WO2020166165A1 - 電池 - Google Patents

電池 Download PDF

Info

Publication number
WO2020166165A1
WO2020166165A1 PCT/JP2019/045584 JP2019045584W WO2020166165A1 WO 2020166165 A1 WO2020166165 A1 WO 2020166165A1 JP 2019045584 W JP2019045584 W JP 2019045584W WO 2020166165 A1 WO2020166165 A1 WO 2020166165A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte layer
layer
battery
active material
Prior art date
Application number
PCT/JP2019/045584
Other languages
English (en)
French (fr)
Inventor
覚 河瀬
西田 耕次
筒井 靖貴
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020572088A priority Critical patent/JP7429871B2/ja
Priority to CN201980082329.8A priority patent/CN113169300A/zh
Publication of WO2020166165A1 publication Critical patent/WO2020166165A1/ja
Priority to US17/375,109 priority patent/US20210344041A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to batteries.
  • Patent Document 1 discloses an all-solid battery including a negative electrode film forming step, a first solid electrolyte layer film forming step, a positive electrode film forming step, a second solid electrolyte layer film forming step, a laminating step, and a joining step. Is disclosed. In this manufacturing method, the first solid electrolyte layer and the second solid electrolyte layer are formed using a slurry-like composition containing a binder.
  • Patent Document 2 discloses a method for manufacturing an all-solid-state battery, including a step of joining a first stacked body and a second stacked body such that a first solid electrolyte and a second solid electrolyte layer overlap each other. Has been done.
  • the first laminate is formed by joining the positive electrode layer and the first solid electrolyte layer.
  • the second laminated body is formed by joining the negative electrode layer and the second solid electrolyte layer. Both the first solid electrolyte layer and the second solid electrolyte layer are formed using a slurry containing a solid electrolyte and a binder.
  • Patent Document 3 discloses a method for producing a solid electrolyte using a suspension obtained by reacting a solid electrolyte material in a solvent. Further disclosed is a battery containing a solid electrolyte made by this method.
  • the battery of the present disclosure is A first electrode, A first solid electrolyte layer in contact with the first electrode; A second electrode, A second solid electrolyte layer located between the second electrode and the first solid electrolyte layer and in contact with the second electrode and the first solid electrolyte layer;
  • the content of the organic compound in the first solid electrolyte layer is smaller than the content of the organic compound in the second solid electrolyte layer, and the thickness of the first solid electrolyte layer is smaller than the thickness of the second solid electrolyte layer. Is also small.
  • a battery having high reliability and high capacity can be realized.
  • FIG. 1 is a schematic sectional view showing an example of a battery according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic sectional view showing a first example of a stacked all-solid-state battery in which a plurality of batteries 1 shown in FIG. 1 are stacked.
  • FIG. 3 is a schematic cross-sectional view showing a second example of a stacked all-solid-state battery in which a plurality of batteries 1 shown in FIG. 1 are stacked.
  • FIG. 4 is a schematic cross-sectional view showing a third example of a stacked all-solid-state battery in which a plurality of batteries 1 shown in FIG. 1 are stacked.
  • FIG. 5 is a schematic cross-sectional view showing a fourth example of a stacked all-solid-state battery in which a plurality of batteries 1 shown in FIG. 1 are stacked.
  • the all-solid-state battery is configured, for example, by stacking a plurality of unit batteries that are basic constituent units.
  • the unit cell includes a first electrode, a second electrode, and a solid electrolyte layer located between the first electrode and the second electrode.
  • the unit battery is simply referred to as “battery”.
  • the important characteristics required for the solid electrolyte layer are to reduce the thickness for higher capacity and to prevent short circuit due to electrical contact between the first electrode and the second electrode.
  • the thinning of the solid electrolyte layer consisting of only one layer can be realized by reducing the particle size of the solid electrolyte material as a raw material.
  • the solid electrolyte material having a small particle size has a large specific surface area. Therefore, when a solid electrolyte material having a small particle size is used to form the solid electrolyte layer, the amount of an organic compound such as a binder required when slurrying the solid electrolyte material increases.
  • the present inventors have earnestly studied a solid electrolyte layer capable of realizing both of the above-mentioned important characteristics, and arrived at the battery of the present disclosure.
  • FIG. 1 is a schematic sectional view showing an example of a battery according to an embodiment of the present disclosure.
  • the battery 1 shown in FIG. 1 is a unit battery that is a basic unit configuration of a laminated all-solid-state battery 2 described later.
  • the battery 1 includes a first electrode 10, a first solid electrolyte layer 11, a second electrode 12, and a second solid electrolyte layer 13.
  • the first solid electrolyte layer 11 contacts the first electrode 10.
  • the second solid electrolyte layer 13 is located between the second electrode 12 and the first solid electrolyte layer 11.
  • the second solid electrolyte layer 13 is in contact with the second electrode 12 and the first solid electrolyte layer 11.
  • the content of the organic compound in the first solid electrolyte layer 11 is smaller than the content of the organic compound in the second solid electrolyte layer 13.
  • the thickness of the first solid electrolyte layer 11 is smaller than the thickness of the second solid electrolyte layer 13.
  • the content rate of the organic compound in the first solid electrolyte layer 11 is the content rate of the organic compound when the first solid electrolyte layer 11 contains only one type of organic compound. When a compound is contained, it is the sum of the content rates of the respective organic compounds.
  • the content rate of the organic compound in the second solid electrolyte layer 13 is the content rate of the organic compound when the second solid electrolyte layer 13 contains only one kind of organic compound, and the content rate of the plurality of kinds of organic compounds. When a compound is contained, it is the sum of the content rates of the respective organic compounds.
  • the presence of the organic compound in the solid electrolyte layer can be confirmed by, for example, performing energy dispersive X-ray analysis (EDX) on the cross section of the solid electrolyte layer.
  • EDX energy dispersive X-ray analysis
  • the content of the organic compound in the solid electrolyte layer can be obtained, for example, by thermogravimetric/differential thermal analysis (TG-DTA).
  • TG-DTA thermogravimetric/differential thermal analysis
  • infrared drying for example, on the solid electrolyte layer, which is a dry film
  • the organic compound contained in the solid electrolyte layer is burned off.
  • mass change of the solid electrolyte layer By measuring the mass change of the solid electrolyte layer at that time, the content rate of the organic compound in the solid electrolyte layer can be calculated.
  • FT-IR Fourier transform infrared spectroscopy
  • the thickness of the first solid electrolyte layer 11 and the thickness of the second solid electrolyte layer 13 may be an average value of values measured at arbitrary plural points (at least 3 points or more, for example, 3 points or 5 points). ..
  • the thickness of each solid electrolyte layer can be measured using a microscope image of a cut surface or a fracture surface. The microscope image is obtained by using a scanning electron microscope, a laser microscope, or an optical microscope. Further, the thickness of each layer other than each solid electrolyte layer is specified by the same method.
  • the battery 1 will be described in more detail below.
  • the first electrode 10 includes a first current collector 101 and a first active material layer 102.
  • the first active material layer 102 is disposed on the first current collector 101 and is in contact with the first current collector 101.
  • the first solid electrolyte layer 11 may cover the surface of the first active material layer 102 arranged on the first current collector 101. In other words, the first solid electrolyte layer 11 may cover the surface of the first active material layer 102 excluding the interface between the first current collector 101 and the first active material layer 102.
  • the thickness of the first solid electrolyte layer 11 that covers the surface of the first active material layer 102 may be, for example, 5 ⁇ m or less.
  • the first solid electrolyte layer 11 may cover the entire surface of the first active material layer 102 except for the interface between the first current collector 101 and the first active material layer 102.
  • the first solid electrolyte layer 11 covers the entire surface of the first active material layer 102 except the interface between the first current collector 101 and the first active material layer 102.
  • the configuration is shown.
  • the first solid electrolyte layer 11 may be provided between the first electrode 10 and the second solid electrolyte layer 13. Therefore, the first solid electrolyte layer 11 may not cover the entire side surface of the first active material layer 102.
  • the second electrode 12 includes a second current collector 121 and a second active material layer 122.
  • the second active material layer 122 is disposed on the second current collector 121 and is in contact with the second current collector 121.
  • the second solid electrolyte layer 13 may cover the surface of the second active material layer 122.
  • the second solid electrolyte layer 13 may cover the surface of the second active material layer 122 excluding the interface between the second current collector 121 and the second active material layer 122.
  • the second solid electrolyte layer 13 may cover the entire surface of the second active material layer 122 except for the interface between the second current collector 121 and the second active material layer 122.
  • the second solid electrolyte layer 13 covers the entire surface of the second active material layer 122 except the interface between the second current collector 121 and the second active material layer 122.
  • the configuration is shown.
  • the second solid electrolyte layer 13 may be provided between the second electrode 12 and the first solid electrolyte layer 11. Therefore, the second solid electrolyte layer 13 may not cover the entire side surface of the second active material layer 122.
  • the battery 1 has a configuration in which the first electrode 10 and the second electrode 12 are arranged to face each other with the first solid electrolyte layer 11 and the second solid electrolyte layer 13 interposed therebetween.
  • the solid electrolyte layer of the battery 1 is composed of both the first solid electrolyte layer 11 and the second solid electrolyte layer 13.
  • the sum of the thickness of the first solid electrolyte layer 11 and the thickness of the second solid electrolyte layer 13 should be (i) small to increase the capacity of the battery, and (ii) the first active material layer 102 and the first active material layer 102.
  • the important characteristic of suppressing a short circuit due to electrical contact with the second active material layer 122 is required.
  • the first solid electrolyte layer 11 for the purpose of only driving the battery 1, a single layer formation of only the first solid electrolyte layer 11 or the second solid electrolyte layer 13 may be formed.
  • the first solid electrolyte layer 11 in view of stably achieving both of the required characteristics (i) and (ii), further considering the possibility of defects in the solid electrolyte layer, the first solid electrolyte layer 11 Alternatively, it is considered undesirable to form the solid electrolyte layer with only one of the second solid electrolyte layers 13.
  • a solid electrolyte material having a small particle size is used to form the solid electrolyte layer thinly.
  • the amount of the organic compound such as the binder required when the solid electrolyte material is slurried is increased, and the formed solid electrolyte layer contains a large amount of the organic compound as a whole.
  • the solid electrolyte layer has a high electric resistance throughout.
  • thinning also increases the possibility that defects such as pinholes will occur throughout the solid electrolyte layer. Therefore, the mere thinning of the single-layer solid electrolyte layer may rather deteriorate the characteristics, that is, it may be difficult to suppress a short circuit, and the capacity may be reduced.
