WO2020170642A1 - 位置推定装置 - Google Patents

位置推定装置 Download PDF

Info

Publication number
WO2020170642A1
WO2020170642A1 PCT/JP2020/000566 JP2020000566W WO2020170642A1 WO 2020170642 A1 WO2020170642 A1 WO 2020170642A1 JP 2020000566 W JP2020000566 W JP 2020000566W WO 2020170642 A1 WO2020170642 A1 WO 2020170642A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic flux
value
stator
rotor
correction unit
Prior art date
Application number
PCT/JP2020/000566
Other languages
English (en)
French (fr)
Inventor
周平 村瀬
藤田 淳
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2021501676A priority Critical patent/JPWO2020170642A1/ja
Priority to CN202080014728.3A priority patent/CN113454425A/zh
Publication of WO2020170642A1 publication Critical patent/WO2020170642A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a position estimation device.
  • motors have become smaller and thinner. Since the gap between the magnetic sensor and the stator becomes narrower as the motor becomes smaller and thinner, the magnetic sensor of the motor may detect not only the magnetic flux of the rotor magnet but also the disturbance magnetic flux of the stator. .. Therefore, in order for the position estimation device to accurately detect the position of the rotor, the position estimation device needs to correct the detection value of the magnetic flux of the rotor.
  • the rotor had to be equipped with a magnet for the position sensor that detects the position of the rotor. For this reason, it has been disadvantageous in reducing the size and thickness of the motor.
  • an object of the present invention is to provide a position estimation device that can improve the estimation accuracy of the position of the rotor without the rotor having a magnet for a position sensor.
  • One aspect of the present invention derives the estimated value of the disturbance magnetic flux of the stator, and corrects the detected value of the magnetic flux of the rotor based on the estimated value of the disturbance magnetic flux, and the corrected detected value.
  • a position estimating device that includes an estimating unit that estimates the position of the rotor based on the position estimating device.
  • FIG. 1 is a diagram showing an example of the configuration of a motor unit in the first embodiment.
  • FIG. 2 is a diagram showing an example of the detected value of the magnetic flux detected by each sensor in the first embodiment.
  • FIG. 3 is a diagram showing an example of the configuration of the motor unit in the second embodiment and the third embodiment.
  • FIG. 4 is a diagram showing an example of the configuration of a motor unit in the fourth embodiment.
  • FIG. 1 is a diagram showing an example of the configuration of the motor unit 1.
  • the motor unit 1 is a system that estimates the rotational position of the rotor of the motor.
  • the motor unit 1 includes a motor 2, an amplification device 3, a position estimation device 4, a control device 5, a drive device 6, and a current sensor 7.
  • the motor 2 is an electric motor, for example, a brushless motor or a stepping motor.
  • the motor 2 may be an inner rotor type motor or an outer rotor type motor.
  • the motor 2 shown in FIG. 1 is, for example, an inner rotor type motor.
  • the motor 2 includes a stator 20, a rotor 21, and a detection device 22.
  • the stator 20 has windings on each tooth (each slot) of the U-phase, V-phase and W-phase.
  • the stator 20 includes a total of 12 slots, that is, a U-phase winding of 4 slots, a V-phase winding of 4 slots, and a W-phase winding of 4 slots.
  • Three-phase currents which are out of phase with each other by 120 degrees, are input from the drive device 6 to the windings of the teeth of the stator 20.
  • the stator 20 generates a magnetic field at the position of the rotor 21 and the detection device 22 by the three-phase current input to the windings of the U-phase, V-phase, and W-phase teeth.
  • the rotor 21 rotates around the central axis by receiving the magnetic force of the stator 20.
  • the rotor 21 includes one or more magnetic pole pairs (N pole and S pole). In FIG. 1, the rotor 21 includes, for example, four magnetic pole pairs. The rotor 21 rotates when the magnetic pole pair receives a magnetic force from the stator 20.
  • a pole pair number is assigned to each magnetic pole pair.
  • a section and a segment are associated with the pole pair number.
  • the detection device 22 is a device that detects the magnetic field strength.
  • the detection device 22 detects magnetic field strengths at three or more locations near the rotor 21.
  • the detection device 22 includes three or more magnetic field sensors.
  • the detection device 22 includes a sensor 220-U, a sensor 220-V, and a sensor 220-W.
  • the magnetic field sensor is, for example, a Hall element, a linear Hall IC (integrated circuit), or a magnetoresistive sensor. In this embodiment, the magnetic field sensor will be described as a Hall element.
  • the sensor 220-U is a sensor that detects the U-phase magnetic field strength including the magnet magnetic flux of the rotor 21 and the magnetic flux (disturbance magnetic flux) of the U-phase winding (electromagnet) of the stator 20.
  • the sensor 220-U outputs a U-phase differential signal, which is a differential signal representing the U-phase magnetic field strength, to the amplification device 3.
  • the sensor 220-V is a sensor that detects the V-phase magnetic flux of the rotor 21 as the V-phase magnetic field strength.
  • the sensor 220-V may detect the V-phase magnet magnetic flux and the disturbance magnetic flux as the V-phase magnetic field strength.
  • the sensor 220-V outputs a V-phase differential signal, which is a differential signal representing the V-phase magnetic field strength, to the amplification device 3.
  • the sensor 220-W is a sensor that detects the W-phase magnetic flux of the rotor 21 as the W-phase magnetic field strength.
  • the sensor 220-W may detect the W-phase magnetic flux and the disturbance magnetic flux as the W-phase magnetic field strength.
  • the sensor 220-W outputs a W-phase differential signal, which is a differential signal representing the W-phase magnetic field strength, to the amplification device 3.
  • the amplification device 3 is a device that amplifies the amplitude of the waveform of the differential signal.
  • the amplification device 3 includes a differential amplifier 30-U, a differential amplifier 30-V, and a differential amplifier 30-W.
  • the differential amplifier 30-U generates an analog U-phase signal Hu by performing an amplification process on the U-phase differential signal.
  • the differential amplifier 30-V generates an analog V-phase signal Hv by performing amplification processing on the V-phase differential signal.
  • the differential amplifier 30-W generates an analog W-phase signal Hw by performing amplification processing on the W-phase differential signal.
  • the position estimation device 4 is an information processing device that estimates the rotational position of the rotor of the motor.
  • the position estimation device 4 acquires the analog U-phase signal Hu, the analog V-phase signal Hv, and the analog W-phase signal Hw from the amplification device 3.
  • the position estimation device 4 calculates a plurality of characteristic amounts of each waveform of the U-phase signal Hu, the V-phase signal Hv, and the W-phase signal Hw.
  • the position estimation device 4 estimates the rotational position of the rotor 21 of the motor 2 based on the calculated plurality of characteristic amounts of each waveform.
