WO2020168788A1 - 无人车测试场景中的障碍物模拟方法及装置 - Google Patents

无人车测试场景中的障碍物模拟方法及装置 Download PDF

Info

Publication number
WO2020168788A1
WO2020168788A1 PCT/CN2019/123723 CN2019123723W WO2020168788A1 WO 2020168788 A1 WO2020168788 A1 WO 2020168788A1 CN 2019123723 W CN2019123723 W CN 2019123723W WO 2020168788 A1 WO2020168788 A1 WO 2020168788A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
preset
vehicle
distance
test
Prior art date
Application number
PCT/CN2019/123723
Other languages
English (en)
French (fr)
Inventor
钱鹏程
Original Assignee
苏州风图智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州风图智能科技有限公司 filed Critical 苏州风图智能科技有限公司
Publication of WO2020168788A1 publication Critical patent/WO2020168788A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications

Definitions

  • the present disclosure relates to the field of testing technology, and in particular to an obstacle simulation method and device in an unmanned vehicle testing scene.
  • Unmanned vehicles need to be tested before being put into use, and can only be put into actual use after they are successfully tested in various simulated traffic scenarios on the experimental site.
  • test cases cannot be repeated, and the test is relatively dangerous.
  • the obstacles in the test are not artificially set, and the test scene cannot be accurately reproduced, and the test accuracy is low.
  • the present disclosure proposes an obstacle simulation method and device in an unmanned vehicle test scene.
  • an obstacle simulation method in an unmanned vehicle test scene which is characterized in that it includes:
  • the obstacle is triggered to move according to a preset running track and a preset speed
  • the obstacles are one or more movable obstacles distributed in the test path.
  • the preset position includes: a position whose distance from the obstacle is the preset distance.
  • the method further includes:
  • the position of the vehicle under test is the preset position.
  • the distance between the vehicle under test and the obstacle is obtained by GPS or Lidar.
  • the preset running track of the obstacle includes one or more preset speeds.
  • an obstacle simulation device in an unmanned vehicle test scene including:
  • the first acquisition module is used to acquire the location of the tested vehicle or the driving time of the tested vehicle;
  • a control module configured to trigger the obstacle to move according to a preset running track and a preset speed if the position of the tested vehicle is a preset position or the driving time is a preset time;
  • the obstacles are one or more movable obstacles distributed in the test path.
  • the preset position includes: a position whose distance from the obstacle is the preset distance.
  • the device further includes:
  • the second acquisition module is used to acquire the distance between the tested vehicle and the obstacle
  • the preset position determination module is configured to, if the distance between the tested vehicle and the obstacle is the preset distance, the position of the tested vehicle is the preset position.
  • the distance between the vehicle under test and the obstacle is obtained by GPS or Lidar.
  • the preset running track of the obstacle includes one or more preset speeds.
  • an obstacle simulation device in an unmanned vehicle test scenario including: a processor; a memory for storing executable instructions of the processor; wherein the processor is configured to execute The above method.
  • a non-volatile computer-readable storage medium having computer program instructions stored thereon, wherein the computer program instructions implement the above method when executed by a processor.
  • the obstacle is triggered to move according to the preset running track and the preset speed.
  • the test case It can be repeated, the test is safer, and the test accuracy can be improved.
  • Fig. 1 shows a flowchart of an obstacle simulation method in an unmanned vehicle test scene according to an embodiment of the present disclosure.
  • Fig. 2 shows a flowchart of an obstacle simulation method in an unmanned vehicle test scene according to an embodiment of the present disclosure.
  • Fig. 3 shows a block diagram of an obstacle simulation device in an unmanned vehicle test scenario according to an embodiment of the present disclosure.
  • Fig. 4 shows a block diagram of an obstacle simulation device in an unmanned vehicle test scenario according to an embodiment of the present disclosure.
  • Fig. 5 shows a block diagram of an obstacle simulation device 800 in an unmanned vehicle test scene according to an exemplary embodiment.
  • Fig. 6 shows a block diagram of an obstacle simulation device 1900 in an unmanned vehicle test scene according to an exemplary embodiment.
  • Fig. 1 shows a flowchart of an obstacle simulation method in an unmanned vehicle test scene according to an embodiment of the present disclosure.
  • the method can be applied to the vehicle under test, the obstacles distributed on the test road, or the monitoring server of the unmanned vehicle test proving ground.
  • the obstacles are pre-distributed on the test road.
  • the method is applied to the test road below.
  • the obstacles distributed above are described as an example. As shown in Figure 1, the method may include:
  • Step S11 acquiring the location of the vehicle under test or the driving time of the vehicle under test.
  • the unmanned vehicle test site can include test roads, which can be used for real-vehicle testing of unmanned vehicles.
  • the real-vehicle test of unmanned vehicles refers to unmanned vehicle testing on test roads.
  • the vehicle is tested.
  • the test road may be preset, and may include one or more road types, such as highways, undulating roads, mountain roads, etc. The present disclosure does not limit the road types of the test roads.
  • the obstacle can obtain its own position by positioning.
  • the obstacle can obtain the position of the vehicle under test.
  • the obstacle can be based on the relationship between the obstacle and the vehicle under test.
  • the relative position obtains the position of the tested vehicle, or the obstacle area can obtain the position of the tested vehicle by receiving the positioning information of the tested vehicle.
  • the monitoring server of the unmanned vehicle test proving ground can notify the obstacle of the test start time of the tested vehicle, and the obstacle will be timed when the test start time of the tested vehicle is received.
  • the obstacle can be based on the timed duration Obtain the driving time of the vehicle under test, for example, if the timing is 5 minutes, the driving time of the vehicle under test can be obtained as 5 minutes.
  • the vehicle under test, the obstacles distributed on the test road, and the monitoring server of the unmanned vehicle test proving ground can communicate with each other to realize the location of the vehicle under test and the driving time of the vehicle under test. Shared among test vehicles, obstacles and monitoring servers.
  • Step S12 if the position of the tested vehicle is a preset position or the driving time is a preset time, the obstacle is triggered to move according to a preset running track and a preset speed; wherein, the obstacles are distributed in One or more movable obstacles in the test path, the obstacles may have communication functions, information processing, and control functions.
  • the preset position and the preset time may be configured in the monitoring server of the vehicle under test, the obstacles distributed on the test road, and the unmanned vehicle test proving ground.
