TWI743686B - 連續鑄造機之控制方法、連續鑄造機之控制裝置、以及鑄片之製造方法 - Google Patents

連續鑄造機之控制方法、連續鑄造機之控制裝置、以及鑄片之製造方法 Download PDF

Info

Publication number
TWI743686B
TWI743686B TW109105112A TW109105112A TWI743686B TW I743686 B TWI743686 B TW I743686B TW 109105112 A TW109105112 A TW 109105112A TW 109105112 A TW109105112 A TW 109105112A TW I743686 B TWI743686 B TW I743686B
Authority
TW
Taiwan
Prior art keywords
molten steel
flow
casting machine
continuous casting
aforementioned
Prior art date
Application number
TW109105112A
Other languages
English (en)
Other versions
TW202037425A (zh
Inventor
益田稜介
橋本佳也
松井章敏
森田周吾
林田達郎
郡山大河
森下亮
Original Assignee
日商Jfe鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2019/048374 external-priority patent/WO2020170563A1/ja
Application filed by 日商Jfe鋼鐵股份有限公司 filed Critical 日商Jfe鋼鐵股份有限公司
Publication of TW202037425A publication Critical patent/TW202037425A/zh
Application granted granted Critical
Publication of TWI743686B publication Critical patent/TWI743686B/zh

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

本發明的一實施形態的連續鑄造機之控制裝置(10),係具備熔鋼流動狀態推定部(11)、熔鋼流動指標算出部(12)及作業條件控制部(13),熔鋼流動狀態推定部(11),是使用連續鑄造機(1)之作業條件及鑄模內的熔鋼之溫度資料,將鑄模內之熔鋼的流動狀態在線上推定;熔鋼流動指標算出部(12),是根據藉由熔鋼流動狀態推定部(11)所推定之熔鋼的流動狀態,在線上算出成為在鑄模內讓雜質混入鑄片的主要原因之熔鋼流動指標;作業條件控制部(13),是以使藉由熔鋼流動指標算出部(12)所算出之熔鋼流動指標成為適當範圍內的方式控制連續鑄造機(1)之作業條件。

