WO2020170836A1 - 連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法 - Google Patents

連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法 Download PDF

Info

Publication number
WO2020170836A1
WO2020170836A1 PCT/JP2020/004546 JP2020004546W WO2020170836A1 WO 2020170836 A1 WO2020170836 A1 WO 2020170836A1 JP 2020004546 W JP2020004546 W JP 2020004546W WO 2020170836 A1 WO2020170836 A1 WO 2020170836A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
continuous casting
casting machine
mold
flow index
Prior art date
Application number
PCT/JP2020/004546
Other languages
English (en)
French (fr)
Inventor
稜介 益田
佳也 橋本
章敏 松井
周吾 森田
達郎 林田
大河 郡山
亮 森下
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2019/048374 external-priority patent/WO2020170563A1/ja
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112021015867-7A priority Critical patent/BR112021015867B1/pt
Priority to JP2020532835A priority patent/JP6981551B2/ja
Priority to KR1020217026128A priority patent/KR102695836B1/ko
Priority to CN202080013723.9A priority patent/CN113423521B/zh
Priority to EP20759007.6A priority patent/EP3928890B1/en
Priority to US17/422,674 priority patent/US11890671B2/en
Publication of WO2020170836A1 publication Critical patent/WO2020170836A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D37/00Controlling or regulating the pouring of molten metal from a casting melt-holding vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/182Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/186Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using electric, magnetic, sonic or ultrasonic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric

Definitions

  • the present invention relates to a continuous casting machine control method, a continuous casting machine control device, and a slab manufacturing method.
  • Patent Document 1 describes a method of applying a magnetic field to molten steel in a mold. By applying a magnetic field to the molten steel in the mold to control the molten steel flow, the quality of the slab can be stabilized. However, even if a magnetic field is applied to the molten steel, it is difficult to completely control the molten steel flow due to an unexpected operational fluctuation. Therefore, there has been proposed a technique of controlling the operation by using the temperature measurement result of the molten steel by the temperature measurement element embedded in the mold copper plate. For example, Patent Document 2 describes a method of highly accurately estimating the molten steel flow by correcting the molten steel flow in the mold based on the copper plate temperature data in the mold.
  • the molten steel poured into the mold through the immersion nozzle starts to solidify into a shell shape from the wall surface of the mold (hereinafter, the steel solidified into a shell is referred to as a solidified shell), and with the progress of casting. Increase the thickness of the solidified shell. Bubbles and inclusions are suspended in the molten steel poured into the mold, but if these bubbles and inclusions are captured by the solidification shell and solidification proceeds as it is, the above defects occur.
  • Patent Document 3 discloses a technique for suppressing the occurrence of defects due to insufficient molten steel flow velocity at the solidification interface when the casting speed is relatively slow such as about 1.6 m/min. .. Specifically, this technique is based on the position of the discharge port of the immersion nozzle with respect to the position where the moving magnetic field is applied during continuous casting by applying a moving magnetic field so that a braking force acts on the molten steel discharge flow discharged from the immersion nozzle. And the discharge angle is within an appropriate range.
  • Patent Document 2 describes a method for estimating the molten steel flow in the mold with high accuracy, but estimates the molten steel flow index that is a factor that causes impurities to be mixed into the slab in the mold, and sets the molten steel flow index appropriately. Controlling within range is not disclosed or suggested. In order to manufacture a high quality slab, it is necessary to estimate a molten steel flow index that causes impurities to be mixed into the slab in the mold and control the molten steel flow index within an appropriate range. Therefore, it is difficult to manufacture a high quality slab only by the method described in Patent Document 2.
  • Patent Document 3 describes a method of controlling the molten steel flow velocity at the solidification interface within an appropriate range, but this appropriate range is defined only by the geometrical relationship of the equipment.
  • factors that cause fluctuations in the molten steel flow rate such as the inclusion of inclusions in the nozzle holes of the dipping nozzle, which causes uneven flow.
  • the present invention has been made in view of the above problems, and an object thereof is to control a continuous casting machine capable of manufacturing a high quality cast piece, a control device for a continuous casting machine, and a method for manufacturing a cast piece. To provide.
  • Control method of the continuous casting machine using the operating conditions of the continuous casting machine and the temperature data of the molten steel in the mold, the molten steel flow state estimation step of estimating the flow state of the molten steel online in the mold, Based on the flow state of the molten steel estimated in the molten steel flow state estimation step, a molten steel flow index calculation step for online calculating a molten steel flow index that is a factor that causes impurities to mix into the slab in the mold, and the molten steel flow index calculation An operating condition control step of controlling the operating conditions of the continuous casting machine so that the molten steel flow index calculated in the step falls within an appropriate range.
  • the molten steel flow index may include the area of the region where the flow velocity is below a predetermined value in the stirring flow generated by the electromagnetic stirring magnetic field.
  • the molten steel flow index may include the velocity or flow state of the molten steel surface.
  • the molten steel flow index may include an area where the solidification interface flow velocity is below a predetermined value.
  • the molten steel flow index should include the maximum value of the molten steel surface flow velocity.
  • the molten steel flow index should include the maximum value of the molten steel surface turbulence energy.
  • the temperature data of the molten steel in the mold is preferably temperature data including the measured value of the temperature sensor installed in the mold.
  • the operating conditions of the continuous casting machine preferably include at least one of the casting speed, the magnetic flux density of the electromagnetic stirring magnetic field, and the nozzle immersion depth.
  • the operating condition control step the casting speed, the magnetic flux density of the electromagnetic stirring magnetic field, by estimating at least one of the nozzle immersion depth minute flow state of the molten steel by estimating for each control cycle, It is preferable to include a step of calculating the sensitivity of the fluidized state of the molten steel to the change in the operating condition.
  • the operation condition control step may include a step of explicitly calculating and controlling mutual interference between the casting speed, the magnetic flux density of the electromagnetic stirring magnetic field, and the nozzle immersion depth.
  • the control device of the continuous casting machine using the operating conditions of the continuous casting machine and the temperature data of the molten steel in the mold, a molten steel flow state estimation unit for estimating the flow state of the molten steel in the mold online, and Based on the flow state of the molten steel estimated by the molten steel flow state estimation unit, a molten steel flow index calculation unit that online calculates a molten steel flow index that is a factor that causes impurities to mix into the slab in the mold, and the molten steel flow index calculation An operating condition control unit that controls the operating conditions of the continuous casting machine so that the molten steel flow index calculated by the unit falls within an appropriate range.
  • the method for producing a cast product according to the present invention includes the step of producing a cast product while controlling the continuous casting machine using the control method for a continuous casting machine according to the present invention.
  • the continuous casting machine control method According to the continuous casting machine control method, the continuous casting machine control device, and the slab production method according to the present invention, high quality slabs can be produced.
  • FIG. 1 is a schematic diagram showing a configuration example of a continuous casting machine to which the present invention is applied.
  • FIG. 2 is a block diagram showing the configuration of the control device of the continuous casting machine which is an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a configuration example of the immersion nozzle.
  • FIG. 4 is a diagram showing the relationship between the amount of change in the magnetic flux density of the electromagnetic stirring magnetic field and the amount of change in the molten steel surface maximum flow velocity under two conditions in which the magnetic flux density of the electromagnetic stirring magnetic field is different.
  • FIG. 5 is a flowchart showing a flow of operation condition control processing by the controller of the continuous casting machine according to the embodiment of the present invention.
  • FIG. 5 is a flowchart showing a flow of operation condition control processing by the controller of the continuous casting machine according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of changes in the low flow velocity area due to changes in the magnetic flux density of the electromagnetic stirring magnetic field.
  • FIG. 7 is a figure which shows an example of the change of the molten steel surface maximum flow velocity with the change of the magnetic flux density of an electromagnetic stirring magnetic field.
  • FIG. 8 is a diagram showing an example of changes in the molten steel surface maximum flow velocity with changes in the magnetic flux density of the electromagnetic stirring magnetic field and the nozzle immersion depth.
  • FIG. 9 is a diagram showing an example of a change in the defect mixing rate of a slab depending on the presence or absence of control of operating conditions.
  • FIG. 10 is a timing chart showing an example of the operating condition control processing.
  • FIG. 1 is a schematic diagram showing a configuration example of a continuous casting machine to which the present invention is applied.
  • a mold 4 is provided vertically below a tundish 3 filled with molten steel 2, and a supply port for the molten steel 2 to the mold 4 is provided at the bottom of the tundish 3.
  • the dipping nozzle 5 is provided.
  • Molten steel 2 is continuously poured from a tundish 3 into a mold 4, cooled by a mold 4 having a cooling water channel inside, and drawn from the lower part of the mold 4 to form a slab.
  • the opening of the immersion nozzle 5 is adjusted by a sliding gate nozzle or the like (not shown) provided immediately above the immersion nozzle 5 according to the extraction speed. Is adjusted.
  • the mold 4 is provided with a plurality of temperature sensors on the F surface and the B surface, which are both ends in the thickness direction of the cast slab. Each temperature sensor measures the temperature of the molten steel 2 at each installation position. Further, the mold 4 is provided with a coil (not shown) that generates an electromagnetic stirring magnetic field that induces a stirring flow in the molten steel 2 in the mold 4.
  • FIG. 2 is a block diagram showing the configuration of the control device of the continuous casting machine which is an embodiment of the present invention.
  • a control device 10 of a continuous casting machine is configured by an information processing device such as a computer, and an internal arithmetic processing device such as a CPU (Central Processing Unit) is a computer program.
  • an information processing device such as a computer
  • an internal arithmetic processing device such as a CPU (Central Processing Unit) is a computer program.
  • CPU Central Processing Unit
  • the molten steel flow state estimation unit 11 uses a known technique such as the molten steel flow state estimation method described in Patent Document 2 to estimate the flow state of the molten steel 2 in the mold 4 online.
  • the molten steel flow state estimation unit 11 uses the physical model such as computational fluid dynamics in consideration of the turbulent flow model and the operating conditions of the continuous casting machine 1 and the measured value of the temperature sensor installed in the mold 4. From this, the flow state of the molten steel 2 in the mold 4 is estimated online.
  • Examples of operating conditions of the continuous casting machine 1 include casting width, casting speed, magnetic flux density of electromagnetic stirring magnetic field, immersion depth of the immersion nozzle 5 (nozzle immersion depth), and the like.
  • the molten steel flow index calculation unit 12 uses the data on the flow state of the molten steel 2 estimated by the molten steel flow state estimation unit 11 to determine the molten steel flow index that causes impurities to mix into the slab (slab) in the mold 4. Estimate online. Here, as the impurities mixed into the slab, there are inclusions originating from the mold powder.
  • the mold powder is a lubricant that is constantly supplied to the upper surface of the molten steel poured into the mold 4 to prevent seizure between the mold 4 and the slab, and also has a heat retaining effect for the molten steel 2.
  • the mold powder is in contact with the molten steel 2 in a molten state, and the molten steel 2 is flowing at a certain flow velocity.
  • the flow velocity of the molten steel 2 at the contact position with the mold powder is referred to as the surface velocity of the molten steel 2. Therefore, if the surface flow velocity of the molten steel 2 becomes excessively high, the molten powder may be caught in the molten steel 2 to cause inclusion defects. Further, inclusions such as alumina rise together with bubbles of Ar gas or the like supplied from the immersion nozzle 5 in accordance with the molten steel flow, and are absorbed by the molten powder layer to clean the molten steel 2.
  • the solidification interface flow velocity means the flow velocity of the molten steel in the region near the solidification shell in the mold.
  • the molten steel flow index calculation unit 12 calculates the molten steel flow state calculation mesh (width direction and thickness) of the uppermost step (meniscus: height position of molten steel surface) of the mold 4 from the data of the flowing state of the molten steel 2.
  • the maximum value of the molten steel flow velocity in all directions is calculated as the molten steel surface maximum flow velocity. Further, the molten steel flow index calculation unit 12 uses the data of the flowing state of the molten steel 2 in the molten steel flowing state calculation mesh (the entire area in the width direction) at predetermined positions in the height direction (casting direction) and the thickness direction of the mold 4. The area of the molten steel flow state calculation mesh in which the molten steel flow velocity is equal to or lower than a predetermined value is calculated.
  • the molten steel flow index calculation unit 12 determines the area of the molten steel flow state calculation mesh in which the molten steel flow velocity is equal to or lower than a predetermined value in the entire region in the width direction and in the mold height direction at least 200 mm below the meniscus position. The long sides of the mold are summed up on each side, and the value is taken as the low flow velocity area. Further, the molten steel flow index calculation unit 12 determines the maximum value of the turbulent flow energy in the molten steel flow state calculation mesh (entire region in the width direction and the thickness direction) of the uppermost stage of the mold 4 from the data of the flowing state of the molten steel 2. Calculated as the maximum value of surface turbulence energy.