  • the preset location may include one or more locations on the test road, and the preset time may be one or more travel times during the travel of the test vehicle.
  • the preset running trajectory and preset speed may be pre-configured by the tester in the obstacles, and each obstacle can save its own preset running trajectory and preset speed.
  • the obstacle may determine whether the position of the tested vehicle is a preset position, or the obstacle may determine whether the driving time of the tested vehicle is a preset time, if the position of the tested vehicle is The preset location (the location of the vehicle under test matches the preset location) or the travel time is the preset time, which can trigger the obstacle to move according to the preset running track and the preset speed.
  • the preset running trajectory of obstacle A is 45° straight to the test road and the preset speed is 30 km/h. If obstacle A determines that the position of the tested vehicle is the preset position or the travel time is the expected Set the time to control the obstacle to drive straight to the test road at 30 km/h and 45° to the test road.
  • the obstacle is triggered to move according to the preset running track and the preset speed.
  • the test case can be repeated , The test is safer and can improve the test accuracy.
  • the method may further include: configuring a preset running track and a preset speed of the one or more moving obstacles.
  • Each moving obstacle can be configured with its own preset running trajectory and preset speed according to the received settings of the tester, for example, the setting of running trajectory and running speed, and the configuration can be saved.
  • the tester can also set the running track and driving speed of each moving obstacle on the monitoring server, and the monitoring server can save the corresponding relationship between the running track and driving speed set by the tester and the identification of the moving obstacle , And can send the corresponding relationship to each moving obstacle.
  • the moving obstacle can obtain the running trajectory and driving speed set by the tester according to the identification of the moving obstacle, and according to the obtained running trajectory and driving speed set by the tester , Configure its own preset running track and preset speed.
  • the tester can set the running trajectory of obstacle A to drive straight at 45° to the test road, and the driving speed is 30 km/h.
  • Obstacle A can configure its preset running trajectory to drive straight at 45° to the test road, and If the speed is 30 km/h, obstacle A can adjust its forward direction to 45° from the road, and when it is triggered, it can drive straight at 30 km/h.
  • the vehicle test scene can be set according to the tester's test purpose, and the comprehensiveness of the vehicle test can be guaranteed.
  • the preset position may include: a position whose distance from the obstacle is the preset distance.
  • the preset distance may be pre-configured by the tester, and the preset distance may be stored in the vehicle under test, the obstacles distributed on the test road, and the monitoring server of the unmanned vehicle test proving ground.
  • the preset running track of the obstacle may include one or more preset speeds.
  • the preset trajectory may include an initial position and an end position, etc.
  • the end position may be the same as the initial position (the position when it is not triggered). In this way, the obstacle can automatically move to the initial position according to the preset trajectory. position.
  • the speed during the triggered movement of the obstacle is always the preset speed.
  • the multiple preset speeds may correspond to different ranges in the preset trajectory.
  • the preset trajectory includes two ranges: a first range and a second range, so The preset speed corresponding to the first range is V1, and the preset speed corresponding to the second range is V2.
  • the obstacle can judge itself In which range of the preset trajectory, the speed is determined as V1 or V2 according to the range, that is, the speed of the obstacle can be changed according to multiple preset speeds, that is, the speed of the obstacle can be changed during the movement of the obstacle.
  • Fig. 2 shows a flowchart of an obstacle simulation method in an unmanned vehicle test scene according to an embodiment of the present disclosure. As shown in Figure 2, in a possible implementation manner, the method may further include:
  • Step S13 obtaining the distance between the vehicle under test and the obstacle
  • step S14 if the distance between the vehicle under test and the obstacle is the preset distance, the position of the vehicle under test is the preset position.
  • the obstacle can obtain the distance between the vehicle under test and the obstacle, and can determine whether the distance is a preset distance, and if the distance between the vehicle under test and the obstacle is a preset distance, the position of the vehicle under test can be determined It is the preset position.
  • the distance between the vehicle under test and the obstacle may be obtained through GPS or Lidar.
  • a lidar can be installed on the obstacle, and the obstacle can be scanned by the lidar to obtain the distance of the vehicle under test close to the obstacle.
  • a lidar can be installed on the vehicle under test, and when the vehicle under test measures the distance to the obstacle, the distance can be sent to the obstacle.
  • the vehicle can be sent via Wifi, Bluetooth, or mobile data network. Distance to obstacle, so that the obstacle obtains the distance between the vehicle under test and the obstacle.
  • the obstacle may obtain the GPS positioning data of the tested vehicle from the tested vehicle or the monitoring server, and may obtain the position of the tested vehicle according to the GPS positioning data of the tested vehicle, and the obstacle may Position and its own position to obtain the distance between the vehicle under test and the obstacle.
  • Fig. 3 shows a block diagram of an obstacle simulation device in an unmanned vehicle test scenario according to an embodiment of the present disclosure.
  • the device may include:
  • the first acquiring module 11 is used to acquire the location of the tested vehicle or the driving time of the tested vehicle;
  • the control module 12 is configured to trigger the obstacle to move according to a preset running track and a preset speed if the position of the tested vehicle is a preset position or the driving time is a preset time;
  • the obstacles are one or more movable obstacles distributed in the test path.
  • the test case can be repeated ,
  • the test is safer and can improve the test accuracy.
  • the preset position may include: a position whose distance from the obstacle is the preset distance.
  • Fig. 4 shows a block diagram of an obstacle simulation device in an unmanned vehicle test scenario according to an embodiment of the present disclosure.
  • the device may further include:
  • the second acquiring module 13 is used to acquire the distance between the tested vehicle and the obstacle;
  • the preset position determining module 14 is configured to, if the distance between the tested vehicle and the obstacle is a preset distance, then the position of the tested vehicle is a preset position.
  • the distance between the vehicle under test and the obstacle is obtained by GPS or Lidar.
