JP6518271B2 - 地形測定機 - Google Patents

地形測定機 Download PDF

Info

Publication number
JP6518271B2
JP6518271B2 JP2017023244A JP2017023244A JP6518271B2 JP 6518271 B2 JP6518271 B2 JP 6518271B2 JP 2017023244 A JP2017023244 A JP 2017023244A JP 2017023244 A JP2017023244 A JP 2017023244A JP 6518271 B2 JP6518271 B2 JP 6518271B2
Authority
JP
Japan
Prior art keywords
ground
boom
bucket
traveling
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017023244A
Other languages
English (en)
Other versions
JP2018128422A (ja
Inventor
耕生 菊池
耕生 菊池
亀井 聡
聡 亀井
哲也 小陽
哲也 小陽
佳吾 早川
佳吾 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Shiraishi Corp
Original Assignee
Oriental Shiraishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Shiraishi Corp filed Critical Oriental Shiraishi Corp
Priority to JP2017023244A priority Critical patent/JP6518271B2/ja
Publication of JP2018128422A publication Critical patent/JP2018128422A/ja
Application granted granted Critical
Publication of JP6518271B2 publication Critical patent/JP6518271B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)

Description

本発明は、作業室の天井に取り付けられて天井に沿って移動し、作業室の地面の形状を測定する地形測定機に関する。
橋梁や建物の基礎、シールドトンネルの発進立坑などの地下構造物を構築する工法として、ニューマチックケーソン工法が知られている。ニューマチックケーソン工法は、鉄筋コンクリート製の函(ケーソン)を地上で構築し、ケーソン底部に気密な作業室を設け、この作業室内に地下水圧に見合った圧縮空気を送り込むことにより、作業室への地下水の侵入を防ぐようになっている。そして、その状態において、作業室床部の地面を掘削し、掘削した土砂を外部に排出しながらケーソンを地中に沈下させていくことにより、橋梁や建物の基礎などの地下構造物を構築する工法である。このようなニューマチックケーソン工法では、パワーショベル等の掘削機を作業室内に運び入れ、その掘削機を用いて作業室床部の掘削作業が行われている。このような掘削機は、作業室床部が地下水等を多く含んだ地面であり履帯等では走行することが難しいため、作業室の天井部に走行レールを設け、その走行レールに懸下された状態で走行移動し、作業室床部の地面の掘削作業を行うように構成されている(例えば、特許文献1を参照)。
特開2015‐108244号公報
上記のような掘削機では、地上に設けられた遠隔操作室からオペレータが遠隔操作して掘削作業を行う場合がある。このような場合に、掘削機には掘削地面を撮影するカメラが設けられており、オペレータは、このカメラによって撮影された画像を遠隔操作室のモニタで見て掘削地面の形状を認識し、その掘削地面の形状に応じて掘削位置(座標)を変更するなどして掘削作業を行っていた。このように従来の掘削機では、オペレータの感覚に頼って掘削作業を行っていたため、オペレータの経験値の差によって掘削作業の効率にバラつきが生じるという問題があった。また、ニューマチックケーソン工法ではケーソン下部の作業室内は高圧環境となるため、掘削機を遠隔操作して無人での作業を行うことが要求されている。このような場合には、オペレータの視覚(カメラによる撮像画像)に頼ることしかできないので掘削位置等を選択することが難しく、作業効率を上げるのが難しいという問題があった。
本発明はこのような課題に鑑みてなされたものであり、オペレータの経験値の差に係らず、遠隔作業を行うような場合でも、掘削作業等の作業効率を向上させることができる地形測定機を提供することを目的とする。
上記目的を達成するため、本発明に係る地形測定機は、作業室の天井に取り付けられ、前記天井に沿って移動する走行基部および、前記走行基部に旋回自在に設けられる旋回部を有する本体部(例えば、実施形態における走行体110)と、前記本体部に設けられ、所定の作業を行う作業装置(例えば、実施形態におけるブーム130およびバケットアタッチメント150)と、前記天井における前記走行基部の位置を検出する本体部位置センサ(例えば、実施形態における走行体位置センサ201および走行体位置測定部211)と、前記旋回部または前記作業装置に設けられ、前記作業室の地面までの距離情報を取得する外界センサ(例えば、実施形態における外界センサ206)と、前記走行基部に対する前記外界センサの位置および前記距離情報を取得する方向を検出する姿勢センサ(例えば、実施形態における旋回角度センサ202および地盤形状測定部213)と、前記本体部位置センサ、前記姿勢センサおよび前記外界センサにより検出された前記走行基部の位置、前記外界センサの位置および前記距離情報を取得する方向、並びに前記作業室の地面までの距離情報から前記作業室の地面の3次元形状を求める地盤形状測定部(例えば、実施形態における地盤形状測定部213)とを備えて構成される。
上記構成の地形測定機において、前記地盤形状測定部は、求めた前記作業室の地面の3次元形状に基づいて、前記作業室の地面の地盤形状マップを作成するように構成されることが好ましい。
上記構成の地形測定機において、前記地盤形状測定部は、前記作業室の地面の形状が変化すると、前記作業室の地面の3次元形状を再び求め、前記地盤形状マップにおける変化した箇所の3次元形状を修正するように構成することが好ましい。
上記構成の地形測定機において、前記地盤形状測定部により求めた前記作業室の地面の3次元形状に応じて、前記作業装置を駆動させる制御を行う作業制御部(例えば、実施形態におけるメインコントローラ165aおよびブーム・バケット用コントローラ165c)を備えて構成されることが好ましい。
本発明に係る地形測定機は、作業室の天井における走行基部の位置を検出する本体部位置センサと、作業室の地面までの距離情報を取得する外界センサと、走行基部に対する外界センサの位置および情報取得方向を検出する姿勢センサとを備え、これらのセンサにより検出された走行基部の位置、外界センサの位置および情報取得方向、並びに外界センサにより取得された作業室の地面までの距離情報から作業室の地面の3次元形状を求める地盤形状測定部をさらに備えて構成される。そのため、従来の遠隔操作による掘削作業では、モニタに映し出された画像情報のみによって掘削地面の形状を認識していたが、本発明に係る地形測定機では、地盤形状測定部によって掘削地面の3次元形状を正確に測定することができる。このように掘削地面の3次元形状を測定することができるため、その測定した地面形状に基づいて掘削装置により掘削する位置(座標)を自動的に選択することが可能となる。また、測定した地面形状に基づいて最適な掘削軌跡(掘り方)を自動的に選択することも可能となり、掘削作業の効率を向上させることができる。
本発明において、地盤形状測定部が、求めた作業室の地面の3次元形状に基づいて地盤形状マップを作成し、作業室の地面の形状が変化すると、当該作業室の地面の3次元形状を再び求め、地盤形状マップにおいて変化した箇所を修正する構成とするのが好ましい。このようにすれば、掘削装置により掘削作業を行っているときに、常に修正された地盤形状マップに基づいて掘削位置(座標)や最適な掘削軌跡(掘り方)を自動的に選択して掘削作業を行うことができる。そのため、掘削効率を向上させることができる。
ニューマチックケーソン工法の主要設備を示す縦断面図である。 本発明に係る地形測定機を適用した掘削機の側面図である。 上記掘削機における油圧回路図である。 上記掘削機における制御系統を示すブロック図である。 掘削地面の硬さをタイプ別に分類する方法を説明するためのグラフである。 地盤強度測定マップの一例を示す図である。
以下、本発明の実施形態について図面を参照しながら説明する。まず、本発明に係る地形測定機を適用した掘削機が使用されるニューマチックケーソン工法の主要設備について図1を用いて説明する。ニューマチックケーソン工法は、掘削設備E1、艤装設備E2、排土設備E3、送気設備E4および予備・安全設備E5を用いて、鉄筋コンクリート製のケーソン1を地中に沈下させていくことにより、地下構造物を構築するように構成されている。