  • the solid electrolyte layer includes two layers, a first solid electrolyte layer 11 and a second solid electrolyte layer 13. Furthermore, the first solid electrolyte layer 11 is thinner than the second solid electrolyte layer 13, and the content of the organic compound is smaller than the content of the organic compound in the second solid electrolyte layer 13. Therefore, the first solid electrolyte layer 11 can realize the thinning of the entire solid electrolyte layer, and further does not cause the deterioration of the characteristics due to the increase of the content rate of the organic compound.
  • the second solid electrolyte layer 13 improves the function of suppressing the short circuit of the entire solid electrolyte layer.
  • the solid electrolyte layer of the battery 1 is less likely to include a defect such as a pinhole and the first solid electrolyte layer 11 that realizes thinning without increasing the content of the organic compound, and can sufficiently suppress the short circuit.
  • the second solid electrolyte layer 13 is included. Therefore, the battery 1 can stably realize both of the required characteristics (i) and (ii).
  • the solid electrolyte layer when the solid electrolyte layer includes three or more layers, the solid electrolyte layer becomes thick, and thus it is not possible to stably realize both the required characteristics (i) and (ii). In addition, when the solid electrolyte layer includes three or more layers, the number of different interfaces in the solid electrolyte layer increases, and thus it is not possible to stably achieve both of the required characteristics (i) and (ii).
  • the thickness of the first solid electrolyte layer 11 may be 0.5 ⁇ m or more and 5 ⁇ m or less, or 1 ⁇ m or more and 3 ⁇ m or less.
  • the content of the organic compound in the first solid electrolyte layer 11 may be 0.5% by mass or less.
  • the organic compound contained in the first solid electrolyte layer 11 is 0.5% by mass or less, it is possible to reduce the thickness of the entire solid electrolyte layer without increasing the electric resistance. Therefore, according to this configuration, the battery 1 can more stably realize both the required characteristics (i) and (ii).
  • the first solid electrolyte layer 11 may not contain an organic compound.
  • the battery 1 can more stably realize both the required characteristics (i) and (ii).
  • the fact that the first solid electrolyte layer 11 does not contain an organic compound means that the organic compound is not intentionally used to form the first solid electrolyte layer 11. Therefore, for example, the used material inevitably contains a small amount of an organic compound, and as a result, a very small amount, for example, 0.2 mass% or less of the organic compound remains in the formed first solid electrolyte layer 11. If so, it is understood that the first solid electrolyte layer 11 does not contain an organic compound.
  • the thickness of the second solid electrolyte layer 13 may be 3 ⁇ m or more and 50 ⁇ m or less, or 5 ⁇ m or more and 30 ⁇ m or less.
  • the second solid electrolyte layer 13 has a thickness of 3 ⁇ m or more, it is possible to more reliably suppress the occurrence of an electrical short circuit.
  • the second solid electrolyte layer 13 has a thickness of 50 ⁇ m or less, it is possible to realize a high capacity of the battery 1.
  • the first electrode 10 is a negative electrode
  • the first solid electrolyte layer 11 is a negative electrode side solid electrolyte layer
  • the second electrode 12 is a positive electrode
  • the second solid electrolyte layer 13 is a positive electrode side solid electrolyte layer.
  • a case will be described as an example.
  • a negative electrode and a positive electrode used in a known all-solid-state battery for example, a lithium ion battery
  • a known all-solid-state battery for example, a lithium ion battery
  • the first current collector 101 a negative electrode current collector used in a known all-solid-state battery (for example, a lithium ion battery) can be applied.
  • a negative electrode current collector used in a known all-solid-state battery for example, a lithium ion battery
  • Cu foil, Al foil, SUS foil, etc. may be used.
  • the thickness of the first current collector 101 may be, for example, 5 ⁇ m or more and 100 ⁇ m or less.
  • a negative electrode active material used in a known all-solid-state battery for example, a lithium ion battery
  • known negative electrode active materials such as graphite and metallic Li can be used.
  • the active material used for the first active material layer 102 is not limited to this, and various materials that can release and insert ions such as Li or Mg can be used.
  • any solid electrolyte such as a sulfide solid electrolyte and an oxide solid electrolyte may be mentioned.
  • the sulfide solid electrolyte for example, a mixture of Li 2 S:P 2 S 5 can be used.
  • the first active material layer 102 may further contain a conductive auxiliary material such as acetylene black, and a binder for binding such as polyvinylidene fluoride.
  • the thickness of the first active material layer 102 may be, for example, 5 ⁇ m or more and 300 ⁇ m or less.
  • the second current collector 121 a positive electrode current collector used in a known all-solid-state battery (for example, a lithium ion battery) can be applied.
  • a positive electrode current collector used in a known all-solid-state battery for example, a lithium ion battery
  • Cu foil, Al foil, SUS foil, etc. may be used.
  • the thickness of the second current collector 121 may be, for example, 5 ⁇ m or more and 100 ⁇ m or less.
  • a positive electrode active material used in known all-solid-state batteries for example, lithium ion batteries
  • known positive electrode active materials such as lithium cobalt oxide and LiNO can be used.
  • the active material material used for the second active material layer 122 is not limited to this, and various materials that can release and insert ions such as Li or Mg can be used.
  • any solid electrolyte such as a sulfide solid electrolyte and an oxide solid electrolyte may be mentioned.
  • the sulfide solid electrolyte for example, a mixture of Li 2 S:P 2 S 5 can be used.
  • the second active material layer 122 may further contain a conductive auxiliary material such as acetylene black, and a binder for binding such as polyvinylidene fluoride.
  • the thickness of the second active material layer 122 may be, for example, 5 ⁇ m or more and 300 ⁇ m or less.
  • any solid electrolyte material such as a sulfide solid electrolyte, a halogen-based solid electrolyte, and an oxide solid electrolyte can be used.
  • a sulfide solid electrolyte for example, a mixture of Li 2 S:P 2 S 5 can be used.
  • a slurry-like coating material for forming the first solid electrolyte layer 11 a solution obtained by reacting the solid electrolyte material in a solvent to form an emulsion can be used.
  • Patent Document 3 discloses a method of synthesizing a solid electrolyte material in the form of an emulsion in a solvent.
  • the solution obtained by synthesizing the solid electrolyte material in the form of an emulsion in a solvent is referred to as "emulsion solution”.
  • emulsion solution As a slurry-like coating material for forming the first solid electrolyte layer 11, for example, it has a thickness of 0.5 ⁇ m or more and 5 ⁇ m or less and the content of the organic compound is 0.5 mass. It is possible to manufacture the first solid electrolyte layer 11 that is thin and has a small content of the organic compound such that the content of the first solid electrolyte layer 11 is not more than %.
  • a solid electrolyte material powder having an average particle size of 0.5 ⁇ m or less may be used.
  • a solid electrolyte material having a small particle size has a large specific surface area. Therefore, when a solid electrolyte material having such a small particle size is slurried by a usual method, the amount of an organic compound such as a binder necessary for slurrying increases. Such an increase in the amount of the organic compound causes an increase in the electric resistance of the solid electrolyte layer, which makes it difficult to increase the capacity and output of the battery.
  • the solid electrolyte material powder having an average particle size of 0.5 ⁇ m or more and 20 ⁇ m or less is used to make the first solid electrolyte layer 11 0.5 ⁇ m or more.
  • the thickness is 5 ⁇ m or less, it becomes difficult to sufficiently fill the solid electrolyte material powder, and it is difficult to suppress the short circuit by the solid electrolyte layer.
  • an organic compound such as a binder is used to obtain a slurry-like coating material even when a solid electrolyte material having a small particle size is used. No need to increase. Therefore, the first solid electrolyte layer 11 that is thin and has a low content of the organic compound can be manufactured.
  • the average particle size of the solid electrolyte material is D50 (that is, the median diameter of the volume distribution) evaluated from the volume particle size distribution measured by the laser diffraction scattering type particle size distribution measuring device.
  • the first solid electrolyte layer 11 may contain an organic compound.
  • flexibility is imparted to the first solid electrolyte layer 11 in the step of forming the first solid electrolyte layer 11 so as to cover the first active material layer 102. Therefore, it becomes easy to form the first solid electrolyte layer 11 having few defects.
  • the first solid electrolyte layer 11 contains an organic compound, it is possible to develop the bonding adhesion between the first solid electrolyte layer 11 and the second solid electrolyte layer 13.
  • the content rate of the organic compound contained in the first solid electrolyte layer 11 may be, for example, within a range of 0.5% by mass or less.
  • the first solid electrolyte layer 11 can be produced by a method other than the method using the emulsion solution described above.
  • the first solid electrolyte layer 11 can be produced by using a dispersion liquid in which fine particles of a solid electrolyte material having an average particle diameter of 0.2 ⁇ m or less are dispersed in a dispersion medium as a paint.
  • any solid electrolyte material such as a sulfide solid electrolyte, a halogen-based solid electrolyte, and an oxide solid electrolyte can be used.
  • a sulfide solid electrolyte for example, a mixture of Li 2 S:P 2 S 5 can be used.
  • powder having an average particle size of 0.5 ⁇ m or more and 20 ⁇ m or less can be used as the solid electrolyte material.
  • a powdery solid electrolyte material is kneaded together with a solvent using an organic compound such as polyvinylidene fluoride and an elastomer to prepare a slurry-like paint, and the paint is formed on the second active material layer 122 and the second active material.
  • the second solid electrolyte layer 13 can be formed by applying so as to cover the layer 122.
  • the slurry-like coating material used for forming the second solid electrolyte layer 13 contains the organic compound in an amount of 0.5% by mass or more and 10% by mass or less of the total solid content, if necessary. Good.
  • the amount of the organic compound is 0.5% by mass or more, the thickness of the second solid electrolyte layer 13 can be sufficiently maintained, and thus the function of suppressing the electrical short circuit of the entire solid electrolyte layer is improved.
  • the content of the organic compound is 10% by mass or less, the increase in electric resistance due to the organic compound can be suppressed, and thus the battery can have a high capacity and a high output.
  • the thickness of the second solid electrolyte layer 13 is larger than that of the first solid electrolyte layer 11, and the content of the organic compound is larger than that of the first solid electrolyte layer 11.
  • the battery 1 is provided with a sealing member outside the power generation element and in a region sandwiched between the first current collector 101 and the second current collector 121. It may be.
  • the power generation element is the first active material layer 102, the first solid electrolyte layer 11, the second active material layer 122, and the second solid electrolyte layer 13.
  • the sealing member may have an insulating property. The sealing member can prevent moisture from entering the inside of the battery 1, and can maintain the structure of the battery 1 to prevent a short circuit due to contact between the first current collector 101 and the second current collector 121. it can. As a result, the mechanical strength of the battery 1 can be secured.
  • the sealing material that constitutes the sealing member for example, a thermoplastic resin can be used. By using a thermoplastic resin, the range of material selection is expanded. Furthermore, a thermosetting resin and a photocurable resin may be used as the sealing material. These may be used alone or in combination of two or more. When the glass transition temperature of the sealing material is sufficiently high, the sealing strength of the sealing member can be sufficiently maintained.