  • the position estimation device 4 outputs the estimation result (pole pair number) of the rotational position to the control device 5.
  • the control device 5 is an information processing device that generates a control signal.
  • the control device 5 generates a control signal based on the instruction signal.
  • the control signal is, for example, a signal representing a register value according to the instructed rotation direction (CW:clockwise, CCW:counterclockwise), or a signal representing the current value of the current output from the drive device 6 to the stator 20.
  • the control signal may be, for example, a current signal supplied to the power supply of the detection device 22 of the motor 2.
  • the control device 5 can control the power supply of each sensor 220 by controlling the amount of current supplied to the power supply of the detection device 22.
  • the drive device 6 is a device that drives the rotor of the motor.
  • a control signal is input to the drive device 6 from the control device 5.
  • the drive device 6 inputs the three-phase current having the current value represented by the control signal to each winding of the stator 20.
  • the drive device 6 can rotate the rotor 21 by inputting a three-phase current to each winding of the stator 20.
  • the position estimation of the rotor 21 is performed in a state where the drive device 6 does not input the three-phase current to each winding of the stator 20. That is, in the first embodiment, the position estimation device 4 estimates the rotational position of the stopped rotor 21.
  • the position estimation device 4 may estimate the rotational position of the rotating rotor 21.
  • the current sensor 7 detects a response value of the current output by the drive device 6 to each winding of the stator 20 (hereinafter referred to as “current response value”).
  • the current sensor 7 outputs the detected current response value to the position estimation device 4.
  • the external device 8 is an information processing device that generates instruction signals such as the rotation direction and rotation speed of the rotor.
  • the external device 8 outputs an instruction signal to the control device 5.
  • the position estimation device 4 includes a conversion device 40, a calculation device 41, and a storage device 42.
  • the conversion device 40 is a device that converts an analog signal into a digital signal.
  • the conversion device 40 includes a conversion unit 400-U, a conversion unit 400-V, and a conversion unit 400-W.
  • the conversion unit 400 is a device that converts an analog signal into a digital signal.
  • the conversion unit 400-U converts the analog U-phase signal acquired from the differential amplifier 30-U into a digital U-phase signal.
  • the conversion unit 400-V converts the analog U-phase signal acquired from the differential amplifier 30-V into a digital V-phase signal.
  • the conversion unit 400-W converts the analog W-phase signal acquired from the differential amplifier 30-W into a digital V-phase signal.
  • the arithmetic device 41 is a device that executes arithmetic processing.
  • a part or all of the arithmetic device 41 is realized by a processor such as a CPU (Central Processing Unit) executing a program loaded in the memory.
  • a part or all of the arithmetic device 41 may be realized by using hardware such as LSI (Large Scale Integration) and ASIC (Application Specific Integrated Circuit).
  • the arithmetic device 41 includes a correction unit 410 and an estimation unit 411.
  • the correction unit 410 acquires the current response value “I” of the tooth winding of the stator 20 from the current sensor 7.
  • the correction unit 410 derives the estimated value of the disturbance magnetic flux of the stator 20 based on the current response value “I” of the tooth winding of the stator 20.
  • the correction unit 410 corrects the detected value of the magnet magnetic flux “ ⁇ m (t)” (t represents the sampling time) of the rotor 21 based on the estimated value of the disturbance magnetic flux of the stator 20. That is, the correction unit 410 corrects the waveforms of the magnetic field strengths of the U-phase signal Hu, the V-phase signal Hv, and the W-phase signal Hw.
  • the correction unit 410 outputs the corrected detected value of the magnet magnetic flux of the rotor 21 to the estimation unit 411.
  • the correction unit 410 compares the rotational position of the rotor 21 with the accuracy estimated by the estimation unit 411 based on the uncorrected waveform, and determines the accuracy with which the estimation unit 411 estimates the rotational position of the rotor 21. Can be improved.
  • the estimation unit 411 acquires the corrected detection value of the magnet magnetic flux of the rotor 21 from the correction unit 410.
  • the estimation unit 411 estimates the rotational position of the rotor 21 based on the corrected detected value of the magnet magnetic flux of the rotor 21. For example, the estimation unit 411 estimates the rotational position of the rotor 21 by the line segment connection method (Japanese Patent No. 6233532).
  • the estimation unit 411 outputs the estimation result (pole pair number) of the rotational position of the rotor 21 to the control device 5.
  • the storage device 42 is preferably a non-volatile recording medium (non-temporary recording medium) such as a flash memory or an HDD (Hard Disk Drive).
  • the storage device 42 may include a volatile recording medium such as a RAM (Random Access Memory).
  • the storage device 42 stores a data table of programs, learning values, and the like.
  • the detected value “V H ( ⁇ )” of the magnetic flux of the magnet of the rotor 21 is expressed by the equation (1).
  • ⁇ m ( ⁇ ) represents the magnet magnetic flux of the rotor 21.
  • ⁇ s ( ⁇ ,I) represents the disturbance magnetic flux of the stator.
  • represents an electrical angle.
  • I represents the current value of the tooth winding of the stator 20.
  • the operator “*” represents multiplication.
  • the coefficients "A” and “B” are determined based on experimental results and the like.
  • the disturbance magnetic flux “ ⁇ s ”of the stator is proportional to the current response value “I” of the tooth winding of the stator 20. Therefore, the correction unit 410 detects the magnetic flux of the rotor 21 based on the estimated value of the disturbance magnetic flux “ ⁇ s ”of the stator 20 and the current response value “I” of the tooth winding of the stator 20.
  • the value “V H ( ⁇ )” is compensated as in equation (2).
  • the correction unit 410 determines the rotor 21 based on the feedback information of the three-phase currents of the U-phase current response value “Iu”, the V-phase current response value “Iv”, and the W-phase current response value “Iw”.
  • the detected values (H 1 , H 2 , H 3 ) of the magnetic flux of the magnet are corrected.
  • the correction unit 410 derives the corrected detection values (H′ 1 , H′ 2 , H′ 3 ) of the magnet magnetic flux of the rotor 21 as in Expression (3).
  • the sensor 220-U detects the magnetic flux of the electromagnet of the U-phase winding as the U-phase disturbance magnetic flux.
  • the sensor 220-V detects the magnetic flux of the electromagnet of the V-phase winding as the V-phase disturbance magnetic flux.
  • the sensor 220-W detects the magnetic flux of the electromagnet of the W-phase winding as the W-phase disturbance magnetic flux. Therefore, the corrected detected values of the magnetic flux of the rotor 21 (H′ 1 , H′ 2 , H′ 3 ) are the detected values of the magnetic flux “H 1 ”of the sensor 220-U and the magnetic flux of the sensor 220-V.
