WO2020166673A1 - ショベル - Google Patents

ショベル Download PDF

Info

Publication number
WO2020166673A1
WO2020166673A1 PCT/JP2020/005640 JP2020005640W WO2020166673A1 WO 2020166673 A1 WO2020166673 A1 WO 2020166673A1 JP 2020005640 W JP2020005640 W JP 2020005640W WO 2020166673 A1 WO2020166673 A1 WO 2020166673A1
Authority
WO
WIPO (PCT)
Prior art keywords
attachment
shovel
operator
end attachment
link
Prior art date
Application number
PCT/JP2020/005640
Other languages
English (en)
French (fr)
Inventor
将 小野寺
匠 伊藤
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to EP20756298.4A priority Critical patent/EP3926103A4/en
Priority to KR1020217025895A priority patent/KR20210125497A/ko
Priority to CN202080014657.7A priority patent/CN113454292A/zh
Priority to JP2020572315A priority patent/JP7404280B2/ja
Publication of WO2020166673A1 publication Critical patent/WO2020166673A1/ja
Priority to US17/444,862 priority patent/US20210372079A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3609Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat
    • E02F3/3636Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat using two or four movable transversal pins
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/40Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3609Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3609Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat
    • E02F3/3618Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat with two separating hooks
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3609Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat
    • E02F3/3622Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat with a hook and a locking element acting on a pin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3609Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat
    • E02F3/3645Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat with auto-engagement means for automatic snap-on of the tool coupler part
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3609Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat
    • E02F3/3663Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat hydraulically-operated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3677Devices to connect tools to arms, booms or the like allowing movement, e.g. rotation or translation, of the tool around or along another axis as the movement implied by the boom or arms, e.g. for tilting buckets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • E02F3/434Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like providing automatic sequences of movements, e.g. automatic dumping or loading, automatic return-to-dig
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/439Automatic repositioning of the implement, e.g. automatic dumping, auto-return
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes

Definitions

  • the present disclosure relates to excavators.
  • Link part A support portion that movably supports the link portion, Aligning the link portion with the end attachment to be attached, Excavator provided.
  • FIG. 1 is an external view showing an outline of a shovel 100 according to the present embodiment.
  • FIG. 1A is a side view showing an example of the shovel 100 according to the present embodiment
  • FIG. 1B is an external view showing an example of the detaching device 12 mounted on the shovel 100.
  • a shovel 100 includes a lower traveling body 1, an upper revolving body 3 that is mounted on the lower traveling body 1 so as to be pivotable via a revolving mechanism 2, and a boom that constitutes an attachment. 4, an arm 5, an end attachment 6, and a cabin 10 on which an operator rides.
  • a plan view hereinafter, simply referred to as “plan view”
  • an attachment of the attachment to the upper swing body 3 is performed.
  • the left side and the right side of the shovel 100 correspond to the left side and the right side viewed from the operator in the cabin 10, respectively.
  • the lower traveling body 1 includes, for example, a pair of left and right crawlers 1C, and each crawler 1C is hydraulically driven by a traveling hydraulic motor 1M, that is, a left traveling hydraulic motor 1ML and a right traveling hydraulic motor 1MR (see FIG. 2).
  • the excavator 100 is caused to travel.
  • the upper swing body 3 swings with respect to the lower traveling body 1 when the swing mechanism 2 is hydraulically driven by the swing hydraulic motor 2A.
  • the boom 4 is pivotally attached to the center of the front part of the upper swing body 3 so that the boom 4 can be lifted up and down.
  • An arm 5 is pivotally attached to the tip of the boom 4 so as to be vertically rotatable.
  • the end attachment 6 is pivotally attached via the above so as to be vertically rotatable.
  • the end attachment 6 is attached to the tip of the arm 5 in a replaceable manner according to the work content of the shovel 100.
  • the end attachment 6 is, for example, a bucket as shown in FIG. 1A.
  • the end attachment 6 may be a bucket of a type different from the bucket shown in FIG. 1 (for example, a large bucket relatively larger than the bucket of FIG. 1, a slope bucket, a dredging bucket, etc.).
  • the end attachment 6 may be, for example, a stirrer, a breaker, or the like other than the bucket.
  • the attachment/detachment device 12 includes an attached portion 12a attached to the arm 5, a movable portion 12b, a hydraulic cylinder 12c for operating the movable portion 12b, and an attachment portion 12d for attaching the end attachment 6. ..
  • the attached portion 12a is used to be attached to the tip of the arm 5.
  • the attached portion 12a includes attached holes 12a1 and 12a2.
  • the attachment holes 12a1 and 12a2 are attached to the attachment portions (attachment holes) at the tips of the corresponding arms 5 by using predetermined attachment pins.
  • the movable portion 12b is rotatably attached with a central axis corresponding to the attached hole 12a2 as a fulcrum.
  • the rod end is attached to the movable part 12b, and the expansion and contraction of the rod causes the movable part 12b to operate.
  • the mounting portion 12d is used to mount the end attachment 6.
  • the mounting portion 12d includes mounting portions 12d1 and 12d2. Of the attachment portions 12d1 and 12d2, the attachment portion 12d2 is provided at the tip of the movable portion 12b, and the distance between the attachment portion 12d1 as the fixed portion changes according to the operation of the movable portion 12b.
  • the detaching/attaching device 12 extends the hydraulic cylinder 12c to some extent and maintains the distance between the attachment portions 12d1 and 12d2 at the distance between the two attachment portions (for example, attachment pins) provided in the end attachment 6. By doing so, a state in which the end attachment 6 is attached can be realized and maintained.
  • the attachment/detachment device 12 contracts the hydraulic cylinder 12c so that the distance between the attachment portions 12d1 and 12d2 is shorter than the distance between the two attachment portions provided in the end attachment 6, thereby the end attachment. 6 can be attached and detached.
  • the boom 4, the arm 5, and the end attachment 6 are hydraulically driven by a boom cylinder 7, an arm cylinder 8, and an end attachment cylinder 9 as hydraulic actuators, respectively.
  • the cabin 10 is a cockpit for an operator to board, and is mounted, for example, on the front left side of the upper swing body 3.
  • the shovel 100 operates driven elements such as the lower traveling body 1 (left and right crawlers 1C), the upper revolving superstructure 3, the boom 4, the arm 5, and the end attachment 6 according to the operation of the operator who rides in the cabin 10. ..
  • the shovel 100 may be configured to be remotely operable (remote operation) from the outside of the shovel 100 instead of or in addition to being configured to be operable by an operator who is in the cabin 10.
  • the interior of the cabin 10 may be unattended.
  • the description will be made on the assumption that the operator's operation includes at least one of an operation of the operator of the cabin 10 on the operation device 26 and a remote operation of an external operator.
  • the remote operation includes, for example, a mode in which the shovel 100 is operated by an operation input regarding an actuator of the shovel 100 performed by a predetermined external device.
  • the external device may be, for example, a cloud server arranged at a place relatively far from the work site of the shovel 100. Further, the external device is, for example, an edge server arranged in a place relatively close to the shovel 100 (for example, a management office in the work site or a base station, a station building in a place relatively close to the work site). It may be. Further, the external device may be a terminal device in the work site.
  • the terminal device may be, for example, a stationary type terminal device such as a desktop computer terminal provided in a management office at a work site.
  • the terminal device may be, for example, a mobile terminal such as a smartphone, a tablet terminal, or a laptop computer that can be carried by a worker, a supervisor, a manager or the like at a work site.
  • the shovel 100 is equipped with, for example, a communication device that communicates with an external device, and uses the communication device to transmit image information (captured image) output by the imaging device 40 described below to the external device. Then, the image information may be displayed on a display device (hereinafter, “remote operation display device”) provided in an external device.
  • various information images (information screens) displayed on the display device 50 described below which is provided inside the cabin 10 of the shovel 100, may be similarly displayed on the remote operation display device of the external device.
  • the operator of the external device can remotely operate the shovel 100 while confirming the display contents such as the captured image and the information screen showing the surroundings of the shovel 100 displayed on the remote control display device, for example. it can.
  • the shovel 100 operates the actuator in response to a remote operation signal indicating the content of the remote operation, which is received from the external device by the communication device, and the lower traveling body 1 (left and right crawlers 1C), the upper revolving structure 3, Driven elements such as boom 4, arm 5, and end attachment 6 may be driven.
  • the remote operation may include a mode in which the shovel 100 is operated, for example, by an external voice input or gesture input to the shovel 100 by a person (for example, a worker) around the shovel 100.
  • the shovel 100 is a voice uttered by a worker or the like through a voice input device (for example, a microphone) or a gesture input device (for example, an image pickup device) mounted on the shovel 100 (own device). Recognize gestures, etc. made by workers, etc.
  • the excavator 100 operates the actuator in accordance with the content of the recognized voice or gesture, and the lower traveling body 1 (left and right crawlers 1C), the upper swing body 3, the boom 4, the arm 5, the end attachment 6, and the like.
  • the driven elements of may be driven.
  • the shovel 100 may automatically operate the actuator regardless of the content of the operation of the operator.
  • the shovel 100 has a function of automatically operating at least a part of driven elements such as the lower traveling body 1 (the left and right crawlers 1C), the upper revolving structure 3, the boom 4, the arm 5, and the end attachment 6 (so-called).
  • “Automatic driving function” or “machine control function” is realized.
  • the automatic driving function includes a function of automatically operating driven elements (actuators) other than the driven elements (actuators) to be operated according to an operation of the operating device 26 by an operator or a remote operation (so-called “semi-automatic operation function”). ) May be included. Further, the automatic driving function is a function for automatically operating at least a part of a plurality of driven elements (actuators) on the assumption that the operator does not operate the operation device 26 or a remote operation (so-called “fully automatic driving function”). May be included. In the shovel 100, when the fully automatic driving function is effective, the inside of the cabin 10 may be unmanned.
  • the semi-automatic operation function, the fully automatic operation function, and the like may include a mode in which the operation content of the driven element (actuator) that is the target of the automatic operation is automatically determined according to a rule that is defined in advance.
  • the shovel 100 autonomously makes various judgments, and in accordance with the judgment result, the operation contents of the driven element (actuator) that is the target of the autonomous driving autonomously. May be included (so-called “autonomous driving function”).
  • FIGS. 2A and 2B are block diagrams showing an example of the configuration of the excavator 100 according to the present embodiment and another example.
  • the mechanical power line is shown as a double line
  • the high pressure hydraulic line is shown as a solid line
  • the pilot line is shown as a broken line
  • the electric drive/control line is shown as a dotted line.
  • the hydraulic drive system of the shovel 100 includes the lower traveling body 1 (left and right crawlers 1C), the upper revolving structure 3, the boom 4, the arm 5, the end attachment 6, and the detachable device 12 (movable part). 12b) and the like for hydraulically driving each of them, a traveling hydraulic motor 1M (1ML, 1MR), a swing hydraulic motor 2A, a boom cylinder 7, an arm cylinder 8, an end attachment cylinder 9, and a hydraulic actuator such as a hydraulic cylinder 12c.
  • the hydraulic drive system of the shovel 100 according to the present embodiment includes the engine 11, the regulator 13, the main pump 14, and the control valve 17.
  • the engine 11 is the main power source in the hydraulic drive system, and is, for example, a diesel engine that uses light oil as fuel.
  • the engine 11 is mounted on, for example, the rear part of the upper swing body 3, and is rotated at a predetermined target rotation speed under direct or indirect control by a controller 30 described later to rotate the main pump 14 and the pilot pump 15 at a constant speed. To drive.
  • the regulator 13 controls (adjusts) the discharge amount of the main pump 14 under the control of the controller 30. For example, the regulator 13 adjusts the angle of the swash plate of the main pump 14 (hereinafter, “tilt angle”) according to a control command from the controller 30.
  • the main pump 14 is mounted on the rear part of the upper swing body 3 and supplies hydraulic oil to the control valve 17 through the high-pressure hydraulic line.
  • the main pump 14 is driven by the engine 11 as described above.
  • the main pump 14 is, for example, a variable displacement hydraulic pump, and as described above, the stroke length of the piston is adjusted by adjusting the tilt angle of the swash plate by the regulator 13 under the control of the controller 30.
  • the flow rate (discharge pressure) is controlled.
  • the control valve 17 is mounted in, for example, the central portion of the upper swing body 3 and is a control command (hereinafter, “automatic control command”) corresponding to an operator's operation content or an automatic operation of the shovel 100 output from the controller 30. ), the hydraulic control device controls the hydraulic actuator.
  • the control valve 17 is connected to the main pump 14 via the high-pressure hydraulic line, and converts the hydraulic oil supplied from the main pump 14 into the operation content of the operator or the automatic control command output from the controller 30.
  • the hydraulic actuators travel hydraulic motors 1ML, 1MR, swing hydraulic motor 2A, boom cylinder 7, arm cylinder 8, end attachment cylinder 9, hydraulic cylinder 12c, etc.
  • the control valve 17 includes a plurality of control valves (also referred to as direction switching valves) that control the flow rate and flow direction of the hydraulic oil supplied from the main pump 14 to each hydraulic actuator.
  • the operation system related to the hydraulic drive system of the shovel 100 includes the pilot pump 15 and the operation device 26. Further, as shown in FIG. 2A, the operation system related to the hydraulic drive system of the shovel 100 includes the shuttle valve 32 when the operation device 26 is a hydraulic pilot type.
  • the pilot pump 15 is mounted on the rear part of the upper swing body 3 and supplies pilot pressure to various hydraulic devices via the pilot line 25.
  • the pilot pump 15 is, for example, a fixed displacement hydraulic pump, and is driven by the engine 11 as described above.
  • the operation device 26 is provided near the cockpit of the cabin 10 and is an operation for an operator to operate various driven elements (the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, the end attachment 6 and the like). It is an input means.
  • the operating device 26 includes the hydraulic actuators (that is, the traveling hydraulic motors 1ML and 1MR, the swing hydraulic motor 2A, the boom cylinder 7, the arm cylinder 8, the end attachment cylinder 9, etc.) that the operator drives the respective driven elements. It is an operation input means for performing the operation of.
  • the operating device 26 is, for example, a lever that operates each of the boom 4 (boom cylinder 7), the arm 5 (arm cylinder 8), the end attachment 6 (end attachment cylinder 9), and the upper swing body 3 (swing hydraulic motor 2A).
  • the operating device 26 includes, for example, a pedal device or a lever device that operates each of the left and right crawlers 1CL and 1CR (traveling hydraulic motors 1ML and 1MR) of the lower traveling structure 1.
  • the operation device 26 also includes, for example, a lever device that operates the attachment/detachment device 12 (hydraulic cylinder 12c).
  • the operating device 26 is a hydraulic pilot type. Specifically, the operating device 26 uses the hydraulic oil supplied from the pilot pump 15 through the pilot line 25 and the pilot line 25A branched from the pilot line 25 to generate a secondary pilot pressure according to the operation content. Output to the pilot line 27 on the side.
  • the pilot line 27 is connected to the control valve 17 via the shuttle valve 32.
  • pilot pressure according to the operation content of various driven elements (hydraulic actuators) in the operating device 26 can be input to the control valve 17 via the shuttle valve 32. Therefore, the control valve 17 can drive the respective hydraulic actuators according to the operation content of the operation device 26 such as an operator.
  • the operation device 26 is an electric type. Specifically, the operation device 26 outputs an electric signal (hereinafter, “operation signal”) according to the operation content, and the operation signal is taken into the controller 30. Then, the controller 30 outputs to the proportional valve 31 a content of the operation signal, that is, a control command (hereinafter, referred to as an “operation control command”, which is distinguished from an automatic control command) according to the operation content of the operating device 26. Accordingly, the pilot pressure corresponding to the operation content of the operating device 26 is input from the proportional valve 31 to the control valve 17, and the control valve 17 drives each hydraulic actuator according to the operation content of the operating device 26 such as an operator. can do.
  • operation signal an electric signal
  • operation control command hereinafter, referred to as an “operation control command”
  • the control valve (direction switching valve) built in the control valve 17 may be an electromagnetic solenoid type.
  • the electric signal output from the operating device 26 may be directly input to the control valve 17, that is, the electromagnetic solenoid control valve.
  • the shuttle valve 32 has two inlet ports and one outlet port, and the hydraulic oil having the pilot pressure higher than the pilot pressure input to the two inlet ports is used as the outlet port.
  • the shuttle valve 32 is provided for each driven element (the crawler 1CL, the crawler 1CR, the upper swing body 3, the boom 4, the arm 5, and the end attachment 6) to be operated by the operating device 26.
  • One of the two inlet ports of the shuttle valve 32 is connected to the operating device 26 (specifically, the above-described lever device or pedal device included in the operating device 26), and the other is connected to the proportional valve 31.
  • the outlet port of the shuttle valve 32 is an operation target of the corresponding control valve of the control valve 17 (specifically, the above-mentioned lever device or pedal device connected to one inlet port of the shuttle valve 32) through the pilot line. It is connected to the pilot port of the control valve corresponding to the hydraulic actuator. Therefore, in each of these shuttle valves 32, the higher one of the pilot pressure generated by the operating device 26 and the pilot pressure generated by the proportional valve 31 can be applied to the pilot port of the corresponding control valve. That is, the controller 30, which will be described later, causes the proportional valve 31 to output a pilot pressure higher than the secondary-side pilot pressure output from the operating device 26, so that the corresponding control does not depend on the operation of the operating device 26 by the operator. The valve can be controlled. Therefore, the controller 30 can automatically control the operation of the driven elements (the lower traveling body 1, the upper swing body 3, the attachment, etc.) regardless of the operating state of the operating device 26 by the operator.
  • the controller 30 can automatically control the operation of the driven elements (the lower traveling body 1, the
  • the control system of the shovel 100 according to the present embodiment includes a controller 30, a computing device 30E, a proportional valve 31, an imaging device 40, a display device 50, and an input device 52. Further, as shown in FIG. 2A, the control system of the shovel 100 according to the present embodiment includes an operation pressure sensor 29 when the operation device 26 is a hydraulic pilot type.
  • the controller 30 performs various controls related to the shovel 100.
  • the function of the controller 30 may be realized by any hardware or a combination of any hardware and software.
  • the controller 30 is mainly a microcomputer including a memory device such as a CPU (Central Processing Unit) and a RAM (Random Access Memory), a nonvolatile auxiliary storage device such as a ROM (Read Only Memory), and an interface device. Composed.
  • the controller 30 realizes various functions, for example, by executing one or more programs installed in the auxiliary storage device on the CPU.
  • the controller 30 may control the operation of the shovel 100 using the operating device 26 when the operating device 26 is an electric type. Specifically, as described above, the controller 30 controls the proportional valve 31 in accordance with the operation signal input from the operation device 26, so that the shovel 100 (specifically, the shovel 100 according to the operation content of the operation device 26 is specifically May realize the operation of an actuator that drives the driven element.
  • the controller 30 may control the remote control function of the shovel 100. Specifically, the controller 30 controls the proportional valve 31 according to the content of the remote operation specified by the remote operation signal received from the external device, so that the shovel 100 (specifically, the driven element). (Actuator for driving) may be operated in accordance with the remote operation. Further, the controller 30 may cause the shovel 100 to perform an operation in accordance with the remote operation according to the content of the remote operation corresponding to the voice input or the gesture input received from the worker or the like around the shovel 100.
  • the controller 30 may control the automatic driving function of the shovel 100. Specifically, the controller 30 controls the proportional valve 31 (outputs an automatic control command to the proportional valve 31) based on the calculation result (drive command of the hydraulic actuator) of the calculation device 30E, and does not depend on the operator's operation. , The shovel 100 may be operated. Details of the automatic driving function of the shovel 100 will be described later.
  • controller 30 may be realized by another controller (control device). That is, the function of the controller 30 may be realized in a distributed manner by a plurality of controllers.
  • the arithmetic unit 30E under the control of the controller 30, performs arithmetic processing regarding various functions of the controller 30.
  • the arithmetic unit 30E may be realized by any hardware, or a combination of any hardware and software.
  • the arithmetic unit 30E may include a GPU (Graphical Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (field-programmable gate array), and the like to realize high-speed arithmetic processing.
  • the arithmetic device 30E recognizes the surroundings of the shovel 100 (own device) based on the output information of the imaging device 40, and various states of the shovel 100 (for example, the posture state of the upper swing body 3 and the like). Recognize the posture of the attachment). Then, the arithmetic unit 30E calculates and generates a drive command of the hydraulic actuator for automatically operating the shovel 100 based on the recognized surroundings of the shovel 100 and various states of the shovel 100.
  • the shovel 100 may be further provided with a sensor that detects the state of the shovel 100, in addition to the imaging device 40.
  • the shovel 100 may include a positioning device capable of positioning the absolute position of the own device and a posture sensor capable of detecting the posture state of the upper swing body 3 and the attachment.
  • the positioning device is, for example, a GNSS (Global Navigation Satellite System) sensor or the like.
  • the attitude sensor is, for example, an angle sensor, an acceleration sensor, an angular velocity sensor, a six-axis sensor, an IMU (Inertial Measurement Unit), or the like.
  • the proportional valve 31 is provided for each driven element (the left and right crawlers 1C, the upper swing body 3, the boom 4, the arm 5, the end attachment 6, and the attachment/detachment device 12) to be operated by the operation device 26.
  • the proportional valve 31 is provided in the pilot line 25 (in the case of FIG. 2A, the pilot line 25B branching from the pilot line 25) between the pilot pump 15 and the control valve 17, and the flow passage area (that is, the hydraulic oil passes therethrough).
  • the flowable cross-sectional area can be changed.
  • the proportional valve 31 can output a predetermined pilot pressure to the secondary side by using the hydraulic oil of the pilot pump 15 supplied through the pilot line 25 (pilot line 25B).
  • the proportional valve 31 controls the predetermined pilot pressure according to the control command from the controller 30 via the shuttle valve 32 as shown in FIG. 2A or directly as shown in FIG. 2B. 17 can be acted upon. That is, the controller 30 outputs an operation control command according to an electric signal from the electric operating device 26 to the proportional valve 31, so that the pilot valve according to the operation content of the operating device 26 is output from the proportional valve 31 to the control valve. It is possible to implement the operation of the shovel 100 based on the operator's operation by supplying the shovel 17 to the operator.
  • the controller 30 outputs a control command or an automatic control command corresponding to the content of the remote operation to the proportional valve 31 even when the operating device 26 is not operated by the operator, so that the proportional valve 31 outputs a predetermined value. It is possible to realize the remote control function and the automatic operation function of the shovel 100 by supplying the pilot pressure of No. 1 to the control valve 17.
  • the imaging device 40 captures information about the situation in the three-dimensional space around the shovel 100, specifically, the surroundings of the shovel 100, and acquires image information (hereinafter, “captured image”) representing the situation.
  • the imaging device 40 may include, for example, a monocular camera, a stereo camera, a depth camera, or the like.
  • the image pickup device 40 is attached to the front end of the upper surface of the cabin 10 and acquires a picked-up image showing a state in front of the upper swing body 3.
  • the arithmetic device 30E can recognize the situation in front of the shovel 100 based on the captured image of the imaging device 40.
  • the arithmetic device 30E can grasp the position of the shovel 100, the turning state of the upper swing body 3, and the like based on the change in the position of the object recognized from the image captured by the image capturing device 40.
  • the imaging range of the imaging device 40 includes the boom 4, the arm 5, and the end attachment 6, that is, the attachment. Accordingly, the arithmetic device 30E can recognize the attitude state of the attachment based on the attachment condition of the imaging device 40 to the upper swing body 3 and the image captured by the imaging device 40. That is, the imaging device 40 can acquire information about the posture state of the attachment (image information including the attachment).
  • the shovel 100 is provided with an imaging device capable of imaging the state of at least one of the rear side, the left side, and the right side of the shovel 100 (the upper swing body 3). Good. Further, instead of or in addition to the imaging device 40, another device (sensor) capable of acquiring information regarding the situation of the three-dimensional space around the shovel 100 may be mounted on the shovel 100.
  • the other device (sensor) may be, for example, an ultrasonic sensor, a millimeter wave radar, a LIDAR (Light Detection and Ranging), a distance image sensor, an infrared sensor, or the like.
  • the display device 50 is provided at a location in the cabin 10 where it can be easily seen by a seated operator and displays various information images.
  • the display device 50 is, for example, a liquid crystal display or an organic EL (Electroluminescence) display.
  • the input device 52 receives various inputs from the operator.
  • the input device 52 may include, for example, an operation input device that is provided within a reach of a seated operator in the cabin 10 and that receives various operation inputs by the operator.
  • the operation input device is a touch panel mounted on the display device 50, a touch pad installed around the display device 50, a button switch, a lever, a toggle, a hardware input means such as a knob switch provided on the operation device 26.
  • the operation input device may include software input means operable by hardware input means such as virtual operation targets (eg, operation icons) displayed on various operation screens displayed on the display device 50. Good.
  • the input device 52 may include, for example, a voice input device that receives a voice input by an operator, a gesture input device that receives a gesture input, or the like.
  • the voice input device may include, for example, a microphone.
  • the gesture input device may include, for example, an indoor camera capable of capturing a gesture motion of an operator in the cabin 10. A signal corresponding to the input content to the input device 52 is captured by the controller 30.
  • the input device 52 includes an automatic exchange switch 52a.
  • the automatic exchange switch 52a is an operation unit used to cause the excavator 100 to exchange the end attachment 6 automatically or in a form of supporting the operation of the operator.
  • the controller 30 When the automatic exchange switch 52a is turned on, the controller 30 outputs an automatic control command to the proportional valve 31 based on the calculation result of the calculation device 30E (drive command of the hydraulic actuator), and the shovel 100 automatically or by an operator.
  • the end attachment 6 is replaced in a manner that supports the operation. Details will be described later (see FIGS. 3A to 3C).