  • the sealing material may include functional powders and other materials such as fibers. Other materials include inorganic fillers, silica gel, and the like. Inorganic fillers can enhance structure retention. Silica gel can enhance water resistance. These functional powders or fibers may be used alone or in combination of two or more.
  • the manufacturing method of the battery of the present disclosure is not limited to this.
  • first current collector 101 Materials that can be used for the first current collector 101, the first active material layer 102, the second current collector 121, the second active material layer 122, the first solid electrolyte layer 11, and the second solid electrolyte layer 13 are As described above.
  • a slurry-like coating material is prepared by kneading the material contained in the first active material layer 102 together with a solvent.
  • a solvent it is possible to use a known solvent that is used when forming a negative electrode active material layer of a known all-solid-state battery (for example, a lithium ion battery).
  • the first active material layer 102 is formed by applying the produced coating material on the first current collector 101 and drying the coating film. The obtained dried film may be pressed in order to increase the density of the first active material layer 102. Thereby, the first electrode 10 in which the first active material layer 102 in contact with the first current collector 101 is provided on the first current collector 101 is obtained.
  • the first electrode 10 may have a larger area than the second electrode 12. According to this configuration, it is possible to prevent problems caused by precipitation of Li or Mg.
  • the first solid electrolyte layer 11 is formed on the first active material layer 102 of the first electrode 10.
  • the first solid electrolyte layer 11 having a thickness of 0.5 ⁇ m or more and 5 ⁇ m or less is formed, as described above, the emulsion solution of the solid electrolyte material forming the first solid electrolyte layer 11 is added to the first solid electrolyte. It can be used as a paint for forming the layer 11.
  • the coating material for forming the first solid electrolyte layer 11 contains an organic compound in an amount of 0.5% by mass or less based on the total solid content. May be included in.
  • a coating method such as a die coating method, a doctor blade method, a roll coater method, a screen printing method, and an inkjet method is applied, but is not limited to these methods. ..
  • a spray method and an inkjet method may be used.
  • the first electrode-side laminated body in which the first solid electrolyte layer 11 is formed on the first electrode 10 can be obtained.
  • a slurry coating material is prepared by kneading the material contained in the second active material layer 122 together with a solvent.
  • a solvent a known solvent used when producing a positive electrode active material layer of a known all-solid-state battery (for example, a lithium ion battery) can be used.
  • the second active material layer 122 is formed by applying the produced coating material onto the second current collector 121 and drying the coating film. The obtained dry film may be pressed in order to increase the density of the second active material layer 122. Thereby, the second electrode 12 in which the second active material layer 122 that is in contact with the second current collector 121 is provided on the second current collector 121 is obtained.
  • the second solid electrolyte layer 13 is formed on the second active material layer 122 of the second electrode 12.
  • the solid electrolyte material for forming the second solid electrolyte layer 13 has, for example, an average particle size of 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the powder of can be used.
  • a powder of the solid electrolyte material of the second solid electrolyte layer 13, an organic compound such as polyvinylidene fluoride and an elastomer, and a solvent are mixed to prepare a slurry-like coating material.
  • the prepared coating material is applied onto the second active material layer 122, and the coating film is dried, whereby the second solid electrolyte layer 13 is formed.
  • the second solid electrolyte layer 13 is formed, for example, so as to cover the surface of the second active material layer 122.
  • the above-mentioned coating material used for forming the second solid electrolyte layer 13 may contain the above-mentioned organic compound in the range of 0.5% by mass or more and 10% by mass or less of the total solid content, if necessary. ..
  • the organic compound is contained in an amount of 0.5% by mass or more based on the entire solid content, whereby the thickness of the second solid electrolyte layer 13 can be sufficiently maintained, so that the electrical short circuit of the entire solid electrolyte layer can be suppressed. The function is improved.
  • the organic compound is contained in an amount of 10% by mass or less based on the total solid content, so that an increase in the electric resistance of the second solid electrolyte layer 13 can be suppressed, so that the capacity and output of the battery can be increased.
  • a coating method such as a die coating method, a doctor blade method, a roll coater method, and a screen printing method is applied to the formation of the second solid electrolyte layer 13, but is not limited to these methods.
  • the second electrode side laminated body in which the second solid electrolyte layer 13 is formed on the second electrode 12 can be obtained.
  • the battery 1 can be obtained by bonding the first electrode-side laminate and the second electrode-side laminate so that the first solid electrolyte layer 11 and the second solid electrolyte layer 13 face each other. ..
  • the first electrode 10 is a negative electrode and the second electrode 12 is a positive electrode.
  • the first electrode 10 is a positive electrode and the second electrode 12 is a positive electrode. It may be a negative electrode.
  • the solid electrolyte layer located on the positive electrode side becomes the first solid electrolyte layer 11, and the solid electrolyte layer located on the negative electrode side becomes the second solid electrolyte layer 13. Therefore, the solid electrolyte layer located on the positive electrode side has a smaller thickness than the solid electrolyte layer located on the negative electrode side, and the solid electrolyte layer located on the positive electrode side is more solid than the solid electrolyte layer located on the negative electrode side.
  • the battery of this embodiment may constitute a laminated all-solid-state battery.
  • the all-solid-state battery can be constructed by stacking a plurality of the batteries of this embodiment as a unit battery that is a basic constituent unit.
  • FIG. 2 is a schematic cross-sectional view showing a first example of a stacked all-solid-state battery in which a plurality of batteries 1 shown in FIG. 1 are stacked.
  • the laminated all-solid-state battery 2 of the first example two adjacent batteries 1 are joined to each other by the first current collector 101 of one battery 1 and the second current collector 121 of the other battery 1.
  • the laminated all-solid-state battery 2 of the first example is a laminated battery in which a plurality of batteries 1 are electrically connected in series.
  • the first current collector 101 and the second current collector 121 may be directly bonded or may be bonded using a conductive adhesive or a welding method.
  • FIG. 3 is a schematic sectional view showing a second example of a stacked all-solid-state battery in which a plurality of batteries 1 shown in FIG. 1 are stacked.
  • the laminated all-solid-state battery 3 of the second example two adjacent batteries 1 are joined to each other by the first current collector 101 of one battery 1 and the first current collector 101 of the other battery 1, and The second current collector 121 of the one battery 1 and the second current collector 121 of the other battery 1 are joined to be stacked. That is, the laminated all-solid-state battery 3 of the second example is a laminated battery in which a plurality of batteries 1 are electrically connected in parallel.
  • the first current collectors 101 and the second current collectors 121 may be directly bonded to each other, or may be bonded using a conductive adhesive or a welding method.
  • FIG. 4 is a schematic cross-sectional view showing a third example of a stacked all-solid-state battery in which a plurality of batteries 1 shown in FIG. 1 are stacked.
  • the laminated all-solid-state battery 4 of the third example is similar to the laminated all-solid-state battery 3 shown in FIG. 3 in which two adjacent batteries 1 share one first current collector 101 and are adjacent to each other.
  • One battery 1 has a configuration in which one second current collector 121 is shared.
  • the laminated all-solid-state battery 4 of the third example is a laminated battery in which a plurality of batteries 1 are electrically connected in parallel.
  • the laminated all-solid-state battery 4 can be formed by the following method, for example.
  • An active material layer 122 and a second member on which the second solid electrolyte layer 13 is formed are prepared.
  • a plurality of batteries 1 are stacked as shown in FIG. Stacked batteries may be formed.
  • the active material layer and the solid electrolyte layer are formed on only one surface of the first current collector 101 or the second current collector 121 arranged at the upper end or the lower end of the stacked all-solid-state battery 4.
  • a first active material layer 102, a first solid electrolyte layer 11, a second solid electrolyte layer 13, and a second active material layer 122 are sequentially stacked on the upper surface of the first current collector 101.
  • the second active material layer 122, the second solid electrolyte layer 13, the first solid electrolyte layer 11, and the first active material layer 102 are sequentially stacked on the upper surface of the second current collector 121.
  • a member may be prepared, and a method of laminating the first member and the second member may be used. Also by this method, a laminated battery in which a plurality of batteries 1 are laminated as shown in FIG. 4 can be formed.
  • FIG. 5 is a schematic sectional view showing a fourth example of a stacked all-solid-state battery in which a plurality of batteries 1 shown in FIG. 1 are stacked.
  • the laminated all-solid-state battery 5 of the fourth example is different from the laminated all-solid-state battery 2 shown in FIG. 2 in that the first current collector 101 and the second current collector 121 of two adjacent batteries 1 are one. It has a configuration in which the current collector is shared.
  • the laminated all-solid-state battery 5 of the fourth example is a laminated battery in which a plurality of batteries 1 are electrically connected in series, like the laminated all-solid battery 2 of the first example.
  • the laminated all-solid-state battery 5 can be formed, for example, by the following method.
  • the first active material layer 102 and the first solid electrolyte layer 11 are formed on the lower surface of the current collector, and the second active material layer 122 and the second solid electrolyte layer 13 are formed on the upper surface of the first current collector 101.
  • a plurality of such members are prepared, and the plurality of members are bonded so that the first solid electrolyte layer 11 and the second solid electrolyte layer 13 face each other. Thereby, a laminated battery in which a plurality of batteries 1 are laminated as shown in FIG. 5 can be formed.
  • the first current collector 101 or the second current collector 121 is arranged at the upper end or the lower end of the stacked all-solid-state battery 5.
  • a member in which the first active material layer 102, the first solid electrolyte layer 11, the second solid electrolyte layer 13, and the second active material layer 122 are sequentially stacked on the upper surface of the first current collector 101 is used.
  • a method of preparing a plurality of layers and stacking these members may be used. Note that in the stacked state, the first current collector 101 can function as the second current collector 121. Also by this method, a laminated battery in which a plurality of batteries 1 are laminated as shown in FIG. 5 can be formed.
  • the battery of the present disclosure is not limited thereto.
  • the present disclosure is widely applicable to batteries having excellent reliability and good capacity characteristics.
  • the battery of the present disclosure can be suitably used for various electronic devices, electric appliance devices, electric vehicles, and the like.

