23 forms a tube-shaped space sandwiched between the base portion 20 and the bottom substrate 10 (see FIG. 2A).
- the recessed area 23 is in communication with the opening grooves (21, 22).
- a culture space is formed by the opening grooves (21, 22) and the recessed area 23.
- the height (thickness) w10 of the bottom substrate 10 is about 1 mm, preferably 100 ⁇ m or more and 2 mm or less.
- the height w20 of the base portion 20 is about 3 mm, which corresponds to the depth of the opening grooves (21, 22).
- the height h23 of the recessed region 23 (culture space) is about 300 ⁇ m, preferably 200 ⁇ m or more and 500 ⁇ m or less.
- the length t23 of the recessed area 23 in the Y direction (longitudinal direction) is about 9 mm.
- the volume of the space reaching the opening groove 22 from the opening groove 21 through the concave region 23 is 100 mm 3 (100 ⁇ L) or less, and more preferably 10 mm 3 (10 ⁇ L).
- the width t2 (slit width) of the void 2 in the Y direction is 0.5 mm or more and 5 mm or less, and preferably 1 mm or more and 3 mm or less. If the slit width t2 of the void 2 is smaller than 0.5 mm, the mold may be deformed by the pressure during injection molding, and a gap may be formed between the molds. If such a gap occurs, it is not preferable because it leads to burr of the resin. On the other hand, when the slit width t2 of the void 2 is larger than 5 mm, the slit width t2 becomes too large, which makes it difficult for the resin to flow. Accompanying this, bubbles or residual strain may occur, and the base portion 20 may warp.
- the sizes of the bottom substrate 10 and the base portion 20 in the XY plane are arbitrary as long as they comply with a predetermined standard. As an example, according to the dimensions according to ANSI/SRAS standard number 1-2004, the size of the bottom substrate 10 and the base portion 20 in the XY plane is 85 mm ⁇ 128 mm.
- Step S1 Formation of Base 20 and Bottom Substrate 10.
- a rectangular flat plate-shaped bottom substrate 10 is prepared.
- a rectangular flat plate-shaped base portion 20 in which the void 2 and the first portion 25 including the opening groove (21, 22) and the recessed region 23 are formed is manufactured by injection molding.
- the base portion 20 is produced, for example, by pouring a molten resin in a state in which a mold is placed in the space 2 and the region where the first portion 25 is to be formed.
- FIG. 7 schematically shows the shape of a mold 60 used when the base portion 20 is manufactured by injection molding, following FIG. In FIG. 7, the mold 60 is located in the hatched area.
- the resin 61 is injected in the X direction from locations corresponding to the number of the small sections 3 divided by the voids 2.
- reference numeral 65 is a part of a mold into which the resin 61 is injected, and corresponds to a portion forming a gate. That is, the example shown in FIG. 7 shows a case where the resin 61 is injected by the so-called side gate method.
- FIG. 8 is a drawing schematically showing the flow of resin.
- the recessed region 23 is formed only in a part of the base portion 20 in the depth direction (Z direction).
- FIG. 8 schematically illustrates the flow of the resin on the XY plane at the position of the Z coordinate where the recessed region 23 does not exist.
- a region 23f where the recessed region 23 is to be formed is shown by a broken line and hatching.
- a part of the mold 60 is located in a region 21f where the opening groove 21 is to be formed, and another part of the mold 60 is a region 22f where the opening groove 22 is to be formed. Is located in.
- the resin 61 that has proceeded in the X direction proceeds so as to avoid the position where the mold 60 is located. ..
- a streak pattern called a weld line may be formed in this region 62.
- the two opening grooves (21, 22) forming the same first portion 25 are separated in the Y direction. Therefore, as shown in FIG. 8, the molds (21f, 22f) for forming the two opening grooves (21, 22) are also arranged at positions separated in the Y direction.
- the region 62 where the resins intersect each other is formed in the region sandwiched by the opening grooves (21, 22), that is, outside the recessed region 23.
- the weld line from being formed at the position where the recessed region 23 is formed on the XY plane.
- a weld line is formed at the same position as the position where the recessed region 23 is formed on the XY plane, there is a possibility that it will be an obstacle when observing the cells 41 in culture. Further, if the weld line is formed so as to communicate with the recessed region 23, the culture solution 40 may flow out to the weld line side, and the environment of the culture space may change, which may adversely affect the cells 41. It is not preferable because
- the recessed region 23 is formed on the XY plane. It is possible to avoid/suppress the formation of a weld line at the same position as.
- the side gate method is used in which the resin 61 is injected from the gates 65 arranged at a plurality of positions on the side portion side (more specifically, the second side portion 32 side) of the base body portion 20 to be a molded product.
- the case where injection molding is performed has been described.
- the gate used when manufacturing the base portion 20 of the present invention is not limited to the side gate method.
- a film gate method or a tab gate method in which the resin 61 is injected from the entire second side portion 32 side may be adopted.
- a so-called pin gate method may be used in which the resin 61 is injected from the gates 65 which are discretely arranged at predetermined positions in the region sandwiched by the voids 2. ..
- the pin gate method it is preferable to install the gate 65 near the center of the position sandwiched by the voids 2 and inject the resin 61.
- Step S2 Bonding of the base portion 20 and the bottom substrate 10.
- the base portion 20 manufactured in step S1 and the bottom substrate 10 are attached to each other. Specifically, the procedure is as follows.
- the surface to be bonded (10a, 20a) is activated.
- a method of surface activation treatment a method of irradiating ultraviolet rays or a method of contacting with plasma gas can be used.
- This surface activation treatment changes the surface 10a of the bottom substrate 10 and the first surface 20a of the base portion 20 to a state in which the terminal is substituted with a hydroxy group (OH group), and makes a state suitable for bonding. Executed for.
- a wavelength of 200 nm or less is applied to the first surface 20a of the base portion 20 and the surface 10a of the bottom substrate 10 from an ultraviolet light source such as a xenon excimer lamp having a bright line at a wavelength of 172 nm. It is executed by irradiating the vacuum ultraviolet ray.
- an ultraviolet light source such as a xenon excimer lamp having a bright line at a wavelength of 172 nm. It is executed by irradiating the vacuum ultraviolet ray.
- a low-pressure mercury lamp having a bright line at 185 nm and a deuterium lamp having a bright line in the wavelength range of 120 to 200 nm can be preferably used.
- the illuminance of vacuum ultraviolet rays is, for example, 10 to 100 mW/cm 2
- the irradiation time is, for example, 10 to 60 seconds.
- a process gas containing nitrogen gas, argon gas or the like as a main component and containing oxygen gas in an amount of 0.01 to 5% by volume is converted into a plasma by atmospheric pressure plasma. It is performed by contacting the first surface 20a of the portion 20 and the surface 10a of the bottom substrate 10. It is also possible to use a mixed gas of nitrogen gas and clean dry air (CDA).
- the contact time of the plasma gas is, for example, 5 to 100 seconds.
- the base portion 20 and the bottom substrate 10 are superposed, and both are pressed and pressed.
- the pressurizing condition is appropriately set according to the materials forming the base portion 20 and the bottom substrate 10 and the heating temperature.
- the pressing force may have a magnitude within a range that does not cause the recessed region 23 to be excessively deformed, for example, 1 to 10 MPa, and the pressurizing time is, for example, 60 to 600 seconds.
- the stack made up of the base portion 20 and the bottom substrate 10 may be heated simultaneously with and/or after the pressing.
- the heating conditions for heating the stack are, for example, a heating temperature of 40 to 130° C. and a heating time of 60 to 600 seconds.
- the base portion 20 produced in step S1 described above has a void 2 penetrating in the Z direction, and thus has high flexibility. Therefore, even if the base portion 20 manufactured in step S1 has undulations or warpage, it is pressed and pressed in the bonding step of step S2, so that the first portion of the base portion 20 is pressed.
- the surface 20a is deformed so as to be along the surface 10a of the bottom substrate 10, and waviness and warpage are eliminated.
- the void 2 is formed so as to extend in the X direction while penetrating the base portion 20 in the Z direction, the void 2 substantially divides the base portion 20 into a plurality of small sections 3. ing. Therefore, even if the first surface 20a of the base portion 20 is deformed along the surface 10a of the bottom substrate 10 by being pressed in a certain small section 3a, this deformation effect is provided at a position adjacent to each other via the void 2. It is difficult to spread to another small section 3b in.
- the entire first surface 20a of the base portion 20 (the portion where the recessed area 23 and the void 2 are not formed) is applied to the surface 10a of the bottom substrate 10 by a small pressing force that does not excessively deform the recessed area 23. Can be joined to.
- the warp of the base body portion 20 is greater than when the void 2 completely penetrates the base body portion 20 in the Z direction. It was confirmed that it would grow. In addition, it was confirmed that when the base portion 20 was pressed against the bottom substrate 10 to the extent that no cracking occurred, the entire surface could not be pressed with sufficient pressure, and only partial bonding was possible.
- the base portion 20 is bonded onto the surface of the bottom substrate 10, and the cell culture chip 1 shown in FIGS. 1 to 2B is manufactured.
- FIG. 10 is a plan view of the cell culture chip 1 according to this another configuration, which is shown in line with FIG. 1, and FIG. 11 corresponds to a cross-sectional view taken along the line A3-A3 of FIG.
- step S2 since one end of the void 2 in the X direction reaches the second side portion 32, the flexibility of the base portion 20 is further improved as compared with the configuration shown in FIG. As a result, when the first surface 20a of the base portion 20 has waviness or warpage, it is necessary in step S2 to press the base portion 20 against the surface of the bottom substrate 10 in order to eliminate the waviness or warpage. The force can be further reduced.
- the void 2 has a shape extending in the X direction.