掘削設備E1は、ケーソン1の底部に設けられた作業室2内に設置される掘削機100(以下、ケーソンショベル100と称する)と、ケーソンショベル100により掘削された土砂を円筒状のアースバケット31に積み込む土砂自動積込装置11と、ケーソンショベル100の作動を地上から遠隔操作する遠隔操作装置12を備える地上遠隔操作室13とを有して構成されている。掘削設備E1は、発電装置(図示せず)から電力の供給を受けて作動するようになっている。この発電装置からの電力は、艤装設備E2、排土設備E3および送気設備E4にも供給されている。
艤装設備E2は、作業者が作業室2へ出入りするために地上と作業室2とを繋ぐ円筒状のマンシャフト21と、マンシャフト21に設けられ地上の大気圧と作業室2内の圧力差を調節するマンロック22(エアロック)と、土砂自動積込装置11により土砂が積み込まれたアースバケット31を地上に運び出すために地上と作業室2とを繋ぐ円筒状のマテリアルシャフト23と、マテリアルシャフト23に設けられ地上の大気圧と作業室2内の圧力差を調節するマテリアルロック24(エアロック)とを有して構成されている。マンシャフト21内には、螺旋階段25が設けられており、この螺旋階段25を用いて作業者は地上と作業室2とを行き来することができるようになっている。マンロック22およびマテリアルロック24はそれぞれ二重扉構造となっており、作業室2内の気圧が変化することを抑えて作業者やアースバケット31を作業室2へ出入りさせることができるように構成されている。
排土設備E3は、ケーソンショベル100により掘削された土砂が積み込まれるアースバケット31と、このアースバケット31をマテリアルシャフト23を介して地上まで引き上げて運び出すキャリア装置32と、アースバケット31およびキャリア装置32により地上に運び出された土砂を一時的に貯めておく土砂ホッパー33とを有して構成されている。
送気設備E4は、送気管41およびケーソン1に形成された送気路3を介して作業室2内に圧縮空気を送る空気圧縮機42と、空気圧縮機42により送り込む圧縮空気を浄化する空気清浄装置43と、作業室2内の気圧が地下水圧と略等しくなるように空気圧縮機42から作業室2内へ送る圧縮空気の量(圧力)を調整する送気圧力調整装置44と、マンロック22内の気圧を減圧する自動減圧装置45とを有して構成されている。
予備・安全設備E5は、空気圧縮機42の故障や点検などの時に空気圧縮機42に代わって作業室2内に圧縮空気を送ることが可能な非常用空気圧縮機51と、上記発電装置に代わって掘削設備E1、艤装設備E2、排土設備E3および送気設備E4に電力を供給することが可能な非常用発電機(図示せず)と、作業室2内で作業を行った作業者が入り、当該作業者の身体を徐々に大気圧に慣らしていくためのホスピタルロック53(減圧室)とを有して構成されている。
次に、本発明に係るケーソンショベル100について図2〜図6を用いて説明する。ケーソンショベル100は、図2に示すように、作業室2の天井部に設けられた左右一対の走行レール4に取り付けられ、左右の走行レール4に懸下された状態で走行レール4に沿
って走行移動する走行体110と、走行体110の旋回フレーム121に上下方向に揺動可能に枢結されるブーム130と、ブーム130の先端部に取り付けられるバケットアタッチメント150とを有して構成される。
ケーソンショベル100は、走行体110、ブーム130、バケットアタッチメント150およびカウンターウエイト158に分解して取り外し可能に構成されている。分解された走行体110、ブーム130、バケットアタッチメント150およびカウンターウエイト158はそれぞれ、マテリアルシャフト23を通る大きさとなり、分解された状態でマテリアルシャフト23を通って作業室2内に運び入れたり、作業室2内から運び出したりすることができるように構成されている。作業室2の天井部における複数の箇所にはそれぞれ、左右一対の走行レール4が所定の間隔(レール幅)を有して平行に延びて設けられている。
走行体110は、走行フレーム111と、走行フレーム111の下面側に旋回自在に設けられた旋回フレーム121とを有して構成される。走行フレーム111の上面側前後には、前後左右の4個の走行ローラ113が設けられている。前後左右の走行ローラ113はそれぞれ、走行フレーム111に対して左右方向にスライド移動自在に設けられている。走行フレーム111には左右2個の走行モータ114が設けられている。左右の走行モータ114はそれぞれ、不図示のギヤボックスを介して左側もしくは右側の2個の走行ローラ113を回転駆動させるように構成されている。走行体110は、左右の走行モータ114により前後左右の走行ローラ113を回転駆動させて左右の走行レール4に沿って走行移動するように構成されている。
走行フレーム111には、左右に3個ずつ合計6個のブレーキシリンダ115と、左右2個のブレーキプレート116とが設けられている。6個のブレーキシリンダ115は、前側の走行ローラ113の前方位置、前後の走行ローラ113の間の位置、後側の走行ローラ113の後方位置にそれぞれ設けられ、ブレーキシリンダ1115のピストンロッドが下方に伸長可能なように設けられている。左右のブレーキプレート116はそれぞれ、各ブレーキシリンダ115のピストンロッドの先端部と、間に走行レール4を挟んで対向する位置に設けられている。走行体110は、6個のブレーキシリンダ115を伸長させてピストンロッドの先端部を走行レール4に押圧させることにより、走行体110を走行レール4に対して上方に持ち上げて4個の走行ローラ113を左右の走行レール4から離し、それぞれのピストンロッドとブレーキプレート116によって走行レール4を挟持することにより走行制動および掘削時の固定支持を行うように構成されている。
走行フレーム111には、前後2個の拡縮シリンダ117(図3を参照)がそれぞれ左右の走行ローラ113の間に跨るように左右に延びて設けられている。走行フレーム111は、前後の拡縮シリンダ117を伸縮させることにより、左右の走行ローラ113の間隔を拡張および縮小させることができるように構成されている。走行体110は、前後の拡縮シリンダ117によって走行フレーム111における左右の走行ローラ113の間隔を拡張および縮小させることにより、左右の走行レール4に着脱させることができるように構成されている。
走行フレーム111の下面側中央部には、旋回ベアリング122を介して旋回フレーム121が旋回自在に取り付けられている。旋回フレーム121には旋回モータ123(図3を参照)が設けられている。旋回モータ123の駆動軸は旋回ベアリング122の内側まで延びており、この駆動軸には旋回ベアリング122の内歯ギヤと噛み合うピニオンが取り付けられている。旋回モータ123を回転駆動させると、上記ピニオンおよび内歯ギヤの噛み合いから発生する反力が旋回モータ123を介して旋回フレーム121に伝達されることにより、旋回フレーム121が走行フレーム111に対して旋回するように構成
されている。
旋回フレーム121の下面側略中央部には、側面視において逆L字状(下方に開口して上下方向に延びるとともに上部が前後方向に屈曲した形状)のブーム取付凹部124がブーム130を旋回フレーム121に取り付けるために形成されている。旋回フレーム121には、ブーム130を旋回フレーム121に取り付けるためのブームクランプ125およびクランプシリンダ126が設けられている。ブームクランプ125の基端部は旋回フレーム121に対して上下方向に回動自在に取り付けられている。ブームクランプ125の先端部には、側面視において逆U字状(下方および左右方向に開口した形状)のブーム係合凹部が形成されている。ブームクランプ125は、クランプシリンダ126を伸縮させることにより、先端部のブーム係合凹部が上下に揺動されるようになっている。このブーム係合凹部が下方に揺動されると、ブーム係合凹部が旋回フレーム121のブーム取付凹部124の先端部(突当り部)に側面視において重なる位置となるように構成されている。
ブーム130の左右には2個の起伏シリンダ134が設けられている。左右の起伏シリンダ134のピストンロッド134a(以下、起伏ロッド134aと称する)の先端部をそれぞれ旋回フレーム121に取り付けるための2個のピン挿抜シリンダ127が旋回フレーム121に設けられている。ピン挿抜シリンダ127のピストンロッドの先端部には、起伏ロッド134aの先端部に形成された取付孔に挿入可能な係合ピンが設けられている。旋回フレーム121にはガイドプレート129が設けられている。このガイドプレート129に起伏ロッド134aの先端部を当接させた状態で起伏シリンダ134を伸長させると、起伏ロッド134aの取付孔とピン挿抜シリンダ127の係合ピンとが整合する位置(取付孔に係合ピンを挿入可能な位置)まで起伏ロッド134aの先端部が案内されるようになっている。そして、ピン挿抜シリンダ127を伸長させて係合ピンを起伏ロッド134aの取付孔に挿入させることにより、起伏ロッド134aの先端部が旋回フレーム121に取り付けられるように構成されている。