Abstract

電池1は、第1電極10と、第1電極10と接する第1固体電解質層11と、第2電極12と、第2電極12と第1固体電解質層11との間に位置し、第2電極12および第1固体電解質層11と接する第2固体電解質層13と、を備える。第1固体電解質層11における有機化合物の含有率は、第2固体電解質層13における有機化合物の含有率よりも小さく、かつ、第1固体電解質層11の厚みは、第2固体電解質層13の厚みよりも小さい。

Description

電池
 本開示は、電池に関する。
 特許文献1には、負極製膜工程と、第1固体電解質層製膜工程と、正極製膜工程と、第2固体電解質層製膜工程と、積層工程と、接合工程とを含む全固体電池の製造方法が開示されている。この製造方法では、第1固体電解質層および第2固体電解質層は、バインダーを含むスラリー状の組成物を用いて形成される。
 特許文献2には、第1の固体電解質と第2の固体電解質層とが重なり合うように第1の積層体と第2の積層体とを接合する工程を含む、全固体電池の製造方法が開示されている。この製造方法では、第1の積層体は、正極層と第1の固体電解質層とが接合されることによって形成されている。第2の積層体は、負極層と第2の固体電解質層とが接合されることによって形成されている。第1の固体電解質層および第2の固体電解質層は、共に、固体電解質およびバインダーを含むスラリーを用いて形成される。
 特許文献3には、固体電解質材料を溶媒中で接触反応させることによって得られたサスペンジョンを用いて、固体電解質を作製する方法が開示されている。さらに、この方法で作製された固体電解質を含む電池が開示されている。
特許第6175934号公報 特開2015-118870号公報 特開2016-117640号公報
 従来技術においては、電池の信頼性および容量の向上が望まれる。
 本開示の電池は、
 第1電極と、
 前記第1電極と接する第1固体電解質層と、
 第2電極と、
 前記第2電極と前記第1固体電解質層との間に位置し、前記第2電極および前記第1固体電解質層と接する第2固体電解質層と、を備え、
 前記第1固体電解質層における有機化合物の含有率は、前記第2固体電解質層における有機化合物の含有率よりも小さく、かつ
 前記第1固体電解質層の厚みは、前記第2固体電解質層の厚みよりも小さい。
 本開示によれば、高信頼性および高容量を有する電池を実現できる。
図1は、本開示の一実施形態に係る電池の一例を示す断面模式図である。 図2は、図1に示された電池1が複数積層された積層型全固体電池の第一の例を示す断面模式図である。 図3は、図1に示された電池1が複数積層された積層型全固体電池の第二の例を示す断面模式図である。 図4は、図1に示された電池1が複数積層された積層型全固体電池の第三の例を示す断面模式図である。 図5は、図1に示された電池1が複数積層された積層型全固体電池の第四の例を示す断面模式図である。
 (本開示に至った知見)
 全固体電池は、たとえば、基本構成単位である単位電池が複数積層されることによって構成されている。単位電池は、第1電極と、第2電極と、第1電極と第2電極との間に位置する固体電解質層と、を備える。以下、単位電池は、単に「電池」と記載される。
 固体電解質層に要求される重要な特性は、高容量化のために厚さを薄くすること、および、第1電極と第2電極との電気的な接触による短絡を抑制することである。たとえば、一層のみからなる固体電解質層の薄層化は、原料となる固体電解質材料の粒径を小さくすることによって実現可能である。しかし、粒径が小さい固体電解質材料は、比表面積が大きい。したがって、固体電解質層を形成するために粒径が小さい固体電解質材料を用いる場合、固体電解質材料をスラリー化する際に必要なバインダーなどの有機化合物の量が増加する。有機化合物の増加は、固体電解質層の電気的抵抗の増加の要因となり、電池の高容量化および高出力化が困難となる。さらに、固体電解質層の薄層化は、たとえばピンホールのような欠陥を固体電解質層に生じさせる可能性を高める。これらの理由から、固体電解質層の薄層化は、高容量化、および、固体電解質層における短絡抑制を困難とする。
 本発明者らは、上記の重要な特性の両方を実現しうる固体電解質層について鋭意検討を行い、本開示の電池に到達した。
 (実施形態)
 本開示の一態様を示す電池について、以下に図面を用いて説明する。なお、本開示における電池は、以下の態様に限定されるものではない。同一または類似の構成要素については、同一の符号を付してその説明を省略する場合がある。
 図1は、本開示の一実施形態に係る電池の一例を示す断面模式図である。図1に示された電池1は、後述の積層型全固体電池2の基本単位構成である単位電池である。電池1は、第1電極10、第1固体電解質層11、第2電極12、および第2固体電解質層13を備える。第1固体電解質層11は、第1電極10と接する。第2固体電解質層13は、第2電極12と第1固体電解質層11との間に位置する。第2固体電解質層13は、第2電極12および第1固体電解質層11と接している。第1固体電解質層11における有機化合物の含有率は、第2固体電解質層13における有機化合物の含有率よりも小さい。第1固体電解質層11の厚みは、第2固体電解質層13の厚みよりも小さい。
 なお、第1固体電解質層11における有機化合物の含有率とは、第1固体電解質層11に1種類の有機化合物のみが含まれている場合はその有機化合物の含有率であり、複数種の有機化合物が含まれている場合はそれぞれの有機化合物の含有率の合計である。また、第2固体電解質層13における有機化合物の含有率とは、第2固体電解質層13に1種類の有機化合物のみが含まれている場合はその有機化合物の含有率であり、複数種の有機化合物が含まれている場合はそれぞれの有機化合物の含有率の合計である。
 ここで、固体電解質層に有機化合物が含まれることは、たとえば、固体電解質層の断面に対してエネルギー分散型X線分析(EDX)を行うことで確認できる。
 また、固体電解質層における有機化合物の含有率は、例えば、熱重量・示差熱同時分析法(TG-DTA)により得られる。乾燥膜である固体電解質層に対して、例えば赤外線乾燥を行うことで、固体電解質層に含有される有機化合物が焼き飛ばされる。その際の固体電解質層の質量変化を測定することで、固体電解質層における有機化合物の含有率を計算することができる。なお、代替方法としては、例えば、フーリエ変換赤外分光法(FT-IR)が挙げられる。
 また、第1固体電解質層11の厚みおよび第2固体電解質層13の厚みは、任意の複数の点(少なくとも3点以上、たとえば3点または5点)で測定された値の平均値でありうる。各固体電解質層の厚みは、切断面または破断面の顕微鏡像を用いて測定されうる。顕微鏡像は、走査型電子顕微鏡、レーザー顕微鏡、または光学顕微鏡を用いて得られる。また、各固体電解質層以外の各層の厚みについても、同様の方法で特定される。
 以下、電池1についてより詳しく説明する。
 第1電極10は、第1集電体101と、第1活物質層102とを備える。第1活物質層102は、第1集電体101上に配置され、かつ第1集電体101と接している。第1固体電解質層11は、第1集電体101上に配置されている第1活物質層102の表面を被覆していてもよい。換言すると、第1固体電解質層11は、第1集電体101と第1活物質層102との界面を除いた第1活物質層102の表面を、被覆していてもよい。第1活物質層102の表面を被覆する第1固体電解質層11の厚みは、たとえば5μm以下であってもよい。第1固体電解質層11が第1活物質層102の表面を被覆する構成によれば、電気的短絡の発生をより確実に抑制できる。第1固体電解質層11は、第1集電体101と第1活物質層102との界面を除いた第1活物質層102の表面の全てを被覆していてもよい。なお、図1には、一例として、第1固体電解質層11が、第1集電体101と第1活物質層102との界面を除いた第1活物質層102の全ての表面を被覆する構成が示されている。しかし、第1固体電解質層11は、第1電極10と第2固体電解質層13との間に設けられていればよい。したがって、第1固体電解質層11は、第1活物質層102の側面全体を被覆していなくてもよい。