Description

連續鑄造機之控制方法、連續鑄造機之控制裝置、以及鑄片之製造方法
本發明是關於連續鑄造機之控制方法、連續鑄造機之控制裝置、以及鑄片之製造方法。
近年,對於在連續鑄造機所製造之扁胚(slab)等鑄片之高品質化的要求越來越高。因此,控制連續鑄造機的鑄模內之熔鋼的狀況之技術被開發出。例如在專利文獻1記載對鑄模內的熔鋼施加磁場之方法。藉由對鑄模內的熔鋼施加磁場來控制熔鋼流動,能讓鑄片的品質穩定化。然而,縱使對熔鋼施加磁場,起因於無法預期的作業變動,要完全控制熔鋼流動是困難的。因此,將埋置於鑄模銅板之測溫元件所產生之熔鋼的測溫結果並用而控制作業的技術被提出。例如在專利文獻2記載一種方法,是根據鑄模內銅板溫度資料(data)來校正鑄模內的熔鋼流動,藉此高精度地推定熔鋼流動。
作為鑄片所要求的品質之一可舉出:混入鑄片的表層附近之氣泡、夾雜物等的雜質所造成的缺陷少。在連續鑄造機,透過浸嘴(immersion nozzle)澆注於鑄模內之熔鋼,從鑄模壁面開始進行呈殻狀地凝固(以下,將呈殻狀地凝固後之鋼稱為「凝固殼」),伴隨鑄造的進展,凝固殼厚度逐漸增加。在澆注於鑄模內之熔鋼中會有氣泡、夾雜物懸浮著,若這些氣泡、夾雜物被凝固殼捕捉而就那樣讓凝固進展,會變成上述的缺陷。
懸浮於熔鋼中之氣泡、夾雜物,凝固界面的熔鋼流速越快則越不容易被凝固殼捕捉是已知的,基於此觀點而將鑄模內的熔鋼流動適切地控制之技術也被開發出。例如在專利文獻3揭示一種技術,其是為了防止在鑄造速度1.6m/min左右之比較慢的情況等,在凝固界面的熔鋼流速不足而造成缺陷產生。具體而言,該技術,是在對從浸嘴吐出之熔鋼的吐出流以賦予制動力的方式施加移動磁場而進行連續鑄造時,相對於移動磁場施加位置將浸嘴之吐出口的位置及吐出角度設定在適當的範圍。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開平10-305353號公報 [專利文獻2]日本特開2016-16414號公報 [專利文獻3]日本特開2005-152996號公報
[發明所欲解決之問題]
在專利文獻2雖記載將鑄模內之熔鋼流動高精度地推定之方法,但完全沒有揭示或暗示:推定成為在鑄模內使雜質混入鑄片的主要原因之熔鋼流動指標,並將熔鋼流動指標控制在適當範圍內。為了製造高品質的鑄片,推定成為在鑄模內使雜質混入鑄片的主要原因之熔鋼流動指標,並將熔鋼流動指標控制在適當範圍內是必要的。因此,依據專利文獻2所記載的方法,要製造高品質的鑄片是困難的。
另一方面,在專利文獻3雖記載將在凝固界面之熔鋼流速控制在適當範圍之方法,但該適當範圍到底只是依據設備之幾何關係所規定者。然而,在實際的連續鑄造,有在浸嘴之嘴孔讓夾雜物附著而產生偏流等之熔鋼流速的變動因素存在,縱使在發生這樣的變動的情況,仍必須因應其變動狀況而將在凝固界面的熔鋼流速控制在適當範圍內。亦即,是將在鑄模內讓氣泡、夾雜物等的雜質混入鑄片的主要原因、即凝固界面之熔鋼流速降低當作熔鋼流動指標,而使用連續鑄造機之作業條件及鑄模內的熔鋼之溫度資料進行推定,根據其推定結果將熔鋼流動指標控制在適當範圍內,藉此能製造更高品質的鑄片。
本發明是有鑑於上述問題而開發完成的,其目的是為了提供可製造高品質的鑄片之連續鑄造機之控制方法、連續鑄造機之控制裝置、以及鑄片之製造方法。 [解決問題之技術手段]
本發明的連續鑄造機之控制方法,係包含熔鋼流動狀態推定步驟、熔鋼流動指標算出步驟、及作業條件控制步驟,該熔鋼流動狀態推定步驟,是使用連續鑄造機之作業條件及鑄模內的熔鋼之溫度資料,將鑄模內之熔鋼的流動狀態在線上(online)推定,該熔鋼流動指標算出步驟,是根據在前述熔鋼流動狀態推定步驟所推定之熔鋼的流動狀態,在線上算出成為在鑄模內讓雜質混入鑄片的主要原因之熔鋼流動指標,該作業條件控制步驟,是以使在前述熔鋼流動指標算出步驟所算出之熔鋼流動指標成為適當範圍內的方式控制前述連續鑄造機的作業條件。
前述熔鋼流動指標可包含:在藉由電磁攪拌磁場所產生之攪拌流當中流速成為既定值以下的區域之面積。
前述熔鋼流動指標可包含:熔鋼表面的速度或流動狀態。
前述熔鋼流動指標可包含:凝固界面流速成為既定值以下的面積。
前述熔鋼流動指標可包含:熔鋼表面流速之最大值。
前述熔鋼流動指標可包含:熔鋼表面亂流能量之最大值。
前述鑄模內之熔鋼的溫度資料,可為包含設置於鑄模之溫度感測器的測定值之溫度資料。
前述連續鑄造機之作業條件可包含:鑄造速度、電磁攪拌磁場的磁通密度、及嘴浸漬深度當中之至少一者。
前述作業條件控制步驟可包含:在每個控制周期推定當讓鑄造速度、電磁攪拌磁場的磁通密度及嘴浸漬深度當中之至少一者些微變化後的情況之熔鋼的流動狀態,藉此算出熔鋼的流動狀態對作業條件變更之敏感度的步驟。
前述作業條件控制步驟可包含:將鑄造速度、電磁攪拌磁場的磁通密度、及嘴浸漬深度三者間的互相干擾以顯式法(explicit)算出並控制之步驟。