- the void 2 has a shape extending in both the X direction and the Y direction. You can present it.
- FIG. 15 is a plan view schematically showing the structure of the cell culture chip according to this embodiment.
- 16A is a sectional view taken along the line B1-B1 in FIG. 15, and
- FIG. 16B is a sectional view taken along the line B2-B2 in FIG.
- the cell culture chip 1 of the present embodiment also includes the bottom substrate 10 and the base portion 20, and the base portion 20 is formed by being bonded to the surface of the bottom substrate 10.
- the shape of the base portion 20 is different from that of the first embodiment.
- FIG. 17 is a schematic plan view of the base portion 20 before being attached to the bottom substrate 10 as viewed from the top surface (Z direction). As shown in FIG. 17, the base portion 20 has an outer edge portion 35, a connecting portion 36, and an island portion 37.
- the outer edge portion 35 has a frame shape including a pair of first side portions 31 parallel to the X direction and a pair of second side portions 32 parallel to the Y direction.
- the connecting portion 36 extends in the Y direction (direction parallel to the second side portion 32) and connects the first side portions 31 facing each other.
- the island portion 37 has a plate shape including the first surface 20a and the second surface 20b, and is connected to a part of the connecting portion 36 at a position between the connecting portion 36 and the outer edge portion 35. It is distributed and arranged in a plurality of positions.
- the plurality of island portions 37 are formed in a matrix in a state of being aligned in the X and Y directions.
- the sectional view taken along the line B1-B1 of the cell culture chip 1 of this embodiment is substantially the same as the sectional view taken along the line A1-A1 of the cell culture chip 1 of the first embodiment shown in FIG. 2A. .. That is, the island portion 37 is formed with the first portion 25 including the opening grooves (21, 22) and the recessed region 23. Therefore, also in the present embodiment, the plurality of first portions 25 are formed on the base body 20 in a matrix in a state of being aligned in the X direction and the Y direction.
- the void 2 is formed at a position outside the island portion 37 in a region sandwiched by the outer edge portion 35 and the connecting portion 36. More specifically, in the structure shown in FIG. 17, the void 2 faces the void 2c formed in the region sandwiched by the first side portion 31, the second side portion 32, and the connecting portion 36 that face each other. It includes a void 2d formed in a region sandwiched by the first side portion 31 and the pair of connecting portions 36. These voids 2 (2c, 2d) are formed so as to penetrate the base portion 20 in the Z direction, as in the first embodiment.
- the base portion 20 having such a shape can be manufactured by injection molding as in the first embodiment. At this time, it is preferable to inject the resin 61 from the outside of the position where the connecting portion 36 is formed and the portion where the outer edge portion 35 (here, the first side portion 31) is formed intersect (FIG. 18). Gate 65).
- FIG. 18 schematically shows the shape of a mold 60 used when the base portion 20 of the present embodiment is manufactured by injection molding, following FIG.
- the opening grooves (21, 22) formed in the island portion 37 are separated in the Y direction, and the recessed region 23 connecting the opening grooves (21, 22) also extends in the Y direction. ing.
- the island portion 37 and the connecting portion 36 formed by extending in the Y direction are connected to each other through a branch connecting portion 38 that is branched from the connecting portion 36 in the X direction.
- FIG. 19 is a drawing schematically showing the flow of the resin 61, following FIG. In FIG. 19, for convenience of description, a region 23f where the recessed region 23 is to be formed is shown by a broken line and hatching. Further, in FIG. 19, a part of the mold 60 is located in a region 21f where the opening groove 21 is to be formed, and another part of the mold 60 is a region 22f where the opening groove 22 is to be formed. Is located in.
- the resin 61 that has proceeded in the Y direction along the region where the connecting portion 36 is formed is branched and connected. After advancing in the X direction along the region where the portion 38 is formed, the process proceeds so as to avoid the portion where the mold 60 is located. At this time, a weld line may be formed in the region 62 where the resins 61 that have passed through the position of the mold 60 intersect.
- the two openings (21, 22) are separated in the Y direction from the X direction through the region where the branch connecting portion 38 is to be formed. Since the resin 61 is injected, the weld line is formed in the region sandwiched by the opening grooves (21, 22), that is, outside the recessed region 23. As a result, it is possible to prevent the weld line from being formed at the position where the recessed region 23 is formed on the XY plane.
- the bottom substrate 10 and the base body 20 are bonded together by the same method as in the first embodiment.
- the island portions 37 forming the first portion 25 are merely connected to each other by the branch connecting portion 38 and the connecting portion 36 having a small diameter. That is, in the cell culture chip 1 of the present embodiment, the base portion 20 is substantially divided by the plurality of island portions 37. Therefore, even if the first surface 20a of the base portion 20 is deformed along the surface 10a of the bottom substrate 10 in the certain island portion 37a by pressing, this deformation effect is exerted on the adjacent position via the void 2. It is difficult to spread to another island part 37b.
- the entire surface 20a of the base portion 20 (the portion where the recessed area 23 and the void 2 are not formed) is bonded to the surface 10a of the bottom substrate 10 by a small pressing force that does not excessively deform the recessed area 23. Can be made.
- the gate 65 may be arranged on the second side 32 side and the resin 61 may be injected in the X direction.
- the base portion 20 has a wide void 2 formed outside the island portion 37 where the first portion 25 forming the culture space is located.
- the void 2 has a groove shape in which the periphery is covered with the base portion 20 and the bottom substrate 10 after the bottom substrate 10 and the base portion 20 are bonded to each other. Therefore, in order to adjust the humidity of the atmosphere when culturing the cells 41, a liquid such as water can be stored in this area.
- Example 10 The cell culture chip according to the present invention will be described with reference to examples, in which warpage is suppressed and a wide bonding area between the bottom substrate 10 and the base portion 20 can be ensured.
- the present invention is not limited to the aspect of this embodiment.
- Example 1 Comparative Example 1, and Reference Example 1, a bottom substrate 10 and a base portion 20 having the following dimensions were prepared.
- -Bottom substrate 10 (X) 85 mm x (Y) 128 mm x (Z) 1 mm ZEONEX 460R manufactured by Nippon Zeon Co., Ltd.
- -Base part 20 (X)85mm x (Y)128mm x (Z)3mm ZEON Corporation 460R manufactured by Zeon Corporation
- Example 1 as the base portion 20, the one having the slit width of 1 mm and the void 2 penetrating in the depth direction (Z direction) was adopted.
- the length of the voids 2 (X direction) was 75 mm, and the number of the voids 2 arranged was 7.
- the small sections 3 are arranged in six rows in the Y direction, and eight first portions 25 are arranged in the X direction in each small section 3.
- Reference Example 1 is different from Example 1 in that the length of the void 2 provided in the base portion 20 in the depth direction is 2 mm. That is, the void 2 provided in the cell culture chip of Reference Example 1 does not penetrate the base portion 20 in the depth direction.
- the cell culture chip of Comparative Example 1 is different from that of Example 1 in that the base portion 20 is not provided with the void 2.
- Ultraviolet rays having a wavelength of 172 nm emitted from a xenon excimer lamp were applied to the respective bonding surfaces of the base portion 20 and the bottom substrate 10 of Example 1, Reference Example 1 and Comparative Example 1 at an illuminance of 40 mW/cm 2. For 20 seconds under light. After that, the bonding surfaces of the base portion 20 and the bottom substrate 10 of Example 1, Reference Example 1, and Comparative Example 1 were brought into contact with each other, and then, under a temperature environment of 90° C., at a pressure of 4 MPa for 300 seconds. A pressing process was performed.
- a plane photograph is taken from the bottom substrate 10 side for each cell culture chip after bonding, and the photographed image is subjected to image processing using image measurement software to determine the total area.
- the ratio of the dark area was calculated. With this ratio, the ratio of the actual bonded area to the total area to be bonded was calculated.
- the maximum warpage of the base portion 20 was suppressed to 0.5 mm, and the bonding area between the base portion 20 and the bottom substrate 10 was 100%. Therefore, it was confirmed that the cell culture chip was excellent in practical use because the warpage was suppressed and the entire surface was in surface contact.
- the bonding area between the base portion 20 and the bottom substrate 10 is 95% or more, it is considered to be within a practically acceptable range.
- the evaluation "A" indicates that there is no practical problem.
- the maximum warpage of the base portion 20 was suppressed to 0.5 mm, but the bonding area between the base portion 20 and the bottom substrate 10 was 20%. Therefore, the bonding between the bottom substrate 10 and the base portion 20 is not sufficient, and there is a problem in practical use as a cell culture chip.
- the evaluation “C” indicates that there is a practical problem.
- the bonding area between the base portion 20 and the bottom substrate 10 was 60%, and the bonding state was improved as compared with Comparative Example 1, but the maximum warpage of the base portion 20 was as large as 2.4 mm. Also, it was confirmed that cracks had occurred at the slits. Therefore, there is a problem in practical use as a cell culture chip.
- the cell culture chip 1 in which the pair of opening grooves (21, 22) is connected to the recessed region 235 forming the culture space has been described.
- the number of opening grooves (21, 22) communicated with the recessed area 23 is not limited.
- FIG. 20 and 21 are plan views showing the first portion 25 of the cell culture chip 1 according to another embodiment, which is shown in accordance with FIG.
- the first portion 25 includes two first opening grooves 21 and one second opening groove 22, and each opening groove (21, 22) is connected by the recess area 23. ing.
- the first portion 25 includes one first opening groove 21 and three second opening grooves 22, and the first opening groove 21 and each second opening groove 22.
- Three recessed regions 23 are provided so as to communicate with each other.
- the structure of each opening groove (21, 22) and the recessed region 23 is common to the above-described embodiment, and therefore the description thereof is omitted.