  • the expression (3) is expressed as a generalized expression (4) by using the detection value “H 2 ”of the above and the detection value “H 3 ” of the magnetic flux of the sensor 220-W.
  • H′ 1 ”, “H′ 2 ”, “H′ 3 ”, “H 1 ”, “H 2 ”, “H 3 ”, “Iu”, “Iv”, and “Iw” are respectively It may be discrete data.
  • FIG. 2 is a diagram showing an example of the detection value of the magnetic flux “H” detected by each sensor 220.
  • the upper part of FIG. 2 shows the waveforms of the detected values of the magnetic flux detected by the sensors 220, which are not corrected.
  • the horizontal axis represents the rotation angle of the rotor 21.
  • the vertical axis represents the detected value (digital value) of the magnet magnetic flux “H” including the disturbance magnetic flux.
  • the uncorrected waveform is such that the primary component is superimposed. In the uncorrected waveform, the waveform is out of phase due to waveform distortion. Therefore, when the estimation unit 411 executes the position estimation process using the uncorrected waveform, the accuracy of the position estimation is reduced.
  • the lower part of FIG. 2 shows each waveform of the detected value of the magnetic flux detected by each sensor 220, which is a corrected waveform.
  • the horizontal axis represents the rotation angle of the rotor 21.
  • the vertical axis represents the detected value (digital value) of the magnetic flux "H" in which the influence of the disturbance magnetic flux is reduced.
  • the phase of the waveform of the detected value of magnetic flux is not shifted. Therefore, when the estimation unit 411 executes the position estimation process using the corrected waveform, the accuracy of position estimation is improved.
  • the position estimation device 4 of the first embodiment includes the correction unit 410 and the estimation unit 411.
  • the correction unit 410 derives the estimated value of the disturbance magnetic flux of the stator 20.
  • the correction unit 410 derives the estimated value of the disturbance magnetic flux of the stator 20 based on the current response value in the winding of the stator 20 (the winding of the stator teeth).
  • the correction unit 410 corrects the detected value of the magnetic flux of the rotor 21 based on the estimated value of the disturbance magnetic flux of the stator 20.
  • the estimation unit 411 estimates the position of the rotor 21 based on the corrected detection value.
  • the second embodiment is different from the first embodiment in that the disturbance magnetic flux of the stator 20 is derived based on the current command value. In the second embodiment, differences from the first embodiment will be described.
  • FIG. 3 is a diagram showing an example of the configuration of the motor unit 1.
  • the motor unit 1 includes a motor 2, an amplification device 3, a position estimation device 4, a control device 5, and a drive device 6.
  • the correction unit 410 calculates the U-phase current command value “iu * (t)” of the stator 20, the V-phase current command value “iv * (t)” of the stator 20, and the W-phase current value of the stator 20.
  • the current command value “iw * (t)” is acquired from the control device 5.
  • the correction unit 410 derives the estimated value of the disturbance magnetic flux of the stator 20 based on the current command value “i * ” of the tooth winding of the stator 20.
  • the correspondence between the current command value “i * ” and the estimated value of the disturbance magnetic flux of the stator 20 is determined based on, for example, experimental results.
  • the correction unit 410 of the second embodiment derives the estimated value of the disturbance magnetic flux of the stator 20 based on the current command value of the stator 20. This makes it possible to improve the accuracy of estimating the rotor position without using a current sensor. Even if the magnet of the rotor 21 is a permanent magnet, the estimation accuracy of the position of the rotor 21 can be improved.
  • the third embodiment is different from the second embodiment in that the disturbance magnetic flux of the stator 20 is derived based on the voltage command value. In the third embodiment, differences from the second embodiment will be described.
  • the correction unit 410 calculates the U-phase voltage command value “Vu * (t)” of the stator 20, the V-phase voltage command value “Vv * (t)” of the stator 20, and the W-phase voltage of the stator 20.
  • the voltage command value “Vw * (t)” is acquired from the control device 5 as the voltage command value “v * abcs ”.
  • the correction unit 410 calculates a U-phase voltage command value “Vu * (t)”, a V-phase voltage command value “Vv * (t)”, and a W-phase voltage command value “Vw * (t)”.
  • the disturbance magnetic flux of the stator 20 is derived based on the motor model.
  • a model of a motor such as a permanent magnet synchronous motor is expressed by equations (5) and (6).
  • vabcs represents a phase voltage.
  • I abcs represents a current response value (phase current).
  • ⁇ abcs represents the total magnetic flux interlinking with the phase coil (winding).
  • R s represents the phase coil resistance of the stator.
  • ⁇ r represents the electrical angle of the rotor.
  • ⁇ m represents the magnetic flux of the magnet.
  • L ls represents the phase coil leakage inductance of the stator 20.
  • L ms represents the phase coil magnetizing inductance of the stator 20.
  • the matrix of the first term on the right side of Expression (6) represents the inductance matrix “L abcs ”.
  • the first term on the right side of Expression (6) represents the disturbance magnetic flux (electromagnetic flux) “ ⁇ abc — coil ” of the tooth winding of the stator 20.
  • the matrix of the second term on the right side of Expression (6) represents a three-phase unit matrix “U abcs ”.
  • the second term on the right side of Expression (6) represents the magnet magnetic flux of the rotor 21 (magnetic flux of the permanent magnet) “ ⁇ abc — pm ”.
  • the correction unit 410 derives the estimated value “ ⁇ i abcs ” of the current response value based on the voltage command value “v * abcs ” acquired from the control device 5, as in Expression (7).
  • the correction unit 410 derives the estimated value of the disturbance magnetic flux of the stator 20 based on the estimated value “ ⁇ i abcs ” of the current response value.
  • the correction unit 410 corrects the detected value of the magnetic flux “ ⁇ m (t)” of the rotor 21 based on the estimated value of the disturbance magnetic flux of the stator 20.
  • the correction unit 410 may derive the estimated value “ ⁇ i abcs ”of the current response value based on the difference equation that is the result of the z conversion of Expression (7).
  • the magnetic flux detection value "H 1 " detected by the sensor 220-U, the magnetic flux detection value “H 2 " detected by the sensor 220-V, and the magnetic flux detection value “H” detected by the sensor 220-W 3 ” is determined based on the equations (A) and (B) and the positional relationship shown in the equation (C).
  • ⁇ h_coil represents the disturbance magnetic flux of the winding of the teeth of the stator 20.
  • K h — coil represents the gain of the disturbance magnetic flux of the winding of the teeth of the stator 20.
  • K h_coil is proportional to (1 / H coil).
  • H coil represents the gap length from the teeth of the stator 20 to the sensor 220.
  • ⁇ h_pm represents the magnetic flux of the permanent magnet of the rotor 21.
  • K h_pm represents the gain of the magnetic flux of the rotor 21.