本發明的連續鑄造機之控制裝置,係具備熔鋼流動狀態推定部、熔鋼流動指標算出部及作業條件控制部,該熔鋼流動狀態推定部,是使用連續鑄造機之作業條件及鑄模內的熔鋼之溫度資料,將鑄模內之熔鋼的流動狀態在線上推定;該熔鋼流動指標算出部,是根據藉由前述熔鋼流動狀態推定部所推定之熔鋼的流動狀態,在線上算出成為在鑄模內讓雜質混入鑄片的主要原因之熔鋼流動指標;該作業條件控制部,是以使藉由前述熔鋼流動指標算出部所算出之熔鋼流動指標成為適當範圍內的方式控制前述連續鑄造機之作業條件。
本發明的鑄片之製造方法,係包含:在使用本發明的連續鑄造機之控制方法控制連續鑄造機下製造鑄片之步驟。 [發明之效果]
依據本發明的連續鑄造機之控制方法、連續鑄造機之控制裝置、以及鑄片之製造方法,可製造出高品質的鑄片。
以下,參照圖式,說明本發明的一實施形態的連續鑄造機之控制裝置的結構及其動作。
[連續鑄造機的結構] 首先,參照圖1,說明本發明所採用之連續鑄造機的一結構例。
圖1係顯示本發明所採用之連續鑄造機的一結構例之示意圖。如圖1所示般,該連續鑄造機1,是在裝滿熔鋼2之餵槽3的鉛直方向下方設置鑄模4,在餵槽3的底部設置:成為往鑄模4的熔鋼2供給口之浸嘴5。熔鋼2,是從餵槽3連續地注入鑄模4,藉由內部設有冷卻水的水路之鑄模4進行冷卻,從鑄模4的下部被拉出而成為扁胚。這時,為了使注入鑄模4之熔鋼2的重量與被拉出之扁胚的重量一致,因應拉出速度而藉由設置在浸嘴5的正上方之未圖示的滑動閥嘴(sliding gate nozzle)等來調整浸嘴5的開度。在鑄模4之成為待鑄造的扁胚之厚度方向的兩端之F面及B面,設置複數個溫度感測器。各溫度感測器是測定在各設置位置之熔鋼2的溫度。此外,在鑄模4設置讓電磁攪拌磁場產生之未圖示的線圈,該電磁攪拌磁場是用於在鑄模4內的熔鋼2誘發攪拌流。
[控制裝置的結構] 接下來,參照圖2,說明本發明的一實施形態的連續鑄造機之控制裝置的結構。
圖2係顯示本發明的一實施形態的連續鑄造機之控制裝置的結構之方塊圖。如圖2所示般,本發明的一實施形態的連續鑄造機之控制裝置10,是由電腦等的資訊處理裝置所構成,藉由讓CPU(中央處理單元,Central Processing Unit)等的內部之運算處理裝置執行電腦程式,而發揮作為熔鋼流動狀態推定部11、熔鋼流動指標算出部12及作業條件控制部13的功能。
熔鋼流動狀態推定部11,是利用在專利文獻2所記載之熔鋼的流動狀態推定方法等之周知技術,將鑄模4內之熔鋼2的流動狀態在線上推定。具體而言,熔鋼流動狀態推定部11,是使用將亂流模式納入考慮之計算流體力學等的物理模式,根據連續鑄造機1之作業條件及設置於鑄模4之溫度感測器的測定值來將鑄模4內之熔鋼2的流動狀態在線上推定。作為連續鑄造機1之作業條件,可例示鑄造寬度、鑄造速度、電磁攪拌磁場的磁通密度、浸嘴5的浸漬深度(嘴浸漬深度)等。
熔鋼流動指標算出部12,是使用藉由熔鋼流動狀態推定部11所推定之熔鋼2的流動狀態之資料,將成為在鑄模4內讓雜質混入扁胚(鑄片)的主要原因之熔鋼流動指標在線上推定。在此,作為混入扁胚之雜質,是包含源自鑄粉(mould powder)的夾雜物。鑄粉是始終供給到被注入鑄模4內之熔鋼的上表面而防止鑄模4和扁胚的鑄砂燒結(sand burning)之潤滑劑,還具有熔鋼2的保溫效果等。在鑄模4內的熔鋼2之最上部,熔融狀態的鑄粉與熔鋼2接觸,使熔鋼2以某個流速流動。在此,在本發明,將在與鑄粉的接觸位置之熔鋼2的流速稱為熔鋼2之表面流速。因此,若熔鋼2的表面流速過大,熔融鑄粉有可能被捲入熔鋼2的內部而成為夾雜物缺陷。此外,氧化鋁等的夾雜物會與從浸嘴5供給之氬氣(Ar)等的氣泡一起隨著熔鋼流動而上昇,被熔融鑄粉層吸收而進行熔鋼2的清淨化。但當凝固界面流速慢的情況,夾雜物、氣泡有可能被凝固殼側捕捉,在製品時成為表面缺陷的原因。在此,凝固界面流速是指:在鑄模內之凝固殼的附近區域之熔鋼的流速。
因此,作為在鑄模4內讓雜質混入扁胚的主要原因之熔鋼流動指標可例示:鑄模4內之熔鋼表面流速的最大值(熔鋼表面最大流速)、使凝固界面流速成為既定值以下之面積(低流速面積)、熔鋼表面亂流能量的最大值。具體而言,熔鋼流動指標算出部12,是根據熔鋼2之流動狀態的資料,算出在鑄模4之最上段部(彎月面(meniscus):熔鋼液面之高度位置)之熔鋼流動狀態計算網格(寬度方向及厚度方向的整個區域)之熔鋼流速的最大值,來作為熔鋼表面最大流速。此外,熔鋼流動指標算出部12,是根據熔鋼2之流動狀態的資料算出:在位於鑄模4之高度方向(鑄造方向)及厚度方向的既定位置之熔鋼流動狀態計算網格(寬度方向為整個區域)當中,熔鋼流速為既定值以下之熔鋼流動狀態計算網格的面積。例如熔鋼流動指標算出部12,是在寬度方向的整個區域且鑄模高度方向上之至少從彎月面位置到其下方200mm為止的範圍,將熔鋼流速為既定值以下之熔鋼流動狀態計算網格的面積在鑄模長邊的每一面予以合計,將此值分別當作低流速面積。此外,熔鋼流動指標算出部12,是根據熔鋼2之流動狀態的資料,算出在鑄模4之最上段部的熔鋼流動狀態計算網格(寬度方向、厚度方向的整個區域)之亂流能量的最大值,來作為熔鋼表面亂流能量的最大值。