 第2電極12は、第2集電体121と、第2活物質層122とを備える。第2活物質層122は、第2集電体121上に配置され、かつ第2集電体121と接している。たとえば、第2固体電解質層13は、第2活物質層122の表面を被覆していてもよい。換言すると、第2固体電解質層13は、第2集電体121と第2活物質層122との界面を除いた第2活物質層122の表面を、被覆していてもよい。第2固体電解質層13は、第2集電体121と第2活物質層122との界面を除いた第2活物質層122の表面の全てを被覆していてもよい。なお、図1には、一例として、第2固体電解質層13が、第2集電体121と第2活物質層122との界面を除いた第2活物質層122の全ての表面を被覆する構成が示されている。しかし、第2固体電解質層13は、第2電極12と第1固体電解質層11との間に設けられていればよい。したがって、第2固体電解質層13は、第2活物質層122の側面全体を被覆していなくてもよい。
 電池1は、換言すると、第1電極10と第2電極12とが、第1固体電解質層11および第2固体電解質層13を介して対向して配置された構成を有する。また、電池1の固体電解質層は、第1固体電解質層11および第2固体電解質層13の両方によって構成されている。第1固体電解質層11の厚みと第2固体電解質層13の厚みとの総和には、(i)電池の高容量化のために小さくすること、および(ii)第1活物質層102と第2活物質層122との電気的な接触による短絡を抑制すること、の重要な特性が要求される。
 なお、電池1を駆動させるためだけであれば、第1固体電解質層11または第2固体電解質層13のいずれかのみの単層形成でもよい。しかし、電池1について、上記要求特性の(i)および(ii)の両立を安定的に実現することを鑑み、さらに固体電解質層の欠陥発生の可能性などを考慮すると、第1固体電解質層11または第2固体電解質層13のいずれかのみでの固体電解質層を形成することは望ましくないと考えられる。たとえば、固体電解質層が単層で構成される場合、当該固体電解質層を薄く形成するためには、粒径が小さい固体電解質材料を使用することになる。その場合、上述のとおり、固体電解質材料をスラリー化する際に必要なバインダーなどの有機化合物の量が増加し、形成される固体電解質層は、全体的に有機化合物を多く含むものとなる。その結果、固体電解質層は、全体に渡って電気的抵抗が高いものとなる。さらに、薄層化によって、固体電解質層の全体に渡って、ピンホールのような欠陥が生じる可能性も高くなる。したがって、単層の固体電解質層の単なる薄層化は、かえって特性を低下させる、すなわち短絡抑制を困難にする、および、容量の低下を引き起こす可能性がある。
 本実施形態における電池1では、固体電解質層は、第1固体電解質層11および第2固体電解質層13の2つの層を含んでいる。さらに、第1固体電解質層11は、第2固体電解質層13よりも薄く、かつ有機化合物の含有率が第2固体電解質層13における有機化合物の含有率よりも小さい。したがって、第1固体電解質層11は、固体電解質層全体の薄層化を実現させることができ、さらに有機化合物の含有率の増加による特性の低下も生じさせない。さらに、より大きい厚さを有する第2固体電解質層13の作製には、薄層化のために粒径が小さい固体電解質材料を用いる必要がないため、ピンホールのような欠陥が生じる可能性が低い。したがって、第2固体電解質層13により、固体電解質層全体の短絡抑制の機能が向上する。このように、電池1の固体電解質層は、有機化合物の含有率を高めることなく薄層化を実現する第1固体電解質層11と、ピンホールのような欠陥が含まれにくく十分に短絡抑制できる第2固体電解質層13とを含む。したがって、電池1は、上記要求特性の(i)および(ii)の両立を安定的に実現することができる。なお、固体電解質層が3つ以上の層を含む場合、固体電解質層が厚くなるため、上記要求特性の(i)および(ii)の両立を安定的に実現することができない。また、固体電解質層が3つ以上の層を含む場合、固体電解質層における異種界面が多くなるため、上記要求特性の(i)および(ii)の両立を安定的に実現することができない。
 第1固体電解質層11の厚みは、0.5μm以上かつ5μm以下であってもよく、1μm以上かつ3μm以下であってもよい。第1固体電解質層11の厚みが当該範囲内を満たすことにより、後述する形成方法において膜欠陥が発生するリスクが抑制され、電気的短絡の発生がより確実に抑制されうる。
 第1固体電解質層11における有機化合物の含有率は、0.5質量%以下であってもよい。第1固体電解質層11に含まれる有機化合物が0.5質量%以下であることにより、電気的抵抗を増加させることなく、固体電解質層全体の薄層化が可能となる。したがって、この構成によれば、電池1は、上記要求特性の(i)および(ii)の両立をより安定的に実現することができる。
 第1固体電解質層11は、有機化合物を含んでいなくてもよい。これにより、電池1は、上記要求特性の(i)および(ii)の両立をより一層安定的に実現することができる。なお、第1固体電解質層11が有機化合物を含まないとは、第1固体電解質層11を形成するために意図的に有機化合物が使用されないことを意味している。したがって、たとえば、用いられる材料に微量の有機化合物が不可避に含まれており、その結果、形成される第1固体電解質層11にごく微量、たとえば0.2質量%以下の有機化合物が残存している場合は、第1固体電解質層11が有機化合物を含まないと解される。
 第2固体電解質層13の厚みは、3μm以上かつ50μm以下であってもよく、5μm以上かつ30μm以下であってもよい。第2固体電解質層13が3μm以上の厚みを有することにより、電気的短絡の発生をより確実に抑制できる。第2固体電解質層13が50μm以下の厚みを有することにより、電池1の高容量化を実現できる。
 以下、第1電極10が負極であり、第1固体電解質層11が負極側の固体電解質層であり、第2電極12が正極であり、第2固体電解質層13が正極側の固体電解質層である場合を例に挙げて説明する。
 第1電極10および第2電極12には、たとえば、公知の全固体電池(たとえば、リチウムイオン電池)に用いられている負極および正極が、それぞれ適用されうる。
 第1集電体101には、公知の全固体電池(たとえば、リチウムイオン電池)に用いられている負極集電体が適用されうる。たとえば、Cu箔、Al箔、およびSUS泊などが用いられうる。第1集電体101の厚みは、たとえば5μm以上かつ100μm以下であってもよい。
 第1活物質層102には、公知の全固体電池(たとえば、リチウムイオン電池)に用いられている負極活物質が適用されうる。たとえば、グラファイトおよび金属Liなどの公知の負極活物質が用いられうる。第1活物質層102に用いられる活物質材料は、この限りでなく、LiまたはMgなどのイオンを離脱および挿入することができる各種材料を用いることができる。また、第1活物質層102に含まれうる活物質材料以外の材料として、硫化物固体電解質および酸化物固体電解質などの任意の固体電解質が挙げられる。硫化物固体電解質として、たとえばLi2S:P25の混合物が用いられうる。また、第1活物質層102は、アセチレンブラックなどの導電助材、および、ポリフッ化ビニリデンなどの結着用バインダーをさらに含有してもよい。第1活物質層102の厚みは、たとえば5μm以上かつ300μm以下であってもよい。
 第2集電体121には、公知の全固体電池(たとえば、リチウムイオン電池)に用いられている正極集電体が適用されうる。たとえば、Cu箔、Al箔、およびSUS泊などが用いられうる。第2集電体121の厚みは、たとえば5μm以上かつ100μm以下であってもよい。
 第2活物質層122には、公知の全固体電池(たとえば、リチウムイオン電池)に用いられている正極活物質が適用されうる。たとえば、コバルト酸リチウムおよびLiNOなどの公知の正極活物質が用いられうる。第2活物質層122に用いられる活物質材料は、この限りでなく、LiまたはMgなどのイオンを離脱および挿入することができる各種材料を用いることができる。また、第2活物質層122に含まれうる活物質材料以外の材料として、硫化物固体電解質および酸化物固体電解質などの任意の固体電解質が挙げられる。硫化物固体電解質として、たとえばLi2S:P25の混合物が用いられうる。また、第2活物質層122は、アセチレンブラックなどの導電助材、および、ポリフッ化ビニリデンなどの結着用バインダーをさらに含有してもよい。第2活物質層122の厚みは、たとえば5μm以上かつ300μm以下であってもよい。