- the number and arrangement of the first portions 25 (that is, the culture space) included in the cell culture chip 1 described in each of the above embodiments are merely examples. Further, the number of the first portions 25 arranged in each small section 3 does not necessarily have to be the same.
- voids 2 extending in the X direction are formed at three locations separated in the Y direction, and eight first portions are provided outside the voids 2 located on the outermost side in the Y direction.
- a small section 3 (3b) in which 25 are arranged is formed, and a small section 3 (3a) in which 16 (8 pieces ⁇ 2 rows) of the first portions 25 are arranged is formed in the area sandwiched by the voids 2 on both sides. It may be formed.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Clinical Laboratory Science (AREA)
- Immunology (AREA)
- Dispersion Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
複数の培養空間を実装しながらも、反りが少なく、場所に応じた培養空間の高さ位置の変化を従来よりも抑制した細胞培養チップを実現する。 細胞培養チップは、底部基板と基体部とを含む。基体部は、第一面及び第二面と、培養空間形成用の複数の第一部分と、第一部分が形成されていない領域内において、基体部を貫通する空隙とを含む。第一部分は、第一面側に形成された凹部領域と、凹部領域内の複数の箇所から基体部を貫通して形成された複数の開口溝とを含む。空隙は、第一面に平行な方向に係る端部の少なくとも一部が、基体部の外縁部よりも内側に位置している。底部基板と基体部の第一面とが貼り合わされて、凹部領域が底部基板と基体部とで挟まれた培養空間を形成する。
Description
本発明は、細胞培養チップに関する。
従来、細胞及び組織培養は、寒天又は培地とした培養ディッシュやプレートを使用して行われてきた。これら培養ディッシュやプレートを用いた細胞及び組織の培養は、2次元(平面)の環境で行われるものであるため、細胞外微小環境を再現することができない。そこで、近年、従来法では困難であった、3次元(立体)の細胞培養・実験環境を作製することができるマイクロ流路を有する細胞培養チップ(「バイオチップ」、「マイクロチップ」とも称される)が提案されている。
例えば、下記特許文献1には、細胞培養チップに利用可能な樹脂構造体が開示されている。
図23は、特許文献1に開示されている樹脂構造体(以下、「細胞培養チップ」と記載する。)を模式的に示す断面図である。細胞培養チップ100は、第一基板110と、第二基板120とを有し、これら2つの基板が貼り合わされることで形成されている。第一基板110及び第二基板120は、いずれもポリメチルメタクリレート(アクリル樹脂)からなる。図24は、2つの基板(110,120)が貼り合わされる前の状態を模式的に示した図面である。
第一基板110は平板状に形成されている。第二基板120は、細胞を培養する空間を構成するための凹部123と、及び培養液の流路を構成するための開口部(121,122)とが形成されている。より詳細には、凹部123は、第二基板120の面120a側に形成されている。また、開口部121及び開口部122は、それぞれ第二基板120の面120b側に一方の端部が露出し、第二基板120を貫通して凹部123に達するように形成されている。
貼り合わせ時には、まず、第一基板110の一方の面110a上に、回転塗布法(スピンコート法)によって高分子材料からなる薄膜101が塗布される。その後、第二基板の面120aが、薄膜101が塗布されている第一基板110の面110aに対して、加熱環境下で押圧される。薄膜101は、第一基板110と第二基板120とを接着する接着材として機能する。
第一基板110と第二基板120とが貼り合わせられることで、凹部123は基板(110,120)で挟まれた空間(培養空間)を形成する。すなわち、開口部(121,122)と凹部123とで流路(マイクロ流路)が形成される。各開口部(121,122)の一方から培養液が流入されることで、前記培養空間内で細胞の培養が可能となる。
培養条件を種々変えながら細胞を培養して、細胞の状況を検証することが行われる場合がある。従来は、培養条件毎に異なる細胞培養チップが用いられていた。近年、複数の検体の同時測定や、測定法が相違する多数の測定といった、多彩な測定に対応することができる細胞培養チップが検討されている。多くのマイクロ流路を1枚の細胞培養チップに形成する観点から、1枚の細胞培養チップは、従来よりも大型化する。従来の細胞培養チップは、縦横が25mm×75mm程度の大きさであった。これに対し、このような大型の細胞培養チップは、例えば、縦横が85mm×128mm程度とされ、このマイクロチップを構成する2枚の基板の厚みは、各々、例えば、数mm以上となる。
上述したように、貼り合わせる対象となる2枚の基板(110,120)のうち、一方の第二基板120には、流路を形成するための凹部123を形成する必要がある。このような凹部123や開口部(121,122)を有した第二基板120は、射出成形によって作製することができる。
しかし、上述した大型の第二基板120を射出成形で作製した場合には、成形後の第二基板120に反りが生じやすい。また、凹部123や開口部(121,122)が施された形状の第二基板120を射出成形によって作製するため、樹脂を流し込む際には、凹部123や開口部(121,122)の形成領域には樹脂が流入しないよう、金型同士が押し当てられている。このため、金型を避けて回り込んだ樹脂同士がわずかに冷却された後に再会合する部分において、ウェルドラインと呼ばれる筋状の模様が形成されてしまうこともある。このような理由により、第二基板120の面にはうねりと呼ばれる大きな凹凸が生じる場合がある。
このように反りやうねりが生じた状態の第二基板120を第一基板110と貼り合わせると、場所によって貼り合わせ不良が生じたり、気泡が入り込む可能性がある。また、場所によってマイクロ流路の高さ(図23における凹部123の、紙面上の上下方向の長さ)が変化するおそれがある。このような状態は、細胞を培養する場合において、培養空間毎に異なる培養条件となるなど、マイクロ流路に流通させる検体の流速や反応速度が所期の設計値からずれてしまうために好ましくない。
更に、第二基板120が全体的に反りを有した状態で、第一基板110と貼り合わせると、マイクロ流路の高さの位置が、場所によって異なることが生じ得る。1枚の細胞培養チップに実装された複数のマイクロ流路内(培養空間内)で細胞を培養する場合、各培養空間で培養されている細胞の状況を連続的に観察(撮影)することが行われる。このとき、流路の底面の高さ位置が場所によって異なっていると、細胞培養チップの全体を撮影する場合に、各培養空間毎に焦点を合わせる必要が生じ、作業が煩雑となる。
本発明は、上記の課題に鑑み、複数の培養空間を実装した細胞培養チップであって、反りが少なく、場所に応じた培養空間の高さ位置の変化を従来よりも抑制した、細胞培養チップを実現することを目的とする。
本発明に係る細胞培養チップは、底部基板と、前記底部基板上に貼り合わされてなる基体部とを含む。
前記基体部は、
第一面、及び前記第一面に対向する第二面と、
前記第一面に平行な方向に分散して複数箇所に配置された、培養空間形成用の複数の第一部分と、
前記第一部分が形成されていない領域内において、前記第一面から前記基体部を貫通して前記第二面に達する空隙とを含む。
第一面、及び前記第一面に対向する第二面と、
前記第一面に平行な方向に分散して複数箇所に配置された、培養空間形成用の複数の第一部分と、
前記第一部分が形成されていない領域内において、前記第一面から前記基体部を貫通して前記第二面に達する空隙とを含む。
前記第一部分は、
前記第一面側において前記第一面に平行な方向に延伸するように形成された凹部領域と、
前記凹部領域内の複数の箇所から前記基体部を貫通して前記第二面に達するように形成された複数の開口溝とを含む。
前記第一面側において前記第一面に平行な方向に延伸するように形成された凹部領域と、
前記凹部領域内の複数の箇所から前記基体部を貫通して前記第二面に達するように形成された複数の開口溝とを含む。
前記空隙は、前記第一面に平行な方向に係る端部の少なくとも一部が、前記基体部の外縁部よりも内側に位置している。
前記底部基板と前記基体部の前記第一面とが貼り合わされて、前記凹部領域が前記底部基板と前記基体部とで挟まれた培養空間を形成する。
前記底部基板と前記基体部の前記第一面とが貼り合わされて、前記凹部領域が前記底部基板と前記基体部とで挟まれた培養空間を形成する。
基体部が第一面から第二面に達する空隙を有していることで、基体部には高い可撓性が生じている。また、基体部と底部基板との貼り合わせ時において、基体部の双方の面(第一面及び第二面)は、空隙によって複数の小区画に実質的に分割されている。すなわち、ある小区画に対して貼り合わせ時の押圧に伴って生じる変形の作用が、他の小区画に対して影響しにくい。この結果、射出成形によって基体部にうねりや反りが生じていたとしても、基体部を底部基板と貼り合わせする際の押圧工程によって、全面を均一な圧力で押圧することができるため、うねりや反りを解消できる。
更に、空隙は、基体部を貫通するように形成されているため、基体部と底部基板とを重ね合わせたときに、空隙を介して底部基板の上面を視認することができる。このため、基体部と底部基板とを貼り合わせする際の位置合わせが容易化される。
更に、この構成によれば、底部基板と基体部とが貼り合わされた後の空隙は、基体部の上面側から底部基板の上面に達する溝として残存するため、培養空間の湿度の調整のために、この溝に水などの液体を貯留することができるという効果を有する。