在此,亂流能量是代表亂流的強度之值,是根據在某個空間位置之伴隨時間變動的流速之相對於時間平均值之偏差的大小而獲得。具體而言,亂流能量是用以下所示的數學式表示。
Figure 02_image001
k代表亂流能量,U代表在某個空間位置之流體的流速之瞬間值,Uave 代表在某個空間位置之流體的流速之時間平均值,Ui 代表在某個空間位置之流體的流速之相對於時間平均值的偏差。
因為在扁胚的凝固界面之熔鋼流動快的情況具有可減少來自熔鋼2而被凝固殼捕捉之雜質(氣泡、夾雜物)的效果,因此低流速面積成為有效的指標。在此應判定為低流速之流速,只要按照鋼種成分、所要求的品質水準及鑄模尺寸等而個別設定即可,不須設定為一定值。又依據本發明人等的調查,作為判定為低流速的標準,可採用低於0.05m/s。此外,低流速面積,例如將熔鋼流動狀態計算網格的單位面積設定為1cm2 (0.0001m2 )的情況,關於鑄模長邊之一面,判定為低流速之單位網格有100網格時,低流速面積為0.01m2 。此外,關於低流速面積之適當值也是,只要按照鋼種成分、所要求之品質水準及鑄模尺寸等而個別設定即可,不須設定為一定值。又依據本發明人等的調查,所要求之品質水準嚴格的情況,可採用0.01m2 以下作為標準;所要求之品質水準沒有那樣嚴格的情況,可採用0.02m2 以下作為標準。因為在熔鋼表面的熔鋼流動慢的情況具有可抑制鑄粉捲入熔鋼2內的效果,因此熔鋼表面最大流速成為有效的指標。此外,熔鋼表面亂流能量的最大值,基於與熔鋼表面最大流速同樣的理由而成為有效的指標。
作業條件控制部13,為了將藉由熔鋼流動指標算出部12所算出之熔鋼流動指標控制在適當範圍內,是按照熔鋼流動指標而控制鑄造速度、電磁攪拌磁場的磁通密度、以及嘴浸漬深度等之作業條件。例如,當凝固界面流速成為既定值以下的面積超出事先設定的數值的情況,以將電磁攪拌磁場之磁通密度增大而使電磁攪拌力增強的方式控制作業條件。這是因為,只要藉由電磁攪拌力對鑄模內的熔鋼進一步賦予流速,縱使在凝固界面流速成為既定值以下的位置仍能使熔鋼流速增加。此外,縱使將電磁攪拌磁場的磁通密度增大,凝固界面流速成為既定值以下的面積依然超出事先設定的數值,而且凝固界面流速成為既定值以下的位置靠近熔鋼表面的情況,能以使浸嘴之深度變淺的方式控制作業條件。這是因為,若浸嘴的深度變淺,從浸嘴吐出之熔鋼吐出流的影響會在更靠熔鋼表面側顯現,而使熔鋼表面的熔鋼流速增加。另一方面,藉由將電磁攪拌磁場的磁通密度增大,雖凝固界面流速成為既定值以下的面積未達事先設定的數值,但熔鋼表面流速及/或熔鋼表面亂流能量超出既定值的情況,可在將電磁攪拌磁場的磁通密度增大的狀態下,以使浸嘴的深度變深的方式控制作業條件。這是因為,若浸嘴的深度變深,從浸嘴吐出之熔鋼吐出流的影響不容易在熔鋼表面側顯現,而讓熔鋼表面流速及/或熔鋼表面亂流能量減少。
一般而言,在鑄模4內之熔鋼2的流動狀態會依連續鑄造機1之作業狀態的差異而改變。例如圖3所示般,所使用的浸嘴5是在左右兩處具有吐出口5a的情況,若在一側的吐出口5a有氧化鋁等的夾雜物附著,會使鑄模4內之熔鋼2的吐出流產生左右差(偏流)。該偏流,縱使鑄造寬度、鑄造速度、電磁攪拌磁場的磁通密度等之作業條件相同也會產生,藉由使用設置在鑄模4之溫度感測器的測定值將包含偏流之熔鋼的流動狀態精度良好地再現,可精度良好地將熔鋼流動指標在線上推定。
亦即,以與設置於鑄模4之溫度感測器的測定值對應的方式,修正熔鋼流動指標算出部12之計算條件,並將計算值逐次更新,藉此可在線上精度更良好地推定熔鋼流動指標。又溫度感測器之設置數量、節距及測定值的取樣間隔,只要按照實施本發明之環境等而在可能的範圍設定即可。依據本發明人等的調查,若將溫度感測器在鑄造方向及寬度方向分別以50mm節距以下及100mm節距以下配置,且將測定值以1秒間隔以下進行取樣,能使熔鋼流動指標算出部12的計算精度更為提高。藉由將熔鋼流動指標在線上推定,可掌握是否在缺陷產生風險低之適當範圍內進行作業,藉由變更作業條件可將熔鋼流動指標控制在適當範圍內。結果可製造高品質的扁胚。
又在本實施形態,雖是以將低流速面積設定為凝固界面流速成為既定值以下之面積的方式進行探討,但作為熔鋼流動指標並不限定於凝固界面本身的流速。只要在藉由電磁攪拌磁場等所產生之熔鋼流動(攪拌流)中存在成為低流速的區域,這樣的區域就會對凝固界面上之氣泡、夾雜物捕捉造成不良影響,因此可將其當作熔鋼流動指標。如此般,低流速面積並不限定於凝固界面流速,而有各種定義的方式。同樣的,熔鋼表面流速之最大值及熔鋼表面亂流能量之最大值,是表示熔鋼的表面狀態,如上述般是與鑄粉之捲入相關聯。因此,作為熔鋼流動指標,並不限定於這些最大值,可將熔鋼表面的速度或流動狀態適宜地規定來當作熔鋼流動指標。