 第1固体電解質層11には、硫化物固体電解質、ハロゲン系固体電解質、および酸化物固体電解質などの任意の固体電解質材料を用いることができる。硫化物固体電解質として、たとえばLi2S:P25の混合物を用いることができる。第1固体電解質層11を形成するためのスラリー状の塗料として、前記固体電解質材料を溶剤中で反応させてエマルジョンとした溶液を利用することができる。特許文献3には、固体電解質材料を溶媒中でエマルジョン状に合成する方法が開示されている。固体電解質材料を溶媒中でエマルジョン状に合成させることによって得られた溶液を、以下、「エマルジョン溶液」と記載する。エマルジョン溶液を、第1固体電解質層11を形成するためのスラリー状の塗料として利用することにより、たとえば0.5μm以上かつ5μm以下の厚みを有し、かつ有機化合物の含有率が0.5質量%以下であるような、薄くかつ有機化合物の含有率が小さい第1固体電解質層11を作製することができる。
 第1固体電解質層11を形成する際に、たとえば、平均粒径0.5μm以下の固体電解質材料粉体を用いてもよい。粒径が小さい固体電解質材料は、大きい比表面積を有する。したがって、このような粒径が小さい固体電解質材料を通常の方法でスラリー化する場合、スラリー化に必要なバインダーのような有機化合物の量が増加する。このような有機化合物の量の増加は、固体電解質層の電気的抵抗の増加の要因となるため、電池の高容量化および高出力化を困難とする。一方、後述の第2固体電解質層13を形成する際と同様に、平均粒径0.5μm以上かつ20μm以下の固体電解質材料粉体を利用して、第1固体電解質層11を0.5μm以上かつ5μm以下の厚みとする場合、固体電解質材料粉体を十分に充填することが困難となり、固体電解質層による短絡抑制が困難となる。これらの方法に対し、上述のエマルジョン溶液を塗料として利用する方法の場合、粒径が小さい固体電解質材料を用いる場合であっても、スラリー状の塗料を得るために、バインダーのような有機化合物を増加させる必要がない。したがって、薄くかつ有機化合物の含有率が小さい第1固体電解質層11を作製しうる。
 ここで、本明細書において、固体電解質材料の平均粒径は、レーザー回折散乱式粒子径分布測定装置によって測定された体積粒度分布から評価したD50(すなわち、体積分布のメジアン径)である。
 第1固体電解質層11は、有機化合物を含んでいてもよい。第1固体電解質層11が有機化合物を含む場合、第1活物質層102を被覆するように第1固体電解質層11を形成する工程において、第1固体電解質層11に可撓性が付与されるため、欠陥の少ない第1固体電解質層11の形成が容易となる。また、第1固体電解質層11が有機化合物を含む場合、第1固体電解質層11と第2固体電解質層13との接合密着性を発現させることもできる。ただし、その場合も、第1固体電解質層11に含まれる有機化合物の含有率は、たとえば0.5質量%以下の範囲内とするとよい。
 なお、第1固体電解質層11は、上述のエマルジョン溶液を用いる方法以外の方法によっても作製しうる。たとえば、平均粒径が0.2μm以下のような固体電解質材料の微粒子を分散媒に分散させた分散液を塗料として用いても、第1固体電解質層11を作製することが可能である。
 第2固体電解質層13には、硫化物固体電解質、ハロゲン系固体電解質、および酸化物固体電解質などの任意の固体電解質材料を用いることができる。硫化物固体電解質として、たとえばLi2S:P25の混合物を用いることができる。たとえば3μm以上かつ50μm以下の厚みを有する第2固体電解質層13を形成するため、固体電解質材料として、たとえば平均粒径0.5μm以上かつ20μm以下の粉体を利用することができる。
 固体電解質材料の粉体を、ポリフッ化ビニリデンおよびエラストマー類などの有機化合物を用いて溶媒と共に練り込んだスラリー状の塗料を作製し、この塗料を第2活物質層122上に、第2活物質層122を被覆するように塗布することで、第2固体電解質層13が形成されうる。
 第2固体電解質層13を形成するために用いる上記スラリー状の塗料には、上記有機化合物が、必要に応じて、固形分全体の0.5質量%以上かつ10質量%以下で含有されていてもよい。上記有機化合物が0.5質量%以上含まれる場合は、第2固体電解質層13の厚みを十分に維持することができるので、固体電解質層全体の電気的短絡抑制の機能が向上する。上記有機化合物の含有率が10質量%以下である場合は、有機化合物に起因する電気的抵抗の増大化を抑制できるので、電池の高容量化および高出力化が可能となる。
 以上のとおり、第2固体電解質層13は、厚みが第1固体電解質層11よりも大きく、かつ有機化合物の含有率が第1固体電解質層11よりも多い。この構成により、短絡のリスクの低減が可能となり、電池1の高容量化および容量品質の安定化を図ることが可能となる。
 なお、図1には示されていないが、電池1には、発電要素の外側であって、かつ第1集電体101および第2集電体121に挟まれる領域に、封止部材が設けられていてもよい。発電要素とは、第1活物質層102、第1固体電解質層11、第2活物質層122、および第2固体電解質層13である。封止部材は絶縁性を有してもよい。封止部材によれば、電池1の内部への水分の侵入を抑制したり、電池1の構造を維持して第1集電体101と第2集電体121との接触による短絡を防いだりできる。その結果、電池1の機械的強度が確保されうる。
 封止部材を構成する封止材料として、たとえば、熱可塑性樹脂を用いることができる。熱可塑性樹脂を用いることによって材料選択の幅が広がる。さらに、熱硬化性樹脂および光硬化性樹脂を封止材料として使用してもよい。これらは単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。封止材料のガラス転移温度が十分に高い場合、封止部材による封止強度を十分に維持できる。封止部材の機能を強化するために、封止材料は、機能性の粉末、および繊維などの他の材料を含んでいてもよい。他の材料としては、無機フィラー、およびシリカゲルなどが挙げられる。無機フィラーは構造維持力を強化できる。シリカゲルは耐水性を強化できる。これらの機能性の粉末又は繊維などは単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 次に、本実施形態1における電池1の製造方法の一例について説明する。ただし、本開示の電池の製造方法はこれに限定されない。
 第1集電体101、第1活物質層102、第2集電体121、第2活物質層122、第1固体電解質層11、および第2固体電解質層13に用いられうる材料などは、上述のとおりである。
 まず、第1電極10の作製方法の一例について説明する。第1活物質層102の含有材料を溶媒と共に練り込んだスラリー状の塗料を作製する。溶媒には、公知の全固体電池(たとえば、リチウムイオン電池)の負極活物質層を作製する際に用いられる公知の溶媒を用いることができる。作製された塗料を第1集電体101上に塗工し、塗膜を乾燥させることによって、第1活物質層102が形成される。第1活物質層102の密度を高めるために、得られた乾燥膜をプレスしてもよい。これにより、第1集電体101上に、第1集電体101と接する第1活物質層102が設けられた、第1電極10が得られる。
 第1電極10は、第2電極12よりも大きい面積を有していてもよい。この構成によれば、LiまたはMgの析出によって生じる不具合を防止することができる。
 次に、第1電極10の第1活物質層102上に、第1固体電解質層11を形成する。たとえば、0.5μm以上かつ5μm以下の厚みを有する第1固体電解質層11を形成する場合、上述のように、第1固体電解質層11を構成する固体電解質材料のエマルジョン溶液を、第1固体電解質層11の形成用の塗料として利用することができる。なお、第1固体電解質層11を形成する工程において、第1活物質層102を容易に被覆できるように第1固体電解質層11に可撓性を付与するため、および、第1固体電解質層11と第2固体電解質層13との接合密着性を向上させるために、第1固体電解質層11の形成用の塗料(たとえば、エマルジョン溶液)は、有機化合物を固形分全体の0.5質量%以下で含んでいてもよい。
 第1固体電解質層11の形成には、ダイコート法、ドクターブレード法、ロールコーター法、スクリーン印刷法、およびインクジェット法のようなコーティング方法が適用されるが、これらの方法に限定されるものではない。特に、エマルジョン溶液が第1固体電解質層11の形成用の塗料として用いられる場合は、たとえばスプレー法およびインクジェット法を用いるとよい。
 以上の方法により、第1電極10上に第1固体電解質層11が形成された、第1電極側の積層体が得られる。
