WO2020162300A1 - 中空樹脂粒子の製造方法 - Google Patents

中空樹脂粒子の製造方法 Download PDF

Info

Publication number
WO2020162300A1
WO2020162300A1 PCT/JP2020/003335 JP2020003335W WO2020162300A1 WO 2020162300 A1 WO2020162300 A1 WO 2020162300A1 JP 2020003335 W JP2020003335 W JP 2020003335W WO 2020162300 A1 WO2020162300 A1 WO 2020162300A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
resin particles
particles
hollow resin
hydrocarbon solvent
Prior art date
Application number
PCT/JP2020/003335
Other languages
English (en)
French (fr)
Inventor
伊賀 隆志
希 矢吹
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020571129A priority Critical patent/JP7476804B2/ja
Priority to CN202080009215.3A priority patent/CN113302210B/zh
Priority to US17/425,987 priority patent/US20220153881A1/en
Priority to EP20752086.7A priority patent/EP3922650A4/en
Publication of WO2020162300A1 publication Critical patent/WO2020162300A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate

Definitions

  • the present disclosure relates to a method for producing hollow resin particles having a high porosity.
  • Hollow resin particles compared with resin particles that have substantially no voids inside, can scatter light well and can reduce light transmittance, so organic pigments that are excellent in optical properties such as opacity and whiteness. It is widely used as a hiding agent for water-based paints and paper coating compositions.
  • the porosity of the hollow resin particles to be blended It is desired to increase
  • a polymerizable monomer component is dispersed in an aqueous dispersion medium in the presence of different kinds of fine polymer particles having a different composition, and the different kinds of fine polymer particles are allowed to absorb the polymerizable monomer component.
  • a heterogeneous polymer is allowed to coexist in the form of fine particles or a solution in an aqueous dispersion medium, whereby a nucleus is formed in the dispersed particles by phase separation of the heterogeneous polymer during polymerization. It is described that the polymerization shrinkage of the polymer which is being formed in this nucleus occurs, and as a result, pores are formed inside the polymer.
  • a seed particle dispersion liquid in which seed particles containing a non-crosslinked polymer are dispersed in a dispersion medium containing water, a radical polymerizable monomer, an oil-soluble solvent, and an oil-soluble polymerization start A mixture of an agent and a radical polymerizable monomer, the oil-soluble solvent and the oil-soluble polymerization initiator are absorbed into the seed particles to prepare a dispersion of swollen particle droplets; And a step of polymerizing the radical-polymerizable monomer, the SP value (SPp) of the polymer obtained by polymerizing the radical-polymerizable monomer and the SP of the oil-soluble solvent.
  • Patent Document 3 100 parts by weight of a polymerization monomer component containing a polyfunctional monomer is mixed with 1 to 400 parts by weight of an organic solvent that does not react with the polymerization monomer, and a polymerization monomer solution containing a dispersion stabilizer is added.
  • a method for producing porous hollow polymer particles which comprises suspending in a solvent, polymerizing a monomer component for polymerization to obtain polymer particles encapsulating an organic solvent, and removing the organic solvent in the obtained polymer particles.
  • SP value solubility parameter
  • the polymer particles described in Patent Document 1 have a problem that it is difficult to obtain hollow polymer fine particles having a uniform outer diameter and inner diameter. Further, in the method for producing single-hole hollow polymer fine particles described in Patent Document 2, when the content of the crosslinkable monomer in the total of the non-crosslinkable monomer and the crosslinkable monomer exceeds 5% by weight, the resulting seed particles are obtained. Since the absorption of the radically polymerizable monomer and the like into the polymer may be reduced and swollen particle droplets may not be formed, the preferable upper limit of the amount of the crosslinkable monomer compounded is 5% by weight.
  • the method of Patent Document 2 has a problem that the shell strength of the hollow polymer particles is inferior because the amount of the cross-linking monomer used is limited to a small range.
  • the method for producing porous hollow polymer particles described in Patent Document 3 has a problem that it is difficult to produce hollow polymer particles having a high porosity because the method is porous.
  • the particle strength becomes insufficient. There is a problem that particles are easily crushed.
  • the problem of the present disclosure is to provide a method for producing hollow resin particles having a higher porosity than ever before.
  • Another object of the present invention is to provide a method for producing hollow resin particles having high porosity and high particle strength.
  • the present inventors have made it possible to increase the porosity of the hollow resin particles by increasing the solubility parameter (SP value) of the polymerizable monomer and the polymerizable monomer amount.
  • SP value solubility parameter
  • the difference between the solubility parameter (SP value) of the body and the solubility parameter (SP value) of the hydrocarbon solvent taken into the monomer droplets to form the hollow portion is important.
  • the shell strength of the hollow resin particles is likely to be lowered, and therefore, the amount of the crosslinkable monomer used to reinforce the shell of the hollow resin particles becomes important. I paid attention.
  • suspending a mixed liquid containing a polymerizable monomer containing at least one non-crosslinkable monomer and at least one crosslinkable monomer, a hydrocarbon solvent, and an aqueous medium To prepare a suspension in which monomer droplets containing a hydrocarbon solvent are dispersed in an aqueous medium, and by subjecting the suspension to a polymerization reaction, it has a hollow portion and the hydrocarbon portion is present in the hollow portion.
  • a method for producing hollow resin particles by forming precursor particles containing a solvent, and removing the hydrocarbon solvent included in the precursor particles,
  • the mixed solution contains 35 to 95 parts by mass of the crosslinkable monomer with respect to 100 parts by mass of the total amount of the polymerizable monomer,
  • the solubility parameter (SP value) of the polymerizable monomer is 8.70 to 9.42
  • a method for producing hollow resin particles, wherein the difference between the solubility parameter (SP value) of the polymerizable monomer and the solubility parameter (SP value) of the hydrocarbon solvent is 0.60 or more.
  • the void ratio of the hollow resin particles may be 60 to 95%.
  • the number average particle diameter of the hollow resin particles may be 0.1 to 10 ⁇ m.
  • hollow resin particles having a higher porosity it is possible to manufacture hollow resin particles having a higher porosity than ever before. Further, in a preferred embodiment of the present disclosure, hollow resin particles having a high porosity and a high particle strength can be manufactured. Further, in another preferred embodiment of the present disclosure, it is possible to manufacture hollow resin particles having a single pore structure, which has a high porosity and a large particle strength.
  • the hollow resin particle of the present disclosure is a particle including a shell (outer shell) containing a resin and a hollow portion surrounded by the shell.
  • the “hollow part” is a hollow space that is clearly distinguished from the shell of hollow particles formed of a resin material.
  • the shell of the hollow resin particles may have a porous structure, in which case the hollow portion has a size that can be clearly distinguished from a large number of minute spaces uniformly dispersed in the porous structure. have.
  • the hollow part of the hollow particles can be confirmed by, for example, SEM observation of the cross section of the particles or by TEM observation of the particles as they are.
  • the hollow part of the hollow particles may be filled with a gas such as air, or may contain a liquid such as a solvent.
  • the resin shell of the particles may not have communicating holes, and the “hollow part” in the present disclosure may be isolated from the outside of the particles by the particle shell.
  • the shell of the resin in the particles may have one or more communication holes, and the “hollow part” in the present disclosure may be connected to the outside of the particles via the communication holes.
  • the “precursor particle” is an intermediate obtained in the polymerization step and is a resin particle having a hollow portion, and the hollow portion is carbonized to form the hollow portion in the polymerization step. It means particles filled with a hydrogen-based solvent.
  • precursor composition means a composition containing precursor particles.
  • the method for producing hollow resin particles according to the present disclosure is a mixed liquid containing a polymerizable monomer containing at least one non-crosslinkable monomer and at least one crosslinkable monomer, a hydrocarbon solvent, and an aqueous medium.
  • a suspension in which monomer droplets containing a hydrocarbon solvent are dispersed in an aqueous medium and the suspension is subjected to a polymerization reaction to have a hollow portion and
  • the mixed solution contains 35 to 95 parts by mass of the crosslinkable monomer with respect to 100 parts by mass of the total amount of the polymerizable monomer,
  • the solubility parameter (SP value) of the polymerizable monomer is 8.70 to 9.42, and
  • the difference between the solubility parameter (SP value) of the polymerizable monomer and the solubility parameter (SP value) of the hydrocarbon solvent is 0.60 or
  • the above method basically includes a mixed solution preparation step, a suspension preparation step, a polymerization step, and a solvent removal step, but may include steps other than these.
  • the solid-liquid separation step may be performed after the polymerization step, and the solvent removal step of removing the hydrocarbon solvent in the precursor particles may be performed in an air atmosphere.
  • using a hydrophilic monomer as at least a part of the non-crosslinkable monomer after performing a base addition step after the polymerization step, to swell the precursor particles, the hydrocarbon solvent in the precursor particles It may be replaced with an aqueous medium.