基体部は、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、シクロオレフィンコポリマー(COC)、シクロオレフィンポリマー(COP)、ポリスチレン(PS)、シリコーン、アクリルなどの樹脂材料とすることができる。また、底部基板は、前記樹脂材料の他、石英ガラスなどのガラス材料とすることができる。
前記基体部は、前記底部基板とは異なる基板である矩形状の基体用基板で構成され、
前記第一面に直交する方向から見たときに、複数の前記第一部分は、前記基体部の前記外縁部を構成する第一側部に平行な第一方向、及び前記外縁部を構成する前記第一側部とは異なる第二側部に平行な第二方向にそれぞれ整列したマトリクス状に配置され、
前記空隙は、前記第一方向に複数の前記第一部分が配置されている領域同士の間の位置において、前記第一方向に延伸して形成されているものとしても構わない。
前記第一面に直交する方向から見たときに、複数の前記第一部分は、前記基体部の前記外縁部を構成する第一側部に平行な第一方向、及び前記外縁部を構成する前記第一側部とは異なる第二側部に平行な第二方向にそれぞれ整列したマトリクス状に配置され、
前記空隙は、前記第一方向に複数の前記第一部分が配置されている領域同士の間の位置において、前記第一方向に延伸して形成されているものとしても構わない。
この場合、第一方向に延伸して形成された空隙によって、基体部の双方の面(第一面及び第二面)は、第二方向に関して複数の小区画に実質的に分割される。
前記空隙は、前記第一方向に前記複数の第一部分が配置されている領域の、前記第二方向に係る外側の位置において、前記第一方向に延伸して形成されているものとしても構わない。
また、前記空隙の前記第一方向に係る一方の端部が前記第一側部に達しているものとしても構わない。これにより、基体部の可撓性が更に向上し、貼り合わせ時における押圧工程によって、より小さな押圧力によって反りやたわみを解消させることができる。
前記複数の開口溝は、第一開口溝と、前記第一開口溝に対して前記第二方向に離間した位置に形成された第二開口溝とを含んで構成され、
前記凹部領域は、前記第一開口溝と前記第二開口溝とを連絡するように、前記第二方向に延伸して形成されているものとしても構わない。
前記凹部領域は、前記第一開口溝と前記第二開口溝とを連絡するように、前記第二方向に延伸して形成されているものとしても構わない。
基体部を射出成形によって作製する場合、開口溝の形成領域には両側から金型同士が押し当てられた状態で樹脂が流し込まれる。このため、樹脂は、金型同士が押し当てられている領域を避けて流れる。このとき、金型を箇所を回り込むことで樹脂同士が再会合し、ウェルドラインと呼ばれる筋状の模様が形成される場合がある。
上記の構成によれば、空隙の延伸方向が第一方向である一方で、凹部領域の延伸方向、すなわち凹部領域に連絡されている2つの開口溝(第一開口溝、第二開口溝)の離間方向が第二方向である。つまり、空隙の延伸方向と凹部領域の延伸方向が異なっている。上述したように、空隙は、第一面と第二面とを貫通するように形成されているため、空隙を含む基体部を射出成形によって作製する際には、この空隙の形成領域も2つの金型によって押し当てられた状態で樹脂が流される。すなわち、樹脂は、第二側部側から、空隙の延伸方向、すなわち第一方向に流されることとなる。
この場合、開口溝(第一開口溝、第二開口溝)が形成される箇所には金型が押し当てられているため、この金型を避けて回り込んだ樹脂は、この開口溝に対して第一方向にずれた位置で再会合する可能性がある。この位置は、培養空間を構成する凹部領域に対して、第一面に平行な方向にずれた位置となるため、仮にウェルドラインが発生したとしても、培養されている細胞の観察に影響が生じにくい。
これに対し、例えば、凹部領域の延伸方向を、空隙の延伸方向と同じ第一方向とした場合には、第一開口溝を形成するための金型の部分を避けて流れた樹脂は、この第一開口溝に対して第二開口溝側の位置で再会合する可能性がある。この位置は、第一面に平行な方向に関して、凹部領域が形成される予定の領域である。従って、かかる位置にウェルドラインが発生すると、第一面に直交する方向から見たときに、培養空間を構成する凹部領域とウェルドラインとが重なり合い、培養されている細胞を観察する際に見づらくなるおそれがある。
前記基体部は、
矩形の枠体形状を呈し、向かい合う第一側部及び向かい合う第二側部を含んでなる外縁部と、
向かい合う前記第一側部同士を前記第二側部に平行な第二方向に延伸して連結する連結部と、
前記第一面及び前記第二面を含む板形状を呈し、前記連結部の一部分に連結された状態で前記連結部と前記外縁部との間の複数の位置に分散して複数個が配置された、アイランド部とを有し、
前記第一部分は、前記アイランド部に形成されており、
前記空隙は、前記アイランド部の外側の位置において、前記外縁部と前記連結部とで挟まれた領域内に形成されているものとしても構わない。
矩形の枠体形状を呈し、向かい合う第一側部及び向かい合う第二側部を含んでなる外縁部と、
向かい合う前記第一側部同士を前記第二側部に平行な第二方向に延伸して連結する連結部と、
前記第一面及び前記第二面を含む板形状を呈し、前記連結部の一部分に連結された状態で前記連結部と前記外縁部との間の複数の位置に分散して複数個が配置された、アイランド部とを有し、
前記第一部分は、前記アイランド部に形成されており、
前記空隙は、前記アイランド部の外側の位置において、前記外縁部と前記連結部とで挟まれた領域内に形成されているものとしても構わない。
かかる構成の場合、アイランド部に形成された第一部分が、底部基板と貼り合わされることで、第一部分に含まれる凹部領域が培養空間を構成する。また、アイランド部の外側の位置において、全体を貫通する空隙が形成されており、それぞれのアイランド部によって基体部は複数の小区画に実質的に分割されている。このため、この構成においても、ある小区画(アイランド部)に対して貼り合わせ時の押圧に伴って生じる変形の作用が、他の小区画(アイランド部)に対して影響しにくい。この結果、射出成形によって基体部にうねりや反りが生じていたとしても、底部基板と貼り合わせする際の押圧工程によって、全面を均一な圧力で押圧することができるため、うねりや反りを解消できる。
更に、この構成によれば、アイランド部の外側の位置において、外縁部と連結部とで挟まれた空隙が形成されている。このため、底部基板と基体部とが貼り合わされると、開口溝及び凹部領域からなる第一部分(すなわち培養空間)の外側には、外縁部、連結部、底部基板とで挟まれた溝が形成される。かかる構成によれば、培養空間の湿度の調整のために、この溝に水などの液体を貯留することができるという効果を有する。
前記基体部は、前記第一側部に平行な第一方向に離間して形成された、複数の前記第一連結部を有し、
前記アイランド部は、前記第一方向に隣接する前記連結部同士に挟まれた位置に形成されているものとしても構わない。
前記アイランド部は、前記第一方向に隣接する前記連結部同士に挟まれた位置に形成されているものとしても構わない。
前記アイランド部に形成された前記第一部分が備える前記複数の開口溝は、第一開口溝と、前記第一開口溝に対して前記第二方向に離間した位置に形成された第二開口溝とを含んで構成され、
前記アイランド部に形成された前記第一部分が備える前記凹部領域は、前記第一開口溝と前記第二開口溝とを連絡するように、前記第二方向に延伸して形成されているものとしても構わない。
前記アイランド部に形成された前記第一部分が備える前記凹部領域は、前記第一開口溝と前記第二開口溝とを連絡するように、前記第二方向に延伸して形成されているものとしても構わない。
本発明によれば、複数の培養空間を実装しながらも、反りが少なく、場所に応じた培養空間の高さ位置の変化を従来よりも抑制した、細胞培養チップを実現できる。
本発明に係る細胞培養チップにつき、図面を参照して説明する。なお、以下の各図面はあくまで模式的に図示されたものである。すなわち、図面上の寸法比と実際の寸法比とは必ずしも一致しておらず、また、各図面間においても寸法比は必ずしも一致していない。
[第一実施形態]
本発明に係る細胞培養チップの第一実施形態について、説明する。
本発明に係る細胞培養チップの第一実施形態について、説明する。
《構造》
図1は、本実施形態に係る細胞培養チップの構造を模式的に示す平面図である。図2Aは、図1内のA1-A1線断面図であり、図2Bは、図1内のA2-A2線断面図である。
図1は、本実施形態に係る細胞培養チップの構造を模式的に示す平面図である。図2Aは、図1内のA1-A1線断面図であり、図2Bは、図1内のA2-A2線断面図である。
細胞培養チップ1は、底部基板10と基体部20とを含む。図2A及び図2Bに図示されるように、基体部20は、底部基板10の上面に貼り合わされている。以下において、底部基板10及び基体部20が貼り合わされている面をXY平面とし、このXY平面に直交する方向をZ方向として説明する。
図3は、図2Aから底部基板10と基体部20とを分離して図示した図面である。図4は、図1内の符号25で示された領域を拡大した図面である。この領域は、後述する「第一部分25」に対応する。図5は、底部基板10に貼り合わされる前の基体部20を上面(貼り合わせ面とは反対側の面)から見たときの模式的な平面図である。なお、図5では、基体部20の外縁部を強調するために、外縁部が太線で表記されている。
以下、図1~図5を参照して、細胞培養チップ1の詳細な構造について説明する。
基体部20は、X方向に平行な一対の第一側部31と、Y方向に平行な一対の第二側部32とで外縁部が構成された、基板形状を呈する。すなわち、本実施形態において、基体部20は「基体用基板」を構成する。X方向が「第一方向」に対応し、Y方向が「第二方向」に対応する。
基体部20は、X方向に延伸するスリット状の空隙2を有する。空隙2は、Y方向に離間した複数箇所に形成されている。また、基体部20は、Y方向に離間した位置に形成された空隙2によって区切られた小区画3内に、開口溝(21,22)、及び凹部領域23を含んでなる、培養空間形成用の領域を複数有している。以下、この領域を「第一部分25」と称する。開口溝21は「第一開口溝」に対応し、開口溝22は「第二開口溝」に対応する。
本実施形態では、図1及び図5に示すように、複数の第一部分25が、同一の小区画3(3a)内においてX方向に離間して配置されている。更に、Y方向に離間した異なる小区画3(3b)内にも、複数の第一部分25がX方向に離間して配置されている。すなわち、本実施形態では、基体部20には、複数の第一部分25が、X方向及びY方向に整列した状態でマトリクス状に形成されている。
上述したように、第一部分25は、開口溝(21,22)と凹部領域23とを含む。図3に示すように、開口溝(21,22)は、基体部20をZ方向に貫通する貫通孔であり、それぞれはXY平面上の異なる位置に形成されている。すなわち、開口溝21の一方の端部、及び開口溝22の一方の端部は、いずれも、基体部20の第二面20b上の異なる位置に露出している。