 次に、第2電極12の作製方法の一例について説明する。第2活物質層122の含有材料を溶媒と共に練り込んだスラリー状の塗料を作製する。溶媒には、公知の全固体電池(たとえば、リチウムイオン電池)の正極活物質層を作製する際に用いられる公知の溶媒を用いることができる。作製された塗料を第2集電体121上に塗工し、塗膜を乾燥させることによって、第2活物質層122が形成される。第2活物質層122の密度を高めるために、得られた乾燥膜をプレスしてもよい。これにより、第2集電体121上に、第2集電体121と接する第2活物質層122が設けられた第2電極12が得られる。
 次に、第2電極12の第2活物質層122上に、第2固体電解質層13を形成する。たとえば、3μm以上かつ50μm以下の厚みを有する第2固体電解質層13を形成する場合、第2固体電解質層13を形成するための固体電解質材料には、たとえば平均粒径0.5μm以上かつ20μm以下の粉体を用いることができる。第2固体電解質層13の固体電解質材料の粉体、ポリフッ化ビニリデンおよびエラストマー類などの有機化合物、および溶媒を混合して、スラリー状の塗料を作製する。作製された塗料を第2活物質層122上に塗工し、塗膜を乾燥させることによって、第2固体電解質層13が形成される。第2固体電解質層13は、たとえば、第2活物質層122の表面を被覆するように形成する。
 第2固体電解質層13を形成するために用いる上記塗料には、上記有機化合物を、必要に応じてたとえば固形分全体の0.5質量%以上かつ10質量%以下の範囲で含有させることができる。上記塗料において、有機化合物が固形分全体の0.5質量%以上含まれることにより、第2固体電解質層13の厚みを十分に維持することができるので、固体電解質層全体の電気的短絡抑制の機能が向上する。上記塗料において、有機化合物が固形分全体の10質量%以下含まれることにより、第2固体電解質層13の電気的抵抗の増加を抑えることができるので、電池の高容量化および高出力化が可能となる。
 第2固体電解質層13の形成には、ダイコート法、ドクターブレード法、ロールコーター法、およびスクリーン印刷法のようなコーティング方法が適用されるが、これらの方法に限定されるものではない。
 以上の方法により、第2電極12上に第2固体電解質層13が形成された第2電極側の積層体が得られる。
 第1電極側の積層体と、第2電極側の積層体とを、第1固体電解質層11と第2固体電解質層13とを対向させるように接合させることで、電池1を得ることができる。
 なお、本実施形態では、第1電極10が負極であり、かつ第2電極12が正極である構成を例に挙げて説明したが、第1電極10が正極であり、かつ第2電極12が負極であってもよい。その場合は、正極側に位置する固体電解質層が第1固体電解質層11となり、負極側に位置する固体電解質層が第2固体電解質層13となる。したがって、正極側に位置する固体電解質層が、負極側に位置する固体電解質層よりも小さい厚みを有し、かつ、正極側に位置する固体電解質層が、負極側に位置する固体電解質層よりも小さい有機化合物の含有率を有する。このような構成であっても、短絡が抑制され、さらに高容量化および容量品質の安定化といった効果が得られる。
 本実施形態の電池は、積層型全固体電池を構成してもよい。当該全固体電池は、本実施形態の電池が基本構成単位である単位電池として複数積層されることによって、構成されうる。
 図2は、図1に示された電池1が複数積層された積層型全固体電池の第一の例を示す断面模式図である。第一の例の積層型全固体電池2では、隣り合う二つの電池1が、一方の電池1の第1集電体101と他方の電池1の第2集電体121とが接合されることによって、積層されている。すなわち、第一の例の積層型全固体電池2は、複数の電池1が電気的に直列に接続された積層電池である。第1集電体101と第2集電体121とは、直接接合されてもよいし、導電性接着剤または溶接法などを用いて接合されてもよい。
 図3は、図1に示された電池1が複数積層された積層型全固体電池の第二の例を示す断面模式図である。第二の例の積層型全固体電池3では、隣り合う二つの電池1が、一方の電池1の第1集電体101と他方の電池1の第1集電体101とが接合し、かつ、一方の電池1の第2集電体121と他方の電池1の第2集電体121とが接合することによって、積層されている。すなわち、第二の例の積層型全固体電池3は、複数の電池1が電気的に並列に接続された積層電池である。第1集電体101同士、および、第2集電体121同士は、それぞれ、直接接合されてもよいし、導電性接着剤または溶接法などを用いて接合されてもよい。
 図4は、図1に示された電池1が複数積層された積層型全固体電池の第三の例を示す断面模式図である。第三の例の積層型全固体電池4は、図3に示された積層型全固体電池3において、隣り合う二つの電池1が一つの第1集電体101を共用し、かつ隣り合う二つの電池1が一つの第2集電体121を共用している構成を有する。第三の例の積層型全固体電池4は、第二の例の積層型全固体電池3と同様、複数の電池1が電気的に並列に接続された積層電池である。
 積層型全固体電池4は、たとえば以下のような方法で形成できる。
 第1集電体101の上面および下面のそれぞれに第1活物質層102および第1固体電解質層11を形成した第1の部材と、第2集電体121の上面および下面のそれぞれに第2活物質層122および第2固体電解質層13を形成した第2の部材とを準備する。これら第1の部材および第2の部材を、第1固体電解質層11と第2固体電解質層13とを対向させるように接合することで、複数の電池1が図4に示すように積層された積層電池が形成されうる。なお、積層型全固体電池4の上端または下端に配置される第1集電体101または第2集電体121には、片面のみに活物質層および固体電解質層が形成される。
 別の方法として、第1集電体101の上面に、第1活物質層102、第1固体電解質層11、第2固体電解質層13、および第2活物質層122が順次積層された第1の部材と、第2集電体121の上面に、第2活物質層122、第2固体電解質層13、第1固体電解質層11、および第1活物質層102が順次積層された第2の部材とを準備し、これらの第1の部材および第2の部材を積層する方法を用いてもよい。この方法によっても、複数の電池1が図4に示すように積層された積層電池が形成されうる。
 図5は、図1に示された電池1が複数積層された積層型全固体電池の第四の例を示す断面模式図である。第四の例の積層型全固体電池5は、図2に示された積層型全固体電池2において、隣り合う二つの電池1の第1集電体101および第2集電体121が一つの集電体を共用している構成を有する。第四の例の積層型全固体電池5は、第一の例の積層型全固体電池2と同様、複数の電池1が電気的に直列に接続された積層電池である。
 積層型全固体電池5は、たとえば次のような方法で形成できる。
 第1集電体101および第2集電体121の両方を兼ねる集電体を準備する。当該集電体の下面に第1活物質層102および第1固体電解質層11を形成し、かつ、当該第1集電体101の上面に第2活物質層122および第2固体電解質層13を形成する。このような部材を複数準備して、それら複数の部材を第1固体電解質層11と第2固体電解質層13とを対向させるように接合する。これにより、複数の電池1が図5に示すように積層された積層電池が形成されうる。なお、積層型全固体電池5の上端または下端には、第1集電体101または第2集電体121が配置されるようにする。
 別の方法として、第1集電体101の上面に、第1活物質層102、第1固体電解質層11、第2固体電解質層13、および第2活物質層122が順次積層された部材を複数準備し、これらの部材を積層する方法を用いてもよい。なお、積層された状態において、第1集電体101は、第2集電体121としての機能しうる。この方法によっても、複数の電池1が図5に示すように積層された積層電池が形成されうる。
 本開示の電池を実施するための態様として上記に具体的に述べたが、本開示の電池は、これらに限定されるものではない。本開示は、信頼性に優れ、容量特性の良い電池に広く適用できる。
 本開示の電池は、各種電子機器、電気器具装置、および電気車輌などに好適に利用できる。
1  電池
2,3,4,5  積層型全固体電池
10  第1電極
11  第1固体電解質層
12  第2電極
13  第2固体電解質層
101  第1集電体
102  第1活物質層
121  第2集電体
122  第2活物質層