  • a preferred example of the manufacturing method in the present disclosure includes the following steps.
  • Polymerization step The suspension To prepare a precursor composition containing a precursor particle having a hollow portion and enclosing a hydrocarbon solvent in the hollow portion (4) solid-liquid separation step
  • the precursor composition To obtain the precursor particles by solid-liquid separation, and (5) Solvent removal step By removing the hydrocarbon solvent included in the precursor particles in the air, the hollow portion is filled with gas.
  • Solvent removal step By removing the hydrocarbon solvent included in the precursor particles in the air, the hollow portion is filled with gas.
  • FIG. 1 is a schematic diagram showing an example of the manufacturing method of the present disclosure.
  • (1) to (5) in FIG. 1 correspond to the above steps (1) to (5).
  • White arrows between the drawings indicate the order of each process.
  • FIG. 1 is merely a schematic diagram for explanation, and the manufacturing method of the present disclosure is not limited to that shown in the drawing. Further, the structure, size, and shape of the material used in each manufacturing method of the present disclosure are not limited to the structure, size, and shape of various materials in these drawings.
  • (1) of FIG. 1 is a schematic cross-sectional view showing an embodiment of the mixed liquid in the mixed liquid preparation step. As shown in this figure, the mixed liquid contains an aqueous medium 1 and a lipophilic material 2 dispersed in the aqueous medium 1.
  • the lipophilic material 2 means a material such as a hydrocarbon solvent, which has low polarity and is hard to mix with the aqueous medium 1.
  • (2) of FIG. 1 is a schematic sectional view showing an embodiment of the suspension in the suspension preparation step.
  • the suspension contains the aqueous medium 1 and the micelles 10 (monomer droplets) dispersed in the aqueous medium 1.
  • the micelle 10 is configured by surrounding the oil-soluble monomer composition 4 (including the oil-soluble polymerization initiator 5 and the like) with the suspension stabilizer 3 (for example, a surfactant and the like).
  • (3) of FIG. 1 is a schematic sectional view showing an embodiment of the precursor composition after the polymerization step.
  • the precursor composition includes an aqueous medium 1 and precursor particles 20 dispersed in the aqueous medium 1.
  • the shell 6 forming the outer surface of the precursor particle 20 is formed by polymerization of the monomer or the like in the micelle 10.
  • the hollow portion inside the shell 6 contains the hydrocarbon solvent 7.
  • FIG. 1 (4) is a schematic sectional view showing an embodiment of the precursor particles after the solid-liquid separation step. (4) of FIG. 1 shows a state in which the aqueous medium 1 is separated from the state of (3) of FIG.
  • FIG. 1 (5) is a schematic sectional view showing an embodiment of the hollow resin particles after the solvent removal step. (5) of FIG. 1 shows a state in which the hydrocarbon solvent 7 is removed from the state of (4) of FIG.
  • hollow resin particles 100 having the hollow portion 8 inside the shell 6 are obtained.
  • the above five steps and other steps will be described in order.
  • This step is a mixed liquid containing a polymerizable monomer containing at least one non-crosslinkable monomer and at least one crosslinkable monomer, a hydrocarbon solvent, and an aqueous medium.
  • a step of preparing As the polymerizable monomer, at least one non-crosslinkable monomer and at least one crosslinkable monomer are used in combination.
  • the polymerizable monomer is a compound having a polymerizable functional group.
  • the non-crosslinkable monomer is a polymerizable monomer having only one polymerizable functional group, the crosslinkable monomer has two or more polymerizable functional groups, and is crosslinked in the resin by the polymerization reaction.
  • the mixed solution may further contain other materials such as an oil-soluble polymerization initiator and a suspension stabilizer.
  • the materials of the mixed liquid will be described in the order of (A) polymerizable monomer, (B) oil-soluble polymerization initiator, (C) hydrocarbon solvent, (D) suspension stabilizer, and (E) aqueous medium.
  • a monovinyl monomer is preferably used as the non-crosslinking monomer.
  • a monovinyl monomer is a compound having one polymerizable vinyl functional group.
  • the monovinyl monomer for example, at least one (meth)acrylic monovinyl monomer selected from the group consisting of acrylate and methacrylate; styrene, vinyltoluene, ⁇ -methylstyrene, p-methylstyrene, halogenated styrene, etc.
  • Aromatic vinyl monomers such as ethylene, propylene and butylene; (meth)acrylamide, N-methylol (meth)acrylamide, N-butoxymethyl (meth)acrylamide, etc. And its derivatives; diene-based monomers such as butadiene and isoprene; carboxylic acid vinyl ester monomers such as vinyl acetate; vinyl halide monomers such as vinyl chloride; vinylidene halide monomers such as vinylidene chloride; Vinyl pyridine monomer; and the like.
  • the monovinyl monomer may be at least one (meth)acrylic monovinyl monomer selected from the group consisting of acrylate and methacrylate.
  • Examples of the (meth)acrylic monovinyl monomer include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, glycidyl (meth). Acrylate etc. are mentioned.
  • (meth)acryl means each of acryl or methacryl
  • (meth)acrylate means each of an acrylate or a methacrylate.
  • at least one selected from the group consisting of butyl acrylate and methyl methacrylate is preferably used.
  • a hydrophilic monomer may be used as the non-crosslinkable monomer.
  • a water-soluble monovinyl monomer is preferably used.
  • the hydrophilic monomer preferably has a solubility in water at 20° C. of 1% by mass or more.
  • hydrophilic monomers include monomers having a hydrophilic group such as acid group-containing monomers, hydroxy group-containing monomers, amide group-containing monomers, and polyoxyethylene group-containing monomers.
  • the acid group-containing monomer means a monomer containing an acid group.
  • the acid group as used herein includes both a proton donating group (Bronsted acid group) and an electron pair accepting group (Lewis acid group).
  • the use of an acid group-containing monomer as the hydrophilic monomer is preferable in that hollow resin particles having high heat resistance can be obtained.
  • the acid group-containing monomer is not particularly limited as long as it has an acid group, and examples thereof include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, itaconic acid, fumaric acid, maleic acid and butenetricarboxylic acid.
  • Carboxyl group-containing monomers such as ethylenically unsaturated carboxylic acid monomers, monoalkyl esters of unsaturated dicarboxylic acids such as monoethyl itaconate, monobutyl fumarate, monobutyl maleate; and sulfonic acid groups such as styrene sulfonic acid Examples thereof include monomers.
  • the acid group-containing monomers preferably an ethylenically unsaturated carboxylic acid monomer, more preferably at least one acrylic hydrophilic monomer and maleic acid selected from the group consisting of acrylic acid and methacrylic acid. Acid monomers, more preferably acrylic hydrophilic monomers, are used.
  • the heat resistance of the obtained hollow resin particles can be increased.
  • the hydroxy group-containing monomer include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate monomers.
  • the amide group-containing monomer include (meth)acrylamide monomers such as (meth)acrylamide and dimethyl (meth)acrylamide.
  • polyoxyethylene group-containing monomer examples include methoxy polyethylene glycol (meth)acrylate monomers and the like. However, it is desirable that neither acrylonitrile nor methacrylonitrile is used as the hydrophilic monomer. This is because these monomers containing a nitrile group, which is weak against heat, are inferior in heat resistance, so that the porosity of the obtained particles may be reduced.
  • the non-crosslinkable monomers can be used alone or in combination of two or more. When the total mass of the non-crosslinkable monomer is 100 parts by mass, the content of the hydrophilic monomer in the non-crosslinkable monomer is preferably 10 to 50 parts by mass, more preferably 15 to 40 parts by mass.
  • the base When the content of the hydrophilic monomer is 10 to 50 parts by mass, the base easily penetrates into the particles in the base addition step described later, and the hollow part in the particles is easily formed quickly. Furthermore, the copolymerization reaction of the monovinyl monomer and the hydrophilic monomer is likely to proceed stably.
  • Crosslinkable monomer in the present disclosure, by using the crosslinkable monomer in combination with the non-crosslinkable monomer, it is possible to enhance the mechanical properties of the obtained hollow resin particle shell. Further, since the crosslinkable monomer has a plurality of polymerizable functional groups, the polymer chains can be linked to each other, and particularly hydrophilic monomers (among others, acid group-containing monomers) are hollow resin particles Elution to the outside can be suppressed, and the heat resistance of the resulting hollow resin particles can be increased.
  • crosslinkable monomer examples include divinylbenzene, diallyl phthalate, allyl (meth)acrylate, ethylene glycol di(meth)acrylate and the like, among which divinylbenzene and ethylene glycol di(meth)acrylate are preferable.
  • the content of the polymerizable monomer (all of the non-crosslinkable monomer and the crosslinkable monomer) in the mixed solution is suitable when the total mass of the components in the mixed solution excluding the aqueous medium is 100 parts by mass. 6 parts by mass or more, more preferably 12 parts by mass or more.