  • the turbulent flow energy is a value that indicates the strength of the turbulence of the flow, and is given based on the magnitude of the deviation from the time average value of the time-varying flow velocity at a certain spatial position.
  • the turbulent flow energy is given by the following mathematical formula.
  • U is the instantaneous value of the fluid velocity at a certain spatial position
  • U ave is the time average value of the fluid velocity at a certain spatial position
  • U i is the time average value of the fluid velocity at a certain spatial position. Indicates a shift.
  • the low flow velocity area is an effective index because it has an effect of reducing impurities (air bubbles and inclusions) captured by the molten steel 2 in the solidified shell when the molten steel flow at the solidification interface of the slab is fast.
  • the flow velocity to be determined as a low flow velocity may be individually determined according to the steel type component, the required quality level, the mold size, etc., and is not fixed. According to the investigation by the present inventors, a value less than 0.05 m/s can be adopted as a criterion for determining a low flow velocity.
  • the low flow velocity area is, for example, when the unit area of the molten steel flow state calculation mesh is 1 cm 2 (0.0001 m 2 ), and the unit mesh determined to have a low flow velocity on one side of the long side of the mold is 100 mesh, It is assumed that the low flow velocity area is 0.01 m 2 .
  • the appropriate value of the low flow velocity area may be individually determined according to the steel type component, the required quality level, the mold size, etc., and should not be set to a constant value. According to a study by the present inventors, when the required quality level is strict, 0.01 m 2 or less is used, and when the required quality level is not so strict, 0.02 m 2 or less is used as a guideline. Can be adopted.
  • the molten steel surface maximum flow velocity is an effective index because it has the effect of reducing the entrainment of mold powder into the molten steel 2 when the molten steel flow on the molten steel surface is slow. Further, the maximum value of the molten steel surface turbulent flow energy is an effective index for the same reason as the molten steel surface maximum flow velocity.
  • the operating condition control unit 13 determines the casting speed, the magnetic flux density of the electromagnetic stirring magnetic field, and the nozzle immersion depth according to the molten steel flow index. Control operating conditions such as For example, when the area where the coagulation interface flow velocity is equal to or lower than a predetermined value exceeds a predetermined value, the operating conditions are controlled so that the magnetic flux density of the electromagnetic stirring magnetic field is increased and the electromagnetic stirring force is strengthened. This is because if the flow velocity is further applied to the molten steel in the mold by the electromagnetic stirring force, the molten steel flow velocity will increase even at the position where the solidification interface flow velocity is below a predetermined value.
  • the operating condition may be controlled so that the depth of the immersion nozzle is shallow. This is because when the depth of the immersion nozzle is made shallower, the influence of the discharge flow of the molten steel discharged from the immersion nozzle appears more on the molten steel surface side and acts to increase the molten steel flow velocity on the molten steel surface.
  • the operating conditions may be controlled so as to increase the depth of the immersion nozzle while increasing the magnetic flux density of the electromagnetic stirring magnetic field.
  • the depth of the immersion nozzle is increased, the influence of the molten steel discharge flow discharged from the immersion nozzle is less likely to appear on the molten steel surface side, and acts to reduce the molten steel surface flow velocity and/or the molten steel surface turbulent energy. is there.
  • the flow state of the molten steel 2 in the mold 4 changes according to the operating state of the continuous casting machine 1.
  • the immersion nozzle 5 having the discharge ports 5a at two positions on the left and right inclusion of alumina or the like adheres to the discharge ports 5a on one side, so that the molten steel in the mold 4 is melted.
  • This drift occurs even under the same operating conditions such as the casting width, casting speed, and magnetic flux density of the electromagnetic stirring magnetic field. Therefore, the flow state of molten steel including drift is measured using the measurement value of the temperature sensor installed in the mold 4.
  • the molten steel flow index can be accurately estimated online by accurately reproducing.
  • the molten steel flow index calculation unit 12 by correcting the calculation conditions in the molten steel flow index calculation unit 12 so as to correspond to the measured values of the temperature sensor installed in the mold 4 and sequentially updating the calculated values, the molten steel flow index can be obtained more accurately online.
  • the number of temperature sensors installed, the pitch, and the sampling interval of the measurement values may be set within a range that is possible depending on the environment in which the present invention is implemented. According to the investigation by the present inventors, when the temperature sensors are arranged at a pitch of 50 mm or less and a pitch of 100 mm or less in the casting direction and the width direction, respectively, and measurement values are collected at intervals of 1 second or less, the molten steel flow index calculation The calculation accuracy of the unit 12 is further improved.
  • the low flow velocity area was considered as the area where the solidification interface flow velocity is below a predetermined value, but the molten steel flow index is not limited to the flow velocity of the solidification interface itself. If there is a region with a low flow velocity in the molten steel flow (stirring flow) caused by the electromagnetic stirring magnetic field, etc., such a region will adversely affect the capture of bubbles and inclusions at the solidification interface. It can be used as an indicator. As described above, the low flow velocity area is not limited to the solidification interface flow velocity, and various ways of definition are possible.
  • the maximum value of the molten steel surface flow velocity and the maximum value of the molten steel surface turbulent flow energy represent the surface state of the molten steel and are associated with the entrainment of mold powder as described above. Therefore, the molten steel flow index is not limited to these maximum values, and can be used as the molten steel flow index by appropriately defining the velocity or flow state of the molten steel surface.
  • FIGS. 4(a) and 4(b) are diagrams showing the relationship between the change amount of the magnetic flux density of the electromagnetic stirring magnetic field and the change amount of the molten steel surface maximum flow velocity under two conditions in which the magnetic flux density of the electromagnetic stirring magnetic field is different. Under the conditions shown in FIG. 4A, the molten steel surface maximum flow velocity hardly changes even if the magnetic flux density of the electromagnetic stirring magnetic field is changed.
  • the second point is that there is mutual interference between operating conditions and molten steel flow index.
  • increasing the casting rate decreases the low flow area while increasing the molten steel surface maximum flow rate.
  • the maximum value of the molten steel surface maximum flow velocity and the molten steel surface turbulent flow energy can be changed by changing the immersion depth of the immersion nozzle.
  • the change amount of the operating condition is implicitly obtained by the convergence calculation, the calculation time becomes long and it becomes difficult to control dynamically. Therefore, it is desirable to explicitly calculate the change amount of the operating condition in consideration of the interference and reflect it in the operating condition in the next control cycle.
  • FIG. 5 is a flowchart showing a flow of operation condition control processing by the controller of the continuous casting machine according to the embodiment of the present invention.
  • the flowchart shown in FIG. 5 is started each time the molten steel flow index calculation unit 12 calculates the molten steel flow index, and the operation condition control process proceeds to step S1.
  • the operating conditions A, B, and C are changed in order to control the low flow velocity area S, the molten steel surface maximum velocity V, and the maximum value E of the molten steel surface turbulence energy as the molten steel flow index. ..
  • step S1 the operating condition control unit 13 determines whether all the molten steel flow indexes calculated by the molten steel flow index calculation unit 12 are within the proper range. As a result of the determination, when all the molten steel flow indexes are within the proper range (step S1: Yes), the operating condition control unit 13 does not change the operating condition and ends the series of operating condition control processing. On the other hand, when at least one of the molten steel flow indexes is out of the appropriate range (step S1: No), the operating condition control unit 13 advances the operating condition control process to the process of step S2.
  • the operating condition control unit 13 estimates the molten steel flow state when the operating conditions to be operated are slightly changed, and calculates the molten steel flow index. If the amount of change in the operating conditions is changed from the original operating conditions, the estimation accuracy of the molten steel flow distribution may be deteriorated. Therefore, it is preferable to change the amount of change within 10% of the original operating conditions. Then, the operating condition control unit 13 calculates the difference between the calculated molten steel flow index and the molten steel flow index calculated by the molten steel flow index calculation unit 12, and the sensitivity of the molten steel flow index when the respective operating conditions are changed. The sensitivity matrix X is obtained by calculating the vector.
  • Sensitivity vector of molten steel flow index when operating condition A is changed ( ⁇ S/ ⁇ A, ⁇ V/ ⁇ A, ⁇ E/ ⁇ A)
  • sensitivity vector of molten steel flow index when operating condition B is changed ( ⁇ S/ ⁇ B, ⁇ V/ ⁇ B, ⁇ E/ ⁇ B)
  • sensitivity vector ( ⁇ S/ ⁇ C, ⁇ V, ⁇ C, ⁇ E/ ⁇ ) of molten steel flow index when operating condition C is changed.
  • the sensitivity matrix X when C) is obtained is shown in the following mathematical expression (1).
  • the operating condition control unit 13 obtains the deviation vector Y by calculating the difference value between the molten steel flow index calculated by the molten steel flow index calculation unit 12 and each appropriate range.
  • the deviation vector Y is expressed by the following equation (2). To be done. As a result, the process of step S3 is completed, and the operation condition control process proceeds to step S4.
  • the operating condition control unit 13 uses the sensitivity matrix X obtained by the process of step S2 and the deviation vector Y obtained by the process of step S3 to change the optimal operating condition by the least square method.
  • the following mathematical expression (3) shows the relationship between the sensitivity matrix X, the deviation vector Y, the operating condition change amount vector Z, and the error vector ⁇ .
  • the least-squares method is a method of obtaining a change amount vector Z that minimizes the sum of squares of the error vector ⁇ in Expression (3) as an optimal solution, and the change amount vector Z of the optimum operating condition is expressed by Expression (4) below.
  • step S4 the process of step S4 is completed, and the operation condition control process proceeds to step S5.
  • Operating conditions Specifically, the operating condition control unit 13 uses the operating conditions A+ ⁇ A, B+ ⁇ B, C+ ⁇ C in the next control cycle. As a result, the process of step S5 is completed, and the series of operating condition control processes is completed.
  • the present invention was applied in continuous casting of ultra low carbon steel.
  • the mold size is 1200 mm in width and 260 mm in thickness, and the casting speed in the steady state is 1.6 m/min.
  • the proper range of the low flow velocity area was set to 0.02 m 2 or less, and the proper range of the molten steel surface maximum flow velocity was set to 0.05 to 0.30 m/s for the operation.
  • the low flow velocity area calculated during the operation of the continuous casting machine 1 became larger than the appropriate range, so the magnetic flux density of the electromagnetic stirring magnetic field was increased by 5%.
  • the molten steel stirring force in the mold 4 became strong, the solidification interface flow velocity increased, and the low flow velocity area decreased.
  • the control method for the continuous casting machine according to the present invention can produce a slab of excellent quality.
  • the magnetic flux density of the electromagnetic stirring magnetic field increases, the casting speed decreases, and the low flow velocity of the virtual plant
  • the area and the maximum flow velocity of molten steel surface could be controlled near the upper limit of the proper range. From this fact, by estimating the molten steel flow index (maximum value of molten steel surface maximum flow velocity, low flow velocity area, and molten steel surface turbulence energy) online, the operating conditions for keeping the molten steel flow index within the appropriate range are controlled at any time. It was confirmed that it was possible to manufacture high quality slabs.
  • the broken line L1 is the low flow velocity area of the virtual plant
  • the line L2 is the low flow velocity area calculated by the molten steel flow index calculation unit 12
  • the broken line L3 is the molten steel surface maximum flow velocity of the virtual plant.
  • Line L4 indicates the molten steel surface maximum flow velocity calculated by the molten steel flow index calculation unit 12.
  • a control method for a continuous casting machine a control device for a continuous casting machine, and a production method for a slab, which are capable of producing a high quality slab.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Continuous Casting (AREA)