また、凹部領域23は、基体部20の第一面20a側に形成された凹部であり、開口溝21及び開口溝22に連絡されている。すなわち、凹部領域23は、開口溝(21,22)とは異なり、基体部20を貫通していないため、基体部20の第二面20b側には凹部領域23は露出していない。図1、図4、及び図5では、凹部領域23が基体部20の第二面20b側に露出していないことを示すために、凹部領域23が破線にて図示されている。
図3に示すように、開口溝(21,22)は、第二面20b側から第一面20a側に進行するに連れて開口面積が減少する傾斜面を有する形状を呈している。しかし、図3に示す形状はあくまで一例であり、種々の形状が採用され得る。例えば、開口溝(21,22)は、Z方向に関して第二面20bから第一面20aまでの間において、開口面積が同一である形状を呈していても構わない。
本実施形態において、同一の第一部分25を構成する開口溝21と開口溝22とは、Y方向に離間した位置に形成されている。そして、凹部領域23は、これらY方向に離間した位置に形成された開口溝21と開口溝22とを連絡するように、Y方向に延伸する形状を呈している。
また、図5に示すように、本実施形態において、空隙2は、その両端(2a,2b)がいずれも第二側部32の内側に位置している。上述したように、空隙2は、第一面20aから第二面20bに達するように基体部20を貫通している。すなわち、空隙2は、基体部20の外縁部の内側において、X方向に延伸するスリット状の溝を形成している(図2B及び図5参照)。
基体部20は、射出成形が可能な樹脂材料からなる。より詳細には、基体部20は、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、シクロオレフィンコポリマー(COC)、シクロオレフィンポリマー(COP)、ポリスチレン(PS)、シリコーン、アクリルなどの樹脂材料からなる。一方、底部基板10は、上記樹脂材料の他、石英ガラスなどのガラス材料で形成されていても構わない。基体部20及び底部基板10は、培養中の細胞を観察する際の容易性の観点から、いずれも光透過性を示す材料で構成されるのが好ましい。
基体部20の第一面20aと、底部基板10の面10aとが貼り合わされることで、凹部領域23は、基体部20と底部基板10とで挟まれた管形状の空間を形成する(図2A参照)。上述したように、この凹部領域23は、開口溝(21,22)と連絡されている。これにより、開口溝(21,22)及び凹部領域23によって、培養空間が形成される。例えば、開口溝21又は開口溝22から細胞41を含む培養液40が注入されることで、図6に示すように、培養空間を構成する凹部領域23内で細胞41の培養が可能となる。
寸法の一例は以下の通りである(図2A参照)。底部基板10の高さ(厚み)w10は約1mmであり、好ましくは100μm以上、2mm以下である。基体部20の高さw20は、約3mmであり、これは、開口溝(21,22)の深さに対応する。凹部領域23(培養空間)の高さh23は、約300μmであり、好ましくは200μm以上500μm以下である。また、凹部領域23のY方向(長手方向)に係る長さt23は、約9mmである。また、開口溝21から、凹部領域23を介して及び開口溝22に達する空間の容積は、100mm3(100μL)以下であり、より好ましくは、10mm3(10μL)である。
空隙2のY方向に係る幅t2(スリット幅)は、0.5mm以上、5mm以下であり、好ましくは、1mm以上、3mm以下である。空隙2のスリット幅t2が0.5mmよりも小さい場合には、射出成形時の圧力によって金型が変形して金型同士の間に隙間が生じる可能性がある。このような隙間が生じてしまうと、樹脂のバリにつながるため好ましくない。一方で、空隙2のスリット幅t2が5mmよりも大きい場合には、スリット幅t2が大きくなりすぎる結果、樹脂が流れにくくなる。これに伴い、気泡や残留ひずみが発生して、基体部20の反りが生じるおそれがある。
底部基板10及び基体部20のXY平面に係る大きさは、所定の規格に準拠したものであれば、その寸法は任意である。一例として、ANSI/SLAS規格番号1-2004に準拠した寸法によれば、底部基板10及び基体部20のXY平面に係る大きさは、85mm×128mmである。
《製造方法》
次に、上述した細胞培養チップ1の製造方法の一例について、説明する。
次に、上述した細胞培養チップ1の製造方法の一例について、説明する。
(ステップS1:基体部20、底部基板10の形成)
矩形平板状の底部基板10を準備する。また、射出成形により、空隙2と、開口溝(21,22)及び凹部領域23からなる第一部分25とが形成された、矩形平板状の基体部20を作製する。
矩形平板状の底部基板10を準備する。また、射出成形により、空隙2と、開口溝(21,22)及び凹部領域23からなる第一部分25とが形成された、矩形平板状の基体部20を作製する。
基体部20は、例えば、空隙2及び第一部分25の形成予定領域に金型を配置した状態で、溶融した樹脂を流し込むことで作製される。図7は、射出成形によって基体部20を作製する際に利用される金型60の形状を、図5にならって模式的に図示したものである。図7において、ハッチングが施された領域には金型60が位置している。
図7に示す例では、空隙2によって区切られる小区画3の数に応じた箇所から、X方向に樹脂61が注入される。図7において、符号65は、樹脂61が注入される金型の一部分であり、ゲートを構成する箇所に対応する。すなわち、図7に示す例は、いわゆるサイドゲート方式によって樹脂61が注入される場合が示されている。
図8は、樹脂の流れを模式的に示す図面である。なお、上述したように、凹部領域23は、開口溝(21,22)とは異なり、基体部20の深さ方向(Z方向)の一部分にのみ形成されている。図8では、説明の都合上、凹部領域23の存在しないZ座標の位置におけるXY平面上の樹脂の流れを模式的に図示している。なお、図8には、説明の都合上、凹部領域23が形成される予定の領域23fを、破線及びハッチングにて図示している。また、図8において、金型60の一部分は、開口溝21が形成される予定の領域21fに位置しており、金型60の別の一部分は、開口溝22が形成される予定の領域22fに位置している。
図8に示すように、開口溝(21,22)を形成するための金型60が存在するため、X方向に進行してきた樹脂61は、金型60が位置する箇所を避けるように進行する。このとき、金型60の位置を通過して進行した樹脂61同士が交わる領域が存在する(領域62)。この領域62には、ウェルドラインと呼ばれる筋状の模様が形成される可能性がある。
上述したように、本実施形態の細胞培養チップ1は、同一の第一部分25を構成する2つの開口溝(21,22)がY方向に離間している。このため、図8に示すように、2つの開口溝(21,22)を形成するための金型(21f,22f)もY方向に離間した位置に配置される。この状態で、X方向から樹脂61が注入されると、樹脂同士が交わる領域62は、開口溝(21,22)に挟まれた領域、すなわち凹部領域23の外側に形成される。この結果、XY平面上において凹部領域23が形成される位置に、ウェルドラインが形成されることが抑制される。
仮に、XY平面上において凹部領域23が形成される位置と同じ位置にウェルドラインが形成されてしまうと、培養中の細胞41を観察する際に、支障となる可能性がある。また、ウェルドラインが凹部領域23と連絡するように形成されてしまうと、ウェルドライン側に培養液40が流出するなどして、培養空間の環境が変化し、細胞41に対して悪影響を及ぼす可能性があり、好ましくない。
しかし、上記のように、開口溝(21,22)の離間方向(これは、凹部領域23の延伸方向でもある)とは異なる方向から樹脂60を注入することで、XY平面上において凹部領域23と同じ位置にウェルドラインが形成されるのを回避・抑制できる。
なお、上記では、成形品となる基体部20の側部側(より詳細には第二側部32側)の複数の箇所に配置されたゲート65から樹脂61を注入する、サイドゲート方式を利用して射出成形を行う場合について説明した。しかし、本発明の基体部20を作製するに際して、利用されるゲートはサイドゲート方式には限定されない。例えば、第二側部32側の全体から樹脂61を注入する、フィルムゲート方式やタブゲート方式を採用しても構わない。
また、例えば、図9に示すように、空隙2で挟まれた領域内の所定の位置に離散的に配置されたゲート65から樹脂61を注入する、いわゆるピンゲート方式を利用するものとしても構わない。ピンゲート方式を採用する場合には、空隙2で挟まれた位置の中央付近にゲート65を設置して、樹脂61を注入するのが好ましい。
(ステップS2:基体部20と底部基板10の貼り合わせ)
ステップS1で作製された基体部20と、底部基板10とを貼り合わせる。具体的には、以下の手順で実行される。
ステップS1で作製された基体部20と、底部基板10とを貼り合わせる。具体的には、以下の手順で実行される。
まず、両者の貼り合わせ面(10a,20a)に対して、表面を活性化する処理を行う。表面活性化処理の方法としては、紫外線を照射する方法や、プラズマガスを接触させる方法が利用できる。この表面活性化処理は、底部基板10の面10a及び基体部20の第一面20aを、末端がヒドロキシ基(OH基)で置換された状態に変化させて、貼り合わせに適した状態とするために実行される。
紫外線を照射する方法による場合には、例えば、波長172nmに輝線を有するキセノンエキシマランプなどの紫外線光源から、基体部20の第一面20a、及び底部基板10の面10aに対して、波長200nm以下の真空紫外線を照射することで実行される。紫外線光源の他の例としては、185nmに輝線を有する低圧水銀ランプ、波長120~200nmの範囲に輝線を有する重水素ランプを好適に用いることができる。真空紫外線の照度は、例えば10~100mW/cm2 であり、照射時間は例えば10~60秒間である。
プラズマガスを接触させる方法による場合には、窒素ガスやアルゴンガスなどを主成分とし、酸素ガスが0.01~5体積%含有してなるプロセスガスを大気圧プラズマによってプラスマ化したものを、基体部20の第一面20a、及び底部基板10の面10aに対して接触させることで実行される。窒素ガスとクリーンドライエア(CDA)との混合ガスを用いることも可能である。プラズマガスの接触時間は、例えば5~100秒間である。
次に、表面活性化処理が施された両者の貼り合わせ面(10a,20a)を接触させた状態で、基体部20と底部基板10とを重ね合わせ、両者を押圧して加圧する。
加圧条件は、基体部20及び底部基板10を構成する材料や加熱温度に応じて適宜設定される。加圧力は、凹部領域23が過度な変形を生ずることのない範囲内の大きさであればよく、例えば1~10MPaであり、加圧時間が例えば60~600秒間である。