ブーム130は、旋回フレーム121に取り付けられる基端ブーム131と、基端ブーム131に入れ子式に組み合わされた先端ブーム132とを有して構成される。基端ブーム131内には伸縮シリンダ133が設けられている。伸縮シリンダ133を伸縮させると、基端ブーム131に対して先端ブーム132が長手方向に移動し、これによりブーム130が伸縮するように構成されている。基端ブーム131には左右2個の起伏シリンダ134が設けられている。2個の起伏シリンダ134の基端部はピン134cにより基端ブーム131の左右側部にそれぞれ回動自在に取り付けられている。基端ブーム131の基端側上部には、上方に延びる左右の支持板が形成され、その左右の支持板の間に左右方向に延びる取付ロッド135が設けられている。この取付ロッド135が、旋回フレーム121のブーム取付凹部124に挿入されるとともに、ブームクランプ125のブーム係合凹部と係合されることにより、ブーム130が旋回フレーム121に取付ロッド135を中心に起伏自在(上下方向に揺動自在)に取り付けられるように構成されている。
先端ブーム132の先端部には、バケットアタッチメント150をブーム130に取り付けるためのクイックヒッチ機構140が設けられている。クイックヒッチ機構140は、クイックヒッチシリンダ141(図3を参照)と、クイックヒッチシリンダ141のピストンロッドの先端部に取り付けられた係止ピン142と、先端ブーム132の先端部に設けられた先端プレート143とを有して構成される。係止ピン142は、クイックヒッチシリンダ141の伸長によりブーム130の伸縮方向と略直交する方向(上下方向)に移動されるようになっている。先端プレート143は、先端ブーム132の先端部においてブーム130の伸縮方向と略直交するように設けられ、下部が基端ブーム131側に斜めに屈曲している。先端プレート143の屈曲した部分には、係止ピン142が通過可能
な貫通孔が形成されている。
バケットアタッチメント150は、先端ブーム132に取り付けられるベース部材151と、ベース部材151の先端部にピン152aを中心に上下揺動自在に取り付けられたバケット152と、ベース部材151に対してバケット152を上下揺動させるバケットシリンダ153とを有して構成される。ベース部材151の基端部には、上下および左右方向延びるとともに下部が外側に斜めに屈曲した接合プレート154が設けられている。接合プレート154の屈曲した部分には、クイックヒッチ機構140の係止ピン142を挿入可能な係止孔が形成されている。接合プレート154の上部には、クイックヒッチ機構140の先端プレート143の上端部と係合する係合片が設けられている。バケットシリンダ153の基端部はピン153aによりバケット152に回動自在に取り付けられ、バケットシリンダ153のピストンロッドの先端部はピン153bによりベース部材151に回動自在に取り付けられている。
旋回フレーム121の後部(ブーム130が伸びる方向と反対側)には、掘削作業時にケーソンショベル100の車両バランスを安定させるためのカウンターウエイト158が設けられている。旋回フレーム121には、上述した2個の走行モータ114、6個のブレーキシリンダ115、2個の拡縮シリンダ117、旋回モータ123、クランプシリンダ126、2個のピン挿抜シリンダ127、伸縮シリンダ133、2個の起伏シリンダ134、クイックヒッチシリンダ141およびバケットシリンダ153(以下、まとめて「アクチュエータAC」とも称する)に作動油を供給して駆動させる油圧駆動ユニット160が設けられている。
油圧駆動ユニット160は、図2および図3に示すように、外部から電力供給を受けて作動する電動モータ161と、電動モータ161により駆動される油圧ポンプ162と、作動油を貯留している作動油タンク163と、アクチュエータACに供給する作動油の方向および流量を制御する制御バルブ群164と、地上遠隔操作室13内に設置された遠隔操作装置12からの操作信号に応じて制御バルブ群164の作動を制御するコントロールユニット165とを有して構成される。電動モータ161、油圧ポンプ162および作動油タンク163は、走行体110の旋回フレーム121に配設されている。油圧ポンプ162の吐出口から延びる第1ポンプ油路L1と第1ポンプ油路から分岐した第2ポンプ油路L2とに制御バルブ群164が設けられている。
制御バルブ群164は、アクチュエータACのそれぞれに対応する複数の制御バルブを有して構成され、それらの制御バルブがポンプ油路L1,L2に並列に並んで設けられている。具体的には、制御バルブ群164は、旋回モータ123への作動油供給を制御する旋回制御バルブ164aと、6個のブレーキシリンダ115への作動油供給を制御するブレーキ制御バルブ164bと、2個の走行モータ114への作動油供給を制御する走行制御バルブ164cと、2個の拡縮シリンダ117への作動油供給を制御する拡縮制御バルブ164dと、2個のピン挿抜シリンダ127への作動油供給をそれぞれ制御するピン挿抜制御バルブ164e,164fと、クランプシリンダ126への作動油供給を制御するクランプ制御バルブ164gとを有して構成される。これらの制御バルブ164a〜164gは、走行体110に設けられたアクチュエータへの作動油の供給制御を行う走行体用の制御バルブであり、走行体110の旋回フレーム121に纏めて配設されている。
制御バルブ群164は、さらに、2個の起伏シリンダ134への作動油供給を制御する起伏制御バルブ164hと、伸縮シリンダ133への作動油供給を制御する伸縮制御バルブ164iと、バケットシリンダ153への作動油供給を制御するバケット制御バルブ164jと、補助制御バルブ164kと、クイックヒッチシリンダ141への作動油供給を制御するクイックヒッチ制御バルブ164lとを有して構成される。補助制御バルブ16
4kは、バケットアタッチメント150に代えてブレーカーアタッチメント等の他のアタッチメントを装着した場合に、そのアタッチメントへの作動油の供給制御を行う制御バルブである。これらの制御バルブ164h〜164lは、ブーム130およびバケットアタッチメント150に設けられたアクチュエータへの作動油の供給制御を行うブーム・バケット用の制御バルブであり、基端ブーム131の側部に纏めて配設されている。基端ブーム131の側部には、これらの制御バルブ164h〜164lを覆って保護するための保護カバーが設けられている。
制御バルブ群164の制御バルブ164a〜164lはそれぞれ、地上遠隔操作室13内の遠隔操作装置12からの操作信号に応じて、コントロールユニット165を介してバルブのスプールが駆動され、油圧ポンプ162から吐出された作動油を対応するアクチュエータに供給するとともに、その供給方向および供給量を制御し、当該アクチュエータを作動させるように構成されている。また、制御バルブ164a〜164lのそれぞれには駆動操作レバーが設けられており、この駆動操作レバーを作業者が手動操作することにより、当該制御バルブのスプールを駆動して当該アクチュエータを作動させることもできるように構成されている。
走行体110における走行フレーム111と旋回フレーム121の連結部(旋回ベアリング122の内側)にはスイベルジョイント166が設けられている(図2を参照)。ブレーキ制御バルブ164bと6個のブレーキシリンダ115を繋ぐ油路、走行制御バルブ164cと2個の走行モータ114を繋ぐ油路、および拡縮制御バルブ164dと2個の拡縮シリンダ117を繋ぐ油路は、スイベルジョイント166を介して接続されている。
油圧ポンプ162の吐出口と制御バルブ164h〜164lを繋ぐ第2ポンプ油路L2、および制御バルブ164h〜164lと作動油タンク163を繋ぐタンク油路L3には第1マルチカプラ167が設けられている。第1マルチカプラ167は基端ブーム131の側部に配設されている。この第1マルチカプラ167を着脱させることにより、第2ポンプ油路L2およびタンク油路L3を纏めて連通および切断させることが可能に構成されている。バケット制御バルブ164jとバケットシリンダ153のボトム側油室を繋ぐボトム側油路L4、およびバケット制御バルブ164jとバケットシリンダ153のロッド側油室を繋ぐロッド側油路L5には第2マルチカプラ168が設けられている。第2マルチカプラ168はバケットアタッチメント150のベース部材151の側部に配設されている(図2を参照)。この第2マルチカプラ168を着脱させるにより、ボトム側油路L4およびロッド側油路L5を纏めて連通および切断させることが可能に構成されている。
伸縮制御バルブ164iと伸縮シリンダ133を繋ぐ油路、バケット制御バルブ164jとバケットシリンダ153を繋ぐ油路、補助制御バルブ164kから延びる油路、およびクイックヒッチ制御バルブ164lとクイックヒッチシリンダ141を繋ぐ油路は、基端ブーム131および先端ブーム132の内部を通るように配設されている。
コントロールユニット165は、図4に示すように、遠隔操作装置12からの操作信号を受けて、その操作信号に応じた駆動制御信号を出力するメインコントローラ165aと、走行体用コントローラ165bと、ブーム・バケット用コントローラ165cとを有して構成される。走行体用コントローラ165bは、メインコントローラ165aから出力された駆動制御信号に応じて、走行体110用の制御バルブ164a〜164gを駆動させるように構成されている。メインコントローラ165aおよび走行体用コントローラ165bは、走行体110の旋回フレーム121に配設されている。
ブーム・バケット用コントローラ165cは、メインコントローラ165aから出力された駆動制御信号に応じて、ブーム130およびバケットアタッチメント150用の制御