Abstract

本発明の一実施形態である連続鋳造機の制御装置10は、連続鋳造機1の操業条件及び鋳型内の溶鋼の温度データを用いて、鋳型内における溶鋼の流動状態をオンラインで推定する溶鋼流動状態推定部11と、溶鋼流動状態推定部11によって推定された溶鋼の流動状態に基づいて、鋳型内で鋳片へ不純物が混入する要因となる溶鋼流動指標をオンラインで算出する溶鋼流動指標算出部12と、溶鋼流動指標算出部12によって算出された溶鋼流動指標が適正範囲内になるように、連続鋳造機1の操業条件を制御する操業条件制御部13と、を備えている。

Description

連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法
 本発明は、連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法に関する。
 近年、連続鋳造機において製造されるスラブ等の鋳片に対する高品質化の要求がますます高まっている。このため、連続鋳造機の鋳型内における溶鋼の状況を制御する技術が開発されている。例えば特許文献1には、鋳型内の溶鋼に磁場を印加する方法が記載されている。鋳型内の溶鋼に磁場を印加して溶鋼流動を制御することにより、鋳片の品質を安定化させることができる。しかしながら、溶鋼に磁場を印加しても予期せぬ操業変動に起因して完全には溶鋼流動を制御することは困難である。このため、鋳型銅板に埋め込まれた測温素子による溶鋼の測温結果を併用して操業を制御する技術が提案されている。例えば特許文献2には、鋳型内銅板温度データに基づいて鋳型内の溶鋼流動を補正することにより、溶鋼流動を高精度に推定する方法が記載されている。
 なお、鋳片に要求される品質の一つとして、鋳片の表層近傍に混入した気泡や介在物等の不純物による欠陥が少ないことが挙げられる。連続鋳造機では、浸漬ノズルを介して鋳型内に注湯された溶鋼は、鋳型壁面から殻状に凝固を開始し(以下、殻状に凝固した鋼を凝固シェルと称する)、鋳造の進行と共に凝固シェル厚みを増加させていく。鋳型内に注湯される溶鋼中には気泡や介在物が懸濁しているが、これら気泡や介在物が凝固シェルに捕捉されてそのまま凝固が進行すると上記の欠陥となる。
 溶鋼中に懸濁した気泡や介在物は、凝固界面の溶鋼流速が速いほど凝固シェルに捕捉されにくいことが知られており、この観点から鋳型内の溶鋼流動を適切に制御する技術開発も行なわれている。例えば特許文献3には、鋳造速度が1.6m/min程度と比較的遅い場合等において、凝固界面での溶鋼流速が不足して欠陥が発生することを抑制するための技術が開示されている。具体的には、この技術は、浸漬ノズルから吐出される溶鋼の吐出流に制動力が作用するように移動磁場を印加して連続鋳造する際、移動磁場印加位置に対する浸漬ノズルの吐出口の位置及び吐出角度を適正な範囲とするものである。
特開平10-305353号公報 特開2016-16414号公報 特開2005-152996号公報
 特許文献2には、鋳型内の溶鋼流動を高精度に推定する方法が記載されているが、鋳型内で鋳片へ不純物が混入する要因となる溶鋼流動指標を推定し、溶鋼流動指標を適正範囲内に制御することは開示、示唆されていない。高品質な鋳片を製造するためには、鋳型内で鋳片へ不純物が混入する要因となる溶鋼流動指標を推定し、溶鋼流動指標を適正範囲内に制御することが必要である。このため、特許文献2に記載の方法だけでは、高品質な鋳片を製造することは困難である。
 一方、特許文献3には、凝固界面での溶鋼流速を適正範囲に制御する方法が記載されているが、この適正範囲はあくまで設備の幾何学的関係のみで規定されたものである。しかしながら、実際の連続鋳造では、浸漬ノズルのノズル孔に介在物が付着して偏流が生じる等の溶鋼流速の変動要因があり、こうした変動が生じた場合にも、その変動状況に応じて凝固界面での溶鋼流速を適正範囲内に制御する必要がある。すなわち、鋳型内で気泡や介在物等の不純物が鋳片へ混入する要因となる凝固界面の溶鋼流速の低下を、連続鋳造機の操業条件及び鋳型内の溶鋼の温度データを用いて溶鋼流動指標として推定し、その推定結果に基づき溶鋼流動指標を適正範囲内に制御することによって、より高品質な鋳片を製造することが可能になる。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、高品質な鋳片を製造可能な連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法を提供することにある。
 本発明に係る連続鋳造機の制御方法は、連続鋳造機の操業条件及び鋳型内の溶鋼の温度データを用いて、鋳型内における溶鋼の流動状態をオンラインで推定する溶鋼流動状態推定ステップと、前記溶鋼流動状態推定ステップにおいて推定された溶鋼の流動状態に基づいて、鋳型内で鋳片へ不純物が混入する要因となる溶鋼流動指標をオンラインで算出する溶鋼流動指標算出ステップと、前記溶鋼流動指標算出ステップにおいて算出された溶鋼流動指標が適正範囲内になるように、前記連続鋳造機の操業条件を制御する操業条件制御ステップと、を含む。
 前記溶鋼流動指標には、電磁攪拌磁場により生じる攪拌流の中で流速が所定値以下となっている領域の面積が含まれているとよい。
 前記溶鋼流動指標には、溶鋼表面の速度又は流動状態が含まれているとよい。
 前記溶鋼流動指標には、凝固界面流速が所定値以下となる面積が含まれているとよい。
 前記溶鋼流動指標には、溶鋼表面流速の最大値が含まれているとよい。
 前記溶鋼流動指標には、溶鋼表面乱流エネルギーの最大値が含まれているとよい。
 前記鋳型内の溶鋼の温度データは、鋳型に設置された温度センサの測定値を含む温度データであるとよい。
 前記連続鋳造機の操業条件には、鋳造速度、電磁撹拌磁場の磁束密度、及びノズル浸漬深さのうちの少なくとも一つが含まれているとよい。
 前記操業条件制御ステップは、鋳造速度、電磁撹拌磁場の磁束密度、及びノズル浸漬深さのうちの少なくとも一つを微小に変化させた場合の溶鋼の流動状態を制御周期毎に推定することにより、操業条件の変更に対する溶鋼の流動状態の感度を算出するステップを含むとよい。
 前記操業条件制御ステップは、鋳造速度、電磁撹拌磁場の磁束密度、及びノズル浸漬深さの間の相互干渉を陽的に算出して制御するステップを含むとよい。
 本発明に係る連続鋳造機の制御装置は、連続鋳造機の操業条件及び鋳型内の溶鋼の温度データを用いて、鋳型内における溶鋼の流動状態をオンラインで推定する溶鋼流動状態推定部と、前記溶鋼流動状態推定部によって推定された溶鋼の流動状態に基づいて、鋳型内で鋳片へ不純物が混入する要因となる溶鋼流動指標をオンラインで算出する溶鋼流動指標算出部と、前記溶鋼流動指標算出部によって算出された溶鋼流動指標が適正範囲内になるように、前記連続鋳造機の操業条件を制御する操業条件制御部と、を備える。
 本発明に係る鋳片の製造方法は、本発明に係る連続鋳造機の制御方法を用いて連続鋳造機を制御しながら鋳片を製造するステップを含む。
 本発明に係る連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法によれば、高品質な鋳片を製造することができる。
図1は、本発明が適用される連続鋳造機の一構成例を示す模式図である。 図2は、本発明の一実施形態である連続鋳造機の制御装置の構成を示すブロック図である。 図3は、浸漬ノズルの一構成例を示す模式図である。 図4は、電磁撹拌磁場の磁束密度が異なる2条件における、電磁撹拌磁場の磁束密度の変更量と溶鋼表面最大流速の変化量との関係を示す図である。 図5は、本発明の一実施形態である連続鋳造機の制御装置による操業条件制御処理の流れを示すフローチャートである。 図6は、電磁撹拌磁場の磁束密度の変化に伴う低流速面積の変化の一例を示す図である。 図7は、電磁撹拌磁場の磁束密度の変化に伴う溶鋼表面最大流速の変化の一例を示す図である。 図8は、電磁撹拌磁場の磁束密度及びノズル浸漬深さの変化に伴う溶鋼表面最大流速の変化の一例を示す図である。 図9は、操業条件の制御の有無に伴うスラブの欠陥混入率の変化の一例を示す図である。 図10は、操業条件制御処理の実施例を示すタイミングチャートである。
 以下、図面を参照して、本発明の一実施形態である連続鋳造機の制御装置の構成及びその動作について説明する。
〔連続鋳造機の構成〕
 まず、図1を参照して、本発明が適用される連続鋳造機の一構成例について説明する。   
 図1は、本発明が適用される連続鋳造機の一構成例を示す模式図である。図1に示すように、この連続鋳造機1では、溶鋼2が満たされたタンディッシュ3の鉛直方向下方に鋳型4が設けられ、タンディッシュ3の底部に鋳型4への溶鋼2の供給口となる浸漬ノズル5が設けられている。溶鋼2は、タンディッシュ3から連続的に鋳型4に注がれ、内部に冷却水の水路が設けられた鋳型4により冷却され、鋳型4の下部から引き抜かれてスラブとなる。その際、鋳型4に注がれる溶鋼2の重量と引き抜かれるスラブの重量を合わせるため、引き抜き速度に応じて浸漬ノズル5の直上に設けられた図示しないスライディングゲートノズル等により浸漬ノズル5の開度が調整される。鋳型4には、鋳造されるスラブの厚み方向の両端となるF面及びB面に、複数の温度センサが設置されている。各温度センサは、各設置位置での溶鋼2の温度を測定する。また、鋳型4には、鋳型4内の溶鋼2に撹拌流を誘起する電磁撹拌磁場を発生させる図示しないコイルが設置されている。
〔制御装置の構成〕
 次に、図2を参照して、本発明の一実施形態である連続鋳造機の制御装置の構成について説明する。