  • an operation unit having the same function as the automatic exchange switch 52a may be provided in the external device.
  • the controller 30 can cause the excavator 100 to perform the replacement work of the end attachment 6 automatically or in a form of supporting the operation of the operator, as in the case where the automatic replacement switch 52a is operated.
  • the shovel 100 is remotely operated by voice input or gesture input by a worker or the like around the shovel 100, a predetermined voice input or a predetermined gesture input having the same function as the operation input to the automatic exchange switch 52a is performed in advance.
  • the controller 30 automatically causes the shovel 100 to assist the operator's operation in the same manner as when the automatic exchange switch 52a is operated.
  • the replacement work of the end attachment 6 can be performed.
  • the operating pressure sensor 29 corresponds to the pilot pressure on the secondary side (pilot line 27) of the operating device 26, that is, the operating state of each driven element (hydraulic actuator) in the operating device 26.
  • Detect pilot pressure The detection signal of the pilot pressure corresponding to the operation state of the lower traveling body 1, the upper swing body 3, the boom 4, the arm 5, the end attachment 6, the desorption device 12, and the like in the operation device 26 by the operation pressure sensor 29 is sent to the controller 30. It is captured. As a result, the controller 30 can grasp the operation state of the operation device 26.
  • the end attachment 6 mounted on the shovel 100 is usually a bucket.
  • the excavation work is composed of, for example, a series of operation steps of an excavation operation, a boom raising turning operation, an earth discharging operation, and a boom lowering turning operation.
  • the excavation operation is an operation of the shovel 100 for excavating the ground.
  • the boom raising and swinging operation is an operation of the excavator 100 that scoops the excavated earth and sand into a bucket and moves the earth and sand to an earth discharging place, and is a combined operation of the raising operation of the boom 4 and the swinging operation of the upper swing body 3. ..
  • the earth unloading operation is an operation of the shovel 100 that unloads the earth and sand in the bucket at the earth unloading place.
  • the boom lowering swing operation is an operation of the excavator 100 that moves (returns) the bucket from the soil discharging location to the excavation location, and is a combined operation of the boom lowering operation and the upper swing body 3 swinging operation.
  • the shovel 100 performs excavation work by a semi-automatic operation function while automatically operating driven elements other than the operator's operation target under the control of the controller 30 and the arithmetic unit 30E.
  • the shovel 100 for example, operates the arm 5 in the closing direction in response to an operation in the closing direction of the arm 5 by the operator (hereinafter, “arm closing operation”), and additionally, the boom 4 and the end attachment 6 (bucket).
  • the excavation operation may be performed by automatically operating at least one of the above.
  • the shovel 100 sequentially recognizes the current topographical shape from the image information of the imaging device 40 under the control of the controller 30 and the arithmetic device 30E. Further, the shovel 100 generates a target trajectory of the bucket based on the difference between the recognized current topographical shape and the target shape (target construction surface) of the construction target such as a groove defined in advance, the operation content of the operator, and the like. ..
  • the excavator 100 automatically operates at least one of the arm 5, the boom 4, and the bucket so that the bucket moves along the target trajectory in response to the operator's arm closing operation.
  • the excavation operation by may be realized.
  • the shovel 100 for example, in addition to causing the upper swing body 3 to swing in response to an operation performed by the operator on the upper swing body 3 (hereinafter, “swing operation”), automatically moves the boom 4 in the raising direction.
  • the boom-up turning operation may be performed.
  • the shovel 100 may perform the boom-raising operation according to the turning operation of the operator when the turning operation is performed by the operator after the ending condition of the excavation operation is satisfied.
  • the ending condition of the excavation operation may include, for example, that the bucket has been ground cut (away from the ground), and the excavator 100 is under the control of the controller 30 and the arithmetic device 30E, and the condition is determined from the image information of the imaging device 40. It is possible to determine whether or not is established.
  • the shovel 100 sequentially recognizes the surrounding object position and shape from the image information of the imaging device 40 under the control of the controller 30 and the arithmetic device 30E. Further, the shovel 100 may generate the target trajectory of the bucket such that the attachment does not come into contact with the surrounding objects, based on the recognized position and shape of the surrounding objects, the operation content of the operator, and the like. Then, the shovel 100 automatically operates the upper-part turning body 3 and the boom 4 so that the bucket moves along the target trajectory in response to the turning operation of the operator, and the boom-up turning operation by the semi-automatic operation function. May be realized.
  • the shovel 100 operates the bucket 5 in the opening direction in addition to operating the bucket in the opening direction in accordance with, for example, an operation in the opening direction of the bucket by the operator (hereinafter, “bucket opening operation”). By doing so, the earth removing operation may be performed.
  • the shovel 100 may perform the soil discharging operation according to the bucket opening operation of the operator when the bucket opening operation is performed by the operator after the ending condition of the boom raising and turning operation is satisfied.
  • the condition for ending the boom raising/turning operation may include, for example, that the turning operation by the operator has ended.
  • condition for ending the boom raising/turning operation may include, for example, that the bucket is within the range of a predetermined earth discharging place in a top view, and the shovel 100 is controlled by the controller 30 and the arithmetic unit 30E. Then, it is possible to judge from the image information of the imaging device 40 whether or not the condition is satisfied. Under the control of the controller 30 and the arithmetic device 30E, the shovel 100 sequentially recognizes the position and shape of surrounding objects such as the shape of the earth and sand at the earth discharging site from the image information of the imaging device 40.
  • the shovel 100 may generate a target trajectory of the bucket for discharging the earth and sand at a predetermined position in the earth discharging place, based on the recognized position and shape of the surrounding object, the operation content of the operator, and the like. .. Then, the shovel 100 may realize the earth removing operation by the semi-automatic operation function by automatically operating the bucket and the arm so that the bucket moves along the target trajectory according to the bucket opening operation of the operator. ..
  • the shovel 100 may perform the boom lowering and swinging operation by automatically moving the boom 4 in the lowering direction in addition to swinging the upper swinging body 3 in accordance with the turning operation of the operator. .. Specifically, the shovel 100 may perform the boom-lowering turning operation according to the turning operation of the operator when the turning operation is performed by the operator after the ending condition of the soil discharging operation is satisfied.
  • the ending condition of the soil discharging operation may include, for example, that the bucket opening operation of the operator has ended.
  • the ending condition of the earth discharging operation may include, for example, that all the earth and sand in the bucket have been discharged, and the shovel 100 is controlled from the image information of the imaging device 40 under the control of the controller 30 and the arithmetic device 30E. It is possible to judge whether or not the condition is satisfied. Under the control of the controller 30 and the arithmetic device 30E, the shovel 100 sequentially recognizes the position and shape of surrounding objects including the shape of the terrain from the image information of the imaging device 40. In addition, the shovel 100 uses the bucket position such that the attachment does not contact the surrounding objects and moves toward the start position of the next excavation operation based on the recognized position and shape of the surrounding objects, the operation content of the operator, and the like.
  • a target trajectory may be generated. Then, the shovel 100 automatically operates the upper-part turning body 3 and the boom 4 so that the bucket moves along the target trajectory in response to the turning operation of the operator, and the boom-lowering turning operation by the semi-automatic operation function. May be realized.
  • the shovel 100 automatically operates the driven elements (actuators) other than the operation target according to the operation of the operator, and repeats the excavating operation, the boom raising/turning operation, the earth removing operation, and the boom lowering/turning operation. Therefore, excavation work can be performed. Then, the excavator 100 can repeat the excavation operation, the boom raising and swinging operation, the earth removing operation, and the boom lowering and swinging operation until the topographical shape matches the predetermined target construction surface, thereby completing the excavation work.
  • the driven elements actuators
  • the shovel 100 may perform excavation work by a fully automatic operation function under the control of the controller 30 and the arithmetic device 30E, without depending on the operation of the operator.
  • the excavator 100 is, for example, based on preset prerequisites for excavation work (a target construction surface representing a target shape of a construction target such as a groove or an earth discharging place for excavating earth and sand excavated), and a boom.
  • the raising/turning operation, the earth removing operation, and the boom/lowering turning operation may be automatically repeated.
  • the precondition may be set and input through the input device 52 of the cabin 10, or may be set based on the precondition data received by the communication device from a predetermined external device. The same applies to the case of a backfill operation described below.
  • the shovel 100 sequentially recognizes the position and shape of surrounding objects including the shape of the terrain from the image information of the imaging device 40.
  • the shovel 100 also generates a target trajectory of the bucket corresponding to the current operation process based on the recognized position and shape of the surrounding objects and the preconditions. Similar to the case of the semi-automatic operation function, the switching of the operation process may be performed according to the establishment of a predetermined ending condition.
  • the excavator 100 automatically operates all the driven elements (actuators) corresponding to the current operation process so that the bucket moves along the target trajectory, and performs the excavation operation, the boom raising and turning operation, and the earth removing operation. , And the boom lowering turning motion may be automatically repeated.
  • the shovel 100 automatically operates all the required driven elements (actuators) without depending on the operation of the operator, and repeats the excavating operation, the boom raising/turning operation, the earth removing operation, and the boom lowering/turning operation. Then, excavation work can be performed.
  • the end attachment 6 mounted on the shovel 100 is usually a bucket.
  • the excavator 100 is used to bucket the earth and sand prepared in a position relatively close to the recess while the object (hereinafter, “embedded object”) is installed in the recess such as a groove formed by excavation work or the like. It is a work to fill the recess by moving it to the recess.
  • the backfill work is composed of, for example, a series of operation steps of an excavation operation, a boom lowering turning operation, an earth discharging operation, and a boom raising turning operation.
  • the excavation operation is an operation of the shovel 100 for scooping (excavating) the earth and sand of the earth and sand pile.
  • the boom lowering turning operation is an operation of the shovel 100 that moves the earth and sand scooped up from the earth and sand to the bucket to the recess, and is a combined operation of the lowering operation of the boom 4 of the shovel 100 and the turning operation of the upper swing body 3. .
  • the earth discharging operation is an operation of the shovel 100 that discharges the earth and sand in the bucket into the recess.
  • the boom raising/turning operation is an operation of the shovel 100 for moving the bucket from the concave portion to the earth and sand pile, and is a combined operation of the raising operation of the boom 4 and the turning operation of the upper swing body 3.
  • the shovel 100 performs backfilling work by a semi-automatic operation function while automatically operating driven elements other than the operator's operation target under the control of the controller 30 and the arithmetic unit 30E.
  • the excavator 100 operates, for example, by operating at least one of the boom 4 and the bucket automatically in addition to operating the arm 5 in the closing direction in response to an arm closing operation by the operator. You may take action. Specifically, under the control of the controller 30 and the arithmetic device 30E, the shovel 100 sequentially recognizes the position, shape, and the like of surrounding objects including the earth and sand mountains from the image information of the imaging device 40. In addition, the shovel 100 generates a target trajectory of the bucket for scooping the sand of the earth and sand into the bucket based on the recognized position and shape of the surrounding objects, the operation content of the operator, and the like. Then, the excavator 100 automatically operates at least one of the arm 5, the boom 4, and the bucket so that the bucket moves along the target trajectory in response to the operator's arm closing operation. The excavation operation by may be realized.
  • the excavator 100 causes the boom 4 to automatically move in the lowering direction in addition to rotating the upper swing body 3 in response to a swing operation by an operator.
  • a downward turning motion may be performed.
  • the shovel 100 may perform the boom-lowering turning operation according to the turning operation of the operator when the turning operation is performed by the operator after the ending condition of the excavation operation is satisfied.
  • the condition for ending the excavation operation may include, for example, that the bucket has been ground cut.
  • the shovel 100 sequentially recognizes the position and shape of the surrounding object from the image information of the imaging device 40.
  • the shovel 100 may generate the target trajectory of the bucket such that the attachment does not come into contact with the surrounding objects, based on the recognized position and shape of the surrounding objects, the operation content of the operator, and the like. Then, the shovel 100 automatically operates the upper-part turning body 3 and the boom 4 so that the bucket moves along the target trajectory in response to the turning operation of the operator, and the boom-lowering turning operation by the semi-automatic operation function. May be realized.
  • the shovel 100 may perform the soil discharging operation by automatically operating the arm 5 in the opening direction in addition to operating the bucket in the opening direction in response to the bucket opening operation of the operator. Specifically, the shovel 100 may perform the soil discharging operation according to the bucket opening operation of the operator when the bucket opening operation is performed by the operator after the ending condition of the boom lowering turning operation is satisfied.
  • the condition for ending the boom lowering turning operation may include, for example, that the turning operation by the operator has ended. Further, the ending condition of the boom lowering turning operation may include, for example, that the bucket is included in the range of the recessed portion to be backfilled in the top view, and the shovel 100 controls the controller 30 and the arithmetic device 30E.
  • the shovel 100 Under the control of the controller 30 and the arithmetic device 30E, the shovel 100 sequentially recognizes the current topographical shape (the degree of embedding of the buried object in the recess) from the image information of the imaging device 40. In addition, the shovel 100, based on the difference between the recognized current topographical shape and the target shape (target construction surface) of the ground after backfilling that is defined in advance, the operation content of the operator, etc. A target trajectory of the bucket for soil removal may be generated. Then, the shovel 100 may realize the earth removing operation by the semi-automatic operation function by automatically operating the bucket and the arm so that the bucket moves along the target trajectory according to the bucket opening operation of the operator. ..
  • the shovel 100 may perform the boom raising and turning operation by automatically moving the boom 4 in the raising direction in addition to the turning operation of the upper-part turning body 3 according to the turning operation of the operator. .. Specifically, the shovel 100 may perform the boom-up turning operation according to the turning operation of the operator when the turning operation is performed by the operator after the ending condition of the soil discharging operation is satisfied.
  • the ending condition of the soil discharging operation may include, for example, that the bucket opening operation of the operator has ended.
  • the ending condition of the earth discharging operation may include, for example, that the earth and sand in the bucket have all been discharged.
  • the shovel 100 Under the control of the controller 30 and the arithmetic device 30E, the shovel 100 sequentially recognizes the position and shape of surrounding objects including the shape of the terrain from the image information of the imaging device 40. Further, the shovel 100 moves toward the start position (earth and sand mountain) of the next excavation operation without the attachment coming into contact with the surrounding objects based on the recognized position and shape of the surrounding objects, the operation content of the operator, and the like. Such a bucket target trajectory may be generated. Then, the shovel 100 automatically operates the upper-part turning body 3 and the boom 4 so that the bucket moves along the target trajectory in response to the turning operation of the operator, and the boom-up turning operation by the semi-automatic operation function. May be realized.
  • the shovel 100 automatically operates the driven elements (actuators) other than the operation target according to the operation of the operator, and repeats the excavating operation, the boom lowering turning operation, the earth removing operation, and the boom raising turning operation. , Backfill work can be done. Then, the excavator 100 can repeat the excavating operation, the boom lowering turning operation, the earth removing operation, and the boom raising turning operation until the recessed portion is backfilled and matches the target construction surface, thereby completing the backfilling operation.
  • the driven elements actuators
  • the shovel 100 may perform the backfilling work by the fully automatic operation function under the control of the controller 30 and the arithmetic device 30E, without depending on the operation of the operator.
  • the shovel 100 is, for example, a precondition for a preset backfilling operation (a location of a recess to be backfilled, a target construction surface corresponding to a target shape of the ground after backfilling, and a sand pile prepared for backfilling).
  • the excavation operation, the boom lowering swing operation, the soil discharging operation, and the boom raising swing operation may be automatically repeated based on the location).
  • the shovel 100 sequentially recognizes the position and shape of surrounding objects including the shape of the terrain from the image information of the imaging device 40.
  • the shovel 100 also generates a target trajectory of the bucket corresponding to the current operation process based on the recognized position and shape of the surrounding objects and the preconditions. Similar to the case of the semi-automatic operation function, the switching of the operation process may be performed according to the establishment of a predetermined ending condition. Then, the shovel 100 automatically operates all of the driven elements (actuators) corresponding to the current operation process so that the bucket moves along the target trajectory, and excavation operation, boom lowering turning operation, and earth removing operation. , And the boom raising and turning motion may be automatically repeated.
  • the driven elements actuators
  • the shovel 100 automatically operates all the required driven elements (actuators) without depending on the operation of the operator, and repeats the excavating operation, the boom lowering turning operation, the earth removing operation, and the boom raising turning operation. Then, the backfilling work can be performed.
  • the shovel 100 may perform the work of exchanging the end attachment 6 by the fully automatic operation function, without depending on the operation of the operator.
  • FIG. 3A to 3C are diagrams for explaining the replacement work of the end attachment 6 by the automatic driving function of the shovel 100.
  • FIG. 3A is a flowchart schematically showing an example of the control processing of the controller 30 regarding the replacement work of the end attachment 6 by the automatic operation function of the shovel 100. This flowchart is started, for example, when the automatic exchange switch 52a is turned on.
  • FIG. 3B is a diagram showing an example of the work of exchanging the end attachment 6 by the automatic driving function of the shovel 100.
  • FIG. 3B is a work state transition diagram of the work of exchanging the end attachment 6 by the automatic operation function of the shovel 100 from the work state 310 to the work state 340.
  • 3C is a diagram showing another example of the replacement work of the end attachment 6 by the automatic driving function of the shovel 100.
  • 3B and 3C show a specific example of the replacement work of the end attachment 6 by the automatic driving function of the shovel 100 when the bucket 6A mounted on the shovel 100 is replaced with the bucket 6B.
  • FIGS. 4A to 4C are views showing first to third examples of operation screens (hereinafter, “replacement target selection screens”) for selecting the end attachments to be replaced, which are displayed on the display device 50, respectively.
  • replacement target selection screens for selecting the end attachments to be replaced, which are displayed on the display device 50, respectively.
  • Is. 4A to 4C show a case where the computing device 30E recognizes the buckets 6C to 6E placed on the ground around the shovel 100 as the end attachments to be replaced.
  • step S102 the arithmetic device 30E, under the control of the controller 30, recognizes the end attachment placed on the ground around the shovel 100 based on the image captured by the image capturing device 40. Try.
  • the excavator 100 is moved to a place (storage space) where the bucket 6B to be replaced is stored by the operation of the operator, and the position where the bucket 6B faces the bucket 6B. It is located in.
  • the state in which the shovel 100 and the bucket 6B to be replaced face each other is that the tip of the arm 5 (specifically, the detaching device 12) is moved in either the front-rear direction or the up-down direction. This means a state in which the attachment portion at the tip can be aligned with the attachment portion of the bucket 6B to be replaced.
  • the state in which the shovel 100 and the bucket 6B to be replaced face each other corresponds to a state in which the operating surface of the attachment is orthogonal to the mounted portion of the bucket 6B to be replaced at the center in the width direction.
  • the operating surface of the attachment is a plane perpendicular to the rotation axes of the boom 4, the arm 5, and the end attachment 6, and means the plane in which the central portion in the width direction (horizontal direction) of the attachment operates.
  • the shovel 100 (arithmetic device 30E) recognizes the bucket 6B as an end attachment to be exchanged, which is placed on the ground in front of (front of) the upper swing body 3 based on the image captured by the image capturing device 40. can do.
  • the shovel 100 is arranged at a position relatively distant from the bucket 6B to be replaced (see the shovel 100 on the lower side in the figure). Therefore, the shovel 100 cannot make the tip of the arm 5 reach the bucket 6B to be replaced only by the operation of the attachment (boom 4 and arm 5).
  • the bucket 6B to be replaced may be included in the captured image of the imaging device 40. Therefore, the shovel 100 (arithmetic device 30E) recognizes the bucket 6B to be exchanged, which is placed in the storage space 510 that is relatively distant to the left diagonally forward of the upper swing body 3 based on the image captured by the image capturing device 40. be able to.
  • step S104 when the processing of step S102 by the arithmetic device 30E is completed, the controller 30 proceeds to step S104.
  • step S104 the controller 30 determines whether or not the computing device 30E has recognized the end attachment through the process of step S102. If the arithmetic unit 30E recognizes the end attachment, the controller 30 proceeds to step S106, and if not, repeats the processes of steps S102 and S104 until it is recognized.
  • the controller 30 may notify the operator through the display device 50 that the end attachment is not recognized when the arithmetic device 30E does not recognize the end attachment. As a result, the controller 30 causes the operator to travel the excavator 100 by the lower traveling body 1 or rotate the upper revolving body 3 to a position where the imaging device 40 can image the end attachment to be replaced. It is possible to prompt the operation of the operation device 26. Further, when the arithmetic device 30E does not recognize the end attachment, the controller 30 controls the proportional valve 31 on the basis of the drive command generated by the arithmetic device 30E to move the shovel 100 to the lower traveling body to a position where the end attachment can be recognized. The vehicle may be automatically moved by 1 or the upper swing body 3 may be automatically swung. Further, when the arithmetic device 30E does not recognize the end attachment even after a certain amount of time has passed, this flowchart may be forced to end.
  • step S106 the controller 30 causes the display device 50 to display the replacement target selection screen for selecting the replacement target end attachment from the end attachments recognized by the arithmetic device 30E. This is because a plurality of candidate end attachments to be replaced may be recognized.
  • each of the portions including (reflected) the buckets 6C to 6E indicates that they have been recognized by the arithmetic device 30E, that is, that they are end attachments of candidate replacement targets.
  • the recognition frames 411 to 413 are displayed in a superimposed manner.
  • a user such as an operator performs an operation of designating (selecting) and deciding any of the recognition frames 411 to 413 through the input device 52 (for example, a touch panel mounted on the display device 50), and thus the buckets 6C to 6E.
  • One of the end attachments (bucket) to be replaced can be selected from among the above.
  • an image including buckets 6C to 6E is displayed on the replacement target selection screen 420 as in the case of FIG. 4A.
  • list information 421 for identifying the types of the buckets 6C to 6E recognized by the computing device 30E is pop-up displayed in a superimposed manner.
  • the controller 30 or the arithmetic device 30E is a candidate end attachment (bucket) that is recognized by the arithmetic device 30E based on information about a plurality of types of end attachments registered in a database of end attachments that is built in advance. 6C to 6E) may be automatically discriminated and the list information 421 may be generated.
  • the database of the end attachment may be built in an auxiliary storage device or the like of the controller 30, or may be built in an external storage device communicably connected to the controller 30.
  • the list information 421 includes three types of ends, which are “normal bucket 0.8m 3 ”, “normal bucket 1.0m 3 ”, and “slope bucket” corresponding to each of the recognized buckets 6C to 6E.