  • the content of the polymerizable monomer is 6 parts by mass or more, the mechanical properties of the hollow resin particles can be improved more than before, to the extent that the hollow structure of the obtained hollow resin particles can be maintained.
  • the content of the crosslinkable monomer is 35 to 95 parts by mass, preferably 38 to 93.
  • the amount is preferably 40 to 90 parts by mass, more preferably 50 to 90 parts by mass, and particularly preferably 70 to 90 parts by mass.
  • the content of the crosslinkable monomer is 35 to 95 parts by mass, sufficient hollow particle strength can be maintained even when the void ratio of the obtained hollow resin particles is increased, and the dents of the particles can be suppressed and the heat resistance can be improved. Also improves.
  • the solubility parameter (SP value) of the polymerizable monomer is 8.70 to 9.42, preferably 8.71 to 9.41, and more preferably 8.72 to 9.41. 40. If the SP value of the polymerizable monomer is less than 8.70 or more than 9.42, the polymerization stability of the suspension may be deteriorated and the obtained resin particles may aggregate. Further, in the present disclosure, the difference between the solubility parameter (SP value) of the polymerizable monomer and the solubility parameter (SP value) of the hydrocarbon solvent is 0.60 or more, preferably 0.65 or more, and more preferably Is 0.70 or more, more preferably 1.00 or more, and particularly preferably 1.25 or more.
  • the difference between the solubility parameter (SP value) of the polymerizable monomer and the solubility parameter (SP value) of the hydrocarbon solvent is preferably 3.00 or less, and more preferably 2.75. Hereafter, it is more preferably 2.50 or less, and particularly preferably 2.30 or less.
  • the difference between the “solubility parameter (SP value) (SP1) of the polymerizable monomer” and the “solubility parameter (SP value) (SP2) of the hydrocarbon solvent” is the same as the “polymerizable monomer”.
  • the solubility parameter of the polymer (SP value) (SP1)"-"solubility parameter of hydrocarbon solvent (SP value) (SP2)" is obtained.
  • the difference when the difference is ⁇ 0.70, when the difference between the solubility parameter (SP value) of the polymerizable monomer and the solubility parameter (SP value) of the hydrocarbon solvent is 0.60 or more. Is not included.
  • the solubility parameter (SP value) of the polymerizable monomer is within the above range, and the difference between the solubility parameter (SP value) of the polymerizable monomer and the solubility parameter (SP value) of the hydrocarbon solvent is within the above range.
  • the SP value refers to ⁇ F and ⁇ v of various atomic groups according to Okitsu described in Table 1 below, which is described in Toshinao Okitsu, “Adhesion”, Polymer Society of Japan, Vol. 40, No. 8 (1996) p342-350. It means the solubility parameter ⁇ calculated by the following formula (1) using the value. In the case of a mixed solvent or a copolymer, it means the solubility parameter ⁇ mix calculated by the following formula (2).
  • ⁇ F/ ⁇ v Equation (1)
  • ⁇ mix ⁇ 1 ⁇ 1+ ⁇ 2 ⁇ 2+... ⁇ n ⁇ n
  • the SP value of a copolymer of 40 parts of methacrylic acid and 60 parts of ethylene glycol dimethacrylate is determined as follows.
  • the SP value of methacrylic acid alone is 9.40
  • Oil-Soluble Polymerization Initiator it is preferable to include an oil-soluble polymerization initiator in the mixed liquid.
  • an oil-soluble polymerization initiator in the mixed liquid.
  • a method for polymerizing the monomer droplets after suspending the mixed solution there are an emulsion polymerization method using a water-soluble polymerization initiator and a suspension polymerization method using an oil-soluble polymerization initiator. Suspension polymerization can be carried out.
  • the oil-soluble polymerization initiator is not particularly limited as long as it has a lipophilic solubility in water at 20° C. of 0.2% by mass or less.
  • oil-soluble polymerization initiator examples include benzoyl peroxide, lauroyl peroxide, t-butyl peroxide 1-2-ethylhexanoate, 2,2'-azobis(2,4-dimethylvaleronitrile), azobisisobutyronitrile. Etc.
  • the content of the oil-soluble polymerization initiator is preferably 0.1 to 10 parts by mass, more preferably 0.5. To 7 parts by mass, and more preferably 1 to 5 parts by mass.
  • the content of the oil-soluble polymerization initiator is 0.1 to 10 parts by mass, the polymerization reaction is sufficiently advanced, and the oil-soluble polymerization initiator is less likely to remain after the completion of the polymerization reaction, and an unexpected side reaction occurs. Is unlikely to progress.
  • the hydrocarbon-based solvent is a non-polymerizable hydrocarbon-based organic solvent and has a function of forming a hollow portion inside the particles.
  • a suspension is obtained in which monomer droplets containing a hydrocarbon solvent are dispersed in an aqueous medium.
  • a hydrocarbon solvent with low polarity is likely to collect inside the monomer droplets.
  • the hydrocarbon solvent is distributed in the inside thereof, and the materials other than the hydrocarbon solvent are distributed in the periphery thereof according to their polarities.
  • a precursor composition containing precursor particles containing a hydrocarbon solvent is obtained. That is, when the hydrocarbon-based solvent collects inside the particles, a hollow portion filled with the hydrocarbon-based solvent is formed inside the obtained precursor particles.
  • the type of hydrocarbon solvent is not particularly limited as long as it satisfies the difference range between the solubility parameter (SP value) of the polymerizable monomer and the solubility parameter (SP value) of the hydrocarbon solvent.
  • the hydrocarbon solvent includes at least one selected from the group consisting of an aliphatic hydrocarbon solvent, an aromatic hydrocarbon solvent, and a hydrocarbon ester solvent.
  • Examples of the aliphatic hydrocarbon solvent include butane, pentane, normal hexane, cyclohexane, heptane, octane and the like.
  • Examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene and the like.
  • Examples of the hydrocarbon ester solvent include solvents having an SP value of 8.82 or less from the viewpoint of polarity, and examples thereof include n-butyl acetate, isobutyl acetate, and isopropyl acetate.
  • the hydrocarbon solvent used in the present disclosure preferably has a relative dielectric constant at 20° C. of 3 or less.
  • the relative permittivity is one of the indexes indicating the high polarity of the compound. It is considered that when the relative permittivity of the hydrocarbon-based solvent is sufficiently small as 3 or less, phase separation rapidly progresses in the monomer droplets and hollows are easily formed.
  • Examples of the solvent having a relative dielectric constant of 3 or less at 20° C. are as follows. The value in the parentheses is the value of relative permittivity. Heptane (1.9), cyclohexane (2.0), benzene (2.3), toluene (2.4).
  • the hydrocarbon solvent used in the present disclosure may be a hydrocarbon compound having 5 to 7 carbon atoms.
  • the hydrocarbon compound having 5 to 7 carbon atoms is easily included in the precursor particles during the polymerization step and can be easily removed from the precursor particles during the solvent removal step.
  • the hydrocarbon solvent is preferably a hydrocarbon compound having 6 carbon atoms, and at least one of cyclohexane and normal hexane is preferably used.
  • the content of the hydrocarbon solvent is preferably 100 to 900 parts by mass, more preferably 150 to 700 parts by mass. And more preferably 200 to 500 parts by mass.
  • the content of the hydrocarbon solvent is 100 to 900 parts by mass, the void ratio of the obtained hollow resin particles becomes higher than that of the conventional one, and the mechanical properties of the hollow resin particles are maintained to the extent that the hollow resin particles can be maintained hollow. Can be improved.
  • the suspension stabilizer is an agent that stabilizes the suspension state in the suspension in the suspension polymerization method described later.
  • the suspension stabilizer may contain a surfactant.
  • the surfactant is a material for forming micelles containing a lipophilic component such as a non-crosslinkable monomer, a crosslinkable monomer, an oil-soluble polymerization initiator and a hydrocarbon solvent in the suspension polymerization method described below. ..
  • a surface active agent any of a cationic surface active agent, an anionic surface active agent and a nonionic surface active agent can be used, and they can be used in combination. Among these, anionic surfactants and nonionic surfactants are preferable, and anionic surfactants are more preferable.
  • anionic surfactant examples include sodium dodecylbenzene sulfonate, sodium lauryl sulfate, sodium dialkylsulfosuccinate, and a formalin condensate salt of naphthalene sulfonic acid.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester, and the like.
  • examples of the cationic surfactant include didecyldimethylammonium chloride, stearyltrimethylammonium chloride and the like.
  • the suspension stabilizer may contain a poorly water-soluble inorganic compound or a water-soluble polymer.
  • the content of the suspension stabilizer is usually 0.1 to 6 parts by mass, preferably 0.1 to 5 parts by mass.