  • Fig. 5 shows a block diagram of an obstacle simulation device 800 in an unmanned vehicle test scene according to an exemplary embodiment.
  • the device 800 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, And the communication component 816.
  • the processing component 802 generally controls the overall operations of the device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations in the device 800. Examples of these data include instructions for any application or method operating on the device 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or nonvolatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 806 provides power to various components of the device 800.
  • the power supply component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 800.
  • the multimedia component 808 includes a screen that provides an output interface between the device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), and when the device 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors for providing the device 800 with various aspects of status assessment.
  • the sensor component 814 can detect the open/close state of the device 800 and the relative positioning of components.
  • the component is the display and the keypad of the device 800.
  • the sensor component 814 can also detect the position change of the device 800 or a component of the device 800. , The presence or absence of contact between the user and the device 800, the orientation or acceleration/deceleration of the device 800, and the temperature change of the device 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the device 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 800 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing equipment (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing equipment
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • a non-volatile computer-readable storage medium such as the memory 804 including computer program instructions, which can be executed by the processor 820 of the device 800 to complete the foregoing method.
  • Fig. 6 shows a block diagram of an obstacle simulation device 1900 in an unmanned vehicle test scene according to an exemplary embodiment.
  • the device 1900 may be provided as a server.
  • the apparatus 1900 includes a processing component 1922, which further includes one or more processors, and a memory resource represented by a memory 1932 for storing instructions executable by the processing component 1922, such as application programs.
  • the application program stored in the memory 1932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1922 is configured to execute instructions to perform the above-described methods.
  • the device 1900 may also include a power supply component 1926 configured to perform power management of the device 1900, a wired or wireless network interface 1950 configured to connect the device 1900 to a network, and an input output (I/O) interface 1958.
  • the device 1900 can operate based on an operating system stored in the memory 1932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • a non-volatile computer-readable storage medium such as the memory 1932 including computer program instructions, which can be executed by the processing component 1922 of the device 1900 to complete the foregoing method.
  • the present disclosure may be a system, method, and/or computer program product.
  • the computer program product may include a computer-readable storage medium loaded with computer-readable program instructions for enabling a processor to implement various aspects of the present disclosure.
  • the computer-readable storage medium may be a tangible device that can hold and store instructions used by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) Or flash memory), static random access memory (SRAM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanical encoding device, such as a printer with instructions stored thereon
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory flash memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick floppy disk
  • mechanical encoding device such as a printer with instructions stored thereon
  • the computer-readable storage medium used here is not interpreted as a transient signal itself, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (for example, light pulses through fiber optic cables), or through wires Transmission of electrical signals.
  • the computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to various computing/processing devices, or downloaded to an external computer or external storage device via a network, such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, optical fiber transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • the network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network, and forwards the computer-readable program instructions for storage in the computer-readable storage medium in each computing/processing device .
  • the computer program instructions used to perform the operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, status setting data, or in one or more programming languages.
  • Source code or object code written in any combination, the programming language includes object-oriented programming languages such as Smalltalk, C++, etc., and conventional procedural programming languages such as "C" language or similar programming languages.
  • Computer-readable program instructions can be executed entirely on the user's computer, partly on the user's computer, executed as a stand-alone software package, partly on the user's computer and partly executed on a remote computer, or entirely on the remote computer or server carried out.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to access the Internet connection).
  • LAN local area network
  • WAN wide area network
  • an electronic circuit such as a programmable logic circuit, a field programmable gate array (FPGA), or a programmable logic array (PLA), can be customized by using the status information of the computer-readable program instructions.
  • the computer-readable program instructions are executed to realize various aspects of the present disclosure.
  • These computer-readable program instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, thereby producing a machine such that when these instructions are executed by the processor of the computer or other programmable data processing device , A device that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram is produced. It is also possible to store these computer-readable program instructions in a computer-readable storage medium. These instructions make computers, programmable data processing apparatuses, and/or other devices work in a specific manner, so that the computer-readable medium storing instructions includes An article of manufacture, which includes instructions for implementing various aspects of the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of an instruction, and the module, program segment, or part of an instruction contains one or more functions for implementing the specified logical function.
  • Executable instructions may also occur in a different order from the order marked in the drawings. For example, two consecutive blocks can actually be executed in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or actions Or it can be realized by a combination of dedicated hardware and computer instructions.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)