此外,在控制熔鋼流動指標時,宜基於以下2點來進行。第1點,熔鋼流動現象是非線性的。亦即,如果原先的作業條件不同,縱使作業條件的變更量相同,熔鋼流動指標的變化量仍不同。圖4(a),(b)顯示,在電磁攪拌磁場的磁通密度不同的2條件下,電磁攪拌磁場的磁通密度之變更量和熔鋼表面最大流速的變化量之關係。在圖4(a)所示的條件,縱使電磁攪拌磁場的磁通密度變更,熔鋼表面最大流速幾乎沒有變化。相對於此,在圖4(b)所示的條件,若電磁攪拌磁場的磁通密度上昇,熔鋼表面最大流速也會增加。再者,如上述般,不管作業條件如何,在熔鋼的吐出流都會產生偏流。因此,相對於作業條件的變更量,讓熔鋼流動指標變化的敏感度可能時時刻刻都在變化,若事先設定既定的敏感度,要將熔鋼流動指標控制在適當範圍內會有困難的情況。
第2點,在作業條件和熔鋼流動指標之間有互相干擾存在。例如,若讓鑄造速度增加,雖低流速面積減少,但熔鋼表面最大流速增加。此外,藉由改變浸嘴的浸漬深度,能讓熔鋼表面最大流速及熔鋼表面亂流能量的最大值變化。為了將所有的熔鋼流動指標控制在適當範圍內,必須實施將幾個作業條件組合並考慮到干渉的控制。然而,若欲將作業條件的變更量利用迭代計算(iterative computation)而以隱式法求出,計算時間會變長,難以進行動態控制。因此,宜考慮干渉而將作業條件的變更量以顯式法算出,讓其反映於下個控制周期之作業條件。
圖5係顯示本發明的一實施形態的連續鑄造機之控制裝置所進行之作業條件控制處理的流程之流程圖。在圖5所示的流程圖,每當藉由熔鋼流動指標算出部12算出熔鋼流動指標時就開始,作業條件控制處理進入步驟S1的處理。又以下所說明的情況,是為了控制作為熔鋼流動指標之低流速面積S、熔鋼表面最大流速V及熔鋼表面亂流能量的最大值E,而將作業條件A,B,C變更。
在步驟S1的處理,作業條件控制部13判定藉由熔鋼流動指標算出部12所算出之熔鋼流動指標是否全都在適當範圍內。判定的結果,當熔鋼流動指標全都在適當範圍內的情況(步驟S1:是),作業條件控制部13不進行作業條件的變更,將一系列的作業條件控制處理結束。另一方面,當熔鋼流動指標之至少1個在適當範圍外的情況(步驟S1:否),作業條件控制部13是將作業條件控制處理進入步驟S2的處理。
在步驟S2的處理,作業條件控制部13,推定在讓操作對象的作業條件各個些微變化後的情況之熔鋼流動狀態,而算出熔鋼流動指標。又作業條件的變化量,若從原先的作業條件大幅變化,可能會使熔鋼流動分布的推定精度變差,因此較佳為在原先的作業條件之10%以內變化。接著,作業條件控制部13計算所算出的熔鋼流動指標和藉由熔鋼流動指標算出部12所算出的熔鋼流動指標之差分,算出各個作業條件變更後的情況之熔鋼流動指標的敏感度向量,藉此獲得敏感度矩陣X。以下數學式(1)所示之敏感度矩陣X,是取得了將作業條件A變更後的情況之熔鋼流動指標的敏感度向量(∂S/∂A,∂V/∂A,∂E/∂A)、將作業條件B變更後的情況之熔鋼流動指標的敏感度向量(∂S/∂B,∂V/∂B,∂E/∂B)、及將作業條件C變更後的情況之熔鋼流動指標的敏感度向量(∂S/∂C,∂V/∂C,∂E/∂C)的情況。藉此,步驟S2的處理完畢,作業條件控制處理進入步驟S3的處理。
Figure 02_image003
在步驟S3的處理,作業條件控制部13,對於藉由熔鋼流動指標算出部12所算出之熔鋼流動指標,計算其與各自的適當範圍之差分值,藉此獲得偏差向量Y。在低流速面積S、熔鋼表面最大流速V及熔鋼表面亂流能量的最大值E之偏差分別為ΔS,ΔV,ΔE的情況,偏差向量Y是用以下所示的數學式(2)表示。藉此,步驟S3的處理完畢,作業條件控制處理進入步驟S4的處理。
Figure 02_image005
在步驟S4的處理,作業條件控制部13是使用藉由步驟S2的處理所獲得之敏感度矩陣X、及藉由步驟S3的處理所獲得之偏差向量Y,利用最小平方法算出最佳作業條件的變更量向量Z=(ΔA,ΔB,ΔC)。以下的數學式(3)表示敏感度矩陣X、偏差向量Y、作業條件的變更量向量Z及誤差向量ε的關係。最小平方法,是將數學式(3)中的誤差向量ε的平方和最小化之變更量向量Z作為最佳解而求出的手法,最佳作業條件的變更量向量Z可由以下所示的數學式(4)算出。如此般,最佳作業條件的變更量向量Z,是根據既知量之原先的作業條件及藉由熔鋼流動指標算出部12所算出之熔鋼流動指標,而以顯式法算出。如此,步驟S4的處理完畢,作業條件控制處理進入步驟S5的處理。
Figure 02_image007
Figure 02_image009
在步驟S5的處理,作業條件控制部13是將藉由步驟S4的處理所獲得之最佳作業條件的變更量向量Z= (ΔA,ΔB,ΔC)反映於作業條件,而作成下個控制周期的作業條件。具體而言,作業條件控制部13是在下個控制周期中使用作業條件A+ΔA,B+ΔB,C+ΔC。如此,步驟S5的處理完畢,一系列的作業條件控制處理結束。 [實施例]