  • the amount is preferably 0.1 to 4 parts by mass, more preferably 0.5 to 4 parts by mass, particularly preferably 1 to 4 parts by mass, and most preferably 2 to 4 parts by mass.
  • the content of the suspension stabilizer is 0.1 part by mass or more, micelles are easily formed in the aqueous medium.
  • the productivity is less likely to decrease due to foaming in the step of removing the hydrocarbon solvent.
  • the aqueous medium means a medium selected from the group consisting of water, a hydrophilic solvent, and a mixture of water and a hydrophilic solvent.
  • the hydrophilic solvent in the present disclosure is not particularly limited as long as it is sufficiently mixed with water and does not cause phase separation.
  • examples of the hydrophilic solvent include alcohols such as methanol and ethanol; tetrahydrofuran (THF); dimethyl sulfoxide (DMSO) and the like.
  • THF tetrahydrofuran
  • DMSO dimethyl sulfoxide
  • a mixed solution is obtained by simply mixing the above-mentioned materials and, if necessary, other materials and appropriately stirring them.
  • the oil phase containing the lipophilic material such as (A) the polymerizable monomer, (B) the oil-soluble polymerization initiator, and (C) the hydrocarbon solvent is (D) suspension stable.
  • the aqueous phase containing the agent and the (E) aqueous medium the particles are dispersed with a particle size of several mm. The dispersed state of these materials in the mixed liquid can be observed with the naked eye depending on the kind of the materials.
  • the agent and the aqueous phase containing the hydrophilic material containing the aqueous medium (E) are separately prepared in advance, and these are mixed.
  • This step is a step of suspending the above-mentioned mixed solution to prepare a suspension in which monomer droplets containing a hydrocarbon solvent are dispersed in an aqueous medium.
  • the suspension method for forming the monomer droplets is not particularly limited. TK homomixer MARK type II) or the like.
  • monomer droplets containing the above lipophilic material and having a particle size of about 0.1 ⁇ m to 10 ⁇ m are uniformly dispersed in the aqueous medium.
  • Such monomer droplets are difficult to observe with the naked eye, and can be observed with a known observation device such as an optical microscope.
  • the hydrocarbon solvent having a low polarity tends to collect inside the monomer droplets.
  • the obtained monomer droplets have the hydrocarbon solvent distributed inside and the material other than the hydrocarbon solvent distributed around the periphery thereof.
  • FIG. 3 is a schematic diagram showing a dispersion liquid for emulsion polymerization.
  • the micelle 60 in FIG. 3 schematically shows a cross section thereof.
  • FIG. 3 shows that the micelle 60, the micelle precursor 60a, the monomer 53a eluted in the solvent, and the water-soluble polymerization initiator 54 are dispersed in the aqueous medium 51.
  • the micelle 60 is formed by surrounding the oil-soluble monomer composition 53 with the surfactant 52.
  • the monomer composition 53 contains a monomer as a raw material of the polymer, but does not contain a polymerization initiator.
  • the micelle precursor 60a is an aggregate of the surfactants 52, it does not contain a sufficient amount of the monomer composition 53 therein.
  • the micelle precursor 60a grows into the micelle 60 by taking in the monomer 53a eluted in the solvent or procuring a part of the monomer composition 53 from another micelle 60 or the like. ..
  • the water-soluble polymerization initiator 54 penetrates into the micelle 60 and the micelle precursor 60a while diffusing in the aqueous medium 51, and promotes the growth of oil droplets inside these. Therefore, in the emulsion polymerization method, although each micelle 60 is monodispersed in the aqueous medium 51, it is expected that the particle size of the micelle 60 grows to several hundreds nm.
  • FIG. 2 is a schematic diagram showing an embodiment of the suspension in this step.
  • the micelle 10 in FIG. 2 schematically shows its cross section. Note that FIG. 2 is merely a schematic diagram, and the suspension in the present disclosure is not necessarily limited to that shown in FIG. 2. Part of FIG. 2 corresponds to (2) of FIG. 1 described above.
  • FIG. 2 shows that the micelle 10 and the polymerizable monomer 4a dispersed in the aqueous medium (including the non-crosslinkable monomer and the crosslinkable monomer) are dispersed in the aqueous medium 1. It is shown.
  • the micelle 10 is constituted by the surfactant 3 surrounding the oil-soluble monomer composition 4.
  • an oil-soluble polymerization initiator 5 a polymerizable monomer (including a non-crosslinkable monomer and a crosslinkable monomer) and a hydrocarbon solvent (all are not shown). No) is included.
  • fine oil droplets containing the monomer composition 4 are previously formed inside the micelle 10, and then the oil-soluble polymerization initiator 5 is used to change the polymerization initiation radicals into fine oil droplets. Occurs in. Therefore, it is possible to manufacture the precursor particles having a target particle size without growing the minute oil droplets excessively. Further, as can be seen by comparing the suspension polymerization (FIG. 2) with the emulsion polymerization (FIG.
  • the oil-soluble polymerization initiator 5 in the suspension polymerization (FIG. 2), the oil-soluble polymerization initiator 5 is dispersed in the aqueous medium 1. There is no opportunity to come into contact with the polar monomer 4a. Therefore, by using the oil-soluble polymerization initiator, it is possible to prevent generation of extra polymer particles in addition to the intended resin particles having a hollow portion.
  • the above-described suspension is subjected to a polymerization reaction to prepare a precursor composition having a hollow portion and containing precursor particles having a hydrocarbon solvent included therein. It is a process to do.
  • the precursor particles are particles formed mainly by copolymerization of the above-mentioned non-crosslinkable monomer and crosslinkable monomer.
  • the polymerization system is not particularly limited, and for example, batch system (batch system), semi-continuous system, continuous system and the like can be adopted.
  • the polymerization temperature is preferably 40 to 80°C, more preferably 50 to 70°C.
  • the reaction time of the polymerization is preferably 1 to 20 hours, more preferably 2 to 15 hours, and particularly preferably 2.5 to 8 hours. Since the monomer droplets containing the hydrocarbon solvent are used, hollows containing the hydrocarbon solvent are formed inside the precursor particles.
  • This step is a step of obtaining precursor particles by solid-liquid separation of the precursor composition described above.
  • a slurry containing an aqueous medium after replacing the hydrocarbon-based solvent contained in the precursor particles with the aqueous medium of the slurry, the slurry is dried, by the method of removing the aqueous medium, hydrocarbon-based in the precursor particles It is also possible to remove the solvent.
  • the slurry after the polymerization step is subjected to solid-liquid separation, and then the obtained solid content is dried in air.
  • the same volume of air as the hydrocarbon solvent that has escaped from the inside of the precursor particles easily enters the particles, so that hollow resin particles having a hollow shape can be obtained. Further, the precursor particles containing the hydrocarbon solvent tend to be less likely to be crushed than the precursor particles containing the water.
  • the polarity of the polymers that make up the shell of the precursor particles is generally high. Therefore, it is considered that water is easily compatible with the polymer and water molecules are easily incorporated into the free volume of the polymer. In other words, the solubility coefficient of water molecules for polymers is high.
  • hydrocarbon solvents are less compatible with polymers due to their low polarity. In other words, the solubility coefficient of hydrocarbon solvent molecules in the polymer is low. As a result, hydrocarbon solvent molecules are less likely to be incorporated into the free volume of the polymer.
  • the water-containing particles water molecules are incorporated into the free volume of the polymer that constitutes the shell, and as a result, the space in which the molecules do not exist in the shell is reduced, resulting in a decrease in gas permeability in the shell and the drying time.
  • the inflow of air due to the evaporation of water becomes difficult to proceed, and the particles are easily crushed.
  • the particles containing the hydrocarbon solvent since the hydrocarbon solvent molecules are hard to be taken into the free volume of the polymer, the gas permeability in the shell is kept relatively high, resulting in the solvent removal step. The replacement of the hydrocarbon solvent with air rapidly proceeds, and hollow resin particles maintaining the hollow portion are generated.
  • the method for solid-liquid separation of the precursor composition may be a method for separating the solid content containing the precursor particles and the liquid content containing the aqueous medium without removing the hydrocarbon solvent contained in the precursor particles.
  • the method is not particularly limited, and a known method can be used.
  • the solid-liquid separation method include a centrifugal separation method, a filtration method, and a stationary separation method. Among them, the centrifugal separation method or the filtration method may be used. May be adopted.
  • any step such as a preliminary drying step may be carried out before carrying out a solvent removal step to be described later.
  • the pre-drying step include a step of pre-drying the solid content obtained after the solid-liquid separation step with a drying device such as a dryer or a drying device such as a hand dryer.
  • Solvent Removal Step This step is a step of removing the hydrocarbon solvent contained in the precursor particles in the air to obtain hollow resin particles having a hollow portion filled with a gas.