Abstract

本公开涉及一种无人车测试场景中的障碍物模拟方法及装置,所述方法包括:获取被测车辆的位置或被测车辆的行驶时间;若所述被测车辆的位置为预设位置或所述行驶时间为预设时间,则触发障碍物按照预设运行轨迹和预设速度进行移动。通过根据测试车辆的位置或测试车辆的行驶时间,触发障碍物按照预设运行轨迹和预设速度移动,根据本公开实施例的无人车测试场景中的障碍物模拟方法及装置,使得测试案例能够重复,测试更加安全,并且能够提高测试准确性。

Description

无人车测试场景中的障碍物模拟方法及装置 技术领域
本公开涉及测试技术领域,尤其涉及一种无人车测试场景中的障碍物模拟方法及装置。
背景技术
随着无人驾驶技术的兴起,无人驾驶车辆也备受关注,并得到了广泛应用。无人驾驶车辆在投入使用前,需要进行车辆测试,在实验场地的多种模拟交通场景下测试成功后,才能投入实际使用。
目前,在实际环境中测试无人车时,测试案例不可重复,测试也相对危险。测试中的障碍物非人为设置,无法精确再现测试场景,测试准确度低。
发明内容
有鉴于此,本公开提出了一种无人车测试场景中的障碍物模拟方法及装置。
根据本公开的一方面,提供了一种无人车测试场景中的障碍物模拟方法,其特征在于,包括:
获取被测车辆的位置或被测车辆的行驶时间;
若所述被测车辆的位置为预设位置或所述行驶时间为预设时间,则触发障碍物按照预设运行轨迹和预设速度进行移动;
其中,所述障碍物为分布在测试路径中的一个或多个可移动障碍物。
在一种可能的实现方式中,所述预设位置包括:与障碍物的距离为预设距离的位置。
在一种可能的实现方式中,所述方法还包括:
获取被测车辆与障碍物的距离;
若被测车辆与障碍物的距离为预设距离,则所述被测车辆的位置为预设 位置。
在一种可能的实现方式中,所述被测车辆与障碍物的距离通过GPS或激光雷达获取。
在一种可能的实现方式中,针对每一个障碍物,该障碍物的所述预设运行轨迹包括一个或多个预设速度。
根据本公开的另一方面,提供了一种无人车测试场景中的障碍物模拟装置,包括:
第一获取模块,用于获取被测车辆的位置或被测车辆的行驶时间;
控制模块,用于若所述被测车辆的位置为预设位置或所述行驶时间为预设时间,则触发障碍物按照预设运行轨迹和预设速度进行移动;
其中,所述障碍物为分布在测试路径中的一个或多个可移动障碍物。
在一种可能的实现方式中,所述预设位置包括:与障碍物的距离为预设距离的位置。
在一种可能的实现方式中,所述装置还包括:
第二获取模块,用于获取被测车辆与障碍物的距离;
预设位置确定模块,用于若被测车辆与障碍物的距离为预设距离,则所述被测车辆的位置为预设位置。
在一种可能的实现方式中,所述被测车辆与障碍物的距离通过GPS或激光雷达获取。
在一种可能的实现方式中,针对每一个障碍物,该障碍物的所述预设运行轨迹包括一个或多个预设速度。
根据本公开的另一方面,提供了一种无人车测试场景中的障碍物模拟装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为执行上述方法。
根据本公开的另一方面,提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其中,所述计算机程序指令被处理器执行时实现上述方法。
通过根据测试车辆的位置或测试车辆的行驶时间,触发障碍物按照预设运行轨迹和预设速度移动,根据本公开实施例的无人车测试场景中的障碍物模拟方法及装置,使得测试案例能够重复,测试更加安全,并且能够提高测试准确性。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出根据本公开一实施例的无人车测试场景中的障碍物模拟方法的流程图。
图2示出根据本公开一实施例的无人车测试场景中的障碍物模拟方法的流程图。
图3示出根据本公开一实施例的无人车测试场景中的障碍物模拟装置的框图。
图4示出根据本公开一实施例的无人车测试场景中的障碍物模拟装置的框图。
图5示出根据一示例性实施例的一种无人车测试场景中的障碍物模拟装置800的框图。
图6示出根据一示例性实施例的一种无人车测试场景中的障碍物模拟装置1900的框图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为 “示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
图1示出根据本公开一实施例的无人车测试场景中的障碍物模拟方法的流程图。所述方法可以应用于被测车辆、测试道路上分布的障碍物或无人车测试试验场的监控服务器,所述障碍物是预先分布在测试道路上的,以下以所述方法应用于测试道路上分布的障碍物为例进行描述。如图1所示,所述方法可以包括:
步骤S11,获取被测车辆的位置或被测车辆的行驶时间。
在无人车测试试验场中可以包括测试道路,所述测试道路可以用于无人车的实车测试,所述无人车的实车测试是指通过无人驾驶的方式在测试道路上对车辆进行测试。在无人车测试试验场的测试场景中需要模拟实际路况中的障碍物,所述障碍物可以是指影响被测车辆正常行驶的事物,比如,横穿马路的路人、变道的车辆等。所述测试道路可以是预先设置的,可以包括一种或多种道路类型,例如高速路、起伏路、山路等,本公开对测试道路的道路类型不作限定。
所述障碍物可以通过定位获取自身的位置,当被测车辆在测试道路上行驶时,所述障碍物可以获取被测车辆的位置,例如,所述障碍物可以根据障碍物与被测车辆的相对位置获取被测车辆的位置,或者,所述障碍区可以通过接收被测车辆的定位信息获取被测车辆的位置。
无人车测试试验场的监控服务器可以将被测车辆的测试开始时间告知 障碍物,障碍物在接收到所述被测车辆的测试开始间时,进行计时,所述障碍物可以根据计时的时长获取被测车辆的行驶时间,例如,计时的时长为5分钟,可以获取被测车辆的行驶时间为5分钟。
需要说明的是,所述被测车辆、测试道路上分布的障碍物、无人车测试试验场的监控服务器之间可以互相通信,以实现被测车辆的位置和被测车辆的行驶时间在被测车辆、障碍物和监控服务器之间共享。
步骤S12,若所述被测车辆的位置为预设位置或所述行驶时间为预设时间,则触发障碍物按照预设运行轨迹和预设速度进行移动;其中,所述障碍物为分布在测试路径中的一个或多个可移动障碍物,所述障碍物可以具有通信功能、信息处理以及控制功能等。
所述预设位置和所述预设时间可以是配置在被测车辆、测试道路上分布的障碍物、无人车测试试验场的监控服务器中的。所述预设位置可以包括测试道路上的一个或多个位置,所述预设时间可以是测试车辆行驶期间的一个或多个行驶时间。
所述预设运行轨迹和预设速度可以是测试人员预先配置在障碍物中的,每一个障碍物可以保存自身的预设运行轨迹和预设速度。
所述障碍物可以判断所述被测车辆的位置是否为预设位置,或者,所述障碍物可以判断所述被测车辆的行驶时间是否为预设时间,若所述被测车辆的位置为预设位置(所述被测车辆的位置与预设位置匹配)或所述行驶时间为预设时间,则可以触发障碍物按照预设运行轨迹和预设速度进行移动。例如,障碍物A的预设运行轨迹为与测试道路45°直线行驶、预设速度30公里/小时,障碍物A若判断所述被测车辆的位置为预设位置或所述行驶时间为预 设时间,可以控制障碍物以30公里/小时、与测试道路45°直线行驶至测试道路中。
通过根据测试车辆的位置或测试车辆的行驶时间,触发障碍物按照预设运行轨迹和预设速度移动,根据本公开实施例的无人车测试场景中的障碍物模拟方法,使得测试案例能够重复,测试更加安全,并且能够提高测试准确性。
在一种可能的实现方式中,所述方法还可以包括:配置所述一个或多个移动障碍物的预设运行轨迹和预设速度。
每一个移动障碍物可以根据接收到的测试人员的设置,例如,运行轨迹和行驶速度的设置,配置自身的预设运行轨迹和预设速度,并可以保存该配置。
可选地,所述测试人员也可以在监控服务器上设置每一个移动障碍物的运行轨迹和行驶速度,监控服务器可以将测试人员设置的运行轨迹和行驶速度与移动障碍物的标识的对应关系保存,并可以将该对应关系发送至每一个移动障碍物,移动障碍物可以根据移动障碍物的标识获取测试人员设置的运行轨迹和行驶速度,并可以根据获取的测试人员设置的运行轨迹和行驶速度,配置自身的预设运行轨迹和预设速度。例如,测试人员可以设置障碍物A的运行轨迹为与测试道路45°直线行驶、行驶速度为30公里/小时,障碍物A可以配置自身的预设运行轨迹为与测试道路45°直线行驶、预设速度30公里/小时,障碍物A可以调整自身前进方向与道路成45°,等待被触发时,可以直接以30公里/小时直线行驶。
通过使移动障碍物的预设运行轨迹和预设速度可以配置,使得车辆测试 的场景可以按照测试人员的测试目的有针对性的设置,并且可以保证车辆测试的全面性。
在一种可能的实现方式中,所述预设位置可以包括:与障碍物的距离为预设距离的位置。其中,预设距离可以是测试人员预先配置的,并且所述预设距离可以被保存在所述被测车辆、测试道路上分布的障碍物、无人车测试试验场的监控服务器中。
在一种可能的实现方式中,针对每一个障碍物,该障碍物的所述预设运行轨迹可以包括一个或多个预设速度。
所述预设轨迹可以包括初始位置和结束位置等,所述结束位置可以和初始位置(未被触发时的位置)相同,这样,障碍物可以按照所述预设轨迹,自动移动到所述初始位置。
若所述预设轨迹包括一个预设速度,所述障碍物被触发移动的过程中速度一直为该预设速度。