  • K h_pm is proportional to (1 / H pm).
  • H pm represents the gap length from the permanent magnet of the rotor 21 to the sensor 220.
  • ⁇ h represents the position of the center line of the teeth of the stator 20.
  • ⁇ r ⁇ h represents the positional relationship between the electrical angle of the rotor 21 and the center line of the teeth of the stator 20.
  • V h The voltage “V h ”, which is output by the sensor 220, is determined as shown in Expression (E) based on Expression (D).
  • V h_coil K h_gain [mV/mT] ⁇ h_coil (D)
  • V h_coil represents a voltage according to the magnetic flux of the winding of the teeth of the stator 20.
  • K h — gain [mV/mT] represents the sensitivity of the sensor 220.
  • V h_pm represents a voltage according to the magnetic flux of the permanent magnet of the rotor 21.
  • V op The voltage “V op ”, which is output from the operational amplifier, is represented by the formula (F).
  • V op K op ⁇ V h +V offset (F)
  • the range of the voltage “V op ”output from the drive device 6 is, for example, the range of 0 V to 3.3 V.
  • the detected value (digital value) “N digit ” output from the arithmetic unit 41 is expressed as in Expression (G).
  • N digit K adc ⁇ V op (G)
  • K adc represents the gain of the conversion unit 400.
  • the range of “K adc ” is from 0 to 4095.
  • the resolution of “K adc ” is 4095/3.3 [digit/V].
  • correction unit 410 may interpolate each value from the above equations (A) to (G) using a data table.
  • the correction unit 410 of the third embodiment derives the estimated value of the disturbance magnetic flux of the stator 20 based on the voltage command value for the winding of the stator 20. This makes it possible to improve the accuracy of estimating the position of the rotor 21 without using a current sensor. Even if the magnet of the rotor 21 is a permanent magnet, the estimation accuracy of the position of the rotor 21 can be improved.
  • the current response value and the disturbance magnetic flux of the stator 20 are learned in advance, and the correction unit 410 corrects the magnet magnetic flux of the rotor 21 based on the learned disturbance magnetic flux of the stator 20. This is different from the first embodiment. In the fourth embodiment, differences from the first embodiment will be described.
  • FIG. 4 is a diagram showing an example of the configuration of the motor unit 1.
  • the motor unit 1 includes a motor 2, an amplification device 3, a position estimation device 4, a control device 5, a drive device 6, and a current sensor 7.
  • the storage device 42 stores the disturbance magnetic flux information learned in advance.
  • the disturbance magnetic flux information is information (data table) indicating the correspondence between the current response value of the stator 20 and the estimated value of the disturbance magnetic flux of the stator 20.
  • the storage device 42 may store not only the disturbance magnetic flux information but also the response value information learned in advance.
  • the response value information is information representing the correspondence between the current command value or voltage command value of the stator 20 and the current response value of the stator 20.
  • the correction unit 410 acquires the disturbance magnetic flux information from the storage device 42.
  • the correction unit 410 acquires the current response value “I” from the current sensor 7.
  • the correction unit 410 extracts the estimated value “k*I” of the disturbance magnetic flux associated with the acquired current response value “I” from the disturbance magnetic flux information.
  • the operator "*" in “k*I” represents multiplication.
  • the correction unit 410 corrects the detected value “ ⁇ m (t)” of the magnetic flux of the rotor 21 based on the estimated value “k*I” of the extracted disturbance magnetic flux.
  • the correction unit 410 may acquire the response value information and the disturbance magnetic flux information from the storage device 42.
  • the correction unit 410 acquires the current command value from the control device 5.
  • the correction unit 410 may acquire the voltage command value from the control device 5.
  • the correction unit 410 may extract the current response value associated with the acquired voltage command value from the response value information.
  • the correction unit 410 extracts a current response value associated with the acquired current command value or voltage command value from the response value information.
  • the correction unit 410 extracts the estimated value of the disturbance magnetic flux associated with the extracted current response value from the disturbance magnetic flux information.
  • the correction unit 410 corrects the detected value of the magnet magnetic flux “ ⁇ m (t)” of the rotor 21 based on the extracted estimated value of the disturbance magnetic flux.
  • correction unit 410 may derive the estimated value of the disturbance magnetic flux of the stator 20 using a look-up table.
  • the correction unit 410 may correct the detected value of the magnet magnetic flux “ ⁇ m (t)” of the rotor 21 based on the estimated value of the disturbance magnetic flux derived using the look-up table.
  • the position estimation device 4 includes the correction unit 410, the estimation unit 411, and the storage device 42.
  • the storage device 42 stores the response value information.
  • the storage device 42 may store the response value information and the disturbance magnetic flux information.
  • the correction unit 410 derives the current response value based on the current command value or the voltage command value and the response value information.
  • the correction unit 410 derives the estimated value of the disturbance magnetic flux of the stator 20 based on the derived current response value and the disturbance magnetic flux information.
  • a program for realizing the function of the position estimation device according to the present invention is recorded in a computer-readable recording medium (not shown), and the program recorded in this recording medium is read by a computer system and executed. You may perform the procedure of each process.
  • the “computer system” mentioned here includes an OS and hardware such as peripheral devices.
  • the “computer system” also includes a WWW system having a homepage providing environment (or display environment).
  • the “computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • the "computer-readable recording medium” is a volatile memory (RAM) inside a computer system that serves as a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line.
  • RAM volatile memory
  • those that hold the program for a certain period of time are also included.
  • the above program may be transmitted from a computer system that stores the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the "transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Further, it may be a so-called difference file (difference program) that can realize the functions described above in combination with a program already recorded in the computer system.
  • SYMBOLS 1 Motor unit, 2... Motor, 3... Amplification device, 4... Position estimation device, 5... Control device, 6... Drive device, 7... Current sensor, 8... External device, 20... Stator, 21... Rotor, 22... Detection device, 30... Differential amplifier, 40... Conversion device, 41... Arithmetic device, 42... Storage device, 220... Sensor, 400... Conversion unit, 410... Correction unit, 411... Estimating unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