 図2は、本発明の一実施形態である連続鋳造機の制御装置の構成を示すブロック図である。図2に示すように、本発明の一実施形態である連続鋳造機の制御装置10は、コンピュータ等の情報処理装置によって構成され、CPU(Central Processing Unit)等の内部の演算処理装置がコンピュータプログラムを実行することにより、溶鋼流動状態推定部11、溶鋼流動指標算出部12、及び操業条件制御部13として機能する。
 溶鋼流動状態推定部11は、特許文献2に記載の溶鋼の流動状態推定方法等の周知の技術を利用して、鋳型4内における溶鋼2の流動状態をオンラインで推定する。具体的には、溶鋼流動状態推定部11は、乱流モデルを考慮した数値流体力学等の物理モデルを用いて、連続鋳造機1の操業条件及び鋳型4に設置されている温度センサの測定値から鋳型4内における溶鋼2の流動状態をオンラインで推定する。連続鋳造機1の操業条件としては、鋳造幅、鋳造速度、電磁撹拌磁場の磁束密度、浸漬ノズル5の浸漬深さ(ノズル浸漬深さ)等を例示できる。
 溶鋼流動指標算出部12は、溶鋼流動状態推定部11によって推定された溶鋼2の流動状態のデータを用いて、鋳型4内でスラブ(鋳片)へ不純物が混入する要因となる溶鋼流動指標をオンラインで推定する。ここで、スラブへ混入する不純物としては、モールドパウダーを起源とした介在物がある。モールドパウダーは、鋳型4内に注入された溶鋼の上表面に常時供給され、鋳型4とスラブとの焼き付きを防止する潤滑剤であり、溶鋼2の保温効果等も有している。鋳型4内の溶鋼2の最上部では、モールドパウダーは溶融状態で溶鋼2と接触し、溶鋼2はある流速で流動している。ここで、本発明では、モールドパウダーとの接触位置における溶鋼2の流速を溶鋼2の表面流速と称する。そのため、溶鋼2の表面流速が過大となると、溶融パウダが溶鋼2の内部に巻き込まれて介在物欠陥となる可能性がある。また、アルミナ等の介在物は、浸漬ノズル5から供給されるArガス等の気泡と共に溶鋼流動にあわせて上昇し、溶融パウダ層に吸収されて溶鋼2の清浄化が行われる。しかし、凝固界面流速が遅い場合には、介在物や気泡が凝固シェル側にトラップされ、製品時に表面欠陥の原因となる可能性がある。ここで、凝固界面流速とは、鋳型内の凝固シェルの近傍領域における溶鋼の流速のことを意味する。
 このため、鋳型4内でスラブへ不純物が混入する要因を表す溶鋼流動指標としては、鋳型4内の溶鋼表面流速の最大値(溶鋼表面最大流速)、凝固界面流速が所定値以下となる面積(低流速面積)、溶鋼表面乱流エネルギーの最大値を例示することができる。具体的には、溶鋼流動指標算出部12は、溶鋼2の流動状態のデータから、鋳型4の最上段部(メニスカス:溶鋼湯面の高さ位置)の溶鋼流動状態計算メッシュ(幅方向及び厚み方向の全領域)における溶鋼流速の最大値を溶鋼表面最大流速として算出する。また、溶鋼流動指標算出部12は、溶鋼2の流動状態のデータから、鋳型4の高さ方向(鋳造方向)及び厚み方向の所定位置にある溶鋼流動状態計算メッシュ(幅方向は全領域)において溶鋼流速が所定値以下である溶鋼流動状態計算メッシュの面積を算出する。例えば溶鋼流動指標算出部12は、幅方向の全領域、且つ、鋳型高さ方向には少なくともメニスカス位置から200mm下方までの範囲で、溶鋼流速が所定値以下である溶鋼流動状態計算メッシュの面積を鋳型長辺の片面毎に合計して、その値をそれぞれ低流速面積とする。また、溶鋼流動指標算出部12は、溶鋼2の流動状態のデータから、鋳型4の最上段部の溶鋼流動状態計算メッシュ(幅方向、厚み方向の全領域)における乱流エネルギーの最大値を溶鋼表面乱流エネルギーの最大値として算出する。
 ここで、乱流エネルギーとは、流れの乱れの強さを示す値であり、ある空間位置において時間的に変動する流速の時間平均値からのずれの大きさに基づき与えられる。具体的には、乱流エネルギーは以下に示す数式で与えられる。
 k=(1/2)・Ui 2
 U=Uave+Ui
 kは乱流エネルギー、Uはある空間位置における流体の流速の瞬時値、Uaveはある空間位置における流体の流速の時間平均値、Uiはある空間位置における流体の流速の時間平均値からのずれを示す。
 低流速面積は、スラブの凝固界面における溶鋼流動が速い場合には溶鋼2により凝固シェルに補足される不純物(気泡や介在物)を低減できる効果があることから有効な指標となる。ここで低流速であると判定すべき流速は、鋼種成分や要求される品質レベル及び鋳型寸法等に応じて個別に定めればよく、一定値に定めるべきものではない。なお、本発明者らの調査によれば、低流速と判定する目安として、0.05m/s未満を採用することができる。また、低流速面積は、例えば、溶鋼流動状態計算メッシュの単位面積を1cm(0.0001m)とした場合、鋳型長辺の片面について低流速と判定された単位メッシュが100メッシュあるとき、低流速面積が0.01mあるとする。また、低流速面積の適正値についても、鋼種成分や要求される品質レベル及び鋳型寸法等に応じて個別に定めればよく、一定値に定めるべきものではない。なお、本発明者らの調査によれば、要求される品質レベルが厳しい場合は、0.01m以下、要求される品質レベルがさほど厳しくない場合は、0.02m以下、をそれぞれ目安として採用することができる。溶鋼表面最大流速は、溶鋼表面における溶鋼流動が遅い場合にはモールドパウダーの溶鋼2内への巻き込みを低減できる効果があることから有効な指標となる。また、溶鋼表面乱流エネルギーの最大値は、溶鋼表面最大流速と同様な理由から有効な指標となる。
 操業条件制御部13は、溶鋼流動指標算出部12によって算出された溶鋼流動指標を適正範囲内に制御するために、溶鋼流動指標に応じて鋳造速度、電磁撹拌磁場の磁束密度、及びノズル浸漬深さ等の操業条件を制御する。例えば、凝固界面流速が所定値以下となる面積が予め定めた値を超えた場合は、電磁撹拌磁場の磁束密度を大きくして電磁撹拌力を強めるよう操業条件を制御する。電磁撹拌力によって鋳型内の溶鋼にさらに流速を付与すれば、凝固界面流速が所定値以下となった位置においても、溶鋼流速が増加するよう作用するからである。また、電磁撹拌磁場の磁束密度を大きくしても、依然、凝固界面流速が所定値以下となる面積が予め定めた値を超えており、しかも凝固界面流速が所定値以下となる位置が溶鋼表面に近い場合は、浸漬ノズルの深さを浅くするよう操業条件を制御してもよい。浸漬ノズルの深さを浅くすると、浸漬ノズルから吐出される溶鋼の吐出流の影響が、より溶鋼表面側に現れ、溶鋼表面の溶鋼流速を増加させるよう作用するからである。一方、電磁撹拌磁場の磁束密度を大きくすることで、凝固界面流速が所定値以下となる面積が予め定めた値未満となったものの、溶鋼表面流速及び/又は溶鋼表面乱流エネルギーが所定値を超える場合は、電磁撹拌磁場の磁束密度を大きくしたまま、浸漬ノズルの深さを深くするよう操業条件を制御してもよい。浸漬ノズルの深さを深くすると、浸漬ノズルから吐出される溶鋼の吐出流の影響が、溶鋼表面側に現れにくくなり、溶鋼表面流速及び/又は溶鋼表面乱流エネルギーを減少させるよう作用するからである。
 一般に、鋳型4内における溶鋼2の流動状態は連続鋳造機1の操業状態の違いに応じて変化する。例えば図3に示すように、左右の2箇所に吐出口5aがある浸漬ノズル5を使用している場合、片側の吐出口5aにアルミナ等の介在物が付着することにより、鋳型4内における溶鋼2の吐出流に左右差(偏流)が生じる場合がある。この偏流は、鋳造幅、鋳造速度、電磁撹拌磁場の磁束密度といった操業条件が同じあっても発生するため、鋳型4に設置されている温度センサの測定値を用いて偏流を含む溶鋼の流動状態を精度よく再現することにより精度よく溶鋼流動指標をオンラインで推定する。
 すなわち、鋳型4に設置されている温度センサの測定値に対応するよう、溶鋼流動指標算出部12における計算条件を修正し、計算値を逐次更新することで、オンラインでより精度よく溶鋼流動指標を推定する。なお、温度センサの設置数やピッチ及び測定値のサンプリング間隔は、本発明を実施する環境等に応じて可能な範囲で定めればよい。本発明者らの調査によれば、温度センサを、鋳造方向及び幅方向にそれぞれ50mmピッチ以下及び100mmピッチ以下で配置し、測定値を1秒間隔以下で採取するようにすると、溶鋼流動指標算出部12の計算精度がより向上する。溶鋼流動指標をオンラインで推定することにより、欠陥発生リスクが少ない適正範囲内で操業ができているかを把握でき、操業条件を変更することによって溶鋼流動指標を適正範囲内に制御することができる。結果、高品質なスラブを製造することができる。
 なお、本実施形態では、低流速面積を凝固界面流速が所定値以下となる面積であるとして検討したが、溶鋼流動指標としては、凝固界面そのものの流速には限られない。電磁攪拌磁場等により生じる溶鋼流動(攪拌流)の中で低流速となっている領域があれば、このような領域は凝固界面への気泡や介在物補足に悪影響を及ぼすから、これを溶鋼流動指標とすることができる。このように低流速面積は凝固界面流速に限られずに種々の定義の仕方が可能である。同様に、溶鋼表面流速の最大値及び溶鋼表面乱流エネルギーの最大値は、溶鋼の表面状態を表しており、上記したようにモールドパウダーの巻き込みに関連する。従って、溶鋼流動指標としては、これら最大値に限られず、溶鋼表面の速度又は流動状態を適宜規定することで溶鋼流動指標とすることができる。
 また、溶鋼流動指標の制御にあたっては、以下の2点を踏まえて行うことが望ましい。1点目は、溶鋼流動現象が非線形である点である。すなわち、元の操業条件が異なれば、操業条件の変更量が同一でも溶鋼流動指標の変化量は異なる。図4(a),(b)は、電磁撹拌磁場の磁束密度が異なる2条件における、電磁撹拌磁場の磁束密度の変更量と溶鋼表面最大流速の変化量との関係を示す図である。図4(a)に示す条件では、電磁撹拌磁場の磁束密度を変更しても溶鋼表面最大流速はほとんど変化しない。これに対して、図4(b)に示す条件は、電磁撹拌磁場の磁束密度を上昇させると溶鋼表面最大流速も増加する。さらに、上述したように、操業条件によらず溶鋼の吐出流に偏流も発生しうる。従って、操業条件の変更量に対する溶鋼流動指標が変化する感度は時々刻々と変化する可能性があり、予め既定の感度を設けると溶鋼流動指標を適正範囲内に制御することが困難となる場合がある。