若所述预设轨迹包括多个预设速度,该多个预设速度可以对应所述预设轨迹中的不同范围,例如,预设轨迹包括两个范围:第一范围和第二范围,所述第一范围对应的预设速度为V1,所述第二范围对应的预设速度为V2,所述障碍物被触发按照预设运行轨迹和预设速度移动的过程中,障碍物可以判断自身在所述预设轨迹的哪个范围,根据所述范围确定速度为V1或V2,即障碍物可以按照多个预设速度改变移动的速度,也即障碍物移动的过程中速度是可以改变的。
图2示出根据本公开一实施例的无人车测试场景中的障碍物模拟方法的流程图。如图2所示,在一种可能的实现方式中,所述方法还可以包括:
步骤S13,获取被测车辆与障碍物的距离;
步骤S14,若被测车辆与障碍物的距离为预设距离,则所述被测车辆的位置为预设位置。
所述障碍物可以获取被测车辆与障碍物的距离,可以判断所述距离是否为预设距离,若被测车辆与障碍物的距离为预设距离,则可以确定所述被测车辆的位置为预设位置。
在一种可能的实现方式中,所述被测车辆与障碍物的距离可以通过GPS或激光雷达获取。例如,障碍物上可以安装激光雷达,障碍物可以通过激光雷达的扫描,获取与障碍物接近的被测车辆的距离。或者,所述被测车辆上可以安装激光雷达,所述被测车辆测得与障碍物的距离时,可以将该距离发送至障碍物,例如,可以通过Wifi,蓝牙,移动数据网络发送所述距离至障碍物,以使所述障碍物获取所述被测车辆与障碍物的距离。
可选地,所述障碍物可以从被测车辆或监控服务器获取被测车辆的GPS定位数据,并可以根据被测车辆的GPS定位数据获取被测车辆的位置,障碍物可以根据被测车辆的位置和自身的位置,获取被测车辆与障碍物的距离。
图3示出根据本公开一实施例的无人车测试场景中的障碍物模拟装置的框图。所述装置可以包括:
第一获取模块11,用于获取被测车辆的位置或被测车辆的行驶时间;
控制模块12,用于若所述被测车辆的位置为预设位置或所述行驶时间为预设时间,则触发障碍物按照预设运行轨迹和预设速度进行移动;
其中,所述障碍物为分布在测试路径中的一个或多个可移动障碍物。
通过根据测试车辆的位置或测试车辆的行驶时间,触发障碍物按照预设运行轨迹和预设速度移动,根据本公开实施例的无人车测试场景中的障碍物模拟装置,使得测试案例能够重复,测试更加安全,并且能够提高测试准确 性。
在一种可能的实现方式中,所述预设位置可以包括:与障碍物的距离为预设距离的位置。
图4示出根据本公开一实施例的无人车测试场景中的障碍物模拟装置的框图。如图4所示,在一种可能的实现方式中,所述装置还可以包括:
第二获取模块13,用于获取被测车辆与障碍物的距离;
预设位置确定模块14,用于若被测车辆与障碍物的距离为预设距离,则所述被测车辆的位置为预设位置。
在一种可能的实现方式中,所述被测车辆与障碍物的距离通过GPS或激光雷达获取。
图5示出根据一示例性实施例的一种无人车测试场景中的障碍物模拟装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图5,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器 (SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还 可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器804,上述计算机程序指令可由装置800的处理器820执行以完成上述方法。
图6示出根据一示例性实施例的一种无人车测试场景中的障碍物模拟装置1900的框图。例如,装置1900可以被提供为一服务器。参照图6,装置1900包括处理组件1922,其进一步包括一个或多个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理组件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1922被配置为执行指令,以执行上述方法。
装置1900还可以包括一个电源组件1926被配置为执行装置1900的电源 管理,一个有线或无线网络接口1950被配置为将装置1900连接到网络,和一个输入输出(I/O)接口1958。装置1900可以操作基于存储在存储器1932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器1932,上述计算机程序指令可由装置1900的处理组件1922执行以完成上述方法。
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序 指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规 定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (12)