  • in the air in this step is in an environment where there is no liquid content outside the precursor particles, and outside the precursor particles, to the extent that it does not affect the removal of the hydrocarbon solvent. It means an environment where only a small amount of liquid is present.
  • the term “in air” can be rephrased as a state in which the precursor particles are not present in the slurry, or as a state in which the precursor particles are present in the dry powder. That is, in this step, it is important to remove the hydrocarbon solvent in an environment in which the precursor particles are in direct contact with the external gas.
  • the method of removing the hydrocarbon solvent in the precursor particles in air is not particularly limited, and a known method can be adopted.
  • the method include a reduced pressure drying method, a heat drying method, a gas stream drying method, and a combination of these methods.
  • the heating temperature needs to be higher than the boiling point of the hydrocarbon solvent and lower than the maximum temperature at which the shell structure of the precursor particles does not collapse. Therefore, for example, the heating temperature may be 50 to 200° C., 70 to 180° C., or 100 to 150° C., depending on the composition of the shell in the precursor particles and the type of hydrocarbon solvent.
  • the drying operation in air the hydrocarbon-based solvent inside the precursor particles is replaced by the outside gas, and as a result, hollow resin particles whose hollow portions are filled with gas are obtained.
  • the drying atmosphere is not particularly limited and can be appropriately selected depending on the application of the hollow resin particles.
  • As the dry atmosphere for example, air, oxygen, nitrogen, argon or the like can be considered. Further, once the hollow portion of the hollow resin particle is filled with a gas and then dried under reduced pressure, hollow resin particles having a temporarily hollow portion can be obtained.
  • a hollow part re-replacement step or a base addition step may be added.
  • This step is a step of replacing the gas in the hollow portion of the hollow resin particles with another gas or liquid.
  • the environment of the hollow portion of the hollow resin particles can be changed, molecules can be selectively confined in the hollow portions of the hollow resin particles, and the chemical structure of the hollow portions of the hollow resin particles can be modified according to the application. can do.
  • Base addition step This step uses a hydrophilic monomer as a part of the polymerizable monomer in the mixed solution, and by adding a base to the precursor composition obtained by the polymerization step, the pH of the precursor composition is increased. Is 6.0 or more.
  • the base is added to swell the shell of the precursor particles and facilitate the removal of the hydrocarbon solvent. The void ratio of the hollow resin particles can be increased.
  • the number average particle diameter of the hollow resin particles obtained by the production method of the present disclosure is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 8 ⁇ m, and further preferably 1 ⁇ 6 ⁇ m, more preferably 1.5 to 5 ⁇ m, and particularly preferably 2 to 4 ⁇ m.
  • the number average particle diameter of the hollow resin particles can be determined, for example, by measuring the particle size distribution with a laser diffraction type particle size distribution measuring device and calculating the number average thereof.
  • the coefficient of variation of the number average particle size of the hollow resin particles can be obtained, for example, by measuring a number-based particle size distribution with a laser diffraction type particle size distribution measuring device and dividing the standard deviation by the number average particle size. ..
  • the hollow resin particles having a relatively small coefficient of variation of the number average particle diameter that is, hollow resin particles having a sharp particle size distribution
  • the sharper the particle size distribution of the hollow resin particles the flatter the coating film containing the hollow resin particles can be formed.
  • Shape of hollow resin particles is not particularly limited as long as the hollow portion is formed inside, and examples thereof include a spherical shape, an elliptic spherical shape, and an irregular shape. Among these, the spherical shape is preferable because of easy production.
  • the inside of the particles may have one or two or more hollow portions and may be porous. In order to maintain a good balance between the high void ratio of the hollow resin particles and the mechanical strength of the hollow resin particles, the inside of the particles preferably has only one hollow portion.
  • the hollow resin particles may have an average circularity of 0.950 to 0.995.
  • An example of the image of the shape of the hollow resin particles is a bag made of a thin film and inflated with gas, and its cross-sectional view is the same as that of the hollow resin particles 100 in (5) of FIG. 1 described later.
  • a thin film is provided on the outside and the inside is filled with gas.
  • the particle shape can be confirmed by, for example, SEM or TEM.
  • the shape of the inside of the particles can be confirmed by SEM or TEM after the particles are sliced by a known method.
  • the porosity of hollow resin particles can be 60% or more, more preferably 65% or more, further preferably 70% or more, particularly preferably It can be 75% or more. From the viewpoint of maintaining the strength of the particles, the porosity of the hollow resin particles is preferably 95% or less, more preferably 93% or less, and further preferably 90% or less.
  • the porosity (%) of the hollow resin particles is calculated by the following formula (I) based on the apparent density D 1 and the true density D 0 of the hollow resin particles.
  • Formula (I) Porosity (%) 100 ⁇ (apparent density D 1 /true density D 0 ) ⁇ 100
  • the method for measuring the apparent density D 1 of the hollow resin particles is as follows. First, a volumetric flask having a capacity of 100 cm 3 is filled with about 30 cm 3 of hollow resin particles, and the mass of the filled hollow resin particles is accurately weighed. Next, the volumetric flask filled with the hollow resin particles is accurately filled with isopropanol up to the marked line, taking care not to let air bubbles enter.
  • the mass of isopropanol added to the volumetric flask is accurately weighed, and the apparent density D 1 (g/cm 3 ) of the hollow resin particles is calculated based on the following formula (II).
  • Apparent density D 1 [mass of hollow resin particles]/(100-[mass of isopropanol]/[specific gravity of isopropanol at measurement temperature])
  • the apparent density D 1 corresponds to the specific gravity of the entire hollow resin particles when the hollow portion is regarded as a part of the hollow resin particles.
  • the method for measuring the true density D 0 of the hollow resin particles is as follows. After crushing the hollow resin particles in advance, about 10 g of crushed pieces of hollow resin particles are filled in a volumetric flask having a capacity of 100 cm 3 , and the mass of the filled crushed pieces is accurately weighed. After that, isopropanol was added to the volumetric flask in the same manner as in the measurement of the apparent density, the mass of isopropanol was accurately weighed, and the true density D 0 (g/cm 3 ) of the hollow resin particles was calculated based on the following formula (III). calculate.
  • True density D 0 [mass of crushed pieces of hollow resin particles]/(100-[mass of isopropanol] ⁇ [specific gravity of isopropanol at measurement temperature])
  • the true density D 0 corresponds to the specific gravity of only the shell portion of the hollow resin particles.
  • the hollow portion is not regarded as a part of the hollow resin particles in the calculation of the true density D 0 .
  • the porosity of the hollow resin particles can be rephrased as the ratio of the hollow portion to the specific gravity of the hollow resin particles.
  • the hollow resin particles of the present disclosure have high particle strength, the outer shape and the inner shape thereof are less likely to collapse even when a strong external force is applied, and the hollow resin particles can be kept hollow.
  • the compressive strength can be measured by the following method. Examples of the method for measuring the compressive strength of the hollow resin particles include the following methods. Using a micro compression tester (for example, MCTM-500, manufactured by Shimadzu Corporation), 10% compressive strength of the particles is measured under the following test conditions.
  • Indenter type FLAT50 Objective lens magnification: 50 Load speed: 0.8924 mN/sec
  • Indenter type FLAT50
  • Objective lens magnification 50
  • Load speed 0.8924 mN/sec
  • the hollow resin particles have a compressive strength of 5.0 MPa or more, it can be evaluated that the hollow resin particles have high compressive strength.
  • hollow resin particles include, for example, undercoat materials for thermal paper.
  • the undercoat material is required to have heat insulating properties and cushioning properties (cushioning properties), and in addition to this, it is required to have heat resistance suitable for thermal paper applications.
  • the hollow resin particles of the present disclosure can meet these requirements due to their high porosity, hollow shape that does not easily collapse, relatively small number average particle diameter, and high heat resistance. Further, the hollow resin particles are useful as a plastic pigment excellent in gloss and hiding power. Further, hollow resin particles obtained by encapsulating useful components such as fragrances, chemicals, pesticides, ink components, etc. by means of dipping treatment, reduced pressure or pressure dipping treatment are used for various purposes depending on the components contained inside. Can be used for.
  • SP Value Solubility Parameter
  • ⁇ F/ ⁇ v Equation (1)
  • ⁇ mix ⁇ 1 ⁇ 1+ ⁇ 2 ⁇ 2+... ⁇ n ⁇ n
  • Number average particle diameter of hollow resin particles As described above, the particle diameter of the hollow resin particles is measured by a laser diffraction type particle size distribution measuring device (manufactured by Horiba, Ltd., trade name: LA-960), and the number average thereof is calculated. The obtained value was defined as the number average particle size of the particles.
  • Porosity of Hollow Resin Particles The apparent density D 1 and true density D 0 of the hollow resin particles were measured according to the above method, and the porosity (%) was calculated by the following formula (I).