バルブ164h〜164lを駆動させるように構成されている。ブーム・バケット用コントローラ165cは、ブーム130の基端ブーム131の側部に配設されている。第1マルチカプラ167は、メインコントローラ165aとブーム・バケット用コントローラ165cを繋ぐ電気ケーブルも、上記第2ポンプ油路L2およびタンク油路L3と纏めて連通および切断させることが可能に構成されている。
ケーソンショベル100は、図4に示すように、走行体110が走行レール4の何処の位置に位置しているかを検出する走行体位置センサ201と、走行フレーム111に対する旋回フレーム121の旋回角度を検出する旋回角度センサ202と、旋回フレーム121に対するブーム130の起伏角度を検出するブーム起伏角度センサ203と、ブーム130の伸長量を検出するブーム伸長量センサ204と、ブーム130(バケットアタッチメント150のベース部材151)に対するバケット152の揺動角度を検出するバケット揺動角度センサ205と、走行体110に設けられて作業室2内の掘削地面までの距離、地面の形状などの情報を取得する外界センサ206とを有して構成される。
走行体位置センサ201は、例えば、走行体110の走行フレーム111に配設されたレーザセンサによって構成され、レーザ光を走行レール4の端部(もしくは作業室2の壁部)に向けて照射して走行レール4の端部(もしくは作業室2の壁部)において反射して戻ってくるまでの時間を測定し、その時間に基づいて走行レール4の端部(もしくは作業室2の壁部)から走行体110までの距離を検出するように構成されている。旋回角度センサ202は、例えば、走行体110の旋回フレーム121に配設された光学式のロータリーエンコーダによって構成され、走行フレーム111に対する旋回フレーム121の旋回量を電気信号に変換し、その信号を演算処理して旋回フレーム121の旋回角度(旋回方向および位置)を検出するように構成される。なお、走行体位置センサ201および旋回角度センサ202は例示的に説明したもので、走行体の二次元的な位置を検出するもの、旋回フレーム121の旋回角度を検出するものはこれ以外にも当業者にとって周知なものが種々存在する。
ブーム起伏角度センサ203は、例えば、起伏シリンダ134のシリンダボトムの側部に配設されたレーザセンサによって構成され、レーザ光を旋回フレーム121に向けて照射して旋回フレーム121において反射して戻ってくるまでの時間を測定し、その時間に基づいて起伏シリンダ134(起伏ロッド134a)の伸長量を検出し、その起伏シリンダ134の伸長量に基づいて旋回フレーム121に対するブーム130の起伏角度(起伏位置)を検出するように構成される。ブーム起伏角度センサ203も例示的に示したものであり、光学式ロータリーエンコーダ、ポテンショメータなどによりブーム130の起伏角を直接検出するものなど、当業者にとって周知なものが種々存在する。
ブーム伸長量センサ204は、例えば、ブーム130の基端ブーム131に配設されたレーザセンサによって構成され、レーザ光を先端ブーム132の先端部に取り付けられたバケットアタッチメント150のベース部材151に向けて照射してベース部材151において反射して戻ってくるまでの時間を測定し、その時間に基づいてブーム130の伸長量(基板ブーム131に対する先端ブーム132の伸長量)を検出するように構成される。ブーム伸長量センサ204も例示的に示したものであり、ブーム伸縮とともに伸縮するケーブルの伸長量を直接測定するものなど、当業者にとって周知なものが種々存在する。
バケット揺動角度センサ205は、例えば、バケット制御バルブ164jとバケットシリンダ153を繋ぐ油路に配設された流量センサによって構成され、バケット制御バルブ164jからバケットシリンダ153に供給される作動油の流量を検出し、その流量の積分値を算出する。そして、その流量積分値に基づいてバケットシリンダ153のピストンロッドの伸長量を求め、そのバケットシリンダ153の伸長量に基づいて、バケットアタ
ッチメント150のベース部材151(ブーム130)に対するバケット152の揺動角度(揺動位置)を検出するように構成される。バケット揺動角度センサ205も例示的に示したものであり、光学式ロータリーエンコーダ、ポテンショメータなどによりバケット152の揺動角度を直接検出するものや、レーザセンサによりバケットシリンダ153の伸長量を求めるものなど、当業者にとって周知なものが種々存在する。
外界センサ206は、例えば、走行体110の旋回フレーム121に配設されたRGB‐Dセンサによって構成され、掘削地面のRGB画像(カラー画像)および距離画像を取得し、それらの画像に基づいて掘削地面までの距離情報および掘削地面の形状情報を取得するように構成される。外界センサ206は、RGB‐Dセンサの他に、ステレオカメラや超音波距離計、レーザセンサなど、当業者にとって周知なものが種々存在する。
走行体位置センサ201、旋回角度センサ202、ブーム起伏角度センサ203、ブーム伸長量センサ204、バケット揺動角度センサ205および外界センサ206により検出されたそれぞれの情報は、コントロールユニット165のメインコントローラ165aに送信される。メインコントローラ165aは、走行体位置測定部211と、バケット位置測定部212と、地盤形状測定部213とを有して構成されている。
走行体位置測定部211は、走行体位置センサ201により検出された走行レール4の端部(もしくは作業室2の壁部)から走行体110までの距離情報と、当該走行レール4が作業室2内の何処の位置に設けられた走行レールであるかという情報(この情報は、走行体110が取り付けられた走行レール4の情報であり、走行体110が取り付けられたときに走行体位置測定部211に設定される)とに基づいて、走行体110が作業室2内の何処に位置しているかを求めるように構成されている。なお、走行体位置センサ201による距離情報の検出を周囲複数箇所に対して検出することにより走行体110の天井内における二次元的な位置(走行体110の向きを含む位置)を検出するようにしても良い。
バケット位置測定部212は、旋回角度センサ202により検出された走行フレーム111に対する旋回フレーム121の旋回角度(旋回方向および位置)、ブーム起伏角度センサ203により検出された旋回フレーム121に対するブーム130の起伏角度(起伏位置)、ブーム伸長量センサ204により検出されたブーム130の伸長量、およびバケット揺動角度センサ205により検出されたブーム130に対するバケット152の揺動角度(揺動位置)に基づいて、走行体110の走行フレーム111に対するバケット152の位置を求めるように構成されている。
地盤形状測定部213は、走行体位置測定部211により求められた作業室2内における走行体110の位置、および旋回角度センサ202により検出された走行フレーム111に対する旋回フレーム121の旋回角度(旋回方向および位置)に基づいて、旋回フレーム121に設けられた外界センサ206の位置、外界センサ206により距離情報を取得する方向、および外界センサ206により距離情報を取得する掘削地面の位置を求めるように構成されている。地盤形状測定部213は、さらに、求めた外界センサ206により距離情報を取得する掘削地面の位置、および外界センサ206により取得された掘削地面までの距離情報に基づいて、当該掘削地面の3次元形状を求め、作業室2内の掘削地面の地盤形状マップを作成するように構成されている。地盤形状測定部213は、外界センサ206から掘削地面までの距離情報を常時取得し、掘削地面が掘削されて地盤形状が変化する毎に、上記のように掘削地面の3次元形状を求め、地盤形状マップにおいて掘削された箇所の3次元形状を修正するように構成されている。
ケーソンショベル100は、起伏制御バルブ164hと起伏シリンダ134を繋ぐ油路
に設けられた第1掘削油圧センサ208と、バケット制御バルブ164jとバケットシリンダ153を繋ぐ油路に設けられた第2掘削油圧センサ209とを有して構成される。第1掘削油圧センサ208は、起伏制御バルブ164hから起伏シリンダ134に供給される作動油圧を検出する油圧センサである。第2掘削油圧センサ209は、バケット制御バルブ164jからバケットシリンダ153に供給される作動油圧を検出する油圧センサである。
第1および第2掘削油圧センサ208,209によりそれぞれ検出された作動油圧の情報は、コントロールユニット165のメインコントローラ165aに送信される。メインコントローラ165aは地盤強度測定部215を有して構成されている。ケーソンショベル100は作業室2の天井部に取り付けられて懸下された状態で掘削作業を行うように構成されているため、バケット152による掘削時の反力を全て作業室2の天井部が受けることとなる。その特徴を利用して地盤強度測定部215は、バケット位置測定部212により求められた走行体110(走行フレーム111)に対するバケット152の位置、並びに、左右の起伏シリンダ134およびバケットシリンダ153に作用する作動油圧に基づいて、バケット152に作用する掘削反力を求めるように構成されている。
ここで、掘削作業は、ブーム130の起伏作動と、ブーム130の伸縮作動と、バケット152の揺動作動とを行わせて行われるが、このとき地盤強度測定部215は、バケット152に作用する掘削反力を計算し、算出された掘削反力を用いて掘削地面の硬さ(地盤強度)を測定するように構成されている。地盤強度測定部215は、バケット152に作用する掘削反力の計算を、例えば、バケット位置測定部212により求められた走行体110(走行フレーム111)に対するバケット152の位置(特に、バケット152における地面を掘削する部分の位置)、および第1掘削油圧センサ208により検出された起伏シリンダ134へ作動油圧に基づいて、バケット152に作用する掘削反力を計算し、算出された掘削反力を用いて掘削地面の硬さ(地盤強度)を測定するように構成されている。