 2点目は、操業条件と溶鋼流動指標との間には相互干渉が存在することである。例えば、鋳造速度を増加させると、低流速面積は減少する一方で溶鋼表面最大流速は増加する。また、浸漬ノズルの浸漬深さを変更することにより、溶鋼表面最大流速及び溶鋼表面乱流エネルギーの最大値を変化させることができる。全ての溶鋼流動指標を適正範囲内に制御するためには、幾つかの操業条件を組み合わせて干渉を考慮した制御が必要となる。しかしながら、操業条件の変更量を収束計算によって陰的に求めようとすると計算時間が長くなりダイナミックに制御することが困難となる。従って、干渉を考慮して操業条件の変更量を陽的に算出し、次の制御周期における操業条件に反映させることが望ましい。
 図5は、本発明の一実施形態である連続鋳造機の制御装置による操業条件制御処理の流れを示すフローチャートである。図5に示すフローチャートは、溶鋼流動指標算出部12によって溶鋼流動指標が算出される度毎に開始となり、操業条件制御処理はステップS1の処理に進む。なお、以下では、溶鋼流動指標として低流速面積S、溶鋼表面最大流速V、及び溶鋼表面乱流エネルギーの最大値Eを制御するために、操業条件A,B,Cを変更する場合について説明する。
 ステップS1の処理では、操業条件制御部13が、溶鋼流動指標算出部12によって算出された溶鋼流動指標が全て適正範囲内にあるか否かを判別する。判別の結果、溶鋼流動指標が全て適正範囲内にある場合(ステップS1:Yes)、操業条件制御部13は、操業条件の変更は行わず、一連の操業条件制御処理を終了する。一方、溶鋼流動指標の少なくとも1つが適正範囲外であった場合には(ステップS1:No)、操業条件制御部13は、操業条件制御処理をステップS2の処理に進める。
 ステップS2の処理では、操業条件制御部13が、操作する対象の操業条件について、各々を微小に変化させた場合の溶鋼流動状態を推定して溶鋼流動指標を算出する。なお、操業条件の変化量は、元の操業条件から大きく変化させると、溶鋼流動分布の推定精度が悪化する可能性があるので、元の操業条件の10%以内で変化させることが好ましい。そして、操業条件制御部13は、算出された溶鋼流動指標と溶鋼流動指標算出部12によって算出された溶鋼流動指標との差分を算出し、それぞれの操業条件を変更した場合の溶鋼流動指標の感度ベクトルを算出することにより感度行列Xを得る。操業条件Aを変更した場合の溶鋼流動指標の感度ベクトル(∂S/∂A,∂V/∂A,∂E/∂A)、操業条件Bを変更した場合の溶鋼流動指標の感度ベクトル(∂S/∂B,∂V/∂B,∂E/∂B)、及び操業条件Cを変更した場合の溶鋼流動指標の感度ベクトル(∂S/∂C,∂V/∂C,∂E/∂C)を得た場合の感度行列Xを以下の数式(1)に示す。これにより、ステップS2の処理は完了し、操業条件制御処理はステップS3の処理に進む。
Figure JPOXMLDOC01-appb-M000001
 ステップS3の処理では、操業条件制御部13が、溶鋼流動指標算出部12によって算出された溶鋼流動指標について、各々の適正範囲との差分値を算出することにより、偏差ベクトルYを得る。低流速面積S、溶鋼表面最大流速V、及び溶鋼表面乱流エネルギーの最大値Eの偏差がそれぞれΔS,ΔV,ΔEであった場合、偏差ベクトルYは以下に示す数式(2)のように表される。これにより、ステップS3の処理は完了し、操業条件制御処理はステップS4の処理に進む。
Figure JPOXMLDOC01-appb-M000002
 ステップS4の処理では、操業条件制御部13が、ステップS2の処理により得られた感度行列X及びステップS3の処理により得られた偏差ベクトルYを用いて、最小二乗法により最適な操業条件の変更量ベクトルZ=(ΔA,ΔB,ΔC)を算出する。以下の数式(3)は、感度行列X、偏差ベクトルY、操業条件の変更量ベクトルZ、及び誤差ベクトルεとの関係を示す。最小二乗法は、数式(3)における誤差ベクトルεの二乗和を最小にする変更量ベクトルZを最適解として求める手法であり、最適な操業条件の変更量ベクトルZは以下に示す数式(4)により算出できる。このようにして、最適な操業条件の変更量ベクトルZは、既知量である元の操業条件及び溶鋼流動指標算出部12によって算出された溶鋼流動指標に基づき陽的に算出される。これにより、ステップS4の処理は完了し、操業条件制御処理はステップS5の処理に進む。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ステップS5の処理では、操業条件制御部13が、ステップS4の処理により得られた最適な操業条件の変更量ベクトルZ=(ΔA,ΔB,ΔC)を操業条件に反映し、次の制御周期における操業条件とする。具体的には、操業条件制御部13が、次の制御周期において操業条件A+ΔA,B+ΔB,C+ΔCを用いることとする。これにより、ステップS5の処理は完了し、一連の操業条件制御処理は終了する。
 本実施例として、極低炭素鋼の連続鋳造において、本発明を適用した。鋳型寸法は、幅1200mm、厚み260mmで、定常状態の鋳造速度は1.6m/minである。本実施例では、低流速面積の適正範囲を0.02m以下、溶鋼表面最大流速の適正範囲を0.05~0.30m/sと設定して操業を行なった。操業中、連続鋳造機1の操業中に算出された低流速面積が適正範囲より大きくなったために、電磁撹拌磁場の磁束密度を5%大きくした。その結果、図6に示すように、鋳型4内の溶鋼撹拌力が強くなり、凝固界面流速がアップし、低流速面積が減少した。しかしながら、この操業条件の変更によって溶鋼撹拌力が強くなったことにより、図7に示すように、溶鋼表面最大流速が適正範囲を超えてしまう場合があった。そこで、ノズル浸漬深さを30mm深くした。これは、浸漬ノズル5の吐出流が鋳型銅板に衝突、反転して流れが撹拌流と重なりあって溶鋼表面流速を高めているので、浸漬ノズル5の浸漬深さを深くすることにより、反転流が小さくなり、溶鋼表面流速を抑制できるためである。この操業条件変更により、図8に示すように、低流速面積を小さくしつつ、溶鋼表面最大流速を適正範囲内に制御できた。また、オンラインで溶鋼流動指標(溶鋼表面最大流速、低流速面積、及び溶鋼表面乱流エネルギーの最大値)を推定することにより、溶鋼流動指標を適正範囲にするための操業条件を制御することが可能となり、結果として、図9に示すように、スラブ品質指標であるスラブの欠陥混入率を低減することができた。このようにして、本発明に係る連続鋳造機の制御方法によれば、優れた品質のスラブを製造できることが確認された。
 図10(a)~(d)に示す実施例では、シミュレーション上で、浸漬ノズルを詰まらせるような外乱を人工的に発生させた仮想プラントを作成し、電磁撹拌磁場の磁束密度及び鋳造速度を操作することにより、仮想プラントから算出された低流速面積及び溶鋼表面最大流速を本発明の一実施形態である連続鋳造機の制御装置によって適正範囲内に制御することができるのかを確認した。図10(a)~(d)に示す時間t=t1のタイミングで外乱を発生させたところ、溶鋼流動指標算出部12によって算出された低流速面積及び溶鋼表面最大流速と、仮想プラントの低流速面積及び溶鋼表面最大流速との間に推定誤差が発生した。次に、図10(a)~(d)に示す時間t=t2のタイミングで溶鋼流動状態推定処理を開始したところ、溶鋼流動指標算出部12によって算出された低流速面積及び溶鋼表面最大流速と、仮想プラントの低流速面積及び溶鋼表面最大流速との推定誤差は低減した。さらに、図10(a)~(d)に示す時間t=t3のタイミングで操業条件制御処理を開始したところ、電磁撹拌磁場の磁束密度が上昇し、鋳造速度が低下し、仮想プラントの低流速面積及び溶鋼表面最大流速は適正範囲の上限近傍に制御することができた。このことから、オンラインで溶鋼流動指標(溶鋼表面最大流速、低流速面積、及び溶鋼表面乱流エネルギーの最大値)を推定することにより、溶鋼流動指標を適正範囲にするための操業条件を随時制御することが可能となり、高品質なスラブを製造できることが確認された。なお、図10(a)~(d)において、破線L1は仮想プラントの低流速面積、線L2は溶鋼流動指標算出部12によって算出された低流速面積、破線L3は仮想プラントの溶鋼表面最大流速、線L4は溶鋼流動指標算出部12によって算出された溶鋼表面最大流速を示す。
 以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。例えば、図10(a)~(d)に示す実施例では電磁撹拌磁場の磁束密度及び鋳造速度を操作する場合の検証を行ったが、低流速面積や溶鋼表面流速、溶鋼表面乱流エネルギー等の流動指標は電磁撹拌磁場の磁束密度を操作することによっても制御することができる。このように、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。
 本発明によれば、高品質な鋳片を製造可能な連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法を提供することができる。
 1 連続鋳造機
 2 溶鋼
 3 タンディッシュ
 4 鋳型
 5 浸漬ノズル
 10 制御装置
 11 溶鋼流動状態推定部
 12 溶鋼流動指標算出部
 13 操業条件制御部