位置推定装置は、補正部と、推定部とを備える。補正部は、固定子の外乱磁束の推定値を導出する。補正部は、外乱磁束の推定値に基づいて回転子の磁石磁束の検出値を補正する。推定部は、補正された検出値に基づいて回転子の位置を推定する。補正部は、固定子の電流応答値に基づいて、外乱磁束の推定値を導出してもよい。補正部は、固定子の電流指令値又は電圧指令値に基づいて、外乱磁束の推定値を導出してもよい。位置推定装置は、記憶装置を更に備えてもよい。記憶装置は、固定子の電流応答値と外乱磁束の推定値との対応関係を表す情報である外乱磁束情報を記憶してもよい。

Description

位置推定装置
 本発明は、位置推定装置に関する。
 近年、モータの小型化及び薄型化が進んでいる。モータの小型化及び薄型化に応じて磁気センサと固定子との間隔が狭くなるので、回転子の磁石磁束だけでなく固定子の外乱磁束も、モータの磁気センサが検出してしまうことがある。このため、位置推定装置が回転子の位置を精度よく検出するには、位置推定装置が回転子の磁石磁束の検出値を補正する必要がある。
特開2016-133376号公報 特開2018-163177号公報 特開2016-169981号公報
 しかしながら、位置推定装置が回転子の磁石磁束の検出値を補正するには、回転子の位置を検出する位置センサ用の磁石を回転子が備えている必要があった。このため、モータの小型化及び薄型化に不利となっていた。
 上記事情に鑑み、本発明は、位置センサ用の磁石を回転子が備えることなく、回転子の位置の推定精度を向上させることが可能である位置推定装置を提供することを目的としている。
 本発明の一態様は、固定子の外乱磁束の推定値を導出し、前記外乱磁束の推定値に基づいて回転子の磁石磁束の検出値を補正する補正部と、補正された前記検出値に基づいて前記回転子の位置を推定する推定部とを備える位置推定装置である。
 本発明により、位置センサ用の磁石をモータの回転子が備えることなく、回転子の位置の推定精度を向上させることが可能である。
図1は、第1実施形態における、モータユニットの構成の例を示す図である。 図2は、第1実施形態における、各センサによって検出された磁束の検出値の例を示す図である。 図3は、第2実施形態及び第3実施形態における、モータユニットの構成の例を示す図である。 図4は、第4実施形態における、モータユニットの構成の例を示す図である。
 本発明の実施形態について、図面を参照して詳細に説明する。
 (第1実施形態)
 図1は、モータユニット1の構成の例を示す図である。モータユニット1は、モータの回転子の回転位置を推定するシステムである。モータユニット1は、モータ2と、増幅装置3と、位置推定装置4と、制御装置5と、駆動装置6と、電流センサ7とを備える。
 モータ2は、電動機であり、例えば、ブラシレスモータ、ステッピングモータである。モータ2は、インナーロータ型モータでもよいし、アウターロータ型モータでもよい。図1に示されたモータ2は、一例として、インナーロータ型モータである。モータ2は、固定子20と、回転子21と、検出装置22とを備える。
 固定子20は、U相、V相及びW相の各歯(各スロット)に巻線を備える。図1では、固定子20は、4スロットのU相の巻線と、4スロットのV相の巻線と、4スロットのW相の巻線との計12スロットの巻線を備える。固定子20の歯の巻線には、120度ずつ位相がずれている三相電流が、駆動装置6から入力される。固定子20は、U相、V相及びW相の各歯の巻線に入力される三相電流によって、回転子21及び検出装置22の位置に磁界を発生させる。
 回転子21は、固定子20の磁力を受けることによって中心軸回りに回転する。回転子21は、1個以上の磁極対(N極及びS極)を備える。図1では、回転子21は、一例として、4個の磁極対を備える。回転子21は、磁極対が磁力を固定子20から受けることによって回転する。磁極対には、極対番号が割り当てられている。極対番号には、セクションとセグメントとが対応付けられている。
 検出装置22は、磁界強度を検出する装置である。検出装置22は、回転子21の近傍の3箇所以上の磁界強度を検出する。検出装置22は、3個以上の磁界センサを備える。図1では、検出装置22は、センサ220-Uと、センサ220-Vと、センサ220-Wとを備える。磁界センサは、例えば、ホール素子、リニアホールIC(integrated circuit)、磁気抵抗センサである。本実施形態では、磁界センサがホール素子であるとして説明する。
 センサ220-Uは、回転子21の磁石磁束と固定子20のU相の巻線(電磁石)の磁束(外乱磁束)とを含むU相の磁界強度を検出するセンサである。センサ220-Uは、U相の磁界強度を表す差動信号であるU相差動信号を、増幅装置3に出力する。
 センサ220-Vは、回転子21のV相の磁石磁束をV相の磁界強度として検出するセンサである。V相の磁石磁束及び外乱磁束をV相の磁界強度としてセンサ220-Vが検出してしまう場合がある。センサ220-Vは、V相の磁界強度を表す差動信号であるV相差動信号を、増幅装置3に出力する。
 センサ220-Wは、回転子21のW相の磁石磁束をW相の磁界強度として検出するセンサである。W相の磁石磁束及び外乱磁束をW相の磁界強度としてセンサ220-Wが検出してしまう場合がある。センサ220-Wは、W相の磁界強度を表す差動信号であるW相差動信号を、増幅装置3に出力する。
 増幅装置3は、差動信号の波形の振幅を増幅する装置である。増幅装置3は、差動増幅器30-Uと、差動増幅器30-Vと、差動増幅器30-Wとを備える。差動増幅器30-Uは、U相差動信号に対して増幅処理を実行することによって、アナログのU相信号Huを生成する。差動増幅器30-Vは、V相差動信号に対して増幅処理を実行することによって、アナログのV相信号Hvを生成する。差動増幅器30-Wは、W相差動信号に対して増幅処理を実行することによって、アナログのW相信号Hwを生成する。
 位置推定装置4は、モータの回転子の回転位置を推定する情報処理装置である。位置推定装置4は、アナログのU相信号HuとアナログのV相信号HvとアナログのW相信号Hwとを、増幅装置3から取得する。位置推定装置4は、U相信号HuとV相信号HvとW相信号Hwとの各波形の複数の特徴量を算出する。位置推定装置4は、算出された各波形の複数の特徴量に基づいて、モータ2の回転子21の回転位置を推定する。位置推定装置4は、回転位置の推定結果(極対番号)を、制御装置5に出力する。
 制御装置5は、制御信号を生成する情報処理装置である。制御装置5は、指示信号に基づいて制御信号を生成する。制御信号は、例えば、指示された回転方向(CW: clockwise、CCW: counterclockwise)に応じたレジスタ値を表す信号、駆動装置6から固定子20に出力される電流の電流値を表す信号である。制御信号は、例えば、モータ2の検出装置22の電源に供給される電流信号でもよい。制御装置5は、検出装置22の電源に供給される電流量を制御することによって、各センサ220の電源を制御可能である。
 駆動装置6は、モータの回転子を駆動する装置である。駆動装置6には、制御信号が制御装置5から入力される。駆動装置6は、制御信号によって表される電流値の三相電流を、固定子20の各巻線に入力する。駆動装置6は、固定子20の各巻線に三相電流を入力することによって、回転子21を回転させることができる。詳細は後述するが、第1実施形態では、固定子20の各巻線に駆動装置6が三相電流を入力しない状態で回転子21の位置推定が行われる。すなわち、第1実施形態では、位置推定装置4は停止中の回転子21の回転位置を推定する。なお、位置推定装置4は、回転中の回転子21の回転位置を推定してもよい。
 電流センサ7は、駆動装置6が固定子20の各巻線に出力している電流の応答値(以下「電流応答値」という。)を検出する。電流センサ7は、検出された電流応答値を、位置推定装置4に出力する。
 外部装置8は、回転子の回転方向及び回転速度等の指示信号を生成する情報処理装置である。外部装置8は、指示信号を制御装置5に出力する。
 次に、位置推定装置4の構成例の詳細を説明する。 位置推定装置4は、変換装置40と、演算装置41と、記憶装置42とを備える。変換装置40は、アナログ信号をデジタル信号に変換する装置である。変換装置40は、変換部400-Uと、変換部400-Vと、変換部400-Wとを備える。