Claims (7)

  1.  第1電極と、
     前記第1電極と接する第1固体電解質層と、
     第2電極と、
     前記第2電極と前記第1固体電解質層との間に位置し、前記第2電極および前記第1固体電解質層と接する第2固体電解質層と、を備え、
     前記第1固体電解質層における有機化合物の含有率は、前記第2固体電解質層における有機化合物の含有率よりも小さく、かつ
     前記第1固体電解質層の厚みは、前記第2固体電解質層の厚みよりも小さい、電池。
  2.  前記第1固体電解質層における有機化合物の含有率は、0.5質量%以下である、請求項1に記載の電池。
  3.  前記第1固体電解質層の厚みは、0.5μm以上かつ5μm以下である、請求項1または2に記載の電池。
  4.  前記第1固体電解質層の厚みは、1μm以上かつ3μm以下である、請求項3に記載の電池。
  5.  前記第2固体電解質層の厚みは、3μm以上かつ50μm以下である、請求項1から4のいずれか一項に記載の電池。
  6.  前記第2固体電解質層の厚みは、5μm以上かつ30μm以下である、請求項5に記載の電池。
  7.  前記第1電極は、
      第1集電体と、
      前記第1集電体と接する第1活物質層と、を含み、
     前記第1固体電解質層は、前記第1集電体と前記第1活物質層との界面を除いた前記第1活物質層の表面を、厚み5μm以下で被覆している、請求項1から6のいずれか一項に記載の電池。
PCT/JP2019/045584 2019-02-15 2019-11-21 電池 WO2020166165A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020572088A JP7429871B2 (ja) 2019-02-15 2019-11-21 電池
CN201980082329.8A CN113169300A (zh) 2019-02-15 2019-11-21 电池
US17/375,109 US20210344041A1 (en) 2019-02-15 2021-07-14 Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019026043 2019-02-15
JP2019-026043 2019-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/375,109 Continuation US20210344041A1 (en) 2019-02-15 2021-07-14 Battery

Publications (1)

Publication Number Publication Date
WO2020166165A1 true WO2020166165A1 (ja) 2020-08-20

Family

ID=72043839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045584 WO2020166165A1 (ja) 2019-02-15 2019-11-21 電池

Country Status (4)

Country Link
US (1) US20210344041A1 (ja)
JP (1) JP7429871B2 (ja)
CN (1) CN113169300A (ja)
WO (1) WO2020166165A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285929A (ja) * 1999-03-31 2000-10-13 Sony Corp 固体電解質電池
JP2001351615A (ja) * 2000-06-08 2001-12-21 Sumitomo Electric Ind Ltd リチウム二次電池負極
JP2005044663A (ja) * 2003-07-23 2005-02-17 Sony Corp 固体電解質、リチウムイオン電池及びその製造方法
JP2018195573A (ja) * 2017-05-18 2018-12-06 パナソニックIpマネジメント株式会社 電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519679B2 (ja) * 2005-02-21 2010-08-04 Necトーキン株式会社 導電性高分子組成物およびそれを用いた固体電解コンデンサ
WO2014010043A1 (ja) * 2012-07-11 2014-01-16 トヨタ自動車株式会社 全固体電池及びその製造方法
US10530009B2 (en) * 2017-03-22 2020-01-07 Ford Global Technologies, Llc Solid state battery
US11005104B2 (en) * 2018-05-28 2021-05-11 Panasonic Intellectual Property Management Co., Ltd. Battery
WO2020137390A1 (ja) * 2018-12-27 2020-07-02 パナソニックIpマネジメント株式会社 電池
CN109904514A (zh) * 2019-01-11 2019-06-18 湖南工学院 双层复合固体电解质及其制备方法和应用
CN112864454A (zh) * 2019-11-27 2021-05-28 郑州宇通集团有限公司 一种多层固态电解质及其制备方法、固态锂电池
JP2022144855A (ja) * 2021-03-19 2022-10-03 本田技研工業株式会社 全固体電池及び全固体電池の製造方法
JP2023009988A (ja) * 2021-07-08 2023-01-20 トヨタ自動車株式会社 全固体電池及び全固体電池の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285929A (ja) * 1999-03-31 2000-10-13 Sony Corp 固体電解質電池
JP2001351615A (ja) * 2000-06-08 2001-12-21 Sumitomo Electric Ind Ltd リチウム二次電池負極
JP2005044663A (ja) * 2003-07-23 2005-02-17 Sony Corp 固体電解質、リチウムイオン電池及びその製造方法
JP2018195573A (ja) * 2017-05-18 2018-12-06 パナソニックIpマネジメント株式会社 電池

Also Published As

Publication number Publication date
US20210344041A1 (en) 2021-11-04
JPWO2020166165A1 (ja) 2020-08-20
CN113169300A (zh) 2021-07-23
JP7429871B2 (ja) 2024-02-09

Similar Documents

Publication Publication Date Title
JP5930035B2 (ja) 全固体電池及びその製造方法
JP2018181451A (ja) 積層型全固体電池およびその製造方法
JP2007213930A (ja) バイポーラ電池、組電池およびこれらを搭載した車両
CN111373595A (zh) 全固体电池用电极体及其制造方法
JP2016001595A (ja) リチウムイオン二次電池
JP5818078B2 (ja) 非水電解質二次電池の製造方法
JP2017016825A (ja) 二次電池およびその製造方法
WO2019097906A1 (ja) 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2019151373A1 (ja) 固体電解質組成物及びその製造方法、固体電解質含有シート、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
CN111463437A (zh) 全固体电池
JP5420852B2 (ja) リチウムイオン電池用電極
WO2019097903A1 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
CN111276668B (zh) 全固体电池用电极层叠体及其制造方法
CN110416630B (zh) 全固体电池
JP7182159B2 (ja) 全固体電池
JP7429872B2 (ja) 電池
JP3526223B2 (ja) リチウム二次電池
WO2020166165A1 (ja) 電池
WO2021060398A1 (ja) 積層型電池
JP7223279B2 (ja) 全固体電池
WO2020145226A1 (ja) 全固体電池
WO2018042942A1 (ja) 積層型電池用電極及び積層型電池
US20230318028A1 (en) Solid-state secondary battery and method of manufacturing solid-state secondary battery
JP2019135720A (ja) リチウムイオン二次電池
WO2023120171A1 (ja) 蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572088

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915056

Country of ref document: EP

Kind code of ref document: A1