Claims (12)

  1.  連続鋳造機の操業条件及び鋳型内の溶鋼の温度データを用いて、鋳型内における溶鋼の流動状態をオンラインで推定する溶鋼流動状態推定ステップと、
     前記溶鋼流動状態推定ステップにおいて推定された溶鋼の流動状態に基づいて、鋳型内で鋳片へ不純物が混入する要因となる溶鋼流動指標をオンラインで算出する溶鋼流動指標算出ステップと、
     前記溶鋼流動指標算出ステップにおいて算出された溶鋼流動指標が適正範囲内になるように、前記連続鋳造機の操業条件を制御する操業条件制御ステップと、
     を含む、連続鋳造機の制御方法。
  2.  前記溶鋼流動指標には、電磁攪拌磁場により生じる攪拌流の中で流速が所定値以下となっている領域の面積が含まれる、請求項1に記載の連続鋳造機の制御方法。
  3.  前記溶鋼流動指標には、溶鋼表面の速度又は流動状態が含まれる、請求項1又は2に記載の連続鋳造機の制御方法。
  4.  前記溶鋼流動指標には、凝固界面流速が所定値以下となる面積が含まれる、請求項1~3のうち、いずれか1項に記載の連続鋳造機の制御方法。
  5.  前記溶鋼流動指標には、溶鋼表面流速の最大値が含まれる、請求項4に記載の連続鋳造機の制御方法。
  6.  前記溶鋼流動指標には、溶鋼表面乱流エネルギーの最大値が含まれる、請求項4又は5に記載の連続鋳造機の制御方法。
  7.  前記鋳型内の溶鋼の温度データは、鋳型に設置された温度センサの測定値を含む温度データである、請求項1~6のうちいずれか1項に記載の連続鋳造機の制御方法。
  8.  前記連続鋳造機の操業条件には、鋳造速度、電磁撹拌磁場の磁束密度、及びノズル浸漬深さのうちの少なくとも一つが含まれる、請求項1~7のうち、いずれか1項に記載の連続鋳造機の制御方法。
  9.  前記操業条件制御ステップは、鋳造速度、電磁撹拌磁場の磁束密度、及びノズル浸漬深さのうちの少なくとも一つを微小に変化させた場合の溶鋼の流動状態を制御周期毎に推定することにより、操業条件の変更に対する溶鋼の流動状態の感度を算出するステップを含む、請求項8に記載の連続鋳造機の制御方法。
  10.  前記操業条件制御ステップは、鋳造速度、電磁撹拌磁場の磁束密度、及びノズル浸漬深さの間の相互干渉を陽的に算出して制御するステップを含む、請求項8又は9に記載の連続鋳造機の制御方法。
  11.  連続鋳造機の操業条件及び鋳型内の溶鋼の温度データを用いて、鋳型内における溶鋼の流動状態をオンラインで推定する溶鋼流動状態推定部と、
     前記溶鋼流動状態推定部によって推定された溶鋼の流動状態に基づいて、鋳型内で鋳片へ不純物が混入する要因となる溶鋼流動指標をオンラインで算出する溶鋼流動指標算出部と、
     前記溶鋼流動指標算出部によって算出された溶鋼流動指標が適正範囲内になるように、前記連続鋳造機の操業条件を制御する操業条件制御部と、
     を備える、連続鋳造機の制御装置。
  12.  請求項1~10のうち、いずれか1項に記載の連続鋳造機の制御方法を用いて連続鋳造機を制御しながら鋳片を製造するステップを含む、鋳片の製造方法。
PCT/JP2020/004546 2019-02-19 2020-02-06 連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法 WO2020170836A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112021015867-7A BR112021015867B1 (pt) 2019-02-19 2020-02-06 Método e dispositivo de controle para máquina de lingotamento contínuo e método de fabricação para peça fundida
JP2020532835A JP6981551B2 (ja) 2019-02-19 2020-02-06 連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法
KR1020217026128A KR102695836B1 (ko) 2019-02-19 2020-02-06 연속 주조기의 제어 방법, 연속 주조기의 제어 장치 및, 주편의 제조 방법
CN202080013723.9A CN113423521B (zh) 2019-02-19 2020-02-06 连续铸造机的控制方法、连续铸造机的控制装置及铸片的制造方法
EP20759007.6A EP3928890B1 (en) 2019-02-19 2020-02-06 Control method for continuous casting machine, control device for continuous casting machine, and manufacturing method for casting
US17/422,674 US11890671B2 (en) 2019-02-19 2020-02-06 Control method for continuous casting machine, control device for continuous casting machine, and manufacturing method for casting

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019027374 2019-02-19
JP2019-027374 2019-02-19
JPPCT/JP2019/048374 2019-12-11
PCT/JP2019/048374 WO2020170563A1 (ja) 2019-02-19 2019-12-11 連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法