このときの掘削反力の計算は、起伏シリンダ134の作動油圧に基づいて行うため、走行体110に対するバケット152の位置、すなわち、ブーム130の起伏位置、ブーム130の伸縮量およびバケット152の揺動位置(これらは「掘削装置の作業姿勢」であり、掘削位置や掘削方向を示すものである)を用いて計算する必要がある。このため、地盤強度測定部215による掘削反力の計算を、第2掘削油圧センサ209により検出されたバケットシリンダ153の作動油圧に基づいて行っても良い。この場合には、バケットシリンダ153に対するバケット152の揺動位置およびバケットシリンダ153の作動油圧のみにより掘削反力が検出できる。
なお、上記構成では、地盤強度測定部215が、左右の起伏シリンダ134およびバケットシリンダ153に作用する作動油圧に基づいて、バケット152に作用する掘削反力を求める構成であるが、掘削作業時におけるブーム130、バケット152、起伏シリンダ134およびバケットシリンダ153に作用する力に基づいて掘削反力を求めるように構成してもよい。この場合には、ブーム130等にロードセル等のセンサを設け、それらのセンサによりブーム130等の変形量に基づいてブーム130等に作用する力(モーメント等)を検出し、その検出した作用力に基づいて掘削反力を求めるように構成してもよい。
地盤強度測定部215は、さらに、算出した掘削反力(例えばシリンダ134,153への作動油圧に基づいて算出した掘削反力)の変化特性に応じて、掘削地面の硬さを複数のタイプに分類するように構成されている。なお、起伏シリンダ134およびバケットシリンダ153の作動変位量(伸長量)は、上記のようにブーム起伏角度センサ203およ
びバケット揺動角度センサ205により検出されるようになっている。
具体的には、図5(a)に示すようにシリンダの作動変位量に対して掘削反力が緩やかに増加した場合には、当該掘削地面は軟らかく掘削が容易な地盤(軟弱地盤)であると分類する。図において破線で示す上限値は、バケットで地面を掘削し終わったときの値で、これ以降はバケット内の掘削土砂の重量に対応する掘削力が作用するだけとなる。また、このときの増加曲線の傾きは地盤が軟らかいほど、緩やかとなり、上限値も低くなる。
一方、図5(c)に示すようにシリンダの作動変位量に対して掘削反力が急激に増加し、掘削反力が掘削可能上限値に達した場合には、当該掘削地面は硬く掘削が困難な地盤(難地盤)であると分類する。このことからも分かるように、掘削力変化の大きさが地盤の堅さを表している。上記掘削可能上限値は、起伏シリンダ134の作動油圧の最大作動油圧およびバケットシリンダ153の最大作動油圧は一定として、ブーム130の起伏位置、ブーム130の伸縮量およびバケット152の揺動位置に応じて変化する値である。また、図5(b)に示すようにシリンダの作動変位量に対して掘削反力が増加し、ある時点で掘削反力が急激に減少して再び増加した場合には、当該掘削地面は硬いものの掘削が可能な地盤(可破壊地盤)であると分類できる。
そして、地盤強度測定部215は、図6に示すように、走行体位置測定部211により求められた作業室2内における走行体110の位置に基づいて、上記のように分類した掘削地面の硬さタイプの分布を当該掘削地面に亘って表す地盤強度測定マップを作成するように構成されている。この地盤強度測定マップは、上記の掘削反力測定説明から分かるように、既に掘削した掘削地面の地盤強度分布を表すマップである。
地盤強度測定部215は、さらに、次に掘削する地面の硬さを、その周囲(例えば直上等)の既に掘削した地面と同じ硬さであると推定し、上記地盤強度測定マップに基づいて、次に掘削する地面の硬さタイプの分布を表す地盤強度推定マップを作成するように構成されている。この地盤強度推定マップは、次に掘削する掘削地面の地盤強度分布を推定したマップである。地盤強度測定部215は、実際に掘削作業を行った後に、上記のように掘削反力から掘削地面の硬さを測定し、その硬さタイプに基づいて地盤強度推定マップにおいて該当箇所の硬さタイプを修正して地盤強度測定マップを作成するように構成されている。
このように構成されるケーソンショベル100では、地上遠隔操作室13内に設置された遠隔操作装置12からの走行操作信号に応じて、メインコントローラ165aおよび走行体用コントローラ165bにより走行制御バルブ164cおよびブレーキ制御バルブ164bの駆動制御を行って2個の走行モータ114および6個のブレーキシリンダ115を駆動させる。このようにして所望の掘削作業位置まで左右の走行レール4に沿って走行移動することができるようになっている。所望の掘削作業位置に到着して停止すると、メインコントローラ165aおよび走行体用コントローラ165bは、その停車状態(遠隔操作装置12から走行操作信号が出力されていない状態)においてブレーキ制御バルブ164bの駆動制御を行って6個のブレーキシリンダ115を伸長駆動させ、停車状態においてケーソンショベル100の制動制御を行うようになっている。なお、ケーソンショベル1には作業室2内(掘削地面)を撮影するカメラが設けられており、地上遠隔操作室13内のオペレータは、このカメラによって撮影された画像を地上遠隔操作室13内のモニタで見ながら遠隔操作装置12を操作するようになっている。
このように所望の掘削作業位置に停止すると、走行体位置測定部211により作業室2内におけるケーソンショベル1の位置が測定される。また、地盤形状測定部213により、これから掘削しようとしている掘削地面の3次元形状が測定され、掘削地面の地盤形状
マップが作成される。メインコントローラ165aは、地盤形状測定部213により測定された掘削地面の3次元形状(地盤形状マップ)および遠隔操作装置12からの作業操作信号に応じて、走行体用コントローラ165bおよびブーム・バケット用コントローラ165cにより旋回制御バルブ164a、起伏制御バルブ164h、伸縮制御バルブ164iおよびバケット制御バルブ164jの駆動制御を行って旋回モータ123、2個の起伏シリンダ134、伸縮シリンダ133およびバケットシリンダ153を駆動させる。このようにしてブーム130を旋回、起伏および伸縮作動させるとともにバケット152を揺動させて掘削作業を行うことができるようになっている。
このようにバケット152により掘削作業を行うと、地盤強度測定部215により掘削した地面の硬さが測定され、掘削した地面の地盤強度測定マップと、次に掘削する地面の地盤強度推定マップとが作成される。メインコントローラ165aは、地盤強度測定部215により地盤強度推定マップが作成されると、推定した掘削地面の硬さに応じて、ブーム130およびバケット152の許容作業姿勢範囲を変更する制御を行うようになっている。これは、例えば上述したように、掘削可能上限値が、ブーム130の起伏位置、ブーム130の伸縮量およびバケット152の揺動位置に応じて変化する値であるということに基づく。すなわち、起伏シリンダ134の作動油圧が同じでもブームの起伏位置および伸長量に応じてバケットから地面に作用する掘削力が変化するし、バケットシリンダ153の作動油圧が同じでもバケット152の揺動位置に応じてバケット152から地面に作用する掘削力が変化するということに鑑みたものである。例えば、地盤強度推定マップにおいて、硬くて掘削が困難な地盤(難地盤)であると推定されたような地面を掘削するときには、この地面を掘削できる掘削力を発揮できる作動姿勢範囲内でのみブーム130の起伏、伸縮作動およびバケット152の揺動を許容し、それを外れる作動は規制するというような制御を行う。すなわち、地盤の堅さに応じて所定の作動規制を行うもので、軟らかくて掘削が容易な地盤(軟弱地盤)であると推定された地面を掘削するときには、作動規制は行わず、ブーム130およびバケット152を最大限に作動させても掘削作業を許可する制御を行うようになっている。
バケット152により掘削作業が行われると、掘削地面の形状が変化するため、地盤形状測定部213により掘削地面の3次元形状が再び測定され、地盤形状マップにおいて掘削された箇所の3次元形状が修正される。このようにケーソンショベル100では、掘削地面の形状測定、掘削した地面の地盤強度測定、および、次に掘削する地面の地盤強度推定を常時行いながら掘削作業を行うようになっている。
ところで、上述したように、作業室2の天井部には、複数の箇所にそれぞれ左右一対の走行レール4が設けられており、それらの走行レール4にそれぞれケーソンショベル100が設置されたり、同一走行レール4に複数のケーソンショベル100もしくは別の作業装置が設置されたり、することがある。そのような場合には、複数のケーソンショベル100のそれぞれにおいて作成された地盤形状マップ、地盤強度測定マップおよび地盤強度推定マップを統合して作業室2の掘削地面全体のマップを作成するように構成してもよい。ケーソンショベル100は、複数台のケーソンショベル100同士や、ケーソンショベル100と別の作業装置が、作業中に相互に衝突することを防止する衝突防止構成を備えており、これについて以下に説明する。