作為本實施例,是在極低碳鋼的連續鑄造中運用本發明。鑄模尺寸為寬度1200mm、厚度260mm,穩定狀態的鑄造速度為1.6m/min。在本實施例,將低流速面積的適當範圍設定為0.02m2 以下,將熔鋼表面最大流速的適當範圍設定為0.05~0.30m/s,而進行作業。作業中,因為在連續鑄造機1的作業中所算出之低流速面積變得比適當範圍更大,將電磁攪拌磁場的磁通密度增大5%。結果,如圖6所示般,鑄模4內的熔鋼攪拌力增強,凝固界面流速增加,而使低流速面積減少。然而,藉由此作業條件的變更而使熔鋼攪拌力增強,如圖7所示般,會有使熔鋼表面最大流速超出適當範圍的情況。於是,將嘴浸漬深度加深30mm。這是因為,浸嘴5之吐出流碰到鑄模銅板會成為反轉流,該反轉流與攪拌流互相重疊而使熔鋼表面流速提高,藉由將浸嘴5的浸漬深度加深,使反轉流變小,而能抑制熔鋼表面流速。藉由此作業條件變更,如圖8所示般,可將低流速面積減小,並將熔鋼表面最大流速控制在適當範圍內。此外,藉由在線上推定熔鋼流動指標(熔鋼表面最大流速、低流速面積、以及熔鋼表面亂流能量的最大值),可控制為了使熔鋼流動指標成為適當範圍之作業條件,結果如圖9所示般,可減少扁胚品質指標、即扁胚的缺陷混入率。如此確認了,依據本發明的連續鑄造機之控制方法可製造品質優異的扁胚。
在圖10(a)~(d)所示的實施例,是在模擬上確認,作成讓堵塞浸嘴般的擾動(disturbance)以人工方式產生之虛擬工廠,藉由操作電磁攪拌磁場的磁通密度及鑄造速度,從虛擬工廠算出之低流速面積及熔鋼表面最大流速是否可藉由本發明的一實施形態的連續鑄造機之控制裝置控制在適當範圍內。在圖10(a)~(d)所示之時間t=t1的時點讓擾動產生時,在藉由熔鋼流動指標算出部12所算出之低流速面積及熔鋼表面最大流速、和虛擬工廠的低流速面積及熔鋼表面最大流速之間產生推定誤差。接下來,在圖10(a)~(d)所示之時間t=t2的時點開始進行熔鋼流動狀態推定處理時,藉由熔鋼流動指標算出部12所算出之低流速面積及熔鋼表面最大流速、和虛擬工廠的低流速面積及熔鋼表面最大流速之推定誤差減少。進而,在圖10(a)~(d)所示之時間t=t3的時點開始進行作業條件控制處理時,電磁攪拌磁場的磁通密度上昇,鑄造速度降低,而能將虛擬工廠的低流速面積及熔鋼表面最大流速控制到適當範圍的上限附近。如此確認了,藉由在線上推定熔鋼流動指標(熔鋼表面最大流速、低流速面積、及熔鋼表面亂流能量的最大值),能夠隨時控制用於使熔鋼流動指標成為適當範圍之作業條件,而能製造高品質的扁胚。又在圖10(a)~(d)中,虛線L1表示虛擬工廠的低流速面積,線L2表示藉由熔鋼流動指標算出部12所算出之低流速面積,虛線L3表示虛擬工廠的熔鋼表面最大流速,線L4表示藉由熔鋼流動指標算出部12所算出之熔鋼表面最大流速。
以上是說明運用了本發明人等所開發完成的發明之實施形態,但本發明並不限定於依據本實施形態而構成本發明的揭示的一部分之敘述及圖式。例如,在圖10(a)~(d)所示的實施例雖是進行了操作電磁攪拌磁場的磁通密度及鑄造速度的情況之驗證,但低流速面積、熔鋼表面流速、熔鋼表面亂流能量等之流動指標,藉由操作電磁攪拌磁場的磁通密度也能夠控制。如此般,根據本實施形態所屬技術領域具有通常知識者所能完成之其他實施形態、實施例以及運用技術等,全都包含於本發明的範疇。 [產業利用性]
依據本發明,能夠提供可製造高品質的鑄片的連續鑄造機之控制方法、連續鑄造機之控制裝置、以及鑄片之製造方法。
1:連續鑄造機 2:熔鋼 3:餵槽 4:鑄模 5:浸嘴 10:控制裝置 11:熔鋼流動狀態推定部 12:熔鋼流動指標算出部 13:作業條件控制部
[圖1]係顯示本發明所採用的連續鑄造機之一結構例之示意圖。 [圖2]係顯示本發明的一實施形態之連續鑄造機之控制裝置的結構之方塊圖。 [圖3]係顯示浸嘴的一結構例之示意圖。 [圖4(a),(b)]顯示,在電磁攪拌磁場的磁通密度不同之2條件下,電磁攪拌磁場的磁通密度之變更量和熔鋼表面最大流速的變化量之關係圖。 [圖5]係顯示本發明的一實施形態的連續鑄造機之控制裝置所進行的作業條件控制處理的流程之流程圖。 [圖6]係顯示伴隨電磁攪拌磁場之磁通密度的變化所產生之低流速面積的變化之一例。 [圖7]係顯示伴隨電磁攪拌磁場之磁通密度的變化所產生之熔鋼表面最大流速的變化之一例。 [圖8]係顯示伴隨電磁攪拌磁場之磁通密度及嘴浸漬深度的變化所產生之熔鋼表面最大流速的變化之一例。 [圖9]係顯示伴隨是否有控制作業條件所產生之扁胚之缺陷混入率的變化之一例。 [圖10]係顯示作業條件控制處理的實施例之時序圖。
1:連續鑄造機
10:控制裝置
11:熔鋼流動狀態推定部
12:熔鋼流動指標算出部
13:作業條件控制部