 変換部400は、アナログ信号をデジタル信号に変換するデバイスである。変換部400-Uは、差動増幅器30-Uから取得されたアナログのU相信号を、デジタルのU相信号に変換する。変換部400-Vは、差動増幅器30-Vから取得されたアナログのU相信号を、デジタルのV相信号に変換する。変換部400-Wは、差動増幅器30-Wから取得されたアナログのW相信号を、デジタルのV相信号に変換する。
 演算装置41は、演算処理を実行する装置である。演算装置41の一部又は全部は、CPU(Central Processing Unit)等のプロセッサが、メモリに展開されたプログラムを実行することにより実現される。演算装置41の一部又は全部は、例えば、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアを用いて実現されてもよい。
 演算装置41は、補正部410と、推定部411とを備える。補正部410は、固定子20の歯の巻線の電流応答値「I」を、電流センサ7から取得する。補正部410は、固定子20の歯の巻線の電流応答値「I」に基づいて、固定子20の外乱磁束の推定値を導出する。補正部410は、固定子20の外乱磁束の推定値に基づいて、回転子21の磁石磁束「Φ(t)」(tは、サンプリング時刻を表す。)の検出値を補正する。すなわち、補正部410は、U相信号Hu、V相信号Hv及びW相信号Hwの各磁界強度の波形を補正する。補正部410は、補正された回転子21の磁石磁束の検出値を、推定部411に出力する。
 これによって、補正部410は、補正されていない波形に基づいて回転子21の回転位置を推定部411が推定する精度と比較して、回転子21の回転位置を推定部411が推定する精度を向上させることができる。
 推定部411は、補正された回転子21の磁石磁束の検出値を、補正部410から取得する。推定部411は、補正された回転子21の磁石磁束の検出値に基づいて、回転子21の回転位置を推定する。例えば、推定部411は、線分接続法(特許第6233532号公報)によって、回転子21の回転位置を推定する。推定部411は、回転子21の回転位置の推定結果(極対番号)を、制御装置5に出力する。
 記憶装置42は、例えば、フラッシュメモリ、HDD(Hard Disk Drive)などの不揮発性の記録媒体(非一時的な記録媒体)が好ましい。記憶装置42は、RAM(Random Access Memory)などの揮発性の記録媒体を備えてもよい。記憶装置42は、プログラム、学習値等のデータテーブルを記憶する。
 次に、補正部410の詳細を説明する。 回転子21の磁石磁束の検出値「V(θ)」は、式(1)のように表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、「φ(θ)」は、回転子21の磁石磁束を表す。「φ(θ,I)」は、固定子の外乱磁束を表す。「θ」は、電気角を表す。「I」は、固定子20の歯の巻線の電流値を表す。演算子「*」は、乗算を表す。係数「A」及び「B」は、実験結果等に基づいて定められる。
 固定子の外乱磁束「φ」は、固定子20の歯の巻線の電流応答値「I」に比例する。そこで、補正部410は、固定子20の外乱磁束「φ」の推定値と、固定子20の歯の巻線の電流応答値「I」とに基づいて、回転子21の磁石磁束の検出値「V(θ)」を式(2)のように補償する。
Figure JPOXMLDOC01-appb-M000002
 ここで、「k」は係数(比例定数)を表す。係数は、実験結果等に基づいて定められる。補正部410は、U相の電流応答値「Iu」とV相の電流応答値「Iv」とW相の電流応答値「Iw」との三相の電流のフィードバック情報に基づいて、回転子21の磁石磁束の検出値(H,H,H)を補正する。補正部410は、補正された回転子21の磁石磁束の検出値(H’,H’,H’)を、式(3)のように導出する。
Figure JPOXMLDOC01-appb-M000003
 センサ220-Uは、U相の巻線の電磁石の磁束を、U相の外乱磁束として検出する。センサ220-Vは、V相の巻線の電磁石の磁束を、V相の外乱磁束として検出する。センサ220-Wは、W相の巻線の電磁石の磁束を、W相の外乱磁束として検出する。このため、補正された回転子21の磁石磁束の検出値(H’,H’,H’)は、センサ220-Uの磁束の検出値「H」とセンサ220-Vの磁束の検出値「H」とセンサ220-Wの磁束の検出値「H」とを用いて、式(3)が一般化された式(4)のように表される。
Figure JPOXMLDOC01-appb-M000004
 なお、「H’」と「H’」と「H’」と「H」と「H」と「H」と「Iu」と「Iv」と「Iw」とは、それぞれ離散データでもよい。
 図2は、各センサ220によって検出された磁束「H」の検出値の例を示す図である。図2の上段には、各センサ220によって検出された磁束の検出値の各波形であって、補正されていない各波形が表されている。横軸は、回転子21の回転角を示す。縦軸は、外乱磁束を含む磁石磁束「H」の検出値(デジタル値)を表す。補正されていない波形は、一次成分が重畳されたような波形となっている。補正されていない波形では、波形歪によって、波形の位相がずれている。このため、補正されていない波形を用いて推定部411が位置推定処理を実行した場合、位置推定の精度が低下する。
 図2の下段には、各センサ220によって検出された磁束の検出値の各波形であって、補正された波形が表されている。横軸は、回転子21の回転角を示す。縦軸は、外乱磁束の影響が低減された磁束「H」の検出値(デジタル値)を表す。補正された波形では、磁束の検出値の波形の位相がずれていない。このため、補正された波形を用いて推定部411が位置推定処理を実行した場合、位置推定の精度が向上する。
 以上のように、第1実施形態の位置推定装置4は、補正部410と、推定部411とを備える。補正部410は、固定子20の外乱磁束の推定値を導出する。補正部410は、固定子20の巻線(固定子歯の巻線)における電流応答値に基づいて、固定子20の外乱磁束の推定値を導出する。補正部410は、固定子20の外乱磁束の推定値に基づいて、回転子21の磁石磁束の検出値を補正する。推定部411は、補正された検出値に基づいて、回転子21の位置を推定する。
 これによって、位置センサ用の磁石をモータ2の回転子21が備えることなく、回転子21の位置の推定精度を向上させることが可能である。回転子21の磁石が永久磁石でも、回転子21の位置の推定精度を向上させることが可能である。
 (第2実施形態)
 第2実施形態では、電流指令値に基づいて固定子20の外乱磁束が導出される点が、第1実施形態と相違する。第2実施形態では、第1実施形態との相違点を説明する。
 図3は、モータユニット1の構成の例を示す図である。モータユニット1は、モータ2と、増幅装置3と、位置推定装置4と、制御装置5と、駆動装置6とを備える。
 補正部410は、固定子20のU相の電流指令値「iu(t)」と、固定子20のV相の電流指令値「iv(t)」と、固定子20のW相の電流指令値「iw(t)」とを、制御装置5から取得する。補正部410は、固定子20の歯の巻線の電流指令値「i」に基づいて、固定子20の外乱磁束の推定値を導出する。電流指令値「i」と固定子20の外乱磁束の推定値との対応関係は、例えば実験結果に基づいて定められる。
 以上のように、第2実施形態の補正部410は、固定子20の電流指令値に基づいて、固定子20の外乱磁束の推定値を導出する。これによって、電流センサを用いることなく、回転子の位置の推定精度を向上させることが可能である。回転子21の磁石が永久磁石でも、回転子21の位置の推定精度を向上させることが可能である。
 (第3実施形態)
 第3実施形態では、電圧指令値に基づいて固定子20の外乱磁束が導出される点が、第2実施形態と相違する。第3実施形態では、第2実施形態との相違点を説明する。
 補正部410は、固定子20のU相の電圧指令値「Vu(t)」と、固定子20のV相の電圧指令値「Vv(t)」と、固定子20のW相の電圧指令値「Vw(t)」とを、電圧指令値「v abcs」として制御装置5から取得する。
 補正部410は、U相の電圧指令値「Vu(t)」と、V相の電圧指令値「Vv(t)」と、W相の電圧指令値「Vw(t)」と、モータのモデルとに基づいて、固定子20の外乱磁束を導出する。永久磁石同期モータ等のモータのモデルは、式(5)及び式(6)のように表される。
Figure JPOXMLDOC01-appb-M000005