ケーソンショベル100は、メインコントローラ165aにおいて、衝突判定部217を有して構成されている。衝突判定部217は、遠隔操作装置12からの作業操作信号に応じて走行体110、ブーム130およびバケット152を作動させるときに、走行体位置測定部211により求められた作業室2内における走行体110の位置、旋回角度センサ202により検出された走行フレーム111に対する旋回フレーム121の旋回角度(旋回方向および位置)、ブーム起伏角度センサ203により検出された旋回フレーム12
1に対するブーム130の起伏角度(起伏位置)、ブーム伸長量センサ204により検出されたブーム130の伸長量、バケット揺動角度センサ205により検出されたブーム130に対するバケット152の揺動角度(揺動位置)、および遠隔操作装置12からの作業操作信号に基づいて、走行体110、ブーム130およびバケット152の予測作動軌跡を計算するように構成されている。この予測作動軌跡は、走行体110、ブーム130およびバケット152が実際に作動する前に、走行体110等がこれからたどるであろう経路を予測したものであり、各時間ごとの移動位置を示すものである。
衝突判定部217により算出された走行体110、ブーム130およびバケット152の予測作動軌跡は、作業室2内に設けられた他のケーソンショベルに常時無線通信され、自己の衝突判定部217にも他のケーソンショベルの予測作動軌跡が常時送信されるようになっている。衝突判定部217は、算出した走行体110、ブーム130およびバケット152の予測作動軌跡が、他のケーソンショベルの予測作動軌跡と重なる部分がないか否か(同時刻における互いの移動位置が重なる部分がないか否か)を判定するように構成されている。このとき、衝突判定部217は、走行体110、ブーム130およびバケット152の作動速度も考慮して判定するようになっている。
衝突判定部217において算出された走行体110、ブーム130およびバケット152の予測作動軌跡が、他のケーソンショベルの予測作動軌跡と重なる部分がないと判定されると、メインコントローラ165aは、遠隔操作装置12からの当該作業操作信号に応じて、走行体用コントローラ165bおよびブーム・バケット用コントローラ165cにより対応する制御バルブの駆動制御を行って走行体110、ブーム130およびバケット152を作動させる制御を行う。一方、衝突判定部217において算出された走行体110、ブーム130およびバケット152の予測作動軌跡が、他のケーソンショベルの予測作動軌跡と重なる部分があると判定されると、当該作業操作信号に応じた走行体110、ブーム130およびバケット152の作動を規制する制御を行うようになっている。
このとき、衝突判定部217は、走行体110、ブーム130およびバケット152の作動速度も考慮して判定しており、走行体110、ブーム130およびバケット152の作動規制制御はこの作動速度を考慮して行われる。すなわち、予測作動軌跡が他の予測作動軌跡と重なるとき判断されたときに、作動経路を移動する速度が速いときにはその速さを考慮した時間を考えて作動経路が重ならないように事前に作動規制を行う制御がなされる。
メインコントローラ165aには、作業室2内に設けられた複数台のケーソンショベルのそれぞれの優先度が予め設定されている。衝突判定部217において算出された走行体110、ブーム130およびバケット152の予測作動軌跡が、他のケーソンショベルの予測作動軌跡と重なる部分があると判定されたときに、メインコントローラ165aは、当該他のケーソンショベルと自己の優先度を比較して、自己の優先度が当該他のケーソンショベルの優先度よりも低い場合には、当該他のケーソンショベルの予測作動軌跡に重ならない位置まで走行体110、ブーム130およびバケット152を移動させる制御を行うようになっている。一方、自己の優先度が当該他のケーソンショベルの優先度よりも高い場合には、当該他のケーソンショベルが自己の予測作動軌跡に重ならい位置まで移動され、メインコントローラ165aは、当該作業操作信号に応じて走行体110、ブーム130およびバケット152を作動させる制御を行うようになっている。
衝突判定部217には、走行体110、ブーム130およびバケット152が作動して入ることを禁止する禁止空間FAを設定することが可能になっている。衝突判定部217は、この禁止空間FAが設定されているときには、上述した他のケーソンショベルの予測作動軌跡とともに、算出した走行体110、ブーム130およびバケット152の予測作
動軌跡が禁止空間FAと重なる部分がないか否かを判定するように構成されている。
衝突判定部217において算出された走行体110、ブーム130およびバケット152の予測作動軌跡が禁止空間FAと重なる部分がないと判定されると、メインコントローラ165aは、遠隔操作装置12からの当該作業操作信号に応じて走行体110、ブーム130およびバケット152を作動させる制御を行う。一方、衝突判定部217において算出された走行体110、ブーム130およびバケット152の予測作動軌跡が禁止空間FAと重なる部分があると判定されると、当該作業操作信号に応じた走行体110、ブーム130およびバケット152の作動を規制して走行体110等が禁止空間FAに入らないように制御するようになっている。
上記禁止空間FAとしては様々な空間(区域)を設定することができる。例えば、作業室2内における他の設備や作業室2の壁部等を設定すれば、これらの設備や作業室2の壁部等にケーソンショベル100が接触することを防止することができる。また、作業室2の掘削地面において、掘削させたくない箇所を設定すれば、掘削許可範囲も自由に設定することができる。
以上説明したように、ケーソンショベル100は、掘削地面までの距離情報を取得する外界センサ206と、走行体110に対する外界センサ206に位置および情報取得方向を求めるための旋回角度センサ202とを備え、作業室2内の走行体110の位置、外界センサ206の位置および情報取得方向、並びに外界センサ206により取得された掘削地面までの距離情報に基づいて、掘削地面の3次元形状を求める地盤形状測定部213を備えて構成されている。そのため、従来の掘削機ではモニタに映し出された画像情報のみによって掘削地面の形状を認識していたのに対し、ケーソンショベル100では、地盤形状測定部213によって掘削表面の3次元形状を測定することができる。このように掘削地面の3次元形状を測定することができるため、その掘削地面の3次元形状に基づいて掘削位置(座標)および最適な掘削軌跡(掘り方)を自動的に選択して掘削作業を行うことが可能となり、掘削作業の効率を向上させることができる。
また、地盤形状測定部213が、求めた掘削地面の3次元形状に基づいて地盤形状マップを作成し、掘削地面を掘削して地面の形状が変化すると、当該掘削地面の3次元形状を再び求め、地盤形状マップにおいて掘削した箇所を修正するように構成されている。そのため、掘削作業中に常に修正された地盤形状マップに基づいて、次に掘削する位置および最適な掘削軌跡を自動的に選択して掘削作業を行うことができる。
これまで、本発明の実施形態について説明したが、本発明の範囲は上述の実施形態に限定されるものではない。例えば、上述の実施形態では、本発明に係る地形測定機をケーソンショベル100に適用した例について説明したが、本発明に係る地形測定機は、ブーム130等の掘削装置(作業装置)を備えていない構成としてもよい。また、ケーソンショベル100のような掘削機以外にも、天井部を移動して所定の作業を行う作業機に適用することもできる。
また、上述の実施形態では、ケーソンショベル100は作業室2の天井部に設けられた左右の走行レール4に取り付けられた走行移動するように構成されている。しかしながら、例えば、天井部に吸着可能な複数の脚部を備え、これらの脚部を移動させながら天井部に沿って移動するように構成された掘削機であってもよい。また、ケーソンショベル100はバケット152により掘削作業を行う構成であったが、バケット以外の掘削アタッチメントにより掘削作業を行う構成であってもよい。また、ケーソンショベル100では、外界センサ206が走行体110に設けられているが、外界センサ206はブーム130もしくはバケットアタッチメント150に設けられた構成であってもよい。
また、上述の実施形態では、地上遠隔操作室13内の遠隔操作装置12からの操作信号により、ブーム130およびバケットアタッチメント150を揺動させて掘削作業を行うように構成されている。しかしながら、ケーソンショベル100に作業者が搭乗可能な運転席を設け、その運転席から掘削作業の操作を行うように構成してもよい。また、上述の実施形態では、ニューマチックケーソン工法に使用されるケーソンショベル100について説明したが、本発明は、天井部に取り付けられて天井部に沿って移動する機械であれば、種々の機械において適用することができる。
100 掘削機(ケーソンショベル)
110 走行体(本体部)
130 ブーム(作業装置)
150 バケットアタッチメント(作業装置)
165 コントロールユニット
165a メインコントローラ(作業制御部)
165c ブーム・バケット用コントローラ(作業制御部)
201 走行体位置センサ(本体部位置センサ)
202 旋回角度センサ(姿勢センサ)
206 外界センサ
211 走行体位置測定部(本体部位置センサ)
213 地盤形状測定部