  • Formula (I) Porosity (%) 100 ⁇ (apparent density D 1 /true density D 0 ) ⁇ 100
  • Example 1 (1) Mixed liquid preparation step 40 parts of methacrylic acid, 60 parts of ethylene glycol dimethacrylate (SP value of the mixture of these polymerizable monomers is 9.41), 2,2'-azobis(2,4- Dimethyl valeronitrile) (oil-soluble polymerization initiator, manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-65) (3.0 parts) and cyclohexane (310 parts) (SP value is 8.00) are mixed, and the mixture is used as an oil. Phased. Next, 4.0 parts of a surfactant was mixed with 800 parts of ion-exchanged water to obtain an aqueous phase.
  • SP value of the mixture of these polymerizable monomers is 9.41
  • 2,2'-azobis(2,4- Dimethyl valeronitrile) oil-soluble polymerization initiator, manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-65
  • cyclohexane 310 parts
  • a mixed solution was prepared by mixing the aqueous phase and the oil phase.
  • (2) Suspension preparing step The mixed solution obtained in the above mixed solution preparing step was treated with an in-line type emulsifying disperser (manufactured by Taiheiyo Kiko Co., Ltd., trade name: Milder) under the condition of a rotation speed of 15,000 rpm to obtain 5 A suspension was prepared by stirring for 1 minute to suspend, and monomer droplets containing cyclohexane were dispersed in water.
  • (3) Polymerization step The suspension obtained in the suspension preparation step was stirred in a nitrogen atmosphere at a temperature of 65°C for 4 hours to carry out a polymerization reaction.
  • a precursor composition containing a hollow resin particle precursor containing cyclohexane was prepared.
  • the precursor composition obtained in the above polymerization step was subjected to a cooling high-speed centrifuge (manufactured by Kokusan Co., Ltd., trade name: H-9R), a rotor MN1, a rotation speed of 3,000 rpm, and a centrifugation time. Centrifugation was performed under the condition of 20 minutes to dehydrate the solid content. The solid content after dehydration was dried with a dryer at a temperature of 40° C. to obtain a hollow resin particle precursor containing cyclohexane.
  • the hollow resin particle precursor obtained in the solid-liquid separation step was heat-treated in air at 80° C. for 15 hours in a vacuum dryer to obtain hollow resin particles.
  • the number average particle diameter, porosity and compressive strength of the obtained hollow resin particles were measured according to the methods described above. The results are shown in Table 1.
  • the obtained hollow resin particles were confirmed to be spherical and had only one hollow portion from the results of observation with a scanning electron microscope and the value of porosity, and The ratio of the monomer units constituting the resin part was almost the same as the charged amount.
  • Examples 2 to 6, Comparative Examples 1 to 4 The same procedure as in Example 1 except that the type and content of the polymerizable monomer (non-crosslinkable monomer, crosslinkable monomer), the polymerization initiator, and the hydrocarbon solvent were changed according to the description in Table 2. Then, hollow resin particles were produced.
  • ion-exchanged water 50% by weight of the total amount used
  • a water-soluble polymer aqueous solution PVA: partially saponified polyvinyl acetate aqueous solution
  • surfactant surfactant
  • a suspension was prepared.
  • the remaining ion-exchanged water and sodium sulfite as a water-soluble polymerization inhibitor were put into a 20-liter polymerization vessel equipped with a stirrer, a jacket, a reflux condenser, and a thermometer, and stirring was started.
  • the pressure was returned to atmospheric pressure with nitrogen, the inside was made a nitrogen atmosphere, and then the above suspension was put into a polymerization vessel all at once, Was raised to 60° C. to start polymerization.
  • the polymerization was completed in 4 hours, and after aging for 1 hour, the polymerization tank was cooled to room temperature. The slurry was dehydrated with a centrifuge and then the organic solvent was removed by vacuum drying to obtain hollow polymer particles.
  • the polymer particles were capsule particles having a double contour.
  • steam was blown into the dispersion liquid of the polymer particles to carry out a steam strip treatment.
  • toluene inside the polymer particles was removed, and hydrated hollow polymer particles containing water inside were obtained.
  • the water-containing hollow polymer particles and the capsule particles containing toluene before the steam strip treatment were placed on a slide glass and observed with a microscope without a cover glass. Alternatively, it was observed that toluene was evaporated to form hollow particles.
  • Table 2 shows the type of material used in each experimental example, the amount used, the SP value, and the test results.
  • the total amount of the non-crosslinkable monomer and the crosslinkable monomer was 100 parts, and the crosslinkable monomer was included in an amount of 50 parts.