 ここで、「vabcs」は、相電圧を表す。「iabcs」は、電流応答値(相電流)を表す。「λabcs」は、相コイル(巻線)に鎖交する磁束の合計を表す。「r」は、固定子の相コイル抵抗を表す。「θ」は、回転子の電気角を表す。「Φ」は、磁石磁束を表す。「Lls」は、固定子20の相コイル漏れインダクタンスを表す。「Lms」は、固定子20の相コイル磁化インダクタンスを表す。埋込磁石型同期型モータ(interior permanent magnet synchronous motor : IPMSM)の場合、自己及び相互インダクタンスは、「cos(2θ+k×2π/3)(ただし、k=0±1)」に比例した二次高調波「L2s」を含んでいる。このため、自己インダクタンス及び相互インダクタンスは、定数「Lms」に加算される。また、高次の調波は無視される。
Figure JPOXMLDOC01-appb-M000006
 ここで、式(6)の右辺の第1項の行列は、インダクタンス行列「Labcs」を表す。式(6)の右辺の第1項は、固定子20の歯の巻線の外乱磁束(電磁石の磁束)「λabc_coil」を表す。式(6)の右辺の第2項の行列は、三相単位行列「Uabcs」を表す。式(6)の右辺の第2項は、回転子21の磁石磁束(永久磁石の磁束)「λabc_pm」を表す。
 補正部410は、制御装置5から取得された電圧指令値「v abcs」に基づいて、式(7)のように、電流応答値の推定値「^iabcs」を導出する。
Figure JPOXMLDOC01-appb-M000007
 補正部410は、電流応答値の推定値「^iabcs」に基づいて、固定子20の外乱磁束の推定値を導出する。補正部410は、固定子20の外乱磁束の推定値に基づいて、回転子21の磁石磁束「Φ(t)」の検出値を補正する。
 補正部410は、式(7)のz変換の結果である差分方程式に基づいて、電流応答値の推定値「^iabcs」を導出してもよい。
 センサ220-Uによって検出された磁束の検出値「H」と、センサ220-Vによって検出された磁束の検出値「H」と、センサ220-Wによって検出された磁束の検出値「H」とは、式(A)及び式(B)と、式(C)に示された位置関係とに基づいて定まる。
 λh_coil=Kh_coil×λabc_coil …(A) 
 ここで、「λh_coil」は、固定子20の歯の巻線の外乱磁束を表す。「Kh_coil」は、固定子20の歯の巻線の外乱磁束のゲインを表す。「Kh_coil」は、(1/Hcoil)に比例する。「Hcoil」は、固定子20の歯からセンサ220までのギャップ長を表す。
 λh_pm=Kh_pm×λabc_pm …(B) 
 ここで、「λh_pm」は、回転子21の永久磁石の磁束を表す。「Kh_pm」は、回転子21の磁石磁束のゲインを表す。「Kh_pm」は、(1/Hpm)に比例する。「Hpm」は、回転子21の永久磁石からセンサ220までのギャップ長を表す。
 (θr-θh) …(C) 
 ここで、「θh」は、固定子20の歯のセンターラインの位置を表す。「θr-θh」は、回転子21の電気角と固定子20の歯のセンターラインとの位置関係を表す。
 センサ220が出力する電圧「V」は、式(D)に基づいて、式(E)のように定まる。
 Vh_coil=Kh_gain[mV/mT]×λh_coil …(D)
 ここで、「Vh_coil」は、固定子20の歯の巻線の磁束に応じた電圧を表す。「Kh_gain[mV/mT]」は、センサ220の感度を表す。
 「V=Vh_coil+Vh_pm」 …(E)
 ここで、「Vh_pm」は、回転子21の永久磁石の磁束に応じた電圧を表す。
 オペアンプが出力する電圧「Vop」は、式(F)のように表される。
 Vop=Kop×V+Voffset …(F)
 駆動装置6が出力する電圧「Vop」の範囲は、例えば、0Vから3.3Vまでの範囲である。
 演算装置41から出力される検出値(デジタル値)「Ndigit」は、式(G)のように表される。
 Ndigit=Kadc×Vop …(G)
 ここで、「Kadc」は、変換部400のゲインを表す。「Kadc」の範囲は、0から4095までの範囲である。12ビットでゲインが表現される場合、「Kadc」の分解能は、4095/3.3[digit/V]である。
 なお、補正部410は、上記の式(A)から式(G)までの各値を、データテーブルを用いて補間してもよい。
 以上のように、第3実施形態の補正部410は、固定子20の巻線に対する電圧指令値に基づいて、固定子20外乱磁束の推定値を導出する。これによって、電流センサを用いることなく、回転子21の位置の推定精度を向上させることが可能である。回転子21の磁石が永久磁石でも、回転子21の位置の推定精度を向上させることが可能である。
 (第4実施形態)
 第4実施形態では、電流応答値と固定子20の外乱磁束とが予め学習され、学習された固定子20の外乱磁束に基づいて回転子21の磁石磁束を補正部410が補正する点が、第1実施形態と相違する。第4実施形態では、第1実施形態との相違点を説明する。
 図4は、モータユニット1の構成の例を示す図である。モータユニット1は、モータ2と、増幅装置3と、位置推定装置4と、制御装置5と、駆動装置6と、電流センサ7とを備える。
 記憶装置42は、予め学習された外乱磁束情報を記憶する。外乱磁束情報は、固定子20の電流応答値と、固定子20の外乱磁束の推定値との対応関係を表す情報(データテーブル)である。記憶装置42は、外乱磁束情報だけでなく、予め学習された応答値情報を記憶してもよい。応答値情報は、固定子20の電流指令値又は電圧指令値と、固定子20の電流応答値との対応関係を表す情報である。
 補正部410は、外乱磁束情報を記憶装置42から取得する。補正部410は、電流応答値「I」を、電流センサ7から取得する。補正部410は、取得された電流応答値「I」に対応付けられた外乱磁束の推定値「k*I」を、外乱磁束情報から抽出する。「k*I」における演算子「*」は、乗算を表す。補正部410は、抽出された外乱磁束の推定値「k*I」に基づいて、回転子21の磁石磁束の検出値「Φ(t)」を補正する。
 補正部410は、応答値情報及び外乱磁束情報を、記憶装置42から取得してもよい。補正部410は、電流指令値を制御装置5から取得する。補正部410は、電圧指令値を制御装置5から取得してもよい。補正部410は、取得された電圧指令値に対応付けられた電流応答値を、応答値情報から抽出してもよい。
 補正部410は、取得された電流指令値又は電圧指令値に対応付けられた電流応答値を、応答値情報から抽出する。補正部410は、抽出された電流応答値に対応付けられた外乱磁束の推定値を、外乱磁束情報から抽出する。補正部410は、抽出された外乱磁束の推定値に基づいて、回転子21の磁石磁束「Φ(t)」の検出値を補正する。
 なお、補正部410は、ルックアップテーブルを用いて、固定子20の外乱磁束の推定値を導出してもよい。補正部410は、ルックアップテーブルを用いて導出された外乱磁束の推定値に基づいて、回転子21の磁石磁束「Φ(t)」の検出値を補正してもよい。
 以上のように、第4実施形態の位置推定装置4は、補正部410と、推定部411と、記憶装置42を備える。記憶装置42は、応答値情報を記憶する。記憶装置42は、応答値情報と、外乱磁束情報とを記憶してもよい。補正部410は、電流指令値又は電圧指令値と、応答値情報とに基づいて、電流応答値を導出する。補正部410は、導出された電流応答値と外乱磁束情報とに基づいて、固定子20の外乱磁束の推定値を導出する。
 これによって、演算量が削減され、回転子21の位置の推定精度を向上させることが可能である。回転子21の磁石が永久磁石でも、回転子21の位置の推定精度を向上させることが可能である。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 なお、本発明における位置推定装置の機能を実現するためのプログラムを不図示のコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各処理の手順を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。
 また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 1…モータユニット、2…モータ、3…増幅装置、4…位置推定装置、5…制御装置、6…駆動装置、7…電流センサ、8…外部装置、20…固定子、21…回転子、22…検出装置、30…差動増幅器、40…変換装置、41…演算装置、42…記憶装置、220…センサ、400…変換部、410…補正部、411…推定部