  • the names of attachments are listed. A user such as an operator selects any one of the buckets 6C to 6E by moving the selection icon 422 in the list information 421 through the input device 52, and makes a selection by a predetermined confirmation operation. Can be confirmed.
  • an image including buckets 6C to 6E is displayed on the replacement target selection screen 430, as in the case of FIG. 4A and the like.
  • the exchange target selection screen 430 as in the case of FIG. 4A, the portions including (reflected) the buckets 6C to 6E are respectively recognized by the arithmetic unit 30E, that is, the exchange target candidates.
  • Recognition frames 431 to 433 indicating the end attachment are displayed in a superimposed manner.
  • the recognition frames 431 to 433 among the recognition frames 431 to 433, the recognition frames 431 and 432 of the end attachments (buckets 6C and 6D) that are candidates for replacement that can be mounted on the shovel 100, and the replacement targets that cannot be mounted on the shovel 100.
  • the candidate end attachment Bucket 6E
  • the recognition frame 433 includes an X mark that connects the diagonal lines of the rectangular portion, which indicates that the bucket 6E cannot be selected.
  • the controller 30 can prevent a situation where the end attachment that cannot be attached to the shovel 100 due to the specifications is accidentally attached to the shovel 100.
  • the controller 30 or the arithmetic device 30E is configured in advance based on the information about a plurality of types of end attachments registered in the database of end attachments, and the types of the buckets 6C to 6E recognized by the arithmetic device 30E. May be automatically determined to determine whether or not the shovel 100 can be mounted.
  • a user such as an operator, through the input device 52, performs an operation of designating (selecting) and confirming any one of the recognition frames 431 and 432, excluding the non-selectable recognition frame 433, thereby making a decision among the buckets 6C and 6D.
  • One end attachment (bucket) to be replaced can be selected.
  • step S106 when the processing of step S106 is completed, the controller 30 proceeds to step S108.
  • exchange target selection screen may be displayed even when only one end attachment to be exchanged is recognized in the process of step S102. This is because the user can confirm whether the recognized end attachment to be replaced is the end attachment desired by the user (operator).
  • step S108 the controller 30 determines whether or not the selection of the end attachment of the exchange target is confirmed through the exchange target selection screen. If the selection of the end attachment to be replaced is confirmed, the controller 30 proceeds to step S110, and if the selection of the end attachment to be replaced is not confirmed, waits until the selection is confirmed (this step until the selection is confirmed). Process is repeated).
  • step S110 the controller 30 controls the proportional valve 31 based on the drive command generated by the arithmetic device 30E, and is attached to the tip of the arm 5 of the shovel 100 (specifically, the detaching device 12). Remove the end attachment 6 in place.
  • the predetermined place is, for example, a storage space on the work site that is provided in advance to store a plurality of types of end attachments that can be mounted on the shovel 100.
  • the shovel 100 removes the bucket 6A currently mounted in the same storage space in which the bucket 6B to be replaced is placed.
  • the shovel 100 for example, under the control of the controller 30 and the arithmetic unit 30E, the lowering operation of the boom 4 and the arm 5 until the back surface of the bucket 6A comes into contact with the ground of the storage space further ahead of the bucket 6B when viewed from the shovel 100. At least one of the closing operations of. Then, the shovel 100 can operate the hydraulic cylinder 12c in the contracting direction and remove the bucket 6A into the storage space under the control of the controller 30 and the arithmetic device 30E.
  • the excavator 100 has its current position relatively distant from the storage space 510 in which the bucket 6B to be replaced is placed (FIG. 3C). (See the lower shovel 100 inside). Therefore, the shovel 100 may be moved to the periphery of the storage space 510 in which the bucket 6B to be replaced is placed by automatically traveling the lower traveling body 1 under the control of the controller 30 and the arithmetic device 30E ( (See the upper shovel 100 in the figure). Specifically, as in the case of FIG. 3B, the shovel 100 faces the bucket 6B to be replaced and automatically moves (runs) until the tip of the arm 5 (the detaching device 12) reaches the bucket 6B.
  • the bucket 6A may be removed from the storage space 510.
  • the shovel 100 can position the tip of the arm 5 with respect to the bucket 6B to be attached by merely moving the tip of the arm 5 in the front-rear direction and the vertical direction. That is, the operation of (part of) the excavator 100 when removing the currently attached end attachment 6 (bucket 6A) is a work of aligning the tip of the arm 5 with the end attachment (bucket 6B) to be attached. May form part of the.
  • the excavator 100 performs the upper turning operation only by the traveling operation of the lower traveling body 1 in a state where the front-rear direction (longitudinal direction) of the lower traveling body 1 (crawler 1C) and the direction of the upper revolving body 3 are substantially matched.
  • the body 3 may be automatically shifted to the state of directly facing the bucket 6B. That is, the shovel 100 may automatically shift to a state of directly facing the bucket 6B by adjusting the driving speed of each of the left and right crawlers 1C and changing the traveling direction. Further, the shovel 100 automatically shifts to a state of directly facing the bucket 6B while adjusting the direction of the upper swing body 3 using both the traveling operation of the lower traveling body 1 and the swing operation of the upper rotating body 3. May be.
  • the excavator 100 is located at a distance where the tip of the arm 5 can reach the end attachment to be replaced, and the upper revolving structure 3 is simply swung to directly face the end attachment to be replaced. It may be feasible. Specifically, when the end attachment to be replaced is viewed from the swivel axis of the upper swing body 3, it is relatively close to the plane corresponding to the radial direction and the width of the attached portion of the end attachment to be replaced. This corresponds to the state of the shovel 100 in which the central portion in the direction is orthogonal to each other.
  • the shovel 100 can recognize this state based on the image information of the imaging device 40 and the imaging device capable of imaging the left, right, rear, and the like of the shovel 100. .. In this case, the shovel 100 may automatically shift to a state of directly facing the end attachment to be replaced by only the turning operation of the upper-part turning body 3.
  • the shovel 100 is detached to the bucket 6A in a storage space 520 different from the storage space 510 in which the bucket 6B to be replaced is placed. (See the dotted excavator 100 in the figure).
  • the shovel 100 can make the tip of the arm 5 reach the bucket 6B to be replaced in the storage space 510, and automatically swivel the upper swing body 3 after shifting to the facing state. The orientation of the attachment is aligned with the storage space 520.
  • the excavator 100 can make the tip of the arm 5 reach the original state, that is, the bucket 6B to be replaced, only by turning the same amount in the opposite direction after removing the bucket 6A from the storage space 520. Is possible, and it is possible to return to the directly facing state.
  • the shovel 100 can cause the tip of the arm 5 to reach the end attachment to be replaced prior to the operation of removing the end attachment 6 (hereinafter, “removal operation”), and There may be a case where an operation of shifting to the facing state (hereinafter, “facing operation”) is performed.
  • step S110 when the process of step S110 is completed, the controller 30 proceeds to step S112.
  • step S112 the controller 30 controls the proportional valve 31 based on the drive command of the arithmetic device 30E, and automatically operates at least one of the attachment and the machine body (the lower traveling body 1 and the upper swing body 3).
  • the mounting portion at the tip of the arm 5 is aligned with the corresponding mounted portion of the end attachment to be replaced. For example, when the end attachment 6 is removed (at the completion of step S110), the tip of the arm 5 cannot reach the end attachment to be replaced, or when the end attachment 6 is not directly facing, the present step is , The shovel 100 performs a facing operation.
  • the excavator 100 can make the tip of the arm 5 reach the end attachment to be replaced, and, in a state of directly facing the end attachment, makes the attachment portion of the tip of the arm 5 and the attachment portion of the end attachment 6 coincide with each other.
  • the target alignment operation (hereinafter, "final alignment operation") is performed. Further, for example, when the end attachment is removed, the tip of the arm 5 can reach the end attachment to be replaced, and when the end attachment is directly facing, only the final alignment operation is performed.
  • the controller 30 attaches the attachment and the attachment so that the position of the non-movable attachment portion 12d1 of the attachment portions 12d1 and 12d2 of the attachment/detachment device 12 is aligned with the position of the corresponding attachment portion of the end attachment to be replaced.
  • the final alignment operation is performed by automatically operating at least one of the airframes.
  • the arithmetic device 30E may sequentially recognize the positions of the attachment portion 12d of the attachment/detachment device 12 and the attachment portion of the end attachment under the control of the controller 30 based on the image captured by the image capturing device 40.
  • the controller 30 is based on the information about the end attachment to be replaced that is registered in the database of the end attachment, which is built in advance, and the attached portion of the end attachment is attached. The position of may be recognized (specified).
  • the mounting portion of the tip of the arm 5 (the mounting portion 12d of the detaching device 12) is the mounted portion of the bucket 6B.
  • the axis of the attachment portion 12d at the tip of the arm 5 and the axis of the attachment portion (for example, attachment pin) of the bucket 6B are substantially parallel to each other. Therefore, the shovel 100 automatically moves the attachment under the control of the controller 30 and the arithmetic device 30E to move the tip of the arm 5 rearward from the position where the bucket 6A is removed, thereby bringing the position closer to the position of the bucket 6B. ..
  • the shovel 100 may automatically perform the raising operation of the boom 4 and the closing operation of the arm 5 under the control of the controller 30 and the arithmetic device 30E. Then, the shovel 100 automatically operates the attachment under the control of the controller 30 and the arithmetic device 30E to align the attachment portion 12d1 of the attachment/detachment device 12 at the tip of the arm 5 with the corresponding attachment portion of the bucket 6B. Good.
  • the shovel 100 causes the tip of the arm 5 to move to the position where the bucket 6A is removed by automatically traveling the lower traveling body 1 instead of or in addition to the attachment.
  • the mounting portion 12d1 of the attaching/detaching device 12 at the tip of the arm 5 may be aligned with the corresponding mounting portion of the bucket 6B in a manner of moving the rear portion toward the position of the bucket 6B.
  • the height of the tip of the arm 5 (vertical position) is adjusted to the height of the mounted portion of the bucket 6B to be mounted. Positioning can be performed only by moving the lower traveling body 1 backward.
  • the shovel 100 when the bucket 6A is removed from the storage space 520, the shovel 100 does not directly face the replacement target bucket 6B in the storage space 510 (see the shovel 100 indicated by the dotted line in the figure). .. Therefore, as described above, the shovel 100 automatically swings the upper swing body 3 under the control of the controller 30 and the arithmetic unit 30E, thereby moving the tip of the arm 5 from the storage space 520 to the storage space 510 for replacement. It returns to the state of directly facing the target bucket 6B.
  • the shovel 100 automatically swivels the upper swing body 3 so that the mounting portion 12d at the tip of the arm 5 (the detaching device 12) faces the mounted portion of the bucket 6B to be replaced. Then, as in the case of FIG. 3B, the shovel 100 automatically operates at least one of the attachment and the lower traveling body 1 to move the attachment portion 12d1 of the attachment/detachment device 12 at the tip of the arm 5 to the corresponding attachment portion of the bucket 6B. Can be aligned.
  • step S112 when the process of step S112 is completed, the controller 30 proceeds to step S114.
  • step S114 the controller 30 controls the proportional valve 31 based on the drive command generated by the arithmetic device 30E, and attaches the replacement-targeted end attachment to the tip of the arm 5.
  • the controller 30 controls the proportional valve 31 and operates the hydraulic cylinder 12c in the extension direction to attach the attached portion of the end attachment to be exchanged to the attaching portion 12d of the detaching device 12.
  • the shovel 100 can automatically perform (attach) the operation of attaching (attaching) the end attachment to be replaced to the tip of the arm 5 (hereinafter, “attaching operation”).
  • the shovel 100 attaches the bucket 6B to the tip of the arm 5 (attachment portion 12d of the attachment/detachment device 12) under the control of the controller 30 and the arithmetic device 30E.
  • the shovel 100 can start the work using the replaced bucket 6B instead of the bucket 6A.
  • controller 30 ends the process of this flowchart when the process of step S114 is completed.
  • the shovel 100 can automatically operate all necessary driven elements regardless of the operator's operation, and can perform the replacement work of the end attachment 6 by the fully automatic operation function of the shovel 100.
  • the excavator 100 automatically performs the removing operation, the facing operation, the final aligning operation, and the attaching operation regardless of the operation of the operator, so that the end attachment 6 can be replaced by the fully automatic operation function. It can be carried out.
  • At least one of the removing operation, the facing operation, and the attaching operation of the replacement work of the end attachment 6 may be manually executed by an operator's operation.
  • the excavator 100 performs the replacement work of the end attachment 6 by the semi-automatic operation function under the control of the controller 30 and the arithmetic device 30E in a form of assisting (operating) the operation of the operator according to the operation of the operator. May be.
  • the excavator 100 may perform the work of exchanging the end attachment by the semi-automatic operation function while automatically operating the driven elements other than the operation target of the operator according to the operation of the operator.
  • the shovel 100 in addition to running the lower traveling body 1 in accordance with an operation of the lower traveling body 1 (the left and right crawlers 1C) by the operator (hereinafter, “traveling operation”), automatically operates the upper revolving structure 3, for example.
  • the facing operation may be carried out by turning at.
  • the shovel 100 sequentially recognizes the relative position of the end attachment to be replaced from the image information of the imaging device 40.
  • the shovel 100 also generates a target trajectory of the tip of the arm 5 based on the recognized relative position of the end attachment to be replaced, the operation content of the operator, and the like.
  • the shovel 100 has a semi-automatic driving function by automatically operating the lower traveling body 1 and the upper revolving body 3 so that the tip of the arm 5 moves along the target trajectory in accordance with the traveling operation of the operator.
  • the facing operation may be realized.
  • the shovel 100 operates, for example, in accordance with an operation of the arm 5 by an operator (hereinafter, “arm operation”), and in addition to operating the arm 5, the boom 4 is automatically operated to perform a final alignment operation. You may go. Specifically, under the control of the controller 30 and the arithmetic device 30E, the shovel 100 sequentially recognizes the relative position of the end attachment to be exchanged from the image information of the imaging device 40. Further, the shovel 100 generates a target trajectory of the tip of the arm 5 based on the recognized relative position of the end attachment to be replaced and the operation content of the operator. Then, the excavator 100 automatically operates the arm 5 and the boom 4 so that the tip of the arm 5 moves along the target trajectory in accordance with the operator's arm operation, and performs the final alignment operation by the semi-automatic operation function. May be realized.
  • arm operation an operation of the arm 5 by an operator
  • the shovel 100 may perform the work of exchanging the end attachment by the semi-automatic operation function while automatically adjusting the operation of the driven element to be operated by the operator according to the operation of the operator.
  • the adjustment of the operation of the driven element to be operated by the operator means that the actual operation direction of the driven element to be operated by the operator is adjusted to the operation content, while the actual operation amount is compared with the operation amount corresponding to the operation content. Means to make adjustments.
  • the controller 30 controls the proportional valve 31 corresponding to the driven element to be operated by the operator, and causes the control valve 17 to act on the pilot pressure adjusted to be smaller or larger than the actual operation amount.
  • the shovel 100 is properly faced in a situation in which the excavator 100 may not reach the state where the end attachment to be exchanged is faced up or may go too far. be able to.
  • the attachment portion at the tip of the arm 5 and the attachment portion of the end attachment to be replaced may not reach the same state or may go too far.
  • the attachment portion of the tip of the arm 5 and the attached portion of the end attachment to be replaced can be properly aligned.
  • the operating device 26 is a hydraulic pilot type (see FIG. 2A)
  • the operating device 26 and the shuttle valve 32 are connected so that the pilot pressure corresponding to the operation of the operator of the cabin 10 does not act on the inlet port of the shuttle valve 32. It is desirable to provide a pressure reducing valve between them.
  • the pressure reducing valve of the pilot line on the secondary side of the operating device 26 corresponding to the driven element to be operated is operated to correspond to the operation content. Pilot pressure may not act on shuttle valve 32. This is because it may be necessary to apply a pilot pressure smaller than the pilot pressure output from the operating device 26 to the control valve 17 from the proportional valve 31 via the shuttle valve 32.
  • the shovel 100 for example, automatically adjusts the operation amount of the lower traveling body 1 and the upper revolving body 3 in accordance with an operation of the lower traveling body 1 and the upper revolving body 3 by an operator, and thereby the facing operation by the semi-automatic operation function is performed. You may go.
  • the shovel 100 performs the final alignment operation by the semi-automatic operation function by automatically adjusting the operation amount of the attachment, for example, according to the operation of the attachment (at least one of the boom 4 and the arm 5) by the operator. Good.
  • the shovel 100 is mounted on the lower traveling body 1 according to the traveling operation by the operator.
  • the final alignment operation by the semi-automatic operation function may be performed by automatically adjusting the operation amount (movement amount).
  • the shovel 100 can perform the replacement work of the end attachment 6 by the semi-automatic operation function of the shovel 100 according to the operation of the operator.
  • the excavator 100 can perform the replacement work of the end attachment 6 by the semi-automatic operation function, for example, in the form of supporting the operation of the operator corresponding to the facing operation and the final alignment operation.
  • the shovel 100 is attached with a link portion (boom 4 and arm 5) that is movably supported by a machine body (an example of a support portion) configured by the lower traveling body 1, the upper swing body 3, and the like. Align with the end attachment of. Specifically, the shovel 100 aligns the link portion with the end attachment to be attached, either automatically (regardless of the operator's operation) or to assist the operator's operation. For example, the shovel 100 may align the mounting portion 12d at the tip of the arm 5 with the mounted portion of the end attachment to be mounted on the tip of the arm 5, which is placed on the ground around the own machine.
  • the excavator 100 can perform at least a part of the replacement work of the end attachment 6 semi-automatically or completely automatically. Therefore, for example, when the excavator 100 is operated by an operator, the attachment part 12d at the tip of the arm 5 is attached to the end attachment to be attached (replacement target) in a relatively short time regardless of the skill of the operator. Can be aligned with the section. Further, for example, even if the shovel 100 has an automatic driving function, the automation of the replacement work of the end attachment 6 is added, so that the replacement work of the end attachment 6 can be performed more than the case where everything is manually performed. It is possible to shorten the time required for. Therefore, the efficiency of the replacement work of the end attachment 6 can be improved.
  • the shovel 100 aligns the link part with the end attachment of the attachment target so that the positions of the attachment part of the link part and the attached part of the end attachment of the attachment target are matched (matched). You can do it.
  • the excavator 100 can semi-automatically or fully automatically perform the final positioning operation of the replacement work of the end attachment 6.
  • the imaging device 40 may acquire information regarding the positions of the attachment unit of the link unit and the attachment unit of the end attachment to be attached. Then, the shovel 100, based on the information about the positions of the attachment part of the link part and the attached part of the end attachment of the attachment target acquired by the imaging device 40, the attachment part of the link part of the end attachment of the attachment target. It may be moved so as to coincide with the position of the attached portion.
  • the excavator 100 can more specifically perform the final positioning operation semi-automatically or completely automatically.
  • the shovel 100 operates at least one of the attachment and the machine body (the lower traveling body 1 and the upper revolving body 3) automatically or in a manner to assist the operation of the operator, thereby causing the tip of the arm 5 to move.
  • the (attachment portion 12d) may be aligned with (the attached portion of) the end attachment to be attached.
  • the shovel 100 can more specifically align the mounting portion 12d at the tip of the arm 5 with the mounted portion of the end attachment to be mounted (replacement target).
  • the shovel 100 operates only the link portion and the link portion of the machine body automatically or in a mode that supports the operation of the operator, and aligns the link portion with the end attachment to be attached. You can do it.
  • the shovel 100 can make the tip of the link portion reach the end attachment to be exchanged, and the final alignment operation can be performed only by the operation of the link portion, starting from the state of facing directly. Can be performed semi-automatically or fully automatically.
  • the excavator 100 causes the aircraft to perform at least one of a traveling operation and a turning operation automatically or in a mode that assists an operator's operation so that the link portion directly faces the end attachment to be attached. You may
  • the excavator 100 can perform the facing operation of the replacement work of the end attachment 6 semi-automatically or completely automatically.
  • the shovel 100 has the mounting portion 12d at the tip of the arm 5 in a state where the mounting portion 12d at the tip of the arm 5 faces the mounted portion of the end attachment to be mounted.
  • the attachment may be operated automatically or in a manner that assists the operation of the operator so as to match the position of the attached portion of the attachment.
  • the shovel 100 operates the link portion (the boom 4 and the arm 5 of the attachment) semi-automatically or fully automatically, and specifically, between the attachment portion 12d at the tip of the arm 5 and the attachment portion of the end attachment.
  • the position alignment final position alignment operation
  • the excavator 100 is a mode in which the upper swing body 3 is supported automatically or by an operator so that the attachment portion 12d at the tip of the arm 5 faces the attached portion of the end attachment to be attached. You can make a turn with.
  • the shovel 100 rotates the upper-part turning body 3 semi-automatically or completely automatically, and specifically, can perform the alignment between the mounting portion 12d at the tip of the arm 5 and the mounted portion of the end attachment. ..
  • the excavator 100 automatically moves the lower traveling body 1 or the operator moves the lower traveling body 1 so that the attachment portion of the tip of the arm 5 reaches a location where the attachment portion of the end attachment to be attached reaches the attachment portion. You may drive in the mode which supports operation.
  • the shovel 100 has the mounting portion 12d at the tip of the arm 5 in a state where the mounting portion 12d at the tip of the arm 5 faces the mounted portion of the end attachment to be mounted.
  • the lower traveling body 1 may be run automatically or in a mode that assists the operation of the operator so as to match the position of the attached portion of the attachment.
  • the shovel 100 runs the lower traveling body 1 semi-automatically or completely automatically, and specifically, the positioning between the attachment portion 12d at the tip of the arm 5 and the attachment portion of the end attachment (a facing operation or The final alignment operation) can be performed.
  • the shovel 100 may include a sensor (imaging device 40) that detects an end attachment to be attached around the own machine.
  • the shovel 100 can automatically recognize the presence or the relative position of the end attachment to be replaced, which is placed on the ground around the own machine, based on the output information (captured image) of the imaging device 40. it can.
  • the attachment portion 12d at the tip of the link portion (arm 5) includes the movable portion 12b and the movable portion 12b that switch between the fixed state and the non-fixed state between the arm 5 and the end attachment 6.
  • a hydraulic cylinder 12c (an example of an actuator) for driving may be provided.
  • the shovel 100 aligns the mounting portion 12d at the tip of the arm 5 with the mounted portion of the end attachment to be mounted while the movable portion 12b and the hydraulic cylinder 12c correspond to the non-fixed state, and the hydraulic cylinder 12c. May be operated automatically or in a mode that supports the operation of the operator, thereby fixing the attached portion of the end attachment to be attached to the attaching portion 12d at the tip of the arm 5.
  • the shovel 100 performs semi-automatic or full-automatic operation up to the operation (mounting operation) related to the mounting (fixing) of the end attachment, in addition to the alignment between the mounting portion of the tip of the arm 5 and the mounted portion of the end attachment. It can be carried out.
  • step S110 in FIG. 3A the removal operation of the end attachment 6 (step S110 in FIG. 3A) and the attachment operation of the end attachment (step S114 in FIG. 3A) may be performed manually as described above.
  • the desorption device 12 may be omitted.
  • the excavator 100 is configured to hydraulically drive various operating elements such as the lower traveling body 1, the upper revolving structure 3, the boom 4, the arm 5, the end attachment 6, and the attachment/detachment device 12.
  • various operating elements such as the lower traveling body 1, the upper revolving structure 3, the boom 4, the arm 5, the end attachment 6, and the attachment/detachment device 12.
  • a part thereof may be electrically driven. That is, the configurations and the like disclosed in the above-described embodiments may be applied to a hybrid shovel, an electric shovel, or the like.
  • the operation device 26 may be omitted. That is, in the above-described embodiment and modification, the shovel 100 may not be operated by the operator and may be completely automated.