Claims (10)

  1. 一種連續鑄造機之控制方法,係包含熔鋼流動狀態推定步驟、熔鋼流動指標算出步驟、及作業條件控制步驟,該熔鋼流動狀態推定步驟,是使用連續鑄造機之作業條件及鑄模內的熔鋼之溫度資料,將鑄模內之熔鋼的流動狀態在線上推定,該熔鋼流動指標算出步驟,是根據在前述熔鋼流動狀態推定步驟所推定之熔鋼的流動狀態,在線上算出成為在鑄模內讓雜質混入鑄片的主要原因之熔鋼流動指標,該作業條件控制步驟,是以使在前述熔鋼流動指標算出步驟所算出之熔鋼流動指標成為適當範圍內的方式控制前述連續鑄造機的作業條件;前述作業條件控制步驟係包含:判定藉由前述熔鋼流動指標算出步驟所算出之熔鋼流動指標是否全都在適當範圍內的步驟、當前述熔鋼流動指標之至少1個在適當範圍外的情況算出最佳作業條件的變更量的步驟、以及根據所算出之最佳作業條件的變更量來控制下個控制周期的作業條件的步驟;前述熔鋼流動指標係包含:在藉由電磁攪拌磁場所產生之攪拌流當中流速成為既定值以下的區域之面積、熔鋼表面流速的最大值、及熔鋼表面亂流能量的最大值。
  2. 如請求項1所述之連續鑄造機之控制方法,其中, 前述鑄模內的熔鋼之溫度資料,係包含設置於鑄模之溫度感測器的測定值之溫度資料。
  3. 如請求項1所述之連續鑄造機之控制方法,其中,前述連續鑄造機之作業條件,係包含鑄造速度、電磁攪拌磁場的磁通密度以及嘴浸漬深度當中之至少一者。
  4. 如請求項2所述之連續鑄造機之控制方法,其中,前述連續鑄造機之作業條件,係包含鑄造速度、電磁攪拌磁場的磁通密度以及嘴浸漬深度當中之至少一者。
  5. 如請求項3所述之連續鑄造機之控制方法,其中,前述作業條件控制步驟係包含:在每個控制周期推定當讓鑄造速度、電磁攪拌磁場的磁通密度及嘴浸漬深度當中之至少一者些微變化後的情況之熔鋼的流動狀態,藉此算出熔鋼的流動狀態對作業條件變更之敏感度的步驟。
  6. 如請求項4所述之連續鑄造機之控制方法,其中,前述作業條件控制步驟係包含:在每個控制周期推定當讓鑄造速度、電磁攪拌磁場的磁通密度及嘴浸漬深度當中之至少一者些微變化後的情況之熔鋼的流動狀態,藉此算出熔鋼的流動狀態對作業條件變更之敏感度的步驟。
  7. 如請求項3至6中任一項所述之連續鑄造機之控制方法,其中,前述作業條件控制步驟係包含:將鑄造速度、電磁攪拌磁場的磁通密度以及嘴浸漬深度三者間的互相干擾以顯式法算出並控制之步驟。
  8. 一種連續鑄造機之控制裝置,係具備熔鋼流動狀態推定部、熔鋼流動指標算出部及作業條件控制部,該熔鋼流動狀態推定部,是使用連續鑄造機之作業條件及鑄模內的熔鋼之溫度資料,將鑄模內之熔鋼的流動狀態在線上推定;該熔鋼流動指標算出部,是根據藉由前述熔鋼流動狀態推定部所推定之熔鋼的流動狀態,在線上算出成為在鑄模內讓雜質混入鑄片的主要原因之熔鋼流動指標;該作業條件控制部,是以使藉由前述熔鋼流動指標算出部所算出之熔鋼流動指標成為適當範圍內的方式控制前述連續鑄造機之作業條件;前述作業條件控制部,係判定藉由前述熔鋼流動指標算出部所算出之熔鋼流動指標是否全都在適當範圍內,當前述熔鋼流動指標之至少1個在適當範圍外的情況,算出最佳作業條件的變更量,根據所算出之最佳作業條件的變更量來控制下個控制周期的作業條件;前述熔鋼流動指標係包含:在藉由電磁攪拌磁場所產生之攪拌流當中流速成為既定值以下的區域之面積、熔鋼 表面流速的最大值、及熔鋼表面亂流能量的最大值。
  9. 一種鑄片之製造方法,係包含:在使用如請求項1至6中任一項所述之連續鑄造機之控制方法控制連續鑄造機下製造鑄片之步驟。
  10. 一種鑄片之製造方法,係包含:在使用如請求項7所述之連續鑄造機之控制方法控制連續鑄造機下製造鑄片之步驟。
TW109105112A 2019-02-19 2020-02-18 連續鑄造機之控制方法、連續鑄造機之控制裝置、以及鑄片之製造方法 TWI743686B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019-027374 2019-02-19
JP2019027374 2019-02-19
WOPCT/JP2019/048374 2019-12-11
PCT/JP2019/048374 WO2020170563A1 (ja) 2019-02-19 2019-12-11 連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法
TW108147825 2019-12-26
TW108147825 2019-12-26