Claims (4)

  1. 作業室の天井に取り付けられ、前記天井に沿って移動する走行基部および、前記走行基部に旋回自在に設けられる旋回部を有する本体部と、
    前記旋回部に設けられ、所定の作業を行う作業装置と、
    前記天井における前記走行基部の位置を検出する本体部位置センサと、
    前記旋回部または前記作業装置に設けられ、前記作業室の地面までの距離情報を取得する外界センサと、
    前記走行基部に対する前記外界センサの位置および前記距離情報を取得する方向を検出する姿勢センサと、
    前記本体部位置センサ、前記姿勢センサおよび前記外界センサにより検出された前記走行基部の位置、前記外界センサの位置および前記距離情報を取得する方向、並びに前記作業室の地面までの距離情報から前記作業室の地面の3次元形状を求める地盤形状測定部とを備えることを特徴とする地形測定機。
  2. 前記地盤形状測定部は、求めた前記作業室の地面の3次元形状に基づいて、前記作業室の地面の地盤形状マップを作成することを特徴とする請求項1に記載の地形測定機。
  3. 前記地盤形状測定部は、前記作業室の地面の形状が変化すると、前記作業室の地面の3次元形状を再び求め、前記地盤形状マップにおける変化した箇所の3次元形状を修正することを特徴とする請求項2に記載の地形測定機。
  4. 記地盤形状測定部により求めた前記作業室の地面の3次元形状に応じて、前記作業装置を駆動させる制御を行う作業制御部とを備えることを特徴とする請求項1〜3のいずれかに記載の地形測定機。
JP2017023244A 2017-02-10 2017-02-10 地形測定機 Active JP6518271B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017023244A JP6518271B2 (ja) 2017-02-10 2017-02-10 地形測定機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017023244A JP6518271B2 (ja) 2017-02-10 2017-02-10 地形測定機