Abstract

エンドアタッチメントの交換作業の効率化を図ることが可能なショベルを提供する。本発明の一実施形態に係るショベル100は、リンク部(ブーム4及びアーム5)と、リンク部を可動なように支持する機体(下部走行体1及び上部旋回体3)と、を備え、例えば、自機の周囲の地面に載置される、リンク部の先端への取付対象のエンドアタッチメントの被取付部に、リンク部の先端の取付部を自動で或いはオペレータの操作を支援するように位置合わせする。

Description

ショベル
 本開示は、ショベルに関する。
 例えば、エンドアタッチメントを交換可能なショベルが知られている(特許文献1参照)。
特開2017-82472号公報
 ところで、エンドアタッチメントの交換が行われる場合、現在のエンドアタッチメントが取り外された後に、取付対象のエンドアタッチメント(被取付部)に対して、アーム(取付部)の位置合わせが行われる。そのため、位置合わせの作業に時間を要し、ショベルの作業効率が低下する可能性がある。
 そこで、上記課題に鑑み、エンドアタッチメントの交換作業の効率化を図ることが可能なショベルを提供することを目的とする。
 上記目的を達成するため、本開示の一実施形態では、
 リンク部と、
 前記リンク部を可動なように支持する支持部と、を備え、
 前記リンク部を取付対象のエンドアタッチメントに対して位置合わせする、
 ショベルが提供される。
 上述の実施形態によれば、エンドアタッチメントの交換作業の効率化を図ることが可能なショベルを提供することができる。
ショベルの一例を示す側面図である。 ショベルに搭載される脱着装置の一例を示す図である。 ショベルの構成の一例を示すブロック図である。 ショベルの構成の他の例を示すブロック図である。 ショベルの自動運転機能によるエンドアタッチメントの交換作業に関するコントローラの制御処理の一例を概略的に示すフローチャートである。 ショベルの自動運転機能によるエンドアタッチメントの交換作業の一例を示す図である。 ショベルの自動運転機能によるエンドアタッチメントの交換作業の他の例を示す図である。 交換対象選択画面の第1例を示す図である。 交換対象選択画面の第2例を示す図である。 交換対象選択画面の第3例を示す図である。
 以下、図面を参照して実施形態について説明する。
 [ショベルの概要]
 まず、図1(図1A、図1B)を参照して、本実施形態に係るショベル100の概要について説明をする。
 図1は、本実施形態に係るショベル100の概要を示す外観図である。具体的には、図1Aは、本実施形態に係るショベル100の一例を示す側面図であり、図1Bは、ショベル100に搭載される脱着装置12の一例を示す外観図である。
 図1Aに示すように、本実施形態に係るショベル100は、下部走行体1と、旋回機構2を介して旋回自在に下部走行体1に搭載される上部旋回体3と、アタッチメントを構成するブーム4、アーム5、及びエンドアタッチメント6と、オペレータが搭乗するキャビン10とを備える。以下、ショベル100の前方は、ショベル100を上部旋回体3の旋回軸に沿って真上から平面視(以下、単に「平面視」と称する)で見たときに、上部旋回体3に対するアタッチメントの延出方向に対応する。また、ショベル100の左方及び右方は、それぞれ、キャビン10内のオペレータから見た左方及び右方に対応する。
 下部走行体1は、例えば、左右一対のクローラ1Cを含み、それぞれのクローラ1Cが走行油圧モータ1M、即ち、左側の走行油圧モータ1ML及び右側の走行油圧モータ1MR(図2参照)で油圧駆動されることにより、ショベル100を走行させる。
 上部旋回体3は、旋回機構2が旋回油圧モータ2Aで油圧駆動されることにより、下部走行体1に対して旋回する。
 ブーム4は、上部旋回体3の前部中央に俯仰可能に枢着され、ブーム4の先端には、アーム5が上下回動可能に枢着され、アーム5の先端には、脱着装置12を介して、エンドアタッチメント6が上下回動可能に枢着される。
 エンドアタッチメント6は、ショベル100の作業内容に応じて、適宜交換可能な態様で、アーム5の先端に取り付けられている。エンドアタッチメント6は、例えば、図1Aに示すように、バケットである。また、エンドアタッチメント6は、図1に示すバケットとは異なる種類のバケット(例えば、図1のバケットよりも相対的に大きい大型バケット、法面用バケット、浚渫用バケット等)であってもよい。また、エンドアタッチメント6は、例えば、攪拌機、ブレーカ等、バケット以外であってもよい。
 図1Bに示すように、脱着装置12は、アーム5に取り付けられる被取付部12aと、可動部12bと、可動部12bを動作させる油圧シリンダ12cと、エンドアタッチメント6を取り付ける取付部12dとを含む。
 被取付部12aは、アーム5の先端に取り付けられるために用いられる。被取付部12aは、被取付孔12a1,12a2を含む。被取付孔12a1,12a2は、所定の取付ピンを用いて、それぞれに対応するアーム5の先端の取付部(取付孔)に取り付けられる。
 可動部12bは、被取付孔12a2に対応する中心軸を支点として回動可能に取付られる。
 油圧シリンダ12cは、可動部12bにロッド先端が取り付けられ、その伸縮によって、可動部12bを動作させる。
 取付部12dは、エンドアタッチメント6を取り付けるために用いられる。取付部12dは、取付部12d1,12d2を含む。取付部12d1,12d2のうち、取付部12d2は、可動部12bの先端に設けられ、可動部12bの動作に応じて、固定部としての取付部12d1との間の距離が変化する。
 具体的には、油圧シリンダ12cが収縮すると、可動部12bの先端の取付部12d2は、取付部12d1に近づく。一方、油圧シリンダ12cが伸長すると、可動部12bの先端の取付部12d2は、取付部12d1から離れる。そのため、脱着装置12は、油圧シリンダ12cをある程度伸長させ、取付部12d1,12d2との間の距離を、エンドアタッチメント6に設けられる二つの被取付部(例えば、取付ピン)の間の距離に維持することで、エンドアタッチメント6が取り付けられた状態を実現し維持できる。また、脱着装置12は、油圧シリンダ12cを収縮させ、取付部12d1,12d2との間の距離を、エンドアタッチメント6に設けられる二つの被取付部の間の距離よりも短くすることで、エンドアタッチメント6の着脱を行うことができる。
 図1Aに示すように、ブーム4、アーム5、及びエンドアタッチメント6は、それぞれ、油圧アクチュエータとしてのブームシリンダ7、アームシリンダ8、及びエンドアタッチメントシリンダ9により油圧駆動される。
 キャビン10は、オペレータが搭乗する操縦室であり、例えば、上部旋回体3の前部左側に搭載される。
 ショベル100は、キャビン10に搭乗するオペレータの操作に応じて、下部走行体1(左右のクローラ1C)、上部旋回体3、ブーム4、アーム5、及びエンドアタッチメント6等の被駆動要素を動作させる。
 また、ショベル100は、キャビン10に搭乗するオペレータによって操作可能に構成されるのに代えて、或いは、加えて、ショベル100の外部から遠隔操作(リモート操作)が可能に構成されてもよい。ショベル100が遠隔操作される場合、キャビン10の内部は、無人状態であってもよい。以下、オペレータの操作には、キャビン10のオペレータの操作装置26に対する操作、及び外部のオペレータの遠隔操作の少なくとも一方が含まれる前提で説明を進める。
 遠隔操作には、例えば、所定の外部装置で行われるショベル100のアクチュエータに関する操作入力によって、ショベル100が操作される態様が含まれる。外部装置は、例えば、ショベル100の作業現場から相対的に遠い場所に配置されるクラウドサーバであってよい。また、外部装置は、例えば、ショベル100から相対的に近い場所(例えば、作業現場内の管理事務所や作業現場から相対的に近い場所の基地局、局舎等)に配置されるエッジサーバであってもよい。また、外部装置は、作業現場内の端末装置であってもよい。端末装置は、例えば、作業現場の管理事務所に設けられるデスクトップ型のコンピュータ端末等の定置型の端末装置であってよい。また、端末装置は、例えば、スマートフォン、タブレット端末、ラップトップ型のコンピュータ等、作業現場の作業者、監督者、管理者等が携帯可能な携帯端末であってもよい。この場合、ショベル100は、例えば、外部装置と通信を行う通信装置を搭載し、通信装置を用いて、後述の撮像装置40が出力する画像情報(撮像画像)を外部装置に送信する。そして、当該画像情報は、外部装置に設けられる表示装置(以下、「遠隔操作用表示装置」)に表示されてよい。また、ショベル100のキャビン10の内部に設けられる、後述の表示装置50に表示される各種の情報画像(情報画面)は、同様に、外部装置の遠隔操作用表示装置にも表示されてよい。これにより、外部装置のオペレータは、例えば、遠隔操作用表示装置に表示されるショベル100の周囲の様子を表す撮像画像や情報画面等の表示内容を確認しながら、ショベル100を遠隔操作することができる。そして、ショベル100は、通信装置により外部装置から受信される、遠隔操作の内容を表す遠隔操作信号に応じて、アクチュエータを動作させ、下部走行体1(左右のクローラ1C)、上部旋回体3、ブーム4、アーム5、及びエンドアタッチメント6等の被駆動要素を駆動してよい。
 また、遠隔操作には、例えば、ショベル100の周囲の人(例えば、作業者)のショベル100に対する外部からの音声入力やジェスチャ入力等によって、ショベル100が操作される態様が含まれてよい。具体的には、ショベル100は、ショベル100(自機)に搭載される音声入力装置(例えば、マイクロフォン)やジェスチャ入力装置(例えば、撮像装置)等を通じて、周囲の作業者等により発話される音声や作業者等により行われるジェスチャ等を認識する。そして、ショベル100は、認識した音声やジェスチャ等の内容に応じて、アクチュエータを動作させ、下部走行体1(左右のクローラ1C)、上部旋回体3、ブーム4、アーム5、及びエンドアタッチメント6等の被駆動要素を駆動してよい。
 また、ショベル100は、オペレータの操作の内容に依らず、自動でアクチュエータを動作させてもよい。これにより、ショベル100は、下部走行体1(左右のクローラ1C)、上部旋回体3、ブーム4、アーム5、及びエンドアタッチメント6等の被駆動要素の少なくとも一部を自動で動作させる機能(いわゆる「自動運転機能」或いは「マシンコントロール機能」)を実現する。
 自動運転機能には、オペレータの操作装置26に対する操作や遠隔操作に応じて、操作対象の被駆動要素(アクチュエータ)以外の被駆動要素(アクチュエータ)を自動で動作させる機能(いわゆる「半自動運機能」)が含まれてよい。また、自動運転機能には、オペレータの操作装置26に対する操作や遠隔操作がない前提で、複数の被駆動要素(アクチュエータ)の少なくとも一部を自動で動作させる機能(いわゆる「完全自動運転機能」)が含まれてよい。ショベル100において、完全自動運転機能が有効な場合、キャビン10の内部は無人状態であってよい。また、半自動運転機能や完全自動運転機能等には、自動運転の対象の被駆動要素(アクチュエータ)の動作内容が予め規定されるルールに従って自動的に決定される態様が含まれてよい。また、半自動運転機能や完全自動運転機能等には、ショベル100が自律的に各種の判断を行い、その判断結果に沿って、自律的に自動運転の対象の被駆動要素(アクチュエータ)の動作内容が決定される態様(いわゆる「自律運転機能」)が含まれてもよい。
 [ショベルの構成]
 次に、図1(図1A、図1B)に加えて、図2(図2A、図2B)を参照して、ショベル100の具体的な構成について説明する。
 図2A、図2Bは、本実施形態に係るショベル100の構成の一例及び他の例を示すブロック図である。
 尚、図中において、機械的動力ラインは二重線、高圧油圧ラインは実線、パイロットラインは破線、電気駆動・制御ラインは点線でそれぞれ示される。
  <ショベルの油圧駆動系>
 本実施形態に係るショベル100の油圧駆動系は、上述の如く、下部走行体1(左右のクローラ1C)、上部旋回体3、ブーム4、アーム5、エンドアタッチメント6、及び脱着装置12(可動部12b)等のそれぞれを油圧駆動する走行油圧モータ1M(1ML,1MR)、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、エンドアタッチメントシリンダ9、及び油圧シリンダ12c等の油圧アクチュエータを含む。また、本実施形態に係るショベル100の油圧駆動系は、エンジン11と、レギュレータ13と、メインポンプ14と、コントロールバルブ17とを含む。
 エンジン11は、油圧駆動系におけるメイン動力源であり、例えば、軽油を燃料とするディーゼルエンジンである。エンジン11は、例えば、上部旋回体3の後部に搭載され、後述するコントローラ30による直接或いは間接的な制御下で、予め設定される目標回転数で一定回転し、メインポンプ14及びパイロットポンプ15を駆動する。
 レギュレータ13は、コントローラ30の制御下で、メインポンプ14の吐出量を制御(調節)する。例えば、レギュレータ13は、コントローラ30からの制御指令に応じて、メインポンプ14の斜板の角度(以下、「傾転角」)を調節する。
 メインポンプ14は、例えば、エンジン11と同様、上部旋回体3の後部に搭載され、高圧油圧ラインを通じてコントロールバルブ17に作動油を供給する。メインポンプ14は、上述の如く、エンジン11により駆動される。メインポンプ14は、例えば、可変容量式油圧ポンプであり、上述の如く、コントローラ30の制御下で、レギュレータ13により斜板の傾転角が調節されることによりピストンのストローク長が調整され、吐出流量(吐出圧)が制御される。
 コントロールバルブ17は、例えば、上部旋回体3の中央部に搭載され、オペレータの操作内容、或いは、コントローラ30から出力される、ショベル100の自動動作に対応する制御指令(以下、「自動制御指令」)に応じて、油圧アクチュエータの制御を行う油圧制御装置である。コントロールバルブ17は、上述の如く、高圧油圧ラインを介してメインポンプ14と接続され、メインポンプ14から供給される作動油を、オペレータの操作内容、或いは、コントローラ30から出力される自動制御指令に応じて、油圧アクチュエータ(走行油圧モータ1ML,1MR、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、エンドアタッチメントシリンダ9、及び油圧シリンダ12c等)に選択的に供給する。具体的には、コントロールバルブ17は、メインポンプ14から油圧アクチュエータのそれぞれに供給される作動油の流量と流れる方向を制御する複数の制御弁(方向切換弁とも称する)を含む。
  <ショベルの操作系>
 本実施形態に係るショベル100の油圧駆動系に関する操作系は、パイロットポンプ15と、操作装置26とを含む。また、図2Aに示すように、ショベル100の油圧駆動系に関する操作系は、操作装置26が油圧パイロット式である場合、シャトル弁32を含む。
 パイロットポンプ15は、例えば、エンジン11と同様、上部旋回体3の後部に搭載され、パイロットライン25を介して各種油圧機器にパイロット圧を供給する。パイロットポンプ15は、例えば、固定容量式油圧ポンプであり、上述の如く、エンジン11により駆動される。
 操作装置26は、キャビン10の操縦席付近に設けられ、オペレータが各種被駆動要素(下部走行体1、上部旋回体3、ブーム4、アーム5、エンドアタッチメント6等)の操作を行うための操作入力手段である。換言すれば、操作装置26は、オペレータがそれぞれの被駆動要素を駆動する油圧アクチュエータ(即ち、走行油圧モータ1ML,1MR、旋回油圧モータ2A、ブームシリンダ7、アームシリンダ8、エンドアタッチメントシリンダ9等)の操作を行うための操作入力手段である。操作装置26は、例えば、ブーム4(ブームシリンダ7)、アーム5(アームシリンダ8)、エンドアタッチメント6(エンドアタッチメントシリンダ9)、及び上部旋回体3(旋回油圧モータ2A)のそれぞれを操作するレバー装置を含む。また、操作装置26は、例えば、下部走行体1の左右のクローラ1CL,1CR(走行油圧モータ1ML,1MR)のそれぞれを操作するペダル装置或いはレバー装置を含む。また、操作装置26は、例えば、脱着装置12(油圧シリンダ12c)を操作するレバー装置を含む。
 例えば、図2Aに示すように、操作装置26は、油圧パイロット式である。具体的には、操作装置26は、パイロットライン25及びパイロットライン25から分岐されるパイロットライン25Aを通じてパイロットポンプ15から供給される作動油を利用して、操作内容に応じたパイロット圧をその二次側のパイロットライン27に出力する。パイロットライン27は、シャトル弁32を介してコントロールバルブ17に接続される。これにより、コントロールバルブ17には、操作装置26における各種被駆動要素(油圧アクチュエータ)に関する操作内容に応じたパイロット圧が、シャトル弁32を介して、入力されうる。そのため、コントロールバルブ17は、オペレータ等の操作装置26に対する操作内容に応じて、それぞれの油圧アクチュエータを駆動することができる。
 また、例えば、図2Bに示すように、操作装置26は、電気式である。具体的には、操作装置26は、操作内容に応じた電気信号(以下、「操作信号」)を出力し、当該操作信号は、コントローラ30に取り込まれる。そして、コントローラ30は、操作信号の内容、つまり、操作装置26に対する操作内容に応じた制御指令(以下、自動制御指令と区別し、「操作制御指令」)を比例弁31に出力する。これにより、比例弁31からコントロールバルブ17に操作装置26に対する操作内容に応じたパイロット圧が入力され、コントロールバルブ17は、オペレータ等の操作装置26に対する操作内容に応じて、それぞれの油圧アクチュエータを駆動することができる。
 尚、コントロールバルブ17に内蔵される制御弁(方向切換弁)が電磁ソレノイド式であってもよい。この場合、操作装置26から出力される電気信号が直接的にコントロールバルブ17、つまり、電磁ソレノイド式の制御弁に入力される態様であってもよい。
 図2Aに示すように、シャトル弁32は、2つの入口ポートと1つの出口ポートを有し、2つの入口ポートに入力されたパイロット圧のうちの高い方のパイロット圧を有する作動油を出口ポートに出力させる。シャトル弁32は、操作装置26の操作対象の被駆動要素(クローラ1CL、クローラ1CR、上部旋回体3、ブーム4、アーム5、及びエンドアタッチメント6)ごとに設けられる。シャトル弁32の2つの入口ポートのうちの一方が操作装置26(具体的には、操作装置26に含まれる上述のレバー装置或いはペダル装置)に接続され、他方が比例弁31に接続される。シャトル弁32の出口ポートは、パイロットラインを通じて、コントロールバルブ17の対応する制御弁(具体的には、シャトル弁32の一方の入口ポートに接続される上述のレバー装置或いはペダル装置の操作対象である油圧アクチュエータに対応する制御弁)のパイロットポートに接続される。そのため、これらのシャトル弁32は、それぞれ、操作装置26が生成するパイロット圧と比例弁31が生成するパイロット圧とのうちの高い方を、対応する制御弁のパイロットポートに作用させることができる。つまり、後述するコントローラ30は、操作装置26から出力される二次側のパイロット圧よりも高いパイロット圧を比例弁31から出力させることで、オペレータの操作装置26に対する操作に依らず、対応する制御弁を制御することができる。よって、コントローラ30は、オペレータの操作装置26に対する操作状態に依らず、被駆動要素(下部走行体1、上部旋回体3、アタッチメント等)の動作を自動制御することができる。
  <ショベルの制御系>
 本実施形態に係るショベル100の制御系は、コントローラ30と、演算装置30Eと、比例弁31と、撮像装置40と、表示装置50と、入力装置52とを含む。また、図2Aに示すように、本実施形態に係るショベル100の制御系は、操作装置26が油圧パイロット式である場合、操作圧センサ29を含む。
 コントローラ30は、ショベル100に関する各種制御を行う。コントローラ30は、その機能が任意のハードウェア、或いは、任意のハードウェア及びソフトウェアの組み合わせ等により実現されてよい。例えば、コントローラ30は、CPU(Central Processing Unit)、RAM(Random Access Memory)等のメモリ装置、ROM(Read Only Memory)等の不揮発性の補助記憶装置、及びインターフェース装置等を含むマイクロコンピュータを中心に構成される。コントローラ30は、例えば、補助記憶装置にインストールされる一以上のプログラムをCPU上で実行することにより各種機能を実現する。
 例えば、コントローラ30は、操作装置26が電気式である場合、操作装置26を用いたショベル100の操作に関する制御を行ってよい。具体的には、コントローラ30は、上述の如く、操作装置26から入力される操作信号に応じて、比例弁31を制御することにより、操作装置26の操作内容に応じたショベル100(具体的には、被駆動要素を駆動するアクチュエータ)の動作を実現させてよい。
 また、例えば、コントローラ30は、ショベル100の遠隔操作機能に関する制御を行ってもよい。具体的には、コントローラ30は、外部装置から受信される遠隔操作信号で指定される遠隔操作の内容に応じて、比例弁31を制御することにより、ショベル100(具体的には、被駆動要素を駆動するアクチュエータ)に遠隔操作に合わせた動作を行わせてよい。また、コントローラ30は、ショベル100の周囲の作業者等から受け付けられる音声入力やジェスチャ入力に対応する遠隔操作の内容に応じて、ショベル100に遠隔操作に合わせた動作を行わせてもよい。
 また、例えば、コントローラ30は、ショベル100の自動運転機能に関する制御を行ってもよい。具体的には、コントローラ30は、演算装置30Eの演算結果(油圧アクチュエータの駆動指令)に基づき、比例弁31を制御し(比例弁31に自動制御指令を出力し)、オペレータの操作に依らず、ショベル100を動作させてよい。ショベル100の自動運転機能の詳細は、後述する。
 尚、コントローラ30の機能の一部は、他のコントローラ(制御装置)により実現されてもよい。即ち、コントローラ30の機能は、複数のコントローラにより分散して実現される態様であってもよい。
 演算装置30Eは、コントローラ30の制御下で、コントローラ30の各種機能に関する演算処理を行う。演算装置30Eは、任意のハードウェア、或いは、任意のハードウェア及びソフトウェアの組み合わせ等により実現されてよい。例えば、演算装置30Eは、GPU(Graphical Processing Unit),ASIC(Application Specific Integrated Circuit),FPGA(field-programmable gate array)等を含み、高速演算処理を実現してよい。
 具体的には、演算装置30Eは、撮像装置40の出力情報に基づき、ショベル100(自機)の周囲の状況を認識すると共に、ショベル100の各種状態(例えば、上部旋回体3の姿勢状態やアタッチメントの姿勢状態等)を認識する。そして、演算装置30Eは、認識したショベル100の周囲の状況やショベル100の各種状態に基づき、自動でショベル100を動作させるための油圧アクチュエータの駆動指令を演算し生成する。
 尚、ショベル100には、撮像装置40の他に、ショベル100の状態を検出するセンサが更に設けられてもよい。例えば、ショベル100には、自機の絶対位置を測位可能な測位装置や、上部旋回体3やアタッチメントの姿勢状態を検出可能な姿勢センサが含まれてもよい。測位装置は、例えば、GNSS(Global Navigation Satellite System)センサ等である。姿勢センサは、例えば、角度センサ、加速度センサ、角速度センサ、六軸センサ、IMU(Inertial Measurement Unit)等である。
 比例弁31は、操作装置26の操作対象の被駆動要素(左右のクローラ1C、上部旋回体3、ブーム4、アーム5、エンドアタッチメント6、及び脱着装置12)ごとに設けられる。比例弁31は、パイロットポンプ15とコントロールバルブ17との間のパイロットライン25(図2Aの場合、パイロットライン25から分岐するパイロットライン25B)に設けられ、その流路面積(即ち、作動油が通流可能な断面積)を変更可能に構成される。これにより、比例弁31は、パイロットライン25(パイロットライン25B)を通じて供給されるパイロットポンプ15の作動油を利用して、所定のパイロット圧を二次側に出力することができる。そのため、比例弁31は、図2Aに示すように、シャトル弁32を介して、或いは、図2Bに示すように、直接的に、コントローラ30からの制御指令に応じた所定のパイロット圧をコントロールバルブ17に作用させることができる。つまり、コントローラ30は、電気式の操作装置26からの電気信号に応じた操作制御指令を比例弁31に出力することで、比例弁31から操作装置26の操作内容に応じたパイロット圧をコントロールバルブ17に供給させ、オペレータの操作に基づくショベル100の動作を実現することができる。また、コントローラ30は、オペレータにより操作装置26が操作されていない場合であっても、遠隔操作の内容に対応する制御指令や自動制御指令を比例弁31に出力することで、比例弁31から所定のパイロット圧をコントロールバルブ17に供給させ、ショベル100の遠隔操作機能や自動運転機能を実現することができる。
 撮像装置40は、ショベル100の周囲の三次元空間の状況に関する情報、具体的には、ショベル100の周囲を撮像し、その様子を表す画像情報(以下、「撮像画像」)を取得する。撮像装置40は、例えば、単眼カメラ、ステレオカメラ、デプスカメラ等を含みうる。撮像装置40は、キャビン10の上面前端に取り付けられ、上部旋回体3の前方の様子を表す撮像画像を取得する。これにより、演算装置30Eは、撮像装置40の撮像画像に基づき、ショベル100の前方の状況を認識することができる。また、演算装置30Eは、撮像装置40の撮像画像から認識される物体の位置の変化等に基づき、ショベル100の位置や上部旋回体3の旋回状態等を把握することができる。また、撮像装置40の撮像範囲には、ブーム4、アーム5、及びエンドアタッチメント6、つまり、アタッチメントが含まれる。これにより、演算装置30Eは、撮像装置40の上部旋回体3に対する取付条件、及び撮像装置40の撮像画像に基づき、アタッチメントの姿勢状態を認識することができる。即ち、撮像装置40は、アタッチメントの姿勢状態に関する情報(アタッチメントを含む画像情報)を取得することができる。
 尚、撮像装置40に加えて、ショベル100には、ショベル100(上部旋回体3)の後方、左側方、及び右側方のうちの少なくとも一つの方向の様子を撮像可能な撮像装置が設けられてもよい。また、撮像装置40に代えて、或いは、加えて、ショベル100の周囲の三次元空間の状況に関する情報を取得可能な他の装置(センサ)がショベル100に搭載されてもよい。他の装置(センサ)は、例えば、超音波センサ、ミリ波レーダ、LIDAR(Light Detection and Ranging)、距離画像センサ、赤外線センサ等であってよい。
 表示装置50は、キャビン10内の着座したオペレータから視認し易い場所に設けられ、各種情報画像を表示する。表示装置50は、例えば、液晶ディスプレイや有機EL(Electroluminescence)ディスプレイである。