  • the compressive strength was 10.1, and the particle strength was high.
  • the porosity was as low as 20% and the degree of hollowness was poor.
  • a porous structure was observed in the morphology inside the particles, and a single pore structure could not be formed.
  • the number average particle size is 2.8 ⁇ m to 3.1 ⁇ m, the porosity is high (70% to 90%), and the sufficient compressive strength (7.0 MPa to 13).
  • Hollow resin particles having a single pore structure having a pressure of 0.8 MPa) were obtained.
  • the hollow resin particles of Example 3 had the largest content of the crosslinkable monomer (90 parts relative to 100 parts of the polymerizable monomer), and thus had the highest compressive strength among the examples.
  • the difference between the SP value of the polymerizable monomer and the SP value of the hydrocarbon solvent was as large as 2.17, so that the void ratio was the largest in the Examples.
  • Aqueous Medium 1 Aqueous Medium 2 Lipophilic Material 3 Suspension Stabilizer 4 Monomer Composition 4a Monomer 5 Dispersed in Aqueous Medium 5 Oil-Soluble Polymerization Initiator 6 Shell 7 Hydrocarbon-Based Solvent 8 Hollow Part 10 Micelle 20 Precursor Particles 51 Aqueous Medium 52 Surfactant 53 Monomer Composition 53a Monomer Eluted in Aqueous Medium 54 Water-Soluble Polymerization Initiator 60 Micelle 60a Micelle Precursor 100 Hollow Resin Particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

非架橋性単量体及び架橋性単量体を含む重合性単量体、炭化水素系溶剤、並びに水系媒体を含む混合液を懸濁させることにより、炭化水素系溶剤を含むモノマー液滴が水系媒体中に分散した懸濁液を調製し、前記懸濁液を重合反応に供することにより、中空部を有し且つ当該中空部に炭化水素系溶剤を内包する前駆体粒子を形成し、前記前駆体粒子に内包される炭化水素系溶剤を除去することにより中空樹脂粒子を製造する方法であって、前記重合性単量体の総質量100質量部に対し前記架橋性単量体を35~95質量部含み、前記重合性単量体の溶解度パラメータ(SP値)が8.70~9.42であり、且つ、前記重合性単量体のSP値と前記炭化水素系溶剤のSP値との差が0.60以上である。

Description

中空樹脂粒子の製造方法
 本開示は、空隙率が高い中空樹脂粒子の製造方法に関する。
 中空樹脂粒子は、内部に実質的に空隙を有しない樹脂粒子と比べて、光を良く散乱させ、光の透過性を低くできるため、不透明度、白色度などの光学的性質に優れた有機顔料や隠蔽剤として水系塗料、紙塗被組成物などの用途で汎用されている。
 ところで、水系塗料、紙塗被組成物などの用途においては、塗料や紙塗被組成物等の軽量化、断熱化、及び不透明化等の効果を向上させるため、配合する中空樹脂粒子の空隙率を高めることが望まれている。しかし、従来知られている製造方法では、所望の物性が得られるような製造条件を満たしながら、空隙率が高い中空樹脂粒子を安定して製造することは困難であった。
 例えば、特許文献1には、重合性モノマー成分を、これとは異なる組成の異種ポリマー微粒子の存在下において水性分散媒体中に分散させて当該異種ポリマー微粒子に前記重合性モノマー成分を吸収させ、次に前記重合性モノマー成分を重合させる技術が開示されている。当該文献には、水性分散媒体中に、重合性モノマー成分の他に異種ポリマーを微粒子又は溶液の状態で共存させること、そのことによって重合時に、異種ポリマーの相分離により分散粒子内に核が形成され、この核に生成しつつあるポリマーの重合収縮が生じること、及びその結果としてポリマーの内部に孔が形成されることが記載されている。
 また、特許文献2には、非架橋ポリマーを含有する種粒子を、水を含有する分散媒中に分散させた種粒子分散液と、ラジカル重合性モノマーと、油溶性溶剤と、油溶性重合開始剤とを混合し、前記種粒子に前記ラジカル重合性モノマー、前記油溶性溶剤及び前記油溶性重合開始剤を吸収させて膨潤粒子液滴の分散液を調製する工程と、前記膨潤粒子液滴中の上記ラジカル重合性モノマーを重合させる工程とを有する単孔中空ポリマー微粒子の製造方法であって、前記ラジカル重合性モノマーを重合して得られるポリマーのSP値(SPp)と前記油溶性溶剤のSP値(SPs)との関係が下記式(1):
  2.1≦SPp-SPs≦7.0        (1)
を満たすことを特徴とする単孔中空ポリマー微粒子の製造方法が開示されている。
 当該文献には、ラジカル重合性モノマー成分を種粒子に吸収させたうえでラジカル重合させるポリマー微粒子の製造方法において、上記ラジカル重合性モノマーを重合して得られるポリマーのSP値と、造孔剤として用いる油溶性溶剤のSP値との差が一定範囲となるようにした場合、外径及び内径が極めて均一な単孔中空ポリマー微粒子を容易に製造できることが記載されている。
 また、特許文献3には、多官能モノマーを含む重合用モノマー成分100重量部を重合用モノマーとは反応しない有機溶剤1~400重量部と混合した重合用モノマー溶液を、分散安定剤を含む極性溶媒に懸濁せしめた後、重合用モノマー成分を重合させて、有機溶剤を内包するポリマー粒子を得て、得られたポリマー粒子中の有機溶剤を除去する多孔質中空ポリマー粒子の製造方法であって、混合される重合用モノマー成分と有機溶剤の溶解度パラメータ(SP値)の差が1.0MPa0.5未満の時は、重合用モノマー成分に占める多官能モノマーの割合が少なくとも5重量%以上であり、1.0以上1.5MPa0.5未満の時は、重合用モノマー成分に占める多官能モノマーの割合が少なくとも20重量%以上である多孔質中空ポリマー粒子の製造方法が開示されている。
 当該文献には、上記の製造方法は、重合用モノマー成分と有機溶剤のSP値の差を2.0MPa0.5未満とし、重合用モノマー成分に占める多官能モノマーの割合を5重量%以上することが特徴であり、SP値の差を2.0MPa0.5未満とする理由として、重合用モノマーと有機溶剤のSP値を近づけることで、重合中にポリマー成分と有機溶剤が相分離することが抑制されること、及び、多官能モノマーの割合を5重量%以上する理由として、多官能性モノマーが少ないとSP値の差が大きいときには粒子が異形化し、SP値の差が小さいときには粒子内部の中空部が収縮する問題が生じることが記載されている。
特開昭62-127336号公報 国際公開WO2012/014279号公報 特開2006-336021号公報
 しかし、特許文献1に記載されたポリマー粒子は、外径、内径ともに均一な中空ポリマー微粒子を得ることが難しいという問題がある。
 また、特許文献2に記載された単孔中空ポリマー微粒子の製造方法は、非架橋性モノマーと架橋性モノマーとの合計に占める架橋性モノマーの配合量が5重量%を超えると、得られる種粒子へのラジカル重合性モノマー等の吸収性が低下し、膨潤粒子液滴が形成されないことがあるため、架橋性モノマーの配合量の好ましい上限は5重量%であるとされる。
このように特許文献2の方法においては、架橋モノマーの使用量が少量の範囲に制約されるため、中空ポリマー粒子のシェル強度が劣るという問題がある。
 また、特許文献3に記載された多孔質中空ポリマー粒子の製造方法は、多孔質であるため、高い空隙率を有する中空ポリマー粒子を製造することが難しいという問題がある。
 また、空隙率を高くするために、粒子内部に多孔質ではない大きな空洞を一つだけ有し、シェル(殻)が薄い単孔中空樹脂粒子を形成する場合には、粒子強度が不十分となり粒子がつぶれやすくなるという問題がある。
 本開示の課題は、従来よりも空隙率が高い中空樹脂粒子の製造方法を提供することにある。また本発明の他の課題は、空隙率が高く且つ粒子強度が大きい中空樹脂粒子の製造方法を提供することにある。
 本発明者らは、懸濁重合により中空樹脂粒子を得る方法において、中空樹脂粒子の空隙率を大きくするためには、重合性単量体の溶解度パラメータ(SP値)、及び、重合性単量体の溶解度パラメータ(SP値)と中空部を形成するためにモノマー液滴に取り込まれる炭化水素系溶剤の溶解度パラメータ(SP値)との差が重要であることに着目した。
 また、中空樹脂粒子の空隙率が大きくなると中空樹脂粒子のシェル強度低下を引き起こしやすいことから、中空樹脂粒子のシェルを補強するために架橋性単量体の使用量が重要になってくることに着目した。
 本開示によれば、少なくとも1つの非架橋性単量体及び少なくとも1つの架橋性単量体を含む重合性単量体、炭化水素系溶剤、並びに、水系媒体を含む混合液を懸濁させることにより、炭化水素系溶剤を含むモノマー液滴が水系媒体中に分散した懸濁液を調製し、前記懸濁液を重合反応に供することにより、中空部を有し且つ当該中空部に炭化水素系溶剤を内包する前駆体粒子を形成し、前記前駆体粒子に内包される炭化水素系溶剤を除去することにより中空樹脂粒子を製造する方法であって、
 前記混合液中に、前記重合性単量体の総質量100質量部に対し前記架橋性単量体を35~95質量部含み、
 前記重合性単量体の溶解度パラメータ(SP値)が8.70~9.42であり、且つ、
 前記重合性単量体の溶解度パラメータ(SP値)と前記炭化水素系溶剤の溶解度パラメータ(SP値)との差が0.60以上であることを特徴とする中空樹脂粒子の製造方法が提供される。
 本開示の上記製造方法においては、前記中空樹脂粒子の空隙率を、60~95%とすることができる。
 また本開示の上記製造方法においては、前記中空樹脂粒子の個数平均粒径を、0.1~10μmとすることができる。