  1. 一种无人车测试场景中的障碍物模拟方法,其特征在于,包括:
    获取被测车辆的位置或被测车辆的行驶时间;
    若所述被测车辆的位置为预设位置或所述行驶时间为预设时间,则触发障碍物按照预设运行轨迹和预设速度进行移动;
    其中,所述障碍物为分布在测试路径中的一个或多个可移动障碍物。
  2. 根据权利要求1所述的方法,其特征在于,所述预设位置包括:与障碍物的距离为预设距离的位置。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    获取被测车辆与障碍物的距离;
    若被测车辆与障碍物的距离为预设距离,则所述被测车辆的位置为预设位置。
  4. 根据权利要求3所述的方法,其特征在于,
    所述被测车辆与障碍物的距离通过GPS或激光雷达获取。
  5. 根据权利要求1所述的方法,其特征在于,针对每一个障碍物,该障碍物的所述预设运行轨迹包括一个或多个预设速度。
  6. 一种无人车测试场景中的障碍物模拟装置,其特征在于,包括:
    第一获取模块,用于获取被测车辆的位置或被测车辆的行驶时间;
    控制模块,用于若所述被测车辆的位置为预设位置或所述行驶时间为预设时间,则触发障碍物按照预设运行轨迹和预设速度进行移动;
    其中,所述障碍物为分布在测试路径中的一个或多个可移动障碍物。
  7. 根据权利要求6所述的装置,其特征在于,所述预设位置包括:与障碍物的距离为预设距离的位置。
  8. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    第二获取模块,用于获取被测车辆与障碍物的距离;
    预设位置确定模块,用于若被测车辆与障碍物的距离为预设距离,则所述被测车辆的位置为预设位置。
  9. 根据权利要求8所述的装置,其特征在于,
    所述被测车辆与障碍物的距离通过GPS或激光雷达获取。
  10. 根据权利要求6所述的装置,其特征在于,针对每一个障碍物,该障碍物的所述预设运行轨迹包括一个或多个预设速度。
  11. 一种无人车测试场景中的障碍物模拟装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    执行所述可执行指令以实现权利要求1-5任一项所述的方法。
  12. 一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1至5中任意一项所述的方法。
PCT/CN2019/123723 2019-02-20 2019-12-06 无人车测试场景中的障碍物模拟方法及装置 WO2020168788A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910130979.7 2019-02-20
CN201910130979.7A CN109900493A (zh) 2019-02-20 2019-02-20 无人车测试场景中的障碍物模拟方法及装置