Publications (1)

Publication Number Publication Date
WO2020170836A1 true WO2020170836A1 (ja) 2020-08-27

Family

ID=72144496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004546 WO2020170836A1 (ja) 2019-02-19 2020-02-06 連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法

Country Status (4)

Country Link
US (1) US11890671B2 (ja)
EP (1) EP3928890B1 (ja)
JP (1) JP6981551B2 (ja)
WO (1) WO2020170836A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305353A (ja) 1997-05-08 1998-11-17 Nkk Corp 鋼の連続鋳造方法
JP2005152996A (ja) 2003-11-28 2005-06-16 Jfe Steel Kk 鋼の連続鋳造方法
JP2011206845A (ja) * 2010-03-10 2011-10-20 Jfe Steel Corp 鋼の連続鋳造方法および鋼板の製造方法
JP2013503026A (ja) * 2009-08-31 2013-01-31 アイウォーク, インコーポレイテッド 義足または下肢装具を用いて立ち上がりのシーケンスを実装すること
JP2014032719A (ja) * 2012-08-02 2014-02-20 Sony Corp 記録再生装置、レーザ駆動パルス調整方法、プログラム
JP2016016414A (ja) 2014-07-07 2016-02-01 Jfeスチール株式会社 溶鋼の流動状態推定方法及び流動状態推定装置
JP2017159363A (ja) * 2016-03-02 2017-09-14 Jfeスチール株式会社 溶鋼の流動状態推定方法、流動状態推定装置、溶鋼の流動状態のオンライン表示装置および鋼の連続鋳造方法
JP2017536579A (ja) * 2014-11-20 2017-12-07 カール・ツァイス・エスエムティー・ゲーエムベーハー 少なくとも1つのマニピュレータを有する投影露光装置
JP2018506354A (ja) * 2015-02-12 2018-03-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 呼吸パラメータの領域的フィッティングによる呼吸パラメータの同時推定

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5884685A (en) 1995-03-29 1999-03-23 Nippon Steel Corporation Quality prediction and quality control of continuous-cast steel
WO2000051762A1 (fr) * 1999-03-02 2000-09-08 Nkk Corporation Procede et dispositif permettant, en coulee continue, de predire et de reguler la configuration d'ecoulement de l'acier en fusion
US6378743B1 (en) 2000-01-15 2002-04-30 Hazelett Strip-Casting Corporation Method, system and apparatus employing permanent magnets having reach-out magnetic fields for electromagnetically transferring, braking, and metering molten metals feeding into metal casting machines
JP3607882B2 (ja) * 2000-07-19 2005-01-05 新日本製鐵株式会社 連続鋳造鋳型内全域の凝固シェル厚、溶鋼流速、鋳片品質センシング方法及びその装置。
RU65799U1 (ru) 2006-12-05 2007-08-27 Игорь Михайлович Ячиков Устройство для управления кристаллизацией непрерывнолитого слитка
US20090242165A1 (en) 2008-03-25 2009-10-01 Beitelman Leonid S Modulated electromagnetic stirring of metals at advanced stage of solidification
US20110082566A1 (en) 2008-09-04 2011-04-07 Herr Hugh M Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
TWI462790B (zh) 2008-09-19 2014-12-01 China Steel Corp Mold surface control system for metal casting process and its control method
JP4569715B1 (ja) 2009-11-10 2010-10-27 Jfeスチール株式会社 鋼の連続鋳造方法
US20110174457A1 (en) * 2010-01-18 2011-07-21 Evraz Inc. Na Canada Process for optimizing steel fabrication
US8596334B2 (en) 2010-03-10 2013-12-03 Jfe Steel Corporation Continuous casting method for steel and method for manufacturing steel sheet
JP5745192B2 (ja) 2011-12-22 2015-07-08 エービービー エービー 連続鋳造プロセスにおける溶融金属の流れ制御のための設備および方法
US10350674B2 (en) 2017-06-12 2019-07-16 Wagstaff, Inc. Dynamic mold shape control for direct chill casting
BR112020024482B1 (pt) * 2018-09-18 2023-10-31 Nippon Steel Corporation Dispositivo de controle, método de controle, e produto para controlar um processo de lingotamento contínuo

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305353A (ja) 1997-05-08 1998-11-17 Nkk Corp 鋼の連続鋳造方法
JP2005152996A (ja) 2003-11-28 2005-06-16 Jfe Steel Kk 鋼の連続鋳造方法
JP2013503026A (ja) * 2009-08-31 2013-01-31 アイウォーク, インコーポレイテッド 義足または下肢装具を用いて立ち上がりのシーケンスを実装すること
JP2011206845A (ja) * 2010-03-10 2011-10-20 Jfe Steel Corp 鋼の連続鋳造方法および鋼板の製造方法
JP2014032719A (ja) * 2012-08-02 2014-02-20 Sony Corp 記録再生装置、レーザ駆動パルス調整方法、プログラム
JP2016016414A (ja) 2014-07-07 2016-02-01 Jfeスチール株式会社 溶鋼の流動状態推定方法及び流動状態推定装置
JP2017536579A (ja) * 2014-11-20 2017-12-07 カール・ツァイス・エスエムティー・ゲーエムベーハー 少なくとも1つのマニピュレータを有する投影露光装置
JP2018506354A (ja) * 2015-02-12 2018-03-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 呼吸パラメータの領域的フィッティングによる呼吸パラメータの同時推定
JP2017159363A (ja) * 2016-03-02 2017-09-14 Jfeスチール株式会社 溶鋼の流動状態推定方法、流動状態推定装置、溶鋼の流動状態のオンライン表示装置および鋼の連続鋳造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3928890A4

Also Published As

Publication number Publication date
EP3928890A4 (en) 2022-04-06
EP3928890A1 (en) 2021-12-29
US20210387250A1 (en) 2021-12-16
BR112021015867A2 (pt) 2021-10-05
EP3928890B1 (en) 2023-12-27
US11890671B2 (en) 2024-02-06
JPWO2020170836A1 (ja) 2021-03-11
JP6981551B2 (ja) 2021-12-15

Similar Documents

Publication Publication Date Title
CN107657108B (zh) 一种连铸坯宏观偏析预测方法
Wang et al. Transient fluid flow phenomena during continuous casting: part I—cast start
JP5812113B2 (ja) 連続鋳造における鋳片の凝固完了状態推定方法、及び連続鋳造方法
JP5935837B2 (ja) 溶鋼の流動状態推定方法及び流動状態推定装置
KR101709623B1 (ko) 응고 완료 위치 제어 방법 및 응고 완료 위치 제어 장치
KR20110020854A (ko) 금속 스트랜드의 연속 주조 방법
JP4893068B2 (ja) 連続鋳造鋳片の凝固完了位置制御方法及び装置並びに連続鋳造鋳片の製造方法
WO2020170836A1 (ja) 連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法
WO2020170563A1 (ja) 連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法
JPH06264B2 (ja) 連続鋳造における湯面レベル制御方法
CN105195701A (zh) 连铸钢包浇注时钢水流场分布的测量方法及装置
JP6859919B2 (ja) ブレークアウト予知方法
TWI743686B (zh) 連續鑄造機之控制方法、連續鑄造機之控制裝置、以及鑄片之製造方法
RU2775264C1 (ru) Способ управления для машины непрерывного литья, устройство управления для машины непрерывного литья и способ изготовления отливки
JP5365459B2 (ja) 連続鋳造における凝固シェル厚み推定方法及び装置、連続鋳造におけるブレークアウト検出方法及び装置
BR112021015867B1 (pt) Método e dispositivo de controle para máquina de lingotamento contínuo e método de fabricação para peça fundida
JP5958036B2 (ja) 鋳片の凝固状態推定装置及び連続鋳造方法
JP4407353B2 (ja) 金属シートの製造装置と製造方法
JP2004276050A (ja) 連続鋳造のスタート方法
JP2007268536A (ja) 連続鋳造における凝固完了位置の制御方法及び装置並びに連続鋳造鋳片の製造方法
Thomas The importance of computational models for further improvements of the continuous casting process
JPH05277681A (ja) 連続鋳造方法
KR20130013738A (ko) 연주기 몰드의 탕면 변동 측정장치 및 방법
JP2019209366A (ja) 複層鋳片の連続鋳造プロセスの制御方法、装置及びプログラム
JP2005021898A (ja) 連続鋳造における湯面レベル制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020532835

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217026128

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021015867

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020759007

Country of ref document: EP

Effective date: 20210920

ENP Entry into the national phase

Ref document number: 112021015867

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210811