Publications (2)

Publication Number Publication Date
JP2018128422A JP2018128422A (ja) 2018-08-16
JP6518271B2 true JP6518271B2 (ja) 2019-05-22

Family

ID=63172683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023244A Active JP6518271B2 (ja) 2017-02-10 2017-02-10 地形測定機

Country Status (1)

Country Link
JP (1) JP6518271B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166673A1 (ja) * 2019-02-15 2020-08-20 住友重機械工業株式会社 ショベル
JP7330008B2 (ja) * 2019-07-31 2023-08-21 清水建設株式会社 掘削管理装置および方法
JP6846566B1 (ja) * 2020-10-13 2021-03-24 オリエンタル白石株式会社 動作制御システム
JP7180026B1 (ja) 2022-06-14 2022-11-29 オリエンタル白石株式会社 土山評価システム及びプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027598A (ja) * 2009-07-27 2011-02-10 Toyota Central R&D Labs Inc 環境認識装置及びそれを備えた移動体
JP2015229826A (ja) * 2014-06-03 2015-12-21 清水建設株式会社 ケーソン沈設管理システム及びケーソン沈設管理方法

Also Published As

Publication number Publication date
JP2018128422A (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
CN107709673B (zh) 作业机械的作业支援系统
JP6518271B2 (ja) 地形測定機
US10443214B2 (en) Control system for work vehicle, control method, and work vehicle
KR101862735B1 (ko) 작업 기계의 제어 장치, 작업 기계 및 작업 기계의 제어 방법
US7293376B2 (en) Grading control system
CN111902585A (zh) 挖土机
KR20200105651A (ko) 쇼벨 및 쇼벨의 관리시스템
WO2014167718A1 (ja) 建設機械の制御システム及び制御方法
KR101812127B1 (ko) 작업 차량의 제어 시스템, 제어 방법, 및 작업 차량
US8509999B2 (en) Abnormal operation detection device
WO2020049821A1 (ja) 作業機械
CN107882080A (zh) 挖掘机精细工作控制方法、系统及挖掘机
KR102666061B1 (ko) 작업 기계, 시스템 및 작업 기계의 제어 방법
US20210222405A1 (en) Intelligent hinged boom excavation systems
WO2022030289A1 (ja) 掘削情報処理装置、作業機械、掘削支援装置および掘削情報処理方法
JP6762881B2 (ja) 掘削機
US11174619B2 (en) System for controlling work vehicle, method for controlling work vehicle, and work vehicle
BR102018068360A2 (pt) Sistema para reposicionar uma retroescavadeira
KR102378264B1 (ko) 작업 기계
US20230243130A1 (en) Excavation plan creation device, working machine, and excavation plan creation method
JP2020002751A (ja) 作業機械
JP6858566B2 (ja) 作業機
WO2017061512A1 (ja) 施工方法、作業機械の制御システム及び作業機械
JP6915181B1 (ja) 刃口境界部判定システム及びプログラム
JP6846566B1 (ja) 動作制御システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190419

R150 Certificate of patent or registration of utility model

Ref document number: 6518271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250