Publications (1)

Publication Number Publication Date
WO2020168788A1 true WO2020168788A1 (zh) 2020-08-27

Family

ID=66945168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123723 WO2020168788A1 (zh) 2019-02-20 2019-12-06 无人车测试场景中的障碍物模拟方法及装置

Country Status (2)

Country Link
CN (1) CN109900493A (zh)
WO (1) WO2020168788A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4047342A1 (en) * 2021-02-18 2022-08-24 Apollo Intelligent Connectivity (Beijing) Technology Co., Ltd. Scene reproduction test method, apparatus, device and program product of autonomous driving system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109900493A (zh) * 2019-02-20 2019-06-18 苏州风图智能科技有限公司 无人车测试场景中的障碍物模拟方法及装置
CN110174275A (zh) * 2019-06-26 2019-08-27 北京智行者科技有限公司 一种无人驾驶车辆雨天识别能力的测试方法和系统
CN110471535B (zh) * 2019-09-09 2023-08-29 北京精英智通科技股份有限公司 一种模拟驾驶交互方法、装置及设备和存储介质
CN110895406B (zh) * 2019-11-11 2021-02-02 北京三快在线科技有限公司 一种基于干扰物轨迹规划的无人设备的测试方法及装置
CN111027195B (zh) * 2019-12-03 2023-02-28 阿波罗智能技术(北京)有限公司 仿真场景的生成方法、装置及设备
CN111310302B (zh) * 2020-01-16 2022-06-17 中国信息通信研究院 一种测试场景生成方法和装置
CN111694287B (zh) 2020-05-14 2023-06-23 阿波罗智能技术(北京)有限公司 无人驾驶仿真场景中的障碍物模拟方法和装置
CN111780989A (zh) * 2020-07-02 2020-10-16 大唐信通(浙江)科技有限公司 一种车载专用多功能复合传感器
CN112363485A (zh) * 2020-08-11 2021-02-12 上海汽车集团股份有限公司 一种智能驾驶及测试设备和上位管理平台
CN112665875A (zh) * 2020-12-25 2021-04-16 北京智能车联产业创新中心有限公司 自动驾驶车辆可靠性测试方法、装置、电子设备以及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039686A (ja) * 2006-08-09 2008-02-21 Denso Corp 衝突試験装置
JP2017009479A (ja) * 2015-06-24 2017-01-12 株式会社エヌエステイー 衝突防止装置評価システムのための歩行者ダミー駆動装置
CN106769085A (zh) * 2016-12-14 2017-05-31 特路(北京)科技有限公司 自动驾驶车辆避让动态障碍物能力的测试方法及测试场
CN109187041A (zh) * 2018-07-19 2019-01-11 山东省科学院自动化研究所 一种用于自动驾驶测试场的无人测试车平台及方法
CN109211574A (zh) * 2017-07-05 2019-01-15 百度在线网络技术(北京)有限公司 无人驾驶汽车的场地测试方法、装置、设备及可读介质
CN109900493A (zh) * 2019-02-20 2019-06-18 苏州风图智能科技有限公司 无人车测试场景中的障碍物模拟方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108106859A (zh) * 2018-01-25 2018-06-01 成都华远科技有限公司 一种用于模拟碰撞并监测数据的小车装置
CN208119291U (zh) * 2018-04-25 2018-11-20 吉林大学 一种用于模拟无人驾驶测试中智能体运动的智能车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039686A (ja) * 2006-08-09 2008-02-21 Denso Corp 衝突試験装置
JP2017009479A (ja) * 2015-06-24 2017-01-12 株式会社エヌエステイー 衝突防止装置評価システムのための歩行者ダミー駆動装置
CN106769085A (zh) * 2016-12-14 2017-05-31 特路(北京)科技有限公司 自动驾驶车辆避让动态障碍物能力的测试方法及测试场
CN109211574A (zh) * 2017-07-05 2019-01-15 百度在线网络技术(北京)有限公司 无人驾驶汽车的场地测试方法、装置、设备及可读介质
CN109187041A (zh) * 2018-07-19 2019-01-11 山东省科学院自动化研究所 一种用于自动驾驶测试场的无人测试车平台及方法
CN109900493A (zh) * 2019-02-20 2019-06-18 苏州风图智能科技有限公司 无人车测试场景中的障碍物模拟方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4047342A1 (en) * 2021-02-18 2022-08-24 Apollo Intelligent Connectivity (Beijing) Technology Co., Ltd. Scene reproduction test method, apparatus, device and program product of autonomous driving system
US11893800B2 (en) 2021-02-18 2024-02-06 Apollo Intelligent Connectivity (Beijing) Technology Co., Ltd. Scene reproduction test method, apparatus, device and program product of autonomous driving system

Also Published As

Publication number Publication date
CN109900493A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2020168788A1 (zh) 无人车测试场景中的障碍物模拟方法及装置
KR101935181B1 (ko) 비행 제어 방법과 장치 및 전자 기기
WO2019206273A1 (zh) 碰撞控制方法及装置、电子设备和存储介质
TWI769635B (zh) 網路訓練、行人重識別方法、電子設備及電腦可讀存儲介質
US10096249B2 (en) Method, apparatus and storage medium for providing collision alert
JP7163407B2 (ja) 衝突制御方法及び装置、電子機器並びに記憶媒体
EP3115982A1 (en) Method and apparatus for road condition prompt
WO2020168745A1 (zh) 基于激光雷达的无人车辆的测试方法及装置
CN104742903B (zh) 实现定速巡航的方法及装置
CN108093315B (zh) 视频生成方法及装置
CN109543537B (zh) 重识别模型增量训练方法及装置、电子设备和存储介质
CN110543173B (zh) 车辆定位系统及方法、车辆控制方法及装置
CN110519655B (zh) 视频剪辑方法、装置及存储介质
CN107508573B (zh) 晶振振荡频率校正方法及装置
WO2022021872A1 (zh) 目标检测方法及装置、电子设备和存储介质
WO2019006772A1 (zh) 无人机返航方法及装置
WO2017028605A1 (zh) 操作引导方法及装置、电子设备
WO2020168744A1 (zh) 车辆标定系统及方法
CN111323007A (zh) 定位方法及装置、电子设备和存储介质
CN105959587A (zh) 快门速度获取方法和装置
WO2022110653A1 (zh) 一种位姿确定方法及装置、电子设备和计算机可读存储介质
WO2019006767A1 (zh) 一种无人机的景点导航方法及装置
CN110888420A (zh) 行走校正方法、智能移动设备、电子设备和存储介质
EP3225510B1 (en) Methods and devices for controlling self-balanced vehicle to park
JP7387002B2 (ja) 測位方法、装置、電子機器、記憶媒体、プログラム及び製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916296

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19916296

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.03.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19916296

Country of ref document: EP

Kind code of ref document: A1