この押圧工程においては、接合を強固にする観点から、加圧と同時、及び/又は加圧後に、基体部20及び底部基板10からなる積重体を加熱してもよい。積重体を加熱する場合における加熱条件は、加熱温度が例えば40~130℃であり、加熱時間が例えば60~600秒間である。
上述したステップS1によって作製された基体部20には、Z方向に貫通する空隙2が形成されているため、高い可撓性を有している。このため、仮にステップS1で作製された基体部20に、うねりや反りが生じていた場合であっても、ステップS2の貼り合わせ工程において、加圧押圧されることで、基体部20の第一面20aが底部基板10の面10aに沿うように変形し、うねりや反りが解消する。
更に、空隙2は、基体部20をZ方向に貫通した状態でX方向に延伸するように形成されているため、この空隙2によって、基体部20は複数の小区画3に実質的に分割されている。このため、ある小区画3a内において、基体部20の第一面20aが、押圧によって底部基板10の面10aに沿うように変形したとしても、この変形効果が、空隙2を介して隣接する位置にある別の小区画3bには波及しづらい。この結果、凹部領域23が過度に変形しない程度の小さな加圧力によって、基体部20の第一面20aの全体(凹部領域23及び空隙2が形成されていない部分)を、底部基板10の面10aに接合させることができる。
なお、空隙2が基体部20をZ方向に完全に貫通していない場合には、空隙2が基体部20をZ方向に完全に貫通している場合と比較して、基体部20の反りが大きくなることが確認された。また、割れが生じない程度に基体部20を底部基板10に押圧した場合には、面全体を充分な圧力で押すことができず、部分的な接合しかできないことが確認された。
これにより、基体部20が底部基板10の面上に貼り合わせられ、図1~図2Bに示した細胞培養チップ1が作製される。
《別構成例》
本実施形態の細胞培養チップ1の別の構成例につき、図面を参照して説明する。
本実施形態の細胞培養チップ1の別の構成例につき、図面を参照して説明する。
〈1〉上記実施形態では、X方向に延伸する空隙2の両端は、いずれも第二側部32よりも内側に位置しているものとして説明した。しかし、空隙2のX方向に係る一方の端部が第二側部32に達していても構わない。図10は、この別構成に係る細胞培養チップ1の平面図を、図1にならって図示したものであり、図11は、図10のA3-A3線断面図に対応する。
この構成によれば、空隙2のX方向に係る一端が第二側部32に達しているため、図5に示す構成と比較して、基体部20の可撓性が更に向上する。この結果、基体部20の第一面20aにうねりや反りが生じていた場合に、ステップS2において、前記うねりや反りを解消すべく基体部20を底部基板10の面に押圧するのに必要な力が、更に低減できる。
〈2〉上記実施形態では、空隙2がX方向に延伸する形状である場合について説明したが、図12及び図13に示すように、空隙2がX方向及びY方向の双方に延伸する形状を呈していても構わない。
〈3〉図1に示す細胞培養チップ1では、全ての小区画3が、Y方向に関して空隙2に挟まれた領域に位置しているものとして説明した。しかし、図14に示すように、Y方向に関して最も外側に位置する小区画3(図14の例では、小区画3b及び小区画3c)については、空隙2と外縁(第一側部31)とで挟まれた領域に位置しているものとしても構わない。
[第二実施形態]
本発明に係る細胞培養チップの第二実施形態について、第一実施形態と異なる箇所を中心に説明する。
本発明に係る細胞培養チップの第二実施形態について、第一実施形態と異なる箇所を中心に説明する。
図15は、本実施形態に係る細胞培養チップの構造を模式的に示す平面図である。図16Aは、図15内のB1-B1線断面図であり、図16Bは、図15内のB2-B2線断面図である。
本実施形態の細胞培養チップ1も、第一実施形態と同様に、底部基板10と基体部20とを含み、基体部20が底部基板10の面に貼り合わされて形成されている。しかし、本実施形態の細胞培養チップ1は、第一実施形態と比較して、基体部20の形状が異なっている。
図17は、底部基板10に貼り合わされる前の基体部20を、上面(Z方向)から見たときの模式的な平面図である。図17に示すように、基体部20は、外縁部35と、連結部36と、アイランド部37とを有する。
外縁部35は、X方向に平行な一対の第一側部31と、Y方向に平行な一対の第二側部32とを含む枠体形状を呈している。連結部36は、図17に示す例では、Y方向(第二側部32に平行な方向)に延伸して、向かい合う第一側部31同士を連結している。アイランド部37は、第一面20a及び第二面20bを含む板形状を呈しており、連結部36と外縁部35との間の位置において、連結部36の一部と連結された状態で、複数の位置に分散して配置されている。図17に示す例では、複数のアイランド部37は、X方向及びY方向に整列した状態でマトリクス状に形成されている。
図16Aに示すように、本実施形態における細胞培養チップ1のB1-B1線断面図は、図2Aに示す、第一実施形態の細胞培養チップ1のA1-A1線断面図とほぼ同様である。すなわち、アイランド部37には、開口溝(21,22)と凹部領域23とを含む第一部分25が形成されている。従って、本実施形態においても、基体部20には、複数の第一部分25が、X方向及びY方向に整列した状態でマトリクス状に形成されている。
本実施形態の細胞培養チップ1において、空隙2は、アイランド部37の外側の位置において、外縁部35と連結部36とで挟まれた領域内に形成されている。より詳細には、図17に示す構造では、空隙2は、向かい合う第一側部31と、第二側部32と、連結部36とで挟まれた領域に形成されている空隙2cと、向かい合う第一側部31及び一対の連結部36で挟まれた領域に形成された空隙2dとを含む。これらの空隙2(2c,2d)は、第一実施形態と同様に、Z方向に関して基体部20を貫通するように形成されている。
このような形状の基体部20は、第一実施形態と同様に、射出成形によって作製することができる。このとき、連結部36が形成される箇所と、外縁部35(ここでは第一側部31)が形成される箇所とが交差する位置の外側から、樹脂61を注入するのが好ましい(図18のゲート65)。図18は、射出成形によって本実施形態の基体部20を作製する際に利用される金型60の形状を、図17にならって模式的に図示したものである。
図17に示すように、アイランド部37に形成される開口溝(21,22)は、Y方向に離間しており、開口溝(21,22)を連絡する凹部領域23もY方向に延伸している。また、アイランド部37と、Y方向に延伸して形成される連結部36とは、連結部36からX方向に枝状に分岐した分岐連結部38を通じて連結されている。
このような形状の下で、ゲート65から樹脂61が注入されると、樹脂61は連結部36が形成される領域(ランナー部分)に沿ってY方向に流れる。図19は、樹脂61の流れを図8にならって模式的に示す図面である。図19には、説明の都合上、凹部領域23が形成される予定の領域23fを、破線及びハッチングにて図示している。また、図19において、金型60の一部分は、開口溝21が形成される予定の領域21fに位置しており、金型60の別の一部分は、開口溝22が形成される予定の領域22fに位置している。
図19に示すように、開口溝(21,22)を形成するための金型60が存在するため、連結部36が形成される領域に沿ってY方向に進行してきた樹脂61は、分岐連結部38が形成される領域に沿ってX方向に進行した後、金型60が位置する箇所を避けるように進行する。このとき、金型60の位置を通過して進行した樹脂61同士が交わる領域62には、ウェルドラインが形成される可能性がある。
しかし、本実施形態においても、第一実施形態と同様に、2つの開口部(21,22)をY方向に離間させた状態で、分岐連結部38が形成される予定の領域を通じてX方向から樹脂61が注入されるため、ウェルドラインは、開口溝(21,22)に挟まれた領域、すなわち凹部領域23の外側に形成される。この結果、XY平面上において凹部領域23が形成される位置に、ウェルドラインが形成されることが抑制される。
図17に示す形状の基体部20が作製された後は、第一実施形態と同様の方法で、底部基板10と基体部20との貼り合わせが行われる。第一部分25を構成する各アイランド部37同士は、細い径を有する分岐連結部38及び連結部36によって連絡されているに過ぎない。つまり、本実施形態の細胞培養チップ1において、基体部20は、複数のアイランド部37によって実質的に分割されている。このため、あるアイランド部37aにおいて、基体部20の第一面20aが、押圧によって底部基板10の面10aに沿うように変形したとしても、この変形効果が、空隙2を介して隣接する位置にある別のアイランド部37bには波及しづらい。この結果、凹部領域23が過度に変形しない程度の小さな加圧力によって、基体部20の面20aの全体(凹部領域23及び空隙2が形成されていない部分)を、底部基板10の面10aに接合させることができる。
ただし、本実施形態の細胞培養チップ1において、第二側部32側にゲート65を配置して、X方向に樹脂61を注入するものとしても構わない。
なお、本実施形態において、基体部20には、培養空間を形成する第一部分25が位置しているアイランド部37の外側において、広い空隙2が形成されている。この空隙2は、底部基板10と基体部20とが貼り合わされた後には、周囲を基体部20及び底部基板10で覆われた溝形状を示す。従って、細胞41を培養する際の雰囲気の湿度を調整するために、この領域内に水などの液体を貯留することができる。
[実施例]
本発明に係る細胞培養チップによれば、反りが抑制されると共に、底部基板10と基体部20との接合面積を広く確保できる点につき、実施例を参照して説明する。ただし、本発明はこの実施例の態様に限定されるものではない。
本発明に係る細胞培養チップによれば、反りが抑制されると共に、底部基板10と基体部20との接合面積を広く確保できる点につき、実施例を参照して説明する。ただし、本発明はこの実施例の態様に限定されるものではない。
実施例1、比較例1、参考例1として、いずれも以下の寸法の底部基板10及び基体部20を準備した。
・底部基板10: (X)85mm×(Y)128mm×(Z)1mm 日本ゼオン株式会社製 ゼオネックス460R
・基体部20: (X)85mm×(Y)128mm×(Z)3mm 日本ゼオン株式会社製 ゼオネックス460R
・底部基板10: (X)85mm×(Y)128mm×(Z)1mm 日本ゼオン株式会社製 ゼオネックス460R
・基体部20: (X)85mm×(Y)128mm×(Z)3mm 日本ゼオン株式会社製 ゼオネックス460R