Claims (6)

  1.  固定子の外乱磁束の推定値を導出し、前記外乱磁束の推定値に基づいて回転子の磁石磁束の検出値を補正する補正部と、
     補正された前記検出値に基づいて前記回転子の位置を推定する推定部と
     を備える位置推定装置。
  2.  前記補正部は、前記固定子の電流応答値に基づいて、前記外乱磁束の推定値を導出する、請求項1に記載の位置推定装置。
  3.  前記補正部は、前記固定子の電流指令値に基づいて、前記外乱磁束の推定値を導出する、請求項1に記載の位置推定装置。
  4.  前記補正部は、前記固定子の電圧指令値に基づいて、前記外乱磁束の推定値を導出する、請求項1に記載の位置推定装置。
  5.  前記固定子の電流応答値と前記外乱磁束の推定値との対応関係を表す情報である外乱磁束情報を記憶する記憶装置を更に備え、
     前記補正部は、前記電流応答値と前記外乱磁束情報とに基づいて、前記外乱磁束の推定値を導出する、請求項1に記載の位置推定装置。
  6.  前記固定子の電流指令値又は電圧指令値と前記固定子の電流応答値との対応関係を表す情報である応答値情報と、前記固定子の電流応答値と前記外乱磁束の推定値との対応関係を表す情報である外乱磁束情報とを記憶する記憶装置を更に備え、
     前記補正部は、前記電流指令値又は前記電圧指令値と前記応答値情報とに基づいて前記電流応答値を導出し、導出された前記電流応答値と前記外乱磁束情報とに基づいて前記外乱磁束の推定値を導出する、請求項1に記載の位置推定装置。
PCT/JP2020/000566 2019-02-20 2020-01-10 位置推定装置 WO2020170642A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021501676A JPWO2020170642A1 (ja) 2019-02-20 2020-01-10 位置推定装置
CN202080014728.3A CN113454425A (zh) 2019-02-20 2020-01-10 位置推断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019028805 2019-02-20
JP2019-028805 2019-02-20

Publications (1)

Publication Number Publication Date
WO2020170642A1 true WO2020170642A1 (ja) 2020-08-27

Family

ID=72144096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000566 WO2020170642A1 (ja) 2019-02-20 2020-01-10 位置推定装置

Country Status (3)

Country Link
JP (1) JPWO2020170642A1 (ja)
CN (1) CN113454425A (ja)
WO (1) WO2020170642A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049862A (ja) * 2005-08-12 2007-02-22 Hitachi Ltd 磁極位置センサ内蔵電気機械及び電気機械装置並びに車載電機システム
WO2015068258A1 (ja) * 2013-11-08 2015-05-14 三菱電機株式会社 交流回転機の制御装置
JP2016046908A (ja) * 2014-08-22 2016-04-04 株式会社明電舎 位置およびトルクセンサレスによるトルクリプル抑制装置
WO2016143481A1 (ja) * 2015-03-10 2016-09-15 株式会社明電舎 電力変換器の同期制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6444274B2 (ja) * 2015-07-01 2018-12-26 日立オートモティブシステムズ株式会社 モータ駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049862A (ja) * 2005-08-12 2007-02-22 Hitachi Ltd 磁極位置センサ内蔵電気機械及び電気機械装置並びに車載電機システム
WO2015068258A1 (ja) * 2013-11-08 2015-05-14 三菱電機株式会社 交流回転機の制御装置
JP2016046908A (ja) * 2014-08-22 2016-04-04 株式会社明電舎 位置およびトルクセンサレスによるトルクリプル抑制装置
WO2016143481A1 (ja) * 2015-03-10 2016-09-15 株式会社明電舎 電力変換器の同期制御装置

Also Published As

Publication number Publication date
CN113454425A (zh) 2021-09-28
JPWO2020170642A1 (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
JP6597748B2 (ja) 位置推定方法および位置制御装置
JP4672236B2 (ja) 同期電動機の制御装置
JP3546817B2 (ja) 電動機の磁極位置検出装置
JP5929863B2 (ja) 制御装置
JP6613793B2 (ja) 磁気軸受装置およびロータ回転駆動装置
JP2003018875A (ja) モータの回転速度制御装置
JP2011151883A (ja) 永久磁石モータのトルクリプル抑制制御装置、電動パワーステアリングシステム
JP6344151B2 (ja) 位置推定装置、モータ駆動制御装置、位置推定方法及びプログラム
JP6710994B2 (ja) 回転角検出装置
TW201830845A (zh) 用於永磁同步馬達的閉迴路磁通量弱化
JP7331861B2 (ja) 位置推定装置及び位置推定方法
JP5733404B2 (ja) Pmモータの位置センサレス制御装置
JP6780855B2 (ja) サーボアクチュエータ
JP2005168195A (ja) インバータ制御装置及びインバータ制御方法並びに記憶媒体
JP3797508B2 (ja) 永久磁石型同期電動機のセンサレス速度制御方法及びその脱調検出方法
WO2022004002A1 (ja) モータおよび位置推定方法
WO2020170642A1 (ja) 位置推定装置
JP2010035351A (ja) 同期電動機のロータ位置推定装置
JP2010035352A (ja) 同期電動機のロータ位置推定装置
JP2019033582A (ja) 制御装置及び制御方法
JP3707659B2 (ja) 同期電動機の定数同定方法
WO2020090596A1 (ja) 位置推定装置及び位置推定方法
CN115280105A (zh) 位置检测装置和马达单元
JP6847269B2 (ja) 回転機の制御装置
JP3509016B2 (ja) 位置センサレス永久磁石形同期電動機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759646

Country of ref document: EP

Kind code of ref document: A1