Publications (2)

Publication Number Publication Date
TW202037425A TW202037425A (zh) 2020-10-16
TWI743686B true TWI743686B (zh) 2021-10-21

Family

ID=79602356

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109105112A TWI743686B (zh) 2019-02-19 2020-02-18 連續鑄造機之控制方法、連續鑄造機之控制裝置、以及鑄片之製造方法

Country Status (1)

Country Link
TW (1) TWI743686B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201012570A (en) * 2008-09-19 2010-04-01 China Steel Corp Liquid level control system for metal casting process and control method thereof
JP2011206845A (ja) * 2010-03-10 2011-10-20 Jfe Steel Corp 鋼の連続鋳造方法および鋼板の製造方法
JP2017159363A (ja) * 2016-03-02 2017-09-14 Jfeスチール株式会社 溶鋼の流動状態推定方法、流動状態推定装置、溶鋼の流動状態のオンライン表示装置および鋼の連続鋳造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201012570A (en) * 2008-09-19 2010-04-01 China Steel Corp Liquid level control system for metal casting process and control method thereof
JP2011206845A (ja) * 2010-03-10 2011-10-20 Jfe Steel Corp 鋼の連続鋳造方法および鋼板の製造方法
JP2017159363A (ja) * 2016-03-02 2017-09-14 Jfeスチール株式会社 溶鋼の流動状態推定方法、流動状態推定装置、溶鋼の流動状態のオンライン表示装置および鋼の連続鋳造方法

Also Published As

Publication number Publication date
TW202037425A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
CN107657108B (zh) 一种连铸坯宏观偏析预测方法
Wang et al. Transient fluid flow phenomena during continuous casting: part I—cast start
CN109865810B (zh) 一种冶金连铸冷却水的智能控制方法
WO2013094194A1 (ja) 連続鋳造における鋳片温度推定方法、鋳片の凝固完了状態推定方法、及び連続鋳造方法
KR101709623B1 (ko) 응고 완료 위치 제어 방법 및 응고 완료 위치 제어 장치
Zhang et al. Numerical simulation of influence of casting speed variation on surface fluctuation of molten steel in mold
TWI743686B (zh) 連續鑄造機之控制方法、連續鑄造機之控制裝置、以及鑄片之製造方法
CN106238695A (zh) 一种连铸过程结晶器内铸流凝固预测控制方法
WO2020170836A1 (ja) 連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法
RU2775264C1 (ru) Способ управления для машины непрерывного литья, устройство управления для машины непрерывного литья и способ изготовления отливки
JPH06264B2 (ja) 連続鋳造における湯面レベル制御方法
CN113423521B (zh) 连续铸造机的控制方法、连续铸造机的控制装置及铸片的制造方法
KR101277701B1 (ko) 몰드 내의 탕면 레벨 제어장치 및 방법
JP5958036B2 (ja) 鋳片の凝固状態推定装置及び連続鋳造方法
JP2010253490A (ja) 連続鋳造機のモールド湯面レベル制御装置及び制御方法
JP6825760B1 (ja) 鋳型内凝固シェル厚推定装置、鋳型内凝固シェル厚推定方法、及び鋼の連続鋳造方法
WO2021065342A1 (ja) 鋳型内凝固シェル厚推定装置、鋳型内凝固シェル厚推定方法、及び鋼の連続鋳造方法
CN112188940B (zh) 多层铸板的连续铸造工序的控制方法、装置以及记录介质
JP7077797B2 (ja) 複層鋳片の連続鋳造プロセスの制御方法、装置及びプログラム
JPS62270264A (ja) 連続鋳造の鋳造初期制御方法
JPS62252650A (ja) 溶鋼連続鋳造鋳型内の偏流制御方法
JP4432263B2 (ja) 鋼の連続鋳造方法
KR101435117B1 (ko) 연속주조 공정에서의 탕면 안정화 방법
JP5098768B2 (ja) ストリップ鋳造方法及び双ロール鋳造機
KR20140017144A (ko) 연속주조시 응고쉘의 수축량 예측 방법