 入力装置52は、オペレータからの各種の入力を受け付ける。入力装置52は、例えば、キャビン10内の着座したオペレータから手が届く範囲に設けられ、オペレータによる各種操作入力を受け付ける操作入力装置を含んでよい。例えば、操作入力装置は、表示装置50に実装されるタッチパネル、表示装置50の周囲に設置されるタッチパッド、ボタンスイッチ、レバー、トグル、操作装置26に設けられるノブスイッチ等のハードウェアによる入力手段を含む。また、操作入力装置は、表示装置50に表示される各種操作画面に表示される仮想的な操作対象(例えば、操作アイコン)等のハードウェアの入力手段によって操作可能なソフトウェアの入力手段を含んでもよい。また、入力装置52は、例えば、オペレータによる音声入力を受け付ける音声入力装置やジェスチャ入力を受け付けるジェスチャ入力装置等を含んでもよい。音声入力装置は、例えば、マイクロフォンを含んでよい。ジェスチャ入力装置は、例えば、キャビン10内のオペレータのジェスチャ動作を撮像可能な室内カメラを含んでよい。入力装置52に対する入力内容に対応する信号は、コントローラ30に取り込まれる。
 入力装置52は、自動交換スイッチ52aを含む。
 自動交換スイッチ52aは、ショベル100に自動で或いはオペレータの操作を支援する形でエンドアタッチメント6の交換を行わせるために用いられる操作部である。コントローラ30は、自動交換スイッチ52aがON操作されると、演算装置30Eの演算結果(油圧アクチュエータの駆動指令)に基づき、比例弁31に自動制御指令を出力し、ショベル100に自動で或いはオペレータの操作を支援する形でエンドアタッチメント6の交換作業を行わせる。詳細は、後述する(図3A~図3C参照)。
 また、外部装置のオペレータによって、ショベル100が遠隔操作される場合、自動交換スイッチ52aと同じ機能を有する操作部が外部装置に設けられてよい。この場合、外部装置で当該操作部が操作されると、外部装置からその操作内容を示す信号がショベル100に送信される。これにより、コントローラ30は、自動交換スイッチ52aが操作された場合と同様に、ショベル100に自動で或いはオペレータの操作を支援する形でエンドアタッチメント6の交換作業を行わせることができる。また、ショベル100の周囲の作業者等による音声入力やジェスチャ入力でショベル100の遠隔操作が行われる場合、自動交換スイッチ52aに対する操作入力と同じ機能を有する所定の音声入力や所定のジェスチャ入力が予め規定されてよい。これにより、当該所定の音声入力や当該所定のジェスチャ入力が受け付けられると、コントローラ30は、自動交換スイッチ52aが操作された場合と同様に、ショベル100に自動で或いはオペレータの操作を支援する形でエンドアタッチメント6の交換作業を行わせることができる。
 図2Aに示すように、操作圧センサ29は、操作装置26の二次側(パイロットライン27)のパイロット圧、即ち、操作装置26におけるそれぞれの被駆動要素(油圧アクチュエータ)の操作状態に対応するパイロット圧を検出する。操作圧センサ29による操作装置26における下部走行体1、上部旋回体3、ブーム4、アーム5、エンドアタッチメント6、及び脱着装置12等に関する操作状態に対応するパイロット圧の検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、操作装置26の操作状態を把握することができる。
 [ショベルの自動運転機能]
 次に、ショベルの自動運転機能よる各種作業の具体例について説明する。
  <自動運転機能による掘削作業>
 まず、ショベル100の自動運転機能による掘削作業について説明する。
 掘削作業が行われる場合、ショベル100に装着されるエンドアタッチメント6は、通常、バケットである。掘削作業は、例えば、掘削動作、ブーム上げ旋回動作、排土動作、及びブーム下げ旋回動作の一連の動作工程で構成される。掘削動作は、地面を掘削するショベル100の動作である。ブーム上げ旋回動作は、掘削された土砂をバケットに掬い上げ、土砂を排土場所まで移動させるショベル100の動作であり、ブーム4の上げ動作と上部旋回体3の旋回動作との複合動作である。排土動作は、排土場所にバケット内の土砂を排土するショベル100の動作である。ブーム下げ旋回動作は、排土場所から掘削場所までバケットを移動させる(戻らせる)ショベル100の動作であり、ブーム4の下げ動作と上部旋回体3の旋回動作との複合動作である。
 例えば、ショベル100は、コントローラ30及び演算装置30Eの制御下で、オペレータの操作に応じて、オペレータの操作対象以外の被駆動要素を自動で動作させながら、半自動運転機能による掘削作業を行う。
 ショベル100は、例えば、オペレータによるアーム5の閉じ方向の操作(以下、「アーム閉じ操作」)に応じて、アーム5を閉じ方向に動作させるのに加えて、ブーム4及びエンドアタッチメント6(バケット)の少なくとも一方を自動で動作させることによって、掘削動作を行ってよい。具体的には、ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報から現在の地形形状を逐次認識する。また、ショベル100は、認識した現在の地形形状と予め規定される溝等の施工対象の目標形状(目標施工面)との差分、及びオペレータの操作内容等に基づき、バケットの目標軌道を生成する。そして、ショベル100は、オペレータのアーム閉じ操作に応じて、バケットが目標軌道に沿って移動するように、アーム5、並びに、ブーム4及びバケットの少なくとも一方を自動で動作させる形で、半自動運転機能による掘削動作を実現してよい。
 また、ショベル100は、例えば、オペレータの上部旋回体3に関する操作(以下、「旋回操作」)に応じて、上部旋回体3を旋回動作させるのに加えて、ブーム4を自動で上げ方向に動作させることにより、ブーム上げ旋回動作を行ってよい。具体的には、ショベル100は、掘削動作の終了条件が成立した後に、オペレータによる旋回操作がされる場合に、オペレータの旋回操作に応じて、ブーム上げ旋回動作を行ってよい。掘削動作の終了条件は、例えば、バケットが地切りした(地面から離れた)ことを含んでよく、ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報からその条件が成立したか否かを判断することができる。ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報から周囲の物体位置や形状を逐次認識する。また、ショベル100は、認識した周囲の物体の位置や形状、及びオペレータの操作内容等に基づき、アタッチメントが周囲の物体と接触しないようなバケットの目標軌道を生成してよい。そして、ショベル100は、オペレータの旋回操作に応じて、バケットが目標軌道に沿って移動するように、上部旋回体3、及びブーム4を自動で動作させる形で、半自動運転機能によるブーム上げ旋回動作を実現してよい。
 また、ショベル100は、例えば、オペレータのバケットの開き方向の操作(以下、「バケット開き操作」)に応じて、バケットを開き方向に動作させるのに加えて、アーム5を開き方向に自動で動作させることにより、排土動作を行ってよい。具体的には、ショベル100は、ブーム上げ旋回動作の終了条件が成立した後に、オペレータによるバケット開き操作がされる場合に、オペレータのバケット開き操作に応じて、排土動作を行ってよい。ブーム上げ旋回動作の終了条件は、例えば、オペレータの旋回操作が終了したことを含んでよい。また、ブーム上げ旋回動作の終了条件は、例えば、上面視で所定の排土場所の範囲内にバケットが入っていること等を含んでもよく、ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報からその条件が成立したか否かを判断することができる。ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報から排土場所の土砂の形状等の周囲の物体の位置や形状を逐次認識する。また、ショベル100は、認識した周囲の物体の位置や形状、及びオペレータの操作内容等に基づき、排土場所内の所定の位置に土砂を排土するためのバケットの目標軌道を生成してよい。そして、ショベル100は、オペレータのバケット開き操作に応じて、バケットが目標軌道に沿って移動するように、バケット及びアームを自動で動作させる形で、半自動運転機能による排土動作を実現してよい。
 また、ショベル100は、例えば、オペレータの旋回操作に応じて、上部旋回体3を旋回動作させるのに加えて、ブーム4を自動で下げ方向に動作させることにより、ブーム下げ旋回動作を行ってよい。具体的には、ショベル100は、排土動作の終了条件が成立した後に、オペレータによる旋回操作がされる場合に、オペレータの旋回操作に応じて、ブーム下げ旋回動作を行ってよい。排土動作の終了条件は、例えば、オペレータのバケット開き操作が終了したことを含んでよい。また、排土動作の終了条件は、例えば、バケット内の土砂が全て排出されたことを含んでもよく、ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報からその条件が成立したか否かを判断することができる。ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報から地形の形状を含む周囲の物体の位置や形状を逐次認識する。また、ショベル100は、認識した周囲の物体の位置や形状、及びオペレータの操作内容等に基づき、アタッチメントが周囲の物体と接触せず、且つ、次の掘削動作の開始位置に向かうようなバケットの目標軌道を生成してよい。そして、ショベル100は、オペレータの旋回操作に応じて、バケットが目標軌道に沿って移動するように、上部旋回体3、及びブーム4を自動で動作させる形で、半自動運転機能によるブーム下げ旋回動作を実現してよい。
 このように、ショベル100は、オペレータの操作に応じて、操作対象以外の被駆動要素(アクチュエータ)を自動で動作させ、掘削動作、ブーム上げ旋回動作、排土動作、及びブーム下げ旋回動作を繰り返すことで、掘削作業を行うことができる。そして、ショベル100は、地形形状が所定の目標施工面に一致するまで、掘削動作、ブーム上げ旋回動作、排土動作、及びブーム下げ旋回動作を繰り返し、掘削作業を完了することができる。
 また、例えば、ショベル100は、コントローラ30及び演算装置30Eの制御下で、オペレータの操作に依らず、完全自動運転機能による掘削作業を行ってもよい。
 ショベル100は、例えば、予め設定される掘削作業の前提条件(溝等の施工対象の目標形状を表す目標施工面や掘削された土砂を排土する排土場所等)に基づき、掘削動作、ブーム上げ旋回動作、排土動作、及びブーム下げ旋回動作を自動で繰り返してよい。前提条件は、例えば、キャビン10の入力装置52を通じて設定入力されてもよいし、所定の外部装置から通信装置により受信される前提条件に関するデータに基づき設定されてもよい。以下、後述の埋め戻し作業の場合も同様である。具体的には、ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報から地形の形状を含む周囲の物体の位置や形状を逐次認識する。また、ショベル100は、認識した周囲の物体の位置や形状、及び前提条件に基づき、現在の動作工程に対応するバケットの目標軌道を生成する。動作工程の切り替えは、半自動運転機能の場合と同様、所定の終了条件の成立に応じて行われてよい。そして、ショベル100は、バケットが目標軌道に沿って移動するように、現在の動作工程に対応する被駆動要素(アクチュエータ)の全てを自動で動作させ、掘削動作、ブーム上げ旋回動作、排土動作、及びブーム下げ旋回動作を自動で繰り返してよい。
 このように、ショベル100は、オペレータの操作に依らず、必要な被駆動要素(アクチュエータ)を全て自動で動作させ、掘削動作、ブーム上げ旋回動作、排土動作、及びブーム下げ旋回動作を繰り返すことで、掘削作業を行うことができる。
  <自動運転機能による埋め戻し作業>
 続いて、ショベル100の自動運転機能による埋め戻し作業について説明する。
 埋め戻し作業が行われる場合、ショベル100に装着されるエンドアタッチメント6は、通常、バケットである。埋め戻し作業は、掘削作業等により形成された溝等の凹部に物体(以下、「埋設物」)が設置された状態で、ショベル100が凹部の相対的に近い位置に準備される土砂をバケットで凹部に移動させ、凹部を埋める作業である。埋め戻し作業は、例えば、掘削動作、ブーム下げ旋回動作、排土動作、及びブーム上げ旋回動作の一連の動作工程により構成される。掘削動作は、土砂山の土砂を掬う(掘削する)ショベル100の動作である。ブーム下げ旋回動作は、土砂山からバケットに掬い上げられた土砂を凹部まで移動させるショベル100の動作であり、ショベル100のブーム4の下げ動作と上部旋回体3の旋回動作との複合動作である。排土動作は、凹部にバケット内の土砂を排土するショベル100の動作である。ブーム上げ旋回動作は、凹部から土砂山までバケットを移動させるショベル100の動作であり、ブーム4の上げ動作と上部旋回体3の旋回動作との複合動作である。
 例えば、ショベル100は、コントローラ30及び演算装置30Eの制御下で、オペレータの操作に応じて、オペレータの操作対象以外の被駆動要素を自動で動作させながら、半自動運転機能による埋め戻し作業を行う。
 ショベル100は、例えば、掘削作業の場合と同様、オペレータによるアーム閉じ操作に応じて、アーム5を閉じ方向に動作させるのに加えて、ブーム4及びバケットの少なくとも一方を自動で動作させることにより掘削動作を行ってよい。具体的には、ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報から土砂山を含む周囲の物体の位置や形状等を逐次認識する。また、ショベル100は、認識した周囲の物体の位置や形状、及びオペレータの操作内容等に基づき、土砂山の土砂をバケットに掬うためのバケットの目標軌道を生成する。そして、ショベル100は、オペレータのアーム閉じ操作に応じて、バケットが目標軌道に沿って移動するように、アーム5、並びに、ブーム4及びバケットの少なくとも一方を自動で動作させる形で、半自動運転機能による掘削動作を実現してよい。
 また、ショベル100は、例えば、掘削作業の場合と同様、オペレータによる旋回操作に応じて、上部旋回体3を旋回動作させるのに加えて、ブーム4を自動で下げ方向に動作させることにより、ブーム下げ旋回動作を行ってよい。具体的には、ショベル100は、掘削動作の終了条件が成立した後に、オペレータによる旋回操作がされる場合に、オペレータの旋回操作に応じて、ブーム下げ旋回動作を行ってよい。掘削動作の終了条件は、例えば、バケットが地切りしたことを含んでよい。ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報から周囲の物体の位置や形状を逐次認識する。また、ショベル100は、認識した周囲の物体の位置や形状、及びオペレータの操作内容等に基づき、アタッチメントが周囲の物体と接触しないようなバケットの目標軌道を生成してよい。そして、ショベル100は、オペレータの旋回操作に応じて、バケットが目標軌道に沿って移動するように、上部旋回体3、及びブーム4を自動で動作させる形で、半自動運転機能によるブーム下げ旋回動作を実現してよい。
 また、ショベル100は、例えば、オペレータのバケット開き操作に応じて、バケットを開き方向に動作させるのに加えて、アーム5を開き方向に自動で動作させることにより、排土動作を行ってよい。具体的には、ショベル100は、ブーム下げ旋回動作の終了条件が成立した後に、オペレータによるバケット開き操作がされる場合に、オペレータのバケット開き操作に応じて、排土動作を行ってよい。ブーム下げ旋回動作の終了条件は、例えば、オペレータの旋回操作が終了したことを含んでよい。また、ブーム下げ旋回動作の終了条件は、例えば、上面視で埋め戻しの対象の凹部の範囲内にバケットが入っていること等を含んでもよく、ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報からその条件が成立したか否かを判断することができる。ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報から現在の地形形状(凹部の埋設物の埋まり具合)を逐次認識する。また、ショベル100は、認識した現在の地形形状と予め規定される埋め戻し後の地面の目標形状(目標施工面)との差分、及びオペレータの操作内容等に基づき、凹部の所定の位置に土砂を排土するためのバケットの目標軌道を生成してよい。そして、ショベル100は、オペレータのバケット開き操作に応じて、バケットが目標軌道に沿って移動するように、バケット及びアームを自動で動作させる形で、半自動運転機能による排土動作を実現してよい。
 また、ショベル100は、例えば、オペレータの旋回操作に応じて、上部旋回体3を旋回動作させるのに加えて、ブーム4を自動で上げ方向に動作させることにより、ブーム上げ旋回動作を行ってよい。具体的には、ショベル100は、排土動作の終了条件が成立した後に、オペレータによる旋回操作がされる場合に、オペレータの旋回操作に応じて、ブーム上げ旋回動作を行ってよい。排土動作の終了条件は、例えば、オペレータのバケット開き操作が終了したことを含んでよい。また、排土動作の終了条件は、例えば、バケット内の土砂が全て排出されたこと等を含んでもよい。ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報から地形の形状を含む周囲の物体の位置や形状を逐次認識する。また、ショベル100は、認識した周囲の物体の位置や形状、及びオペレータの操作内容等に基づき、アタッチメントが周囲の物体と接触せず、且つ、次の掘削動作の開始位置(土砂山)に向かうようなバケットの目標軌道を生成してよい。そして、ショベル100は、オペレータの旋回操作に応じて、バケットが目標軌道に沿って移動するように、上部旋回体3、及びブーム4を自動で動作させる形で、半自動運転機能によるブーム上げ旋回動作を実現してよい。
 このように、ショベル100は、オペレータの操作に応じて、操作対象以外の被駆動要素(アクチュエータ)を自動で動作させ、掘削動作、ブーム下げ旋回動作、排土動作、及びブーム上げ旋回動作を繰り返し、埋め戻し作業を行うことができる。そして、ショベル100は、凹部が埋め戻され、目標施工面に一致するまで、掘削動作、ブーム下げ旋回動作、排土動作、及びブーム上げ旋回動作を繰り返し、埋め戻し作業を完了することができる。
 また、例えば、ショベル100は、コントローラ30及び演算装置30Eの制御下で、オペレータの操作に依らず、完全自動運転機能による埋め戻し作業を行ってもよい。
 ショベル100は、例えば、予め設定される埋め戻し作業の前提条件(埋め戻し対象の凹部の場所、埋め戻し後の地面の目標形状に相当する目標施工面、埋め戻し用に準備される土砂山の場所等)に基づき、掘削動作、ブーム下げ旋回動作、排土動作、及びブーム上げ旋回動作を自動で繰り返してよい。具体的には、ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報から地形の形状を含む周囲の物体の位置や形状を逐次認識する。また、ショベル100は、認識した周囲の物体の位置や形状、及び前提条件に基づき、現在の動作工程に対応するバケットの目標軌道を生成する。動作工程の切り替えは、半自動運転機能の場合と同様、所定の終了条件の成立に応じて行われてよい。そして、ショベル100は、バケットが目標軌道に沿って移動するように、現在の動作工程に対応する被駆動要素(アクチュエータ)の全てを自動で動作させ、掘削動作、ブーム下げ旋回動作、排土動作、及びブーム上げ旋回動作を自動で繰り返してよい。
 このように、ショベル100は、オペレータの操作に依らず、必要な被駆動要素(アクチュエータ)を全て自動で動作させ、掘削動作、ブーム下げ旋回動作、排土動作、及びブーム上げ旋回動作を繰り返すことで、埋め戻し作業を行うことができる。
  <自動運転機能によるエンドアタッチメントの交換作業>
 続いて、図3(図3A~図3C)、図4(図4A~図4C)を参照して、本実施形態に係るショベル100の自動運転機能によるエンドアタッチメント6の交換作業について説明する。
 例えば、ショベル100は、コントローラ30及び演算装置30Eの制御下で、オペレータの操作に依らず、完全自動運転機能によるエンドアタッチメント6の交換作業を行ってもよい。
 図3A~図3Cは、ショベル100の自動運転機能によるエンドアタッチメント6の交換作業を説明する図である。具体的には、図3Aは、ショベル100の自動運転機能によるエンドアタッチメント6の交換作業に関するコントローラ30の制御処理の一例を概略的に示すフローチャートである。本フローチャートは、例えば、自動交換スイッチ52aがON操作されると開始される。図3Bは、ショベル100の自動運転機能によるエンドアタッチメント6の交換作業の一例を示す図である。具体的には、図3Bは、作業状態310から作業状態340に亘る、ショベル100の自動運転機能によるエンドアタッチメント6の交換作業の作業状態遷移図である。図3Cは、ショベル100の自動運転機能によるエンドアタッチメント6の交換作業の他の例を示す図である。図3B、図3Cでは、ショベル100に装着されているバケット6Aがバケット6Bに交換される場合のショベル100の自動運転機能によるエンドアタッチメント6の交換作業の具体例が示されている。図4A~図4Cは、それぞれ、表示装置50に表示される、交換対象のエンドアタッチメントを選択するための操作画面(以下、「交換対象選択画面」)の第1例~第3例を示す図である。図4A~図4Cでは、交換対象のエンドアタッチメントとして、演算装置30Eによりショベル100の周囲の地面に載置されているバケット6C~6Eが認識された場合が示されている。
 図3Aに示すように、ステップS102にて、演算装置30Eは、コントローラ30の制御下で、撮像装置40の撮像画像に基づき、ショベル100の周囲の地面に載置されているエンドアタッチメントの認識を試みる。
 例えば、図3Bの作業状態310に示すように、本例では、ショベル100は、オペレータの操作で、交換対象のバケット6Bが保管される場所(保管スペース)まで移動し、バケット6Bと正対する位置に配置されている。ショベル100と交換対象のバケット6Bとが正対する状態とは、アーム5の先端(具体的には、脱着装置12)を前後方向及び上下方向の何れかの方向に移動させるだけで、アーム5の先端の取付部を交換対象のバケット6Bの被取付部に位置合わせ可能な状態を意味する。具体的には、ショベル100と交換対象のバケット6Bとが正対する状態とは、アタッチメントの稼働面が交換対象のバケット6Bの被取付部と幅方向の中央で直交する状態に相当する。アタッチメントの稼働面は、ブーム4、アーム5、及びエンドアタッチメント6の回転軸に垂直な平面であり、アタッチメントが動作する場合にその幅方向(左右方向)の中央部が稼働する平面を意味する。本例では、ショベル100(演算装置30E)は、撮像装置40の撮像画像に基づき、上部旋回体3の正面(前方)の地面に載置されている交換対象のエンドアタッチメントとしてのバケット6Bを認識することができる。
 また、例えば、図3Cに示すように、本例では、ショベル100は、交換対象のバケット6Bから相対的に離れた位置に配置されている(図中の下側のショベル100参照)。そのため、ショベル100は、アタッチメント(ブーム4及びアーム5)の動作だけで、アーム5の先端を交換対象のバケット6Bに届かせることはできない。一方、交換対象のバケット6Bは、撮像装置40の撮像画像に含まれうる。そのため、ショベル100(演算装置30E)は、撮像装置40の撮像画像に基づき、上部旋回体3の左斜め前方の比較的離れた保管スペース510に載置されている交換対象のバケット6Bを認識することができる。
 図3Aに戻り、コントローラ30は、演算装置30EによるステップS102の処理が完了すると、ステップS104に進む。
 ステップS104にて、コントローラ30は、ステップS102の処理によって、演算装置30Eがエンドアタッチメントを認識したか否かを判定する。コントローラ30は、演算装置30Eによりエンドアタッチメントが認識された場合、ステップS106に進み、認識されなかった場合、認識されるまでステップS102,S104の処理を繰り返す。
 尚、コントローラ30は、演算装置30Eによりエンドアタッチメントが認識されない場合、表示装置50を通じて、エンドアタッチメントが認識されない旨をオペレータに通知してもよい。これにより、コントローラ30は、オペレータに対して、撮像装置40により交換対象のエンドアタッチメントを撮像可能な位置までショベル100を下部走行体1により走行移動させたり、上部旋回体3を旋回させたりするように操作装置26の操作を促すことができる。また、コントローラ30は、演算装置30Eによりエンドアタッチメントが認識されない場合、演算装置30Eにより生成される駆動指令に基づき、比例弁31を制御し、エンドアタッチメントを認識可能な位置までショベル100を下部走行体1により自動で走行移動させたり、上部旋回体3を自動で旋回させたりしてもよい。また、ある程度の時間が経過しても、演算装置30Eによりエンドアタッチメントが認識されない場合、本フローチャートは強制終了されてもよい。
 ステップS106にて、コントローラ30は、演算装置30Eにより認識されたエンドアタッチメントの中から交換対象のエンドアタッチメントを選択するための交換対象選択画面を表示装置50に表示させる。複数の交換対象の候補のエンドアタッチメントが認識される場合があるからである。
 例えば、図4Aに示すように、交換対象選択画面410には、撮像装置40の撮像画像に基づき生成される、演算装置30Eにより認識された交換対象の候補のエンドアタッチメントとしてのバケット6C~6Eを含む画像が表示されている。また、交換対象選択画面410において、バケット6C~6Eが含まれる(映っている)部分には、それぞれ、演算装置30Eにより認識されたこと、つまり、交換対象の候補のエンドアタッチメントであることを示す認識枠411~413が重畳的に表示される。オペレータ等のユーザは、入力装置52(例えば、表示装置50に実装されるタッチパネル等)を通じて、認識枠411~413の何れか指定(選択)し且つ確定させる操作を行うことにより、バケット6C~6Eの中から一の交換対象のエンドアタッチメント(バケット)を選択することができる。
 また、例えば、図4Bに示すように、交換対象選択画面420には、図4Aの場合と同様、バケット6C~6Eを含む画像が表示されている。また、交換対象選択画面420には、演算装置30Eにより認識されたバケット6C~6Eの種類を特定するリスト情報421が重畳的にポップアップ表示される。具体的には、コントローラ30或いは演算装置30Eは、予め構築される、エンドアタッチメントのデータベースに登録される複数の種類のエンドアタッチメントに関する情報に基づき、演算装置30Eにより認識された候補のエンドアタッチメント(バケット6C~6E)の種類を自動判別し、リスト情報421を生成してよい。エンドアタッチメントのデータベースは、コントローラ30の補助記憶装置等に構築されてもよいし、コントローラ30と通信可能に接続される外部記憶装置に構築されてもよい。本例では、リスト情報421に、認識されたバケット6C~6Eのそれぞれに対応する"通常バケット0.8m"、"通常バケット1.0m"、及び"法面バケット"の3種類のエンドアタッチメント(バケット)の名称がリストアップされている。オペレータ等のユーザは、入力装置52を通じて、リスト情報421内の選択アイコン422を移動させることで、バケット6C~6Eのうちの何れかの種類のバケットを選択し、所定の確定操作によって、選択を確定させることができる。
 また、例えば、図4Cに示すように、交換対象選択画面430には、図4A等の場合と同様、バケット6C~6Eを含む画像が表示されている。また、交換対象選択画面430において、図4Aの場合と同様、バケット6C~6Eが含まれる(映っている)部分には、それぞれ、演算装置30Eにより認識されたこと、つまり、交換対象の候補のエンドアタッチメントであることを示す認識枠431~433が重畳的に表示される。また、本例では、認識枠431~433のうち、ショベル100に装着可能な交換対象の候補のエンドアタッチメント(バケット6C,6D)の認識枠431,432と、ショベル100に装着不可能な交換対象の候補のエンドアタッチメント(バケット6E)の認識枠433とが異なっている。具体的には、認識枠433には、矩形部分の対角線同士を結ぶ態様の×印が含まれ、バケット6Eを選択不可であることが示される。これにより、コントローラ30は、仕様上、ショベル100に装着できないエンドアタッチメントをショベル100に誤って装着させてしまうような事態を抑制できる。具体的には、コントローラ30或いは演算装置30Eは、予め構築される、エンドアタッチメントのデータベースに登録される複数の種類のエンドアタッチメントに関する情報に基づき、演算装置30Eにより認識されたバケット6C~6Eの種類を自動判別し、ショベル100に装着可能であるか否かを判断してよい。オペレータ等のユーザは、入力装置52を通じて、選択不可の認識枠433を除く、認識枠431,432の何れかを指定(選択)し且つ確定させる操作を行うことにより、バケット6C,6Dのうちの一の交換対象のエンドアタッチメント(バケット)を選択することができる。
 図3Aに戻り、コントローラ30は、ステップS106の処理が完了すると、ステップS108に進む。
 尚、ステップS102の処理で交換対象のエンドアタッチメントが一つだけしか認識されていない場合であっても、交換対象選択画面は表示されてよい。認識された交換対象のエンドアタッチメントがユーザ(オペレータ)の希望するエンドアタッチメントかどうかをユーザに確認させることができるからである。
 ステップS108にて、コントローラ30は、交換対象選択画面を通じて、交換対象のエンドアタッチメントの選択が確定したか否かを判定する。コントローラ30は、交換対象のエンドアタッチメントの選択が確定した場合、ステップS110に進み、交換対象のエンドアタッチメントの選択が確定していない場合、選択が確定するまで待機する(選択が確定するまで本ステップの処理を繰り返す)。
 尚、ある程度の時間が経過しても、交換対象のエンドアタッチメントの選択が確定されない場合、本フローチャートは強制終了されてもよい。
 ステップS110にて、コントローラ30は、演算装置30Eにより生成される駆動指令に基づき、比例弁31を制御し、ショベル100のアーム5の先端(具体的には、脱着装置12)に装着されているエンドアタッチメント6を所定の場所に取り外す。所定の場所は、例えば、ショベル100に装着可能な複数の種類のエンドアタッチメントを保管するために予め設けられる、作業現場の保管スペースである。
 例えば、図3Bの作業状態320に示すように、本例では、ショベル100は、交換対象のバケット6Bが載置されている同じ保管スペース内に現在装着されているバケット6Aを取り外している。ショベル100は、例えば、コントローラ30及び演算装置30Eの制御下で、ショベル100から見てバケット6Bよりも更に前方の保管スペースの地面にバケット6Aの背面が接地するまでブーム4の下げ動作及びアーム5の閉じ動作の少なくとも一方を行う。そして、ショベル100は、コントローラ30及び演算装置30Eの制御下で、油圧シリンダ12cを収縮方向に動作させ、バケット6Aを保管スペースに取り外すことができる。
 また、例えば、図3Cに示すように、本例では、上述の如く、ショベル100は、その現在位置が交換対象のバケット6Bが載置されている保管スペース510から相対的に離れている(図中の下側のショベル100参照)。そのため、ショベル100は、コントローラ30及び演算装置30Eの制御下で、下部走行体1を自動で走行させることにより、交換対象のバケット6Bが載置される保管スペース510の周囲まで移動させてよい(図中の上側のショベル100参照)。具体的には、ショベル100は、図3Bの場合と同様、交換対象のバケット6Bと正対し、且つ、アーム5の先端(脱着装置12)がバケット6Bに届く状態になるまで自動で移動(走行)した上で、保管スペース510にバケット6Aを取り外してよい。これにより、ショベル100は、アーム5の先端を前後方向及び上下方向に移動させるだけで、アーム5の先端を取付対象のバケット6Bに対して位置合わせすることができる。つまり、現在装着されているエンドアタッチメント6(バケット6A)を取り外す際のショベル100の動作(の一部)は、アーム5の先端を取付対象のエンドアタッチメント(バケット6B)に対して位置合わせする作業の一部を構成する場合がある。この場合、ショベル100は、下部走行体1(クローラ1C)の前後方向(長手方向)と上部旋回体3の向きとを略一致させた状態で、下部走行体1の走行動作だけで、上部旋回体3の向きを調整しながら、バケット6Bと正対する状態に自動で移行してよい。つまり、ショベル100は、左右のクローラ1Cのそれぞれの駆動速度を調整し、進行方向を変化させることにより、バケット6Bと正対する状態に自動で移行してよい。また、ショベル100は、下部走行体1の走行動作、及び上部旋回体3の旋回動作の双方を用いて、上部旋回体3の向きを調整しながら、バケット6Bと正対する状態に自動で移行してもよい。
 尚、ショベル100は、交換対象のエンドアタッチメントにアーム5の先端を届かせることが可能な距離に位置し、且つ、上部旋回体3を旋回させるだけで、交換対象のエンドアタッチメントと正対する状態を実現可能な場合もありうる。具体的には、上部旋回体3の旋回軸から交換対象のエンドアタッチメントを見て、相対的に近い距離にあり、且つ、径方向に相当する平面と交換対象のエンドアタッチメントの被取付部の幅方向の中央部とが直交しているショベル100の状態に相当する。ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40やショベル100の左方、右方、後方等を撮像可能な撮像装置の画像情報に基づき、この状態を認識することができる。この場合、ショベル100は、上部旋回体3の旋回動作だけで、交換対象のエンドアタッチメントと正対する状態に自動で移行してもよい。
 また、例えば、図3Cに示すように、ショベル100は、コントローラ30及び演算装置30Eの制御下で、交換対象のバケット6Bが載置される保管スペース510とは異なる保管スペース520にバケット6Aに取り外してもよい(図中の点線のショベル100参照)。本例では、ショベル100は、保管スペース510の交換対象のバケット6Bにアーム5の先端を届かせることが可能で、且つ、正対する状態に移行した後に、上部旋回体3を自動で旋回させることで、保管スペース520にアタッチメントの向きを合わせている。これにより、ショベル100は、保管スペース520にバケット6Aを取り外した後に、同じ旋回量だけ逆方向に旋回するだけで、元の状態、即ち、交換対象のバケット6Bにアーム5の先端を届かせることが可能で、且つ、正対する状態に復帰することができる。
 このように、ステップS110では、ショベル100は、エンドアタッチメント6を取り外す動作(以下、「取り外し動作」)に先立って、交換対象のエンドアタッチメントにアーム5の先端を届かせることが可能で、且つ、正対する状態に移行する動作(以下、「正対動作」)を行う場合がある。
 図3Aに戻り、コントローラ30は、ステップS110の処理が完了すると、ステップS112に進む。
 ステップS112にて、コントローラ30は、演算装置30Eの駆動指令に基づき、比例弁31を制御し、アタッチメント及び機体(下部走行体1及び上部旋回体3)の少なくとも一方を自動で動作させることにより、アーム5の先端の取付部を、交換対象のエンドアタッチメントの対応する被取付部に位置合わせする。例えば、エンドアタッチメント6が取り外された段階で(ステップS110の完了時)、交換対象のエンドアタッチメントにアーム5の先端を届かせることができない状態、或いは、正対していない状態の場合、本ステップでは、ショベル100は、正対動作を行う。そして、ショベル100は、交換対象のエンドアタッチメントにアーム5の先端を届かせることが可能、且つ、正対する状態で、アーム5の先端の取付部とエンドアタッチメント6の被取付部とを一致させる最終的な位置合わせ動作(以下、「最終位置合わせ動作」)を行う。また、例えば、エンドアタッチメントが取り外された段階で、交換対象のエンドアタッチメントにアーム5の先端を届かせることが可能で、且つ、正対している場合、最終位置合わせ動作だけを行う。
 具体的には、コントローラ30は、脱着装置12の取付部12d1,12d2のうちの可動しない取付部12d1の位置を交換対象のエンドアタッチメントの対応する被取付部の位置に合わせるように、アタッチメント、及び機体の少なくとも一方を自動で動作させる形で、最終位置合わせ動作を行う。このとき、演算装置30Eは、コントローラ30の制御下で、撮像装置40の撮像画像に基づき、逐次、脱着装置12の取付部12d及びエンドアタッチメントの被取付部の位置を認識してよい。また、コントローラ30は、演算装置30Eの演算結果に代えて、或いは、加えて、予め構築される、エンドアタッチメントのデータベースに登録される交換対象のエンドアタッチメントに関する情報に基づき、エンドアタッチメントの被取付部の位置を認識(特定)してもよい。
 例えば、図3Bの作業状態320,330に示すように、本例では、ショベル100は、上述の如く、アーム5の先端の取付部(脱着装置12の取付部12d)がバケット6Bの被取付部に正対している状態(具体的には、アーム5の先端の取付部12dの軸と、バケット6Bの被取付部(例えば、取付ピン)の軸とが略平行をなす状態)にある。そのため、ショベル100は、コントローラ30及び演算装置30Eの制御下で、アタッチメントを自動で動作させ、アーム5の先端を、バケット6Aを取り外した位置から後方に移動させることにより、バケット6Bの位置に近づける。具体的には、ショベル100は、コントローラ30及び演算装置30Eの制御下で、ブーム4の上げ動作及びアーム5の閉じ動作を自動で行わせてよい。そして、ショベル100は、コントローラ30及び演算装置30Eの制御下で、アタッチメントを自動で動作させ、アーム5の先端の脱着装置12の取付部12d1をバケット6Bの対応する被取付部に位置合わせしてよい。また、図3Bの作業状態320,330において、ショベル100は、アタッチメントに代えて、或いは、加えて、下部走行体1を自動で走行させることにより、アーム5の先端を、バケット6Aを取り外した位置からバケット6Bの位置に向けて後方に移動させる態様で、アーム5の先端の脱着装置12の取付部12d1をバケット6Bの対応する被取付部に位置合わせしてもよい。例えば、バケット6Aを取り外した段階で(ステップS110の完了時)、アーム5の先端の高さ(上下位置)を、取付対象のバケット6Bの被取付部の高さに位置合わせしておくことにより、下部走行体1を後方に走行させるだけで、位置合わせを行うことができる。
 また、例えば、図3Cに示すように、ショベル100は、保管スペース520にバケット6Aを取り外した場合、保管スペース510の交換対象のバケット6Bと正対していない(図中の点線のショベル100参照)。そのため、ショベル100は、上述の如く、コントローラ30及び演算装置30Eの制御下で、上部旋回体3を自動旋回させることで、アーム5の先端を、保管スペース520から保管スペース510に移動させ、交換対象のバケット6Bに正対する状態に復帰する。つまり、ショベル100は、アーム5の先端(脱着装置12)の取付部12dが交換対象のバケット6Bの被取付部に正対するように、上部旋回体3を自動で旋回させる。そして、ショベル100は、図3Bの場合と同様、アタッチメント及び下部走行体1の少なくとも一方を自動で動作させ、アーム5の先端の脱着装置12の取付部12d1をバケット6Bの対応する被取付部に位置合わせすることができる。
 図3Aに戻り、コントローラ30は、ステップS112の処理が完了すると、ステップS114に進む。
 ステップS114にて、コントローラ30は、演算装置30Eにより生成される駆動指令に基づき、比例弁31を制御し、交換対象のエンドアタッチメントをアーム5の先端に装着させる。具体的には、コントローラ30は、比例弁31を制御し、油圧シリンダ12cを伸長方向に動作させることにより、交換対象のエンドアタッチメントの被取付部を脱着装置12の取付部12dに取り付ける。これにより、ショベル100は、アーム5の先端に交換対象のエンドアタッチメントを装着する(取り付ける)動作(以下、「取り付け動作」)を自動で行うことができる。
 例えば、図3Bの作業状態340に示すように、ショベル100は、コントローラ30及び演算装置30Eの制御下で、アーム5の先端(脱着装置12の取付部12d)にバケット6Bを取り付ける。これにより、ショベル100は、バケット6Aに代えて、交換後のバケット6Bを使用した作業を開始させることができる。
 図3Aに戻り、コントローラ30は、ステップS114の処理が完了すると、今回の本フローチャートの処理を終了する。
 このように、ショベル100は、オペレータの操作に依らず、必要な被駆動要素を全て自動で動作させ、ショベル100の完全自動運転機能によるエンドアタッチメント6の交換作業を行うことができる。具体的には、ショベル100は、オペレータの操作に依らず、取り外し動作、正対動作、最終位置合わせ動作、及び取り付け動作を自動で行うことにより、完全自動運転機能によるエンドアタッチメント6の交換作業を行うことができる。
 尚、エンドアタッチメント6の交換作業のうちの取り外し動作、正対動作、及び取り付け動作のうちの少なくとも一つは、オペレータの操作により手動で実行されてもよい。
 また、例えば、ショベル100は、コントローラ30及び演算装置30Eの制御下で、オペレータの操作に応じて、オペレータの操作をアシスト(支援)する形で、半自動運転機能によるエンドアタッチメント6の交換作業を行ってもよい。
 具体的には、ショベル100は、オペレータの操作に応じて、オペレータの操作対象以外の被駆動要素を自動で動作させながら、半自動運転機能によるエンドアタッチメントの交換作業を行ってよい。
 ショベル100は、例えば、オペレータによる下部走行体1(左右のクローラ1C)の操作(以下、「走行操作」)に応じて、下部走行体1を走行させるのに加えて、上部旋回体3を自動で旋回させることによって、正対動作を行ってよい。具体的には、ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報から交換対象のエンドアタッチメントの相対位置を逐次認識する。また、ショベル100は、認識した交換対象のエンドアタッチメントの相対位置、及びオペレータの操作内容等に基づき、アーム5の先端の目標軌道を生成する。そして、ショベル100は、オペレータの走行操作に応じて、アーム5の先端が目標軌道に沿って移動するように、下部走行体1及び上部旋回体3を自動で動作させる形で、半自動運転機能による正対動作を実現してよい。
 また、ショベル100は、例えば、オペレータによるアーム5の操作(以下、「アーム操作」)に応じて、アーム5を動作させるのに加えて、ブーム4を自動で動作させることによって、最終位置合わせ動作を行ってよい。具体的には、ショベル100は、コントローラ30及び演算装置30Eの制御下で、撮像装置40の画像情報から交換対象のエンドアタッチメントの相対位置を逐次認識する。また、ショベル100は、認識した交換対象のエンドアタッチメントの相対位置、及びオペレータの操作内容等に基づき、アーム5の先端の目標軌道を生成する。そして、ショベル100は、オペレータのアーム操作に応じて、アーム5の先端が目標軌道に沿って移動するように、アーム5及びブーム4を自動で動作させる形で、半自動運転機能による最終位置合わせ動作を実現してよい。
 また、ショベル100は、オペレータの操作に応じて、オペレータの操作対象の被駆動要素の動作を自動で調整しながら、半自動運転機能によるエンドアタッチメントの交換作業を行ってもよい。オペレータの操作対象の被駆動要素の動作の調整とは、オペレータの操作対象の被駆動要素の実際の動作方向を操作内容に合わせる一方、実際の動作量を操作内容に対応する動作量に対して調整を行うことを意味する。この場合、コントローラ30は、オペレータの操作対象の被駆動要素に対応する比例弁31を制御し、実際の操作量よりも小さく或いは大きく調整されたパイロット圧をコントロールバルブ17に作用させる。これにより、例えば、オペレータの操作内容に合わせると、ショベル100が交換対象のエンドアタッチメントに正対する状態に届かなかったり、行き過ぎてしまったりする可能性がある状況で、ショベル100を適切に正対させることができる。また、例えば、オペレータの操作内容に合わせると、アーム5の先端の取付部と交換対象のエンドアタッチメントの被取付部とが一致する状態に届かなかったり、行き過ぎてしまったりする可能性がある状況で、アーム5の先端の取付部と交換対象のエンドアタッチメントの被取付部とを適切に位置合わせすることができる。
 尚、操作装置26が油圧パイロット式(図2A参照)の場合、キャビン10のオペレータの操作に対応するパイロット圧がシャトル弁32の入口ポートに作用しないように、操作装置26とシャトル弁32との間に減圧弁が設けられることが望ましい。そして、オペレータの操作対象の被駆動要素の動作を自動で調整する場合、操作対象の被駆動要素に対応する操作装置26の二次側のパイロットラインの減圧弁を作動させ、操作内容に対応するパイロット圧をシャトル弁32に作用させないようにしてよい。操作装置26から出力されるパイロット圧よりも小さいパイロット圧を、比例弁31からシャトル弁32を介してコントロールバルブ17に作用させる必要が生じうるからである。
 ショベル100は、例えば、オペレータによる下部走行体1や上部旋回体3に関する操作に応じて、下部走行体1や上部旋回体3の動作量を自動で調整することにより、半自動運転機能による正対動作を行ってよい。
 また、ショベル100は、例えば、オペレータによるアタッチメント(ブーム4及びアーム5の少なくとも一方)に関する操作に応じて、アタッチメントの動作量を自動で調整することで、半自動運転機能による最終位置合わせ動作を行ってもよい。
 また、ショベル100は、アーム5の先端の取付部と交換対象のエンドアタッチメントの被取付部の高さ(上下位置)が一致している場合、オペレータによる走行操作に応じて、下部走行体1の動作量(移動量)を自動で調整することで、半自動運転機能による最終位置合わせ動作を行ってもよい。
 このように、ショベル100は、オペレータの操作に応じて、ショベル100の半自動運転機能によるエンドアタッチメント6の交換作業を行うことができる。具体的には、ショベル100は、例えば、正対動作や最終位置合わせ動作に対応するオペレータの操作を支援する形で、半自動運転機能によるエンドアタッチメント6の交換作業を行うことができる。
 [作用]
 次に、本実施形態に係るショベル100の作用について説明する。
 本実施形態では、ショベル100は、下部走行体1及び上部旋回体3等により構成される機体(支持部の一例)に可動なように支持されるリンク部(ブーム4及びアーム5)を取付対象のエンドアタッチメントに対して位置合わせする。具体的には、ショベル100は、自動で(オペレータの操作とは無関係に)又はオペレータの操作を支援するように、リンク部を取付対象のエンドアタッチメントに対して位置合わせする。例えば、ショベル100は、自機の周囲の地面に載置される、アーム5の先端への取付対象のエンドアタッチメントの被取付部に、アーム5の先端の取付部12dを位置合わせしてよい。
 これにより、ショベル100は、エンドアタッチメント6の交換作業の少なくとも一部を半自動や完全自動で行うことができる。そのため、例えば、ショベル100は、オペレータにより操作される場合、オペレータの熟練度に依らず、比較的短時間で、アーム5の先端の取付部12dを取付対象(交換対象)のエンドアタッチメントの被取付部に位置合わせすることができる。また、例えば、ショベル100は、自動運転機能を有する場合であっても、エンドアタッチメント6の交換作業の自動化が追加されることで、全てが手動で行われる場合よりも、エンドアタッチメント6の交換作業に要する時間を短縮させることができる。よって、エンドアタッチメント6の交換作業の効率化を図ることができる。
 また、本実施形態では、ショベル100は、リンク部の取付部及び取付対象のエンドアタッチメントの被取付部の位置が合う(一致する)ように、リンク部を取付対象のエンドアタッチメントに対して位置合わせしてよい。
 これにより、ショベル100は、エンドアタッチメント6の交換作業のうちの最終位置合わせ動作を半自動や完全自動で行うことができる。
 また、本実施形態では、撮像装置40(取得部の一例)は、リンク部の取付部及び取付対象のエンドアタッチメントの被取付部のそれぞれの位置に関する情報を取得してよい。そして、ショベル100は、撮像装置40により取得される、リンク部の取付部及び取付対象のエンドアタッチメントの被取付部のそれぞれの位置に関する情報に基づき、リンク部の取付部を取付対象のエンドアタッチメントの被取付部の位置と一致するように移動させてよい。
 これにより、ショベル100は、より具体的に、最終位置合わせ動作を半自動や完全自動で行うことができる。
 また、本実施形態では、ショベル100は、アタッチメント、及び機体(下部走行体1及び上部旋回体3)の少なくとも一方を自動で又はオペレータの操作を支援するように動作させることにより、アーム5の先端(の取付部12d)を取付対象のエンドアタッチメント(の被取付部)に対して位置合わせしてよい。
 これにより、ショベル100は、より具体的に、アーム5の先端の取付部12dを取付対象(交換対象)のエンドアタッチメントの被取付部に位置合わせすることができる。
 また、本実施形態では、ショベル100は、リンク部及び機体のうちのリンク部だけを自動で又はオペレータの操作を支援する態様で動作させて、リンク部を取付対象のエンドアタッチメントに対して位置合わせしてよい。
 これにより、ショベル100は、例えば、交換対象のエンドアタッチメントにリンク部の先端を届かせることが可能で、且つ、正対している状態を起点にして、リンク部の動作だけで、最終位置合わせ動作を半自動或いは完全自動で行うことができる。
 また、本実施形態では、ショベル100は、リンク部を取付対象のエンドアタッチメントと正対させるように、機体に走行動作及び旋回動作の少なくとも一方を自動で又はオペレータの操作を支援する態様で行わせてよい。
 これにより、ショベル100は、エンドアタッチメント6の交換作業のうちの正対動作を半自動や完全自動で行うことができる。
 また、本実施形態では、ショベル100は、アーム5の先端の取付部12dが取付対象のエンドアタッチメントの被取付部に正対している状態で、アーム5の先端の取付部12dを取付対象のエンドアタッチメントの被取付部の位置に一致させるように、アタッチメントを自動で又はオペレータの操作を支援する態様で動作させてよい。
 これにより、ショベル100は、リンク部(アタッチメントのうちのブーム4やアーム5)を半自動や完全自動で動作させ、具体的に、アーム5の先端の取付部12dとエンドアタッチメントの被取付部との間の位置合わせ(最終位置合わせ動作)を行うことができる。
 また、本実施形態では、ショベル100は、アーム5の先端の取付部12dが取付対象のエンドアタッチメントの被取付部に正対するように、上部旋回体3を自動で又はオペレータの操作を支援する態様で旋回させてよい。
 これにより、ショベル100は、上部旋回体3を半自動や完全自動で旋回させ、具体的に、アーム5の先端の取付部12dとエンドアタッチメントの被取付部との間の位置合わせを行うことができる。
 また、本実施形態では、ショベル100は、アーム5の先端の取付部が取付対象のエンドアタッチメントの被取付部に届く場所まで自機が移動するように、下部走行体1を自動で又はオペレータの操作を支援する態様で走行させてよい。また、本実施形態では、ショベル100は、アーム5の先端の取付部12dが取付対象のエンドアタッチメントの被取付部に正対している状態で、アーム5の先端の取付部12dを取付対象のエンドアタッチメントの被取付部の位置に一致させるように、下部走行体1を自動で又はオペレータの操作を支援する態様で走行させてもよい。
 これにより、ショベル100は、半自動や完全自動で下部走行体1を走行させ、具体的に、アーム5の先端の取付部12dとエンドアタッチメントの被取付部との間の位置合わせ(正対動作や最終位置合わせ動作)を行うことができる。
 また、本実施形態では、ショベル100は、自機の周囲の取付対象のエンドアタッチメントを検出するセンサ(撮像装置40)を備えてよい。
 これにより、ショベル100は、撮像装置40の出力情報(撮像画像)に基づき、自機の周囲の地面に載置されている交換対象のエンドアタッチメントの存在やその相対位置等を自動認識することができる。
 また、本実施形態では、リンク部(アーム5)の先端の取付部12dには、アーム5とエンドアタッチメント6との間の固定状態と非固定状態とを切り替える可動部12b、及び可動部12bを駆動する油圧シリンダ12c(アクチュエータの一例)が設けられてよい。そして、ショベル100は、可動部12b及び油圧シリンダ12cが非固定状態に対応する状態で、アーム5の先端の取付部12dを取付対象のエンドアタッチメントの被取付部に位置合わせすると共に、油圧シリンダ12cを自動で又はオペレータの操作を支援する態様で動作させることにより、取付対象のエンドアタッチメントの被取付部をアーム5の先端の取付部12dに固定してよい。
 これにより、ショベル100は、アーム5の先端の取付部とエンドアタッチメントの被取付部との間の位置合わせに加えて、エンドアタッチメントの取付(固定)に関する動作(取り付け動作)まで半自動や完全自動で行うことができる。
 尚、エンドアタッチメント6の取り外し動作(図3AのステップS110)及びエンドアタッチメントの取り付け動作(図3AのステップS114)は、上述の如く、手動で行われてもよい。この場合、脱着装置12は、省略されてもよい。
 [変形・変更]
 以上、実施形態について詳述したが、本開示はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された要旨の範囲内において、種々の変形・変更が可能である。
 例えば、上述した実施形態では、ショベル100は、下部走行体1、上部旋回体3、ブーム4、アーム5、エンドアタッチメント6、脱着装置12等の各種動作要素を全て油圧駆動する構成であったが、その一部が電気駆動される構成であってもよい。つまり、上述した実施形態で開示される構成等は、ハイブリッドショベルや電動ショベル等に適用されてもよい。
 また、上述した実施形態及び変形例において、操作装置26は、省略されてもよい。つまり、上述した実施形態及び変形例において、ショベル100は、オペレータの操作を受け付けず、完全自動化されていてもよい。
 最後に、本願は、2019年2月15日に出願した日本国特許出願2019-025396号に基づく優先権を主張するものであり、日本国特許出願の全内容を本願に参照により援用する。
 1 下部走行体
 3 上部旋回体
 4 ブーム
 5 アーム
 6 エンドアタッチメント
 6A~6E バケット
 7 ブームシリンダ
 8 アームシリンダ
 9 エンドアタッチメントシリンダ
 10 キャビン
 11 エンジン
 12 脱着装置
 12b 可動部
 12c 油圧シリンダ(アクチュエータ)
 12d 取付部
 13 レギュレータ
 14 メインポンプ
 15 パイロットポンプ
 17 コントロールバルブ
 30 コントローラ
 30E 演算装置
 31 比例弁
 32 シャトル弁
 40 撮像装置(取得部)
 50 表示装置
 52 入力装置
 52a 自動交換スイッチ
 100 ショベル

Claims (10)

  1.  リンク部と、
     前記リンク部を可動なように支持する支持部と、を備え、
     前記リンク部を取付対象のエンドアタッチメントに対して位置合わせする、
     ショベル。
  2.  自動で又はオペレータの操作を支援するように、前記リンク部を前記取付対象のエンドアタッチメントに対して位置合わせする、
     請求項1に記載のショベル。
  3.  前記リンク部の取付部及び前記取付対象のエンドアタッチメントの被取付部の位置が合うように、前記リンク部を取付対象のエンドアタッチメントに対して位置合わせする、
     請求項1に記載のショベル。
  4.  前記リンク部の前記取付部及び前記取付対象のエンドアタッチメントの前記被取付部のそれぞれの位置に関する情報を取得する取得部を備え、
     前記位置に関する情報に基づき、前記リンク部の前記取付部を前記取付対象のエンドアタッチメントの前記被取付部の位置と一致するように移動させる、
     請求項3に記載のショベル。
  5.  前記リンク部及び前記支持部の少なくとも一方を自動で又はオペレータの操作を支援するように動作させることにより、前記リンク部を前記取付対象のエンドアタッチメントに対して位置合わせする、
     請求項1に記載のショベル。
  6.  前記リンク部及び前記支持部のうちの前記リンク部だけを自動で又はオペレータの操作を支援する態様で動作させて、前記リンク部を前記取付対象のエンドアタッチメントに対して位置合わせする、
     請求項5に記載のショベル。
  7.  前記リンク部を前記取付対象のエンドアタッチメントと正対させるように、前記支持部に走行動作及び旋回動作の少なくとも一方を自動で又はオペレータの操作を支援する態様で行わせる、
     請求項5に記載のショベル。
  8.  前記リンク部の取付部が前記取付対象のエンドアタッチメントの被取付部に正対している状態で、前記リンク部の前記取付部を前記取付対象のエンドアタッチメントの前記被取付部の位置に一致させるように、前記リンク部を自動で又はオペレータの操作を支援する態様で動作させる、
     請求項6に記載のショベル。
  9.  前記リンク部の取付部が前記取付対象のエンドアタッチメントの被取付部に届く場所まで自機が移動するように、又は、前記リンク部の前記取付部が前記取付対象のエンドアタッチメントの前記被取付部に正対している状態で、前記リンク部の前記取付部を前記取付対象のエンドアタッチメントの前記被取付部の位置に一致させるように、前記支持部を自動で又はオペレータの操作を支援する態様で走行させる、
     請求項5に記載のショベル。
  10.  前記リンク部のエンドアタッチメントとの取付部には、前記リンク部とエンドアタッチメントとの間の固定状態と非固定状態とを切り替える可動部、及び前記可動部を駆動するアクチュエータとが設けられ、
     前記可動部及び前記アクチュエータが前記非固定状態に対応する状態で、前記リンク部の取付部を前記取付対象のエンドアタッチメントの被取付部に位置合わせすると共に、前記アクチュエータを自動で又はオペレータの操作を支援する態様で動作させることにより、前記取付対象のエンドアタッチメントの前記被取付部を前記リンク部の前記取付部に固定させる、
     請求項1に記載のショベル。
PCT/JP2020/005640 2019-02-15 2020-02-13 ショベル WO2020166673A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20756298.4A EP3926103A4 (en) 2019-02-15 2020-02-13 EXCAVATOR
KR1020217025895A KR20210125497A (ko) 2019-02-15 2020-02-13 쇼벨
CN202080014657.7A CN113454292A (zh) 2019-02-15 2020-02-13 挖土机
JP2020572315A JP7404280B2 (ja) 2019-02-15 2020-02-13 ショベル
US17/444,862 US20210372079A1 (en) 2019-02-15 2021-08-11 Shovel and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019025396 2019-02-15
JP2019-025396 2019-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/444,862 Continuation US20210372079A1 (en) 2019-02-15 2021-08-11 Shovel and system

Publications (1)

Publication Number Publication Date
WO2020166673A1 true WO2020166673A1 (ja) 2020-08-20

Family

ID=72044219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005640 WO2020166673A1 (ja) 2019-02-15 2020-02-13 ショベル

Country Status (6)

Country Link
US (1) US20210372079A1 (ja)
EP (1) EP3926103A4 (ja)
JP (1) JP7404280B2 (ja)
KR (1) KR20210125497A (ja)
CN (1) CN113454292A (ja)
WO (1) WO2020166673A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196776A1 (ja) * 2021-03-17 2022-09-22 住友重機械工業株式会社 ショベル

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008477A (ja) * 2014-06-26 2016-01-18 株式会社小松製作所 クイックカプラ
JP2017082472A (ja) 2015-10-27 2017-05-18 住友建機株式会社 作業機械
JP2019025396A (ja) 2017-07-27 2019-02-21 凸版印刷株式会社 グラビア塗工版及び塗工装置

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037337A (en) * 1976-08-18 1977-07-26 Adco Buckets, Inc. Excavating bucket and teeth for a backhoe
US4123861A (en) * 1976-08-18 1978-11-07 Hemphill Charles W Method of excavating earth with a bucket
US4200423A (en) * 1978-08-30 1980-04-29 Sornsin Earl W Storable boom attachment for a construction machine
US4871292A (en) * 1987-12-17 1989-10-03 Richard Milanowski System for attaching and locking material handling tools to a dipper boom
JP2505381B2 (ja) * 1991-07-04 1996-06-05 株式会社ジャパニック 建設機械の付属品着脱機構
US5179794A (en) * 1991-12-26 1993-01-19 Ballinger Jon C Semi-automatic coupling apparatus
JP3061529B2 (ja) * 1994-05-16 2000-07-10 日立建機株式会社 ローダフロント付き油圧ショベルの油圧駆動装置
US5678332A (en) * 1996-06-24 1997-10-21 Hawkins; Bobby Leonard Changeable and retractable implement for use on a back hoe and method
US6290009B1 (en) * 1996-08-20 2001-09-18 Yanmar Diesel Engine Co., Ltd. Swivel working vehicle
CN1192148C (zh) * 1997-02-13 2005-03-09 日立建机株式会社 液压挖掘机的法面挖掘控制装置、目标法面设定装置及法面挖掘形成方法
JPH1134719A (ja) * 1997-07-15 1999-02-09 Hitachi Constr Mach Co Ltd 作業機
JPH11247220A (ja) * 1998-03-05 1999-09-14 Komatsu Ltd 建設機械の作業機制御装置
US6088938A (en) * 1998-07-17 2000-07-18 Logan; John Duncan Implement adapter for an excavation tool assembly
US6336077B1 (en) * 1999-06-07 2002-01-01 BOUCHER GAéTAN Automatic monitoring and display system for use with a diggins machine
JP2001207471A (ja) * 2000-01-27 2001-08-03 Sumitomo Constr Mach Co Ltd 建設機械のエンドアタッチメント取付装置
JP4082935B2 (ja) * 2002-06-05 2008-04-30 株式会社小松製作所 ハイブリッド式建設機械
JP3833163B2 (ja) * 2002-10-18 2006-10-11 新キャタピラー三菱株式会社 作業機械における流体圧回路
JP4029972B2 (ja) * 2002-11-11 2008-01-09 株式会社小松製作所 作業機用補正シリンダを備えた油圧ショベル
JP2004238874A (ja) * 2003-02-05 2004-08-26 Hiroshi Hayashi パワーショベル又はクレーン装着用の旋回型把持装置
JP4202209B2 (ja) * 2003-08-11 2008-12-24 日立建機株式会社 作業機械の位置計測表示システム
KR100704219B1 (ko) * 2003-08-20 2007-04-09 가부시키가이샤 고마쓰 세이사쿠쇼 유압구동 제어장치
AU2004280583A1 (en) * 2003-10-03 2005-04-21 Michael T. Lumbers Multi-function work machine
JP2006214236A (ja) * 2005-02-07 2006-08-17 Hitachi Constr Mach Co Ltd 建設機械の計測表示機構
US20090282710A1 (en) * 2007-08-08 2009-11-19 Johnson Rick D Multi-Function Material Moving Assembly and Method
JP4912280B2 (ja) * 2007-11-21 2012-04-11 株式会社室戸鉄工所 アタッチメントカプラ
KR101657324B1 (ko) * 2008-12-24 2016-09-19 두산인프라코어 주식회사 건설장비의 원격제어시스템 및 원격제어방법
KR101601977B1 (ko) * 2009-08-24 2016-03-09 두산인프라코어 주식회사 훨로더 작업기의 자동 운전 제어 장치 및 방법
WO2013034516A1 (en) * 2011-09-07 2013-03-14 Caterpillar Work Tools B.V. Device to actuate a fluidconnector contamination cover
GB201108376D0 (en) * 2011-05-19 2011-06-29 Shadowfiction Ltd An automatic quick hitch for an extractor
DE112012006937T5 (de) * 2012-09-25 2015-06-11 Volvo Construction Equipment Ab Automatisches Planiersystem für Baumaschine und Verfahren zum Steuern desselben
US9567728B2 (en) * 2012-11-21 2017-02-14 Joshua Colbert Telescoping outrigger systems
DE112013000232B4 (de) * 2013-12-06 2015-11-05 Komatsu Ltd. Hydraulikbagger
US9670644B2 (en) * 2014-08-27 2017-06-06 Caterpillar Global Mining Llc Drop line tensioning assembly
KR101658325B1 (ko) * 2014-09-10 2016-09-22 가부시키가이샤 고마쓰 세이사쿠쇼 작업 차량
EP3207187B1 (en) * 2014-10-13 2019-11-20 Sandvik Mining and Construction Oy Arrangement for controlling a work machine
US10151077B2 (en) * 2015-02-26 2018-12-11 Phillip Paull Apparatus and method for enhanced clamshell loader grading control
EP3272947B1 (en) * 2015-03-19 2022-01-26 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Excavator
CN107428336B (zh) * 2015-03-25 2019-08-06 株式会社Kcm 混合动力式作业车辆
WO2015129932A1 (ja) * 2015-03-25 2015-09-03 株式会社小松製作所 ホイールローダ
JP6618072B2 (ja) * 2015-08-28 2019-12-11 キャタピラー エス エー アール エル 作業機械
US10156055B2 (en) * 2016-05-06 2018-12-18 Caterpillar Inc. Integrated excavator pin grabber quick coupler
JP6518271B2 (ja) * 2017-02-10 2019-05-22 オリエンタル白石株式会社 地形測定機
US10731318B2 (en) * 2017-02-20 2020-08-04 Cnh Industrial America Llc System and method for coupling an implement to a work vehicle
JP6718399B2 (ja) * 2017-02-21 2020-07-08 日立建機株式会社 作業機械
KR102539675B1 (ko) * 2017-03-22 2023-06-01 스미도모쥬기가이고교 가부시키가이샤 쇼벨
JP6735249B2 (ja) * 2017-03-30 2020-08-05 日立建機株式会社 作業機械の走行振動抑制装置
CN110214213B (zh) * 2017-03-31 2022-06-07 住友重机械工业株式会社 挖土机
CN110832146B (zh) * 2017-07-05 2022-08-16 住友重机械工业株式会社 挖土机
US10724205B2 (en) * 2017-12-22 2020-07-28 Kubota Corporation Front loader and working machine
JP7117843B2 (ja) * 2017-12-26 2022-08-15 日立建機株式会社 作業機械
US10738439B2 (en) * 2018-01-19 2020-08-11 Deere & Company Open loop electrohydraulic bucket position control method and system
CN208136981U (zh) * 2018-04-18 2018-11-23 中电建水环境治理技术有限公司 具有旋转手臂的挖掘机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008477A (ja) * 2014-06-26 2016-01-18 株式会社小松製作所 クイックカプラ
JP2017082472A (ja) 2015-10-27 2017-05-18 住友建機株式会社 作業機械
JP2019025396A (ja) 2017-07-27 2019-02-21 凸版印刷株式会社 グラビア塗工版及び塗工装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926103A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196776A1 (ja) * 2021-03-17 2022-09-22 住友重機械工業株式会社 ショベル

Also Published As

Publication number Publication date
JP7404280B2 (ja) 2023-12-25
KR20210125497A (ko) 2021-10-18
US20210372079A1 (en) 2021-12-02
JPWO2020166673A1 (ja) 2021-12-09
EP3926103A4 (en) 2022-03-30
EP3926103A1 (en) 2021-12-22
CN113454292A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
CN112867831B (zh) 挖土机
EP3159455B1 (en) Shovel and method for controlling same
JP7301875B2 (ja) ショベル、ショベルの制御装置
US20170175364A1 (en) Construction information display device and method for displaying construction information
JP7144252B2 (ja) 積込機械の制御装置および制御方法
KR20210129086A (ko) 표시장치, 쇼벨, 정보처리장치
CN111989436B (zh) 挖土机
US20210355651A1 (en) Shovel
JP2023174887A (ja) 作業機械、情報処理装置
JP7287829B2 (ja) ショベル
WO2020166673A1 (ja) ショベル
WO2023002796A1 (ja) 掘削機械の稼働範囲設定システムおよびその制御方法
WO2021145346A1 (ja) ショベル、遠隔操作支援装置
JP2007016403A (ja) 作業機械のカメラ制御装置
WO2024034624A1 (ja) 支援装置、作業機械、支援システム、プログラム
WO2023190843A1 (ja) 支援装置、作業機械、プログラム
WO2022244830A1 (ja) 積込機械の制御システム及び制御方法
WO2022230980A1 (ja) 積込機械の制御装置及び制御方法
WO2022244832A1 (ja) 積込機械の制御システム及び制御方法
WO2023190877A1 (ja) 支援装置、作業機械、プログラム
WO2022070852A1 (ja) 掘削位置決定システム、掘削制御システムおよび作業機械
JP2023183992A (ja) 支援システム、遠隔操作支援装置、作業機械、プログラム
JP2021070922A (ja) ショベル
JP2022154722A (ja) ショベル
JP2023150082A (ja) 支援装置、作業機械、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020756298

Country of ref document: EP

Effective date: 20210915