実施例1は、基体部20として、スリット幅1mmで深さ方向(Z方向)に貫通する空隙2が形成されたものを採用した。空隙2の長さ(X方向)は75mmであり、空隙2の配置数は7個であった。また、小区画3はY方向に6列並んでおり、各小区画3内には、X方向に8個の第一部分25が配置されていた。
参考例1は、実施例1と比較して、基体部20に設けられた空隙2の深さ方向の長さを2mmとした点が異なる。すなわち、参考例1の細胞培養チップが備える空隙2は、基体部20を深さ方向に貫通していない。
比較例1の細胞培養チップは、実施例1と比較して基体部20に空隙2が設けられていない点が異なる。
これら実施例1、参考例1、及び比較例1の各基体部20と底部基板10のそれぞれの貼り合わせ面に対して、キセノンエキシマランプから出射される波長172nmの紫外線を、照度40mW/cm2の下で20秒間照射させた。その後、実施例1、参考例1、及び比較例1の各基体部20と底部基板10のそれぞれの貼り合わせ面を接触させた後、90℃の温度環境下で、4MPaの圧力で300秒間にわたって押圧処理を行った。
このときの結果を表1に示す。
接合面積の計測方法について説明する。
基体部20と底部基板10とが接合されると、両者は一体化されるため隙間なく接合された部分には界面が存在しなくなる。一方で、完全に接合されていない箇所には界面が残存する。このため、貼り合わせ後の各細胞培養チップに対して、底部基板10側から平面写真を撮影し、暗部の有無を検証した。界面が存在する部分は、完全に接合された領域と比べて暗部として観測されるので、接合されているか否かを判断することが可能である。
具体的には、貼り合わせ後の各細胞培養チップに対して、底部基板10側から平面写真を撮影し、撮影された画像に対して画像計測ソフトウェアを用いて画像処理を行い、全体の面積に対する暗部の面積の比率を算出した。この比率によって、接合されるべき全面積に対する実際の接合面積の比率を算出した。
実施例1の細胞培養チップ1は、基体部20の最大反りが0.5mmに抑制されており、また、基体部20と底部基板10との接合面積は100%であった。このため、反りが抑制され、全体が面接触されていることから、実用上優れた細胞培養チップであることが確認された。基体部20と底部基板10との接合面積は95%以上であると、実用上問題ない範囲内であると考えられる。評価「A」は、実用上問題ないことを示している。
比較例1の細胞培養チップは、基体部20の最大反りは0.5mmに抑制されているものの、基体部20と底部基板10との接合面積は20%であった。このため、底部基板10と基体部20との接合が充分ではなく、細胞培養チップとしての実用上、課題を有している。評価「C」は、実用上課題があることを示している。
参考例1の細胞培養チップは、基体部20と底部基板10との接合面積は60%であり、比較例1よりは接合状態が改善したが、基体部20の最大反りが2.4mmと大きく、またスリットの部分で割れが生じているのが確認された。このため、細胞培養チップとしての実用上、課題を有している。
以上の検証によっても、スリット(空隙2)を基体部20のZ方向に貫通させた状態で形成することで、基体部20と底部基板10との貼り合わせ工程を経ても、反りを抑制しながら基体部20と底部基板10との面接合が実現できることが分かる。
[別実施形態]
以下、別実施形態につき説明する。
以下、別実施形態につき説明する。
〈1〉上記各実施形態では、一対の開口溝(21,22)が培養空間を構成する凹部領域235に連絡されてなる細胞培養チップ1について説明した。しかし、本発明の細胞培養チップ1において、凹部領域23に対して連絡される開口溝(21,22)の数は限定されない。
図20及び図21は、別実施形態の細胞培養チップ1の第一部分25を、図4にならって図示した平面図である。図20に示す細胞培養チップ1では、第一部分25が、2つの第一開口溝21と、1つの第二開口溝22とを備え、各開口溝(21,22)が凹部領域23によって連絡されている。また、図21に示す細胞培養チップ1では、第一部分25が、1つの第一開口溝21と、3つの第二開口溝22とを備え、第一開口溝21とそれぞれの第二開口溝22とを連絡するように3つの凹部領域23が設けられている。各開口溝(21,22)や凹部領域23の構造は、上述した実施形態と共通であるため、説明を割愛する。
〈2〉上記各実施形態で説明した、細胞培養チップ1が備える第一部分25(すなわち、培養空間)の数や配置の態様は、あくまで一例である。また、各小区画3内に配置される第一部分25の数は必ずしも同一でなくても構わない。
例えば、図22に示すように、X方向に延伸する空隙2がY方向に離間した3箇所に形成されると共に、Y方向に関して最も外側に位置する空隙2よりも外側には8個の第一部分25が配置された小区画3(3b)が形成され、両側が空隙2で挟まれた領域には16個(8個×2列)の第一部分25が配置された小区画3(3a)が形成されるものとしても構わない。
1 : 細胞培養チップ
2(2c,2d) : 空隙
2a,2b : 空隙の端部
3(3a,3b,3c) : 小区画
10 : 底部基板
10a : 底部基板の面
20 : 基体部
20a : 基体部の第一面
20b : 基体部の第二面
21 : 第一開口溝
22 : 第二開口溝
21f,22f : 開口溝の形成予定領域
23 : 凹部領域
23f : 凹部領域の形成予定領域
25 : 第一部分(培養空間形成領域)
31 : 第一側部
32 : 第二側部
35 : 外縁部
36 : 連結部
37(37a,37b) : アイランド部
38 : 分岐連結部
40 : 培養液
41 : 細胞
60 : 金型
61 : 樹脂
62 : 樹脂同士が交わる領域
65 : ゲート
100 : 従来の細胞培養チップ
101 : 薄膜
110 : 第一基板
110a : 第一基板の面
120 : 第二基板
120a,120b : 第二基板の面
121,122 : 開口部
123 : 凹部
2(2c,2d) : 空隙
2a,2b : 空隙の端部
3(3a,3b,3c) : 小区画
10 : 底部基板
10a : 底部基板の面
20 : 基体部
20a : 基体部の第一面
20b : 基体部の第二面
21 : 第一開口溝
22 : 第二開口溝
21f,22f : 開口溝の形成予定領域
23 : 凹部領域
23f : 凹部領域の形成予定領域
25 : 第一部分(培養空間形成領域)
31 : 第一側部
32 : 第二側部
35 : 外縁部
36 : 連結部
37(37a,37b) : アイランド部
38 : 分岐連結部
40 : 培養液
41 : 細胞
60 : 金型
61 : 樹脂
62 : 樹脂同士が交わる領域
65 : ゲート
100 : 従来の細胞培養チップ
101 : 薄膜
110 : 第一基板
110a : 第一基板の面
120 : 第二基板
120a,120b : 第二基板の面
121,122 : 開口部
123 : 凹部
Claims (8)
- 底部基板と、前記底部基板上に貼り合わされてなる基体部とを含む細胞培養チップであって、
前記基体部は、
第一面、及び前記第一面に対向する第二面と、
前記第一面に平行な方向に分散して複数箇所に配置された、培養空間形成用の複数の第一部分と、
前記第一部分が形成されていない領域内において、前記第一面から前記基体部を貫通して前記第二面に達する空隙とを含み、
前記第一部分は、
前記第一面側において前記第一面に平行な方向に延伸するように形成された凹部領域と、
前記凹部領域内の複数の箇所から前記基体部を貫通して前記第二面に達するように形成された複数の開口溝とを含み、
前記空隙は、前記第一面に平行な方向に係る端部の少なくとも一部が、前記基体部の外縁部よりも内側に位置しており、
前記底部基板と前記基体部の前記第一面とが貼り合わされて、前記凹部領域が前記底部基板と前記基体部とで挟まれた培養空間を形成することを特徴とする、細胞培養チップ。 - 前記基体部は、前記底部基板とは異なる基板である矩形状の基体用基板で構成され、
前記第一面に直交する方向から見たときに、複数の前記第一部分は、前記基体部の前記外縁部を構成する第一側部に平行な第一方向、及び前記外縁部を構成する前記第一側部とは異なる第二側部に平行な第二方向にそれぞれ整列したマトリクス状に配置され、
前記空隙は、前記第一方向に複数の前記第一部分が配置されている領域同士の間の位置において、前記第一方向に延伸して形成されていることを特徴とする、請求項1に記載の細胞培養チップ。 - 前記空隙は、前記第一方向に前記複数の第一部分が配置されている領域の、前記第二方向に係る外側の位置において、前記第一方向に延伸して形成されていることを特徴とする、請求項2に記載の細胞培養チップ。
- 前記空隙の前記第一方向に係る一方の端部が前記第一側部に達していることを特徴とする、請求項2又は3に記載の細胞培養チップ。
- 前記複数の開口溝は、第一開口溝と、前記第一開口溝に対して前記第二方向に離間した位置に形成された第二開口溝とを含んで構成され、
前記凹部領域は、前記第一開口溝と前記第二開口溝とを連絡するように、前記第二方向に延伸して形成されていることを特徴とする、請求項2~4のいずれか1項に記載の細胞培養チップ。 - 前記基体部は、
矩形の枠体形状を呈し、向かい合う第一側部及び向かい合う第二側部を含んでなる外縁部と、
向かい合う前記第一側部同士を前記第二側部に平行な第二方向に延伸して連結する連結部と、
前記第一面及び前記第二面を含む板形状を呈し、前記連結部の一部分に連結された状態で前記連結部と前記外縁部との間の複数の位置に分散して複数個が配置された、アイランド部とを有し、
前記第一部分は、前記アイランド部に形成されており、
前記空隙は、前記アイランド部の外側の位置において、前記外縁部と前記連結部とで挟まれた領域内に形成されていることを特徴とする、請求項1に記載の細胞培養チップ。 - 前記基体部は、前記第一側部に平行な第一方向に離間して形成された、複数の前記第一連結部を有し、
前記アイランド部は、前記第一方向に隣接する前記連結部同士に挟まれた位置に形成されていることを特徴とする、請求項6に記載の細胞培養チップ。 - 前記アイランド部に形成された前記第一部分が備える前記複数の開口溝は、第一開口溝と、前記第一開口溝に対して前記第二方向に離間した位置に形成された第二開口溝とを含んで構成され、
前記アイランド部に形成された前記第一部分が備える前記凹部領域は、前記第一開口溝と前記第二開口溝とを連絡するように、前記第二方向に延伸して形成されていることを特徴とする、請求項6又は7に記載の細胞培養チップ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20759901.0A EP3929275A4 (en) | 2019-02-22 | 2020-02-17 | CELL CULTURE CHIP |