 上記の如き本開示の製造方法によれば、従来よりも空隙率の高い中空樹脂粒子を製造することができる。また、本開示の好ましい実施形態においては、空隙率が高く且つ粒子強度が大きい中空樹脂粒子を製造することができる。さらに、本開示の他の好ましい実施形態においては、空隙率が高く且つ粒子強度が大きい単孔構造の中空樹脂粒子を製造することができる。
本開示の製造方法の一例を説明する図である。 懸濁液調製工程における懸濁液の一実施形態を示す模式図である。 従来の乳化重合用の分散液を示す模式図である。
 本開示の中空樹脂粒子は、樹脂を含有するシェル(外殻)と、当該シェルに取り囲まれた中空部とを備える粒子である。
 本開示において、「中空部」は、樹脂材料により形成される中空粒子のシェルから明確に区別される空洞状の空間である。中空樹脂粒子のシェルは多孔質構造を有していても良いが、その場合には、中空部は、多孔質構造内に均一に分散された多数の微小な空間とは明確に区別できる大きさを有している。
 中空粒子が有する中空部は、例えば、粒子断面のSEM観察等により、又は粒子をそのままTEM観察等することにより確認することができる。
 また、中空粒子が有する中空部は、空気等の気体で満たされていてもよいし、溶剤等の液体を含有していてもよい。
 粒子における樹脂のシェルが連通孔を有さず、本開示における「中空部」が粒子のシェルによって粒子外部から隔絶されていてもよい。
 粒子における樹脂のシェルが1又は2以上の連通孔を有し、本開示における「中空部」が当該連通孔を介して粒子外部と繋がっていてもよい。
 本開示において「前駆体粒子」とは、重合工程で得られる中間体であって、中空部を有する樹脂粒子であって、その中空部が、重合工程において中空部を形成するために用いた炭化水素系溶剤により満たされた粒子を意味する。本開示において「前駆体組成物」とは、前駆体粒子を含む組成物を意味する。
 本開示における中空樹脂粒子の製造方法は、少なくとも1つの非架橋性単量体及び少なくとも1つの架橋性単量体を含む重合性単量体、炭化水素系溶剤、並びに、水系媒体を含む混合液を懸濁させることにより、炭化水素系溶剤を含むモノマー液滴が水系媒体中に分散した懸濁液を調製し、前記懸濁液を重合反応に供することにより、中空部を有し且つ当該中空部に炭化水素系溶剤を内包する前駆体粒子を形成し、前記前駆体粒子に内包される炭化水素系溶剤を除去することにより中空樹脂粒子を製造する方法において、
 前記混合液中に、前記重合性単量体の総質量100質量部に対し前記架橋性単量体を35~95質量部含み、
 前記重合性単量体の溶解度パラメータ(SP値)が8.70~9.42であり、且つ、
 前記重合性単量体の溶解度パラメータ(SP値)と前記炭化水素系溶剤の溶解度パラメータ(SP値)との差が0.60以上であることを特徴とする。
 上記方法は、基本的に混合液調製工程、懸濁液調製工程、重合工程、及び、溶剤除去工程を含むが、これら以外の工程を含んでもよい。
 例えば、重合工程後に固液分離工程を行い、前駆体粒子内の炭化水素系溶剤を除去する溶剤除去工程を空気雰囲気下で行ってもよい。あるいは、非架橋性単量体の少なくとも一部として親水性単量体を用い、重合工程後に塩基添加工程を行い、前駆体粒子を膨潤させた後で、前駆体粒子内の炭化水素系溶剤を水系媒体で置換してもよい。
1.中空樹脂粒子の製造方法
 本開示における製造方法の好ましい一例は以下の工程を含む。
 (1)混合液調製工程
 少なくとも1つの非架橋性単量体及び少なくとも1つの架橋性単量体を含む重合性単量体、炭化水素系溶剤、並びに、水系媒体を含む混合液を調製する工程
 (2)懸濁液調製工程
 前記混合液を懸濁させることにより、炭化水素系溶剤を含むモノマー液滴が水系媒体中に分散した懸濁液を調製する工程
 (3)重合工程
 前記懸濁液を重合反応に供することにより、中空部を有し且つ当該中空部に炭化水素系溶剤を内包する前駆体粒子を含む前駆体組成物を調製する工程
 (4)固液分離工程
 前記前駆体組成物を固液分離することにより前記前駆体粒子を得る工程、及び
 (5)溶剤除去工程
 前記前駆体粒子に内包される炭化水素系溶剤を気中にて除去することにより、中空部が気体で満たされた中空樹脂粒子を得る工程
 図1は、本開示の製造方法の一例を示す模式図である。図1中の(1)~(5)は、上記各工程(1)~(5)に対応する。各図の間の白矢印は、各工程の順序を指示するものである。なお、図1は説明のための模式図に過ぎず、本開示の製造方法は図に示すものに限定されない。また、本開示の各製造方法に使用される材料の構造、寸法及び形状は、これらの図における各種材料の構造、寸法及び形状に限定されない。
 図1の(1)は、混合液調製工程における混合液の一実施形態を示す断面模式図である。この図に示すように、混合液は、水系媒体1、及び当該水系媒体1中に分散する親油性材料2を含む。ここで、親油性材料2とは、例えば炭化水素系溶剤等の、極性が低く水系媒体1と混ざり合いにくい材料を意味する。
 図1の(2)は、懸濁液調製工程における懸濁液の一実施形態を示す断面模式図である。懸濁液は、水系媒体1、及び当該水系媒体1中に分散するミセル10(モノマー液滴)を含む。ミセル10は、油溶性の単量体組成物4(油溶性重合開始剤5等を含む)の周囲を、懸濁安定剤3(例えば、界面活性剤等)が取り囲むことにより構成される。
 図1の(3)は、重合工程後の前駆体組成物の一実施形態を示す断面模式図である。前駆体組成物は、水系媒体1、及び当該水系媒体1中に分散する前駆体粒子20を含む。この前駆体粒子20の外表面を形成するシェル6は、上記ミセル10中の単量体等の重合により形成されたものである。シェル6内部の中空部は、炭化水素系溶剤7を内包する。
 図1の(4)は、固液分離工程後の前駆体粒子の一実施形態を示す断面模式図である。この図1の(4)は、上記図1の(3)の状態から水系媒体1を分離した状態を示す。
 図1の(5)は、溶剤除去工程後の中空樹脂粒子の一実施形態を示す断面模式図である。この図1の(5)は、上記図1の(4)の状態から炭化水素系溶剤7を除去した状態を示す。その結果、シェル6の内部に中空部8を有する中空樹脂粒子100が得られる。
 以下、上記5つの工程及びその他の工程について、順に説明する。
 (1)混合液調製工程
 本工程は、少なくとも1つの非架橋性単量体及び少なくとも1つの架橋性単量体を含む重合性単量体、炭化水素系溶剤、並びに、水系媒体を含む混合液を調製する工程である。
 本開示においては、重合性単量体として、少なくとも1つの非架橋性単量体及び少なくとも1つの架橋性単量体を組み合わせて用いる。重合性単量体とは、重合可能な官能基を有する化合物である。非架橋性単量体は重合可能な官能基を1つだけ有する重合性単量体であり、架橋性単量体は重合可能な官能基を2つ以上有し、重合反応により樹脂中に架橋結合を形成する重合性単量体である。重合性単量体としては、重合可能な官能基としてエチレン性不飽和結合を有する化合物が一般に用いられる。
 混合液中には、さらに油溶性重合開始剤や懸濁安定剤等の他の材料を含有させても良い。混合液の材料について、(A)重合性単量体、(B)油溶性重合開始剤、(C)炭化水素系溶剤、(D)懸濁安定剤、(E)水系媒体の順に説明する。
 (A)重合性単量体
 [非架橋性単量体]
 非架橋性単量体としては、モノビニル単量体が好ましく用いられる。モノビニル単量体とは、重合可能なビニル官能基を1つ有する化合物である。モノビニル単量体としては、例えば、アクリレート及びメタクリレートからなる群より選ばれる少なくとも1つの(メタ)アクリル系モノビニル単量体;スチレン、ビニルトルエン、α-メチルスチレン、p-メチルスチレン、ハロゲン化スチレン等の芳香族ビニル単量体;エチレン、プロピレン、ブチレン等のモノオレフィン単量体;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等の(メタ)アクリルアミド単量体及びその誘導体;ブタジエン、イソプレン等のジエン系単量体;酢酸ビニル等のカルボン酸ビニルエステル単量体;塩化ビニル等のハロゲン化ビニル単量体;塩化ビニリデン等のハロゲン化ビニリデン単量体;ビニルピリジン単量体;等が挙げられる。モノビニル単量体は、アクリレート及びメタクリレートからなる群より選ばれる少なくとも1つの(メタ)アクリル系モノビニル単量体であってもよい。
 (メタ)アクリル系モノビニル単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、グリシジル(メタ)アクリレート等が挙げられる。なお、本開示において(メタ)アクリルとは、アクリル又はメタクリルの各々を意味し、(メタ)アクリレートとは、アクリレート又はメタクリレートの各々を意味する。
 上記(メタ)アクリル系モノビニル単量体のうち、好適には、アクリル酸ブチル及びメタクリル酸メチルからなる群より選ばれる少なくとも1つを使用する。
 非架橋性単量体として親水性単量体を用いてもよい。親水性単量体としては、水に可溶なモノビニル単量体が好適に用いられる。親水性単量体は、20℃の水に対する溶解度が1質量%以上であることが好ましい。
 親水性単量体としては、例えば、酸基含有単量体、ヒドロキシ基含有単量体、アミド基含有単量体、ポリオキシエチレン基含有単量体等の親水基を有する単量体が挙げられる。
 酸基含有単量体は、酸基を含む単量体を意味する。ここでいう酸基とは、プロトン供与基(ブレンステッド酸基)、電子対受容基(ルイス酸基)のいずれも含む。親水性単量体として酸基含有単量体を用いる場合には、耐熱性が高い中空樹脂粒子が得られる点で好ましい。
 酸基含有単量体は、酸基を有していれば特に限定されず、例えば、アクリル酸、メタクリル酸、クロトン酸、ケイ皮酸、イタコン酸、フマル酸、マレイン酸、ブテントリカルボン酸等のエチレン性不飽和カルボン酸単量体、イタコン酸モノエチル、フマル酸モノブチル、マレイン酸モノブチル等の不飽和ジカルボン酸のモノアルキルエステル等のカルボキシル基含有単量体;ならびにスチレンスルホン酸などのスルホン酸基含有単量体等が挙げられる。酸基含有単量体の中でも、好適にはエチレン性不飽和カルボン酸単量体が、より好適にはアクリル酸及びメタクリル酸からなる群より選ばれる少なくとも1つのアクリル系親水性単量体並びにマレイン酸単量体が、さらに好適にはアクリル系親水性単量体が使用される。アクリル系親水性単量体((メタ)アクリル酸)と上述した(メタ)アクリル系モノビニル単量体((メタ)アクリレート)とを併用する場合、好適な質量比は、(メタ)アクリル酸:(メタ)アクリレート=100:0~30:70であり、より好適な質量比は、(メタ)アクリル酸:(メタ)アクリレート=95:5~35:65である。このように、(メタ)アクリル酸及び上述した(メタ)アクリレートのような比較的高温条件に強い単量体を併用することにより、例えばニトリル基等を有する単量体を使用する場合と比較して、得られる中空樹脂粒子の耐熱性を高めることができる。
 ヒドロキシ基含有単量体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート単量体等が挙げられる。
 アミド基含有単量体としては、例えば、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド等の(メタ)アクリルアミド単量体が挙げられる。
 ポリオキシエチレン基含有単量体としては、例えば、メトキシポリエチレングリコール(メタ)アクリレート単量体等が挙げられる。
 ただし、親水性単量体として、アクリロニトリル及びメタクリロニトリルをいずれも使用しないことが望ましい。熱に弱いニトリル基を含むこれらの単量体は耐