US17/432,899 US20220041969A1 (en) | 2019-02-22 | 2020-02-17 | Cell culture chip |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-030374 | 2019-02-22 | ||
JP2019030374A JP7300099B2 (ja) | 2019-02-22 | 2019-02-22 | 細胞培養チップ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020171001A1 true WO2020171001A1 (ja) | 2020-08-27 |
Family
ID=72143722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005980 WO2020171001A1 (ja) | 2019-02-22 | 2020-02-17 | 細胞培養チップ |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220041969A1 (ja) |
EP (1) | EP3929275A4 (ja) |
JP (2) | JP7300099B2 (ja) |
WO (1) | WO2020171001A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022118885A1 (ja) * | 2020-12-02 | 2022-06-09 | ウシオ電機株式会社 | 培養容器及び培養容器の使用方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001038811A (ja) | 1999-07-30 | 2001-02-13 | Shimadzu Corp | 樹脂製部材の接合方法および樹脂製構造体 |
JP2005027598A (ja) * | 2003-07-09 | 2005-02-03 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | 細胞培養チップ及び培養器、それらを用いた細胞培養方法、球状細胞組織体を担持させた細胞担持モジュール、球状細胞組織体 |
JP2006325537A (ja) * | 2005-05-30 | 2006-12-07 | Yamaha Corp | 細胞培養チップおよびその製造方法 |
JP2018009924A (ja) * | 2016-07-15 | 2018-01-18 | ウシオ電機株式会社 | 基板の貼り合わせ方法およびマイクロチップの製造方法 |
JP2018083294A (ja) * | 2016-11-21 | 2018-05-31 | ウシオ電機株式会社 | 基板の貼り合わせ方法、並びに、マイクロチップおよびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2004243070B2 (en) * | 2003-05-23 | 2010-04-15 | Bio-Rad Laboratories, Inc. | Localized temperature control for spatial arrays of reaction media |
CN114134029A (zh) * | 2012-02-13 | 2022-03-04 | 纽莫德克斯莫勒库拉尔公司 | 用于处理和检测核酸的微流体盒 |
US10208284B2 (en) * | 2014-01-24 | 2019-02-19 | Japan Science And Technology Agency | Cell-seeding and -culturing device |
DK3279310T3 (da) * | 2015-04-03 | 2021-08-02 | Aist | Celledyrkningsapparat og fremgangsmåde til celledyrkning |
MX2018005086A (es) * | 2015-10-26 | 2019-05-16 | Artveoli Inc | Modulos de chip microfluidico, sistemas, y metodos para mejorar la calidad del aire. |
-
2019
- 2019-02-22 JP JP2019030374A patent/JP7300099B2/ja active Active
-
2020
- 2020-02-17 EP EP20759901.0A patent/EP3929275A4/en active Pending
- 2020-02-17 WO PCT/JP2020/005980 patent/WO2020171001A1/ja unknown
- 2020-02-17 US US17/432,899 patent/US20220041969A1/en active Pending
-
2022
- 2022-12-20 JP JP2022203031A patent/JP7385836B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001038811A (ja) | 1999-07-30 | 2001-02-13 | Shimadzu Corp | 樹脂製部材の接合方法および樹脂製構造体 |
JP2005027598A (ja) * | 2003-07-09 | 2005-02-03 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | 細胞培養チップ及び培養器、それらを用いた細胞培養方法、球状細胞組織体を担持させた細胞担持モジュール、球状細胞組織体 |
JP2006325537A (ja) * | 2005-05-30 | 2006-12-07 | Yamaha Corp | 細胞培養チップおよびその製造方法 |
JP2018009924A (ja) * | 2016-07-15 | 2018-01-18 | ウシオ電機株式会社 | 基板の貼り合わせ方法およびマイクロチップの製造方法 |
JP2018083294A (ja) * | 2016-11-21 | 2018-05-31 | ウシオ電機株式会社 | 基板の貼り合わせ方法、並びに、マイクロチップおよびその製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022118885A1 (ja) * | 2020-12-02 | 2022-06-09 | ウシオ電機株式会社 | 培養容器及び培養容器の使用方法 |
JPWO2022118885A1 (ja) * | 2020-12-02 | 2022-06-09 | ||
JP7421763B2 (ja) | 2020-12-02 | 2024-01-25 | ウシオ電機株式会社 | 培養容器及び培養容器の使用方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7385836B2 (ja) | 2023-11-24 |
JP7300099B2 (ja) | 2023-06-29 |
JP2020130092A (ja) | 2020-08-31 |
EP3929275A1 (en) | 2021-12-29 |
US20220041969A1 (en) | 2022-02-10 |
EP3929275A4 (en) | 2022-06-15 |
JP2023024586A (ja) | 2023-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101634353B1 (ko) | 마이크로 렌즈, 상기 마이크로 렌즈 제조방법, 상기 마이크로 렌즈 제조 장치, 및 상기 마이크로 렌즈를 구비한카메라 모듈 | |
JP7385836B2 (ja) | 細胞培養チップ | |
TW201945313A (zh) | 用於在由脆硬材料製成的基板的體積中產生微結構的方法 | |
KR101985639B1 (ko) | 기판의 부착 방법 및 마이크로칩의 제조 방법 | |
KR102065551B1 (ko) | 이어 팁 및 이의 제조방법 | |
US12103246B2 (en) | Method of bonding substrates, microchip and method of manufacturing the same | |
US11542157B2 (en) | Microchip | |
JP5725042B2 (ja) | 成形型、ウェハーレンズ及び光学レンズの製造方法 | |
EP2100433B1 (en) | Light guide key plate and method for manufacturing the same | |
US20220212916A1 (en) | Microchip | |
WO2020021992A1 (ja) | マイクロ流路デバイスとマイクロ流路デバイスの製造方法 | |
JP2006201547A (ja) | 液晶表示素子の製造方法 | |
JP2007183471A (ja) | 光導波路及びその製造方法並びに光導波路モジュール及びその製造方法 | |
JP2000061967A (ja) | 眼用レンズ材料の成形用型及び眼用レンズの製造方法 | |
TWI581031B (zh) | 晶圓級透鏡系統及其製造方法 | |
WO2021107008A1 (ja) | 薄肉成形品の製造方法及びウェルプレート | |
JP2020018999A (ja) | マイクロ流路デバイス | |
JP4266505B2 (ja) | マイクロレンズ基板の貼り合わせ方法及び液晶表示素子の対向基板 | |
KR20060085935A (ko) | 액정 표시 패널의 제조 방법 | |
JP3979841B2 (ja) | 光ディスクの製造方法及び金型 | |
JP2018029101A (ja) | インプリント装置、および物品製造方法 | |
TW201707983A (zh) | 工件的貼合方法及光照射裝置 | |
JP3903707B2 (ja) | 液晶セルの封止方法およびセルギャップ調整装置 | |
TW202432344A (zh) | 光學零件的製造方法 | |
JP2003236858A (ja) | 成形用型 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20759901 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020759901 Country of ref document: EP Effective date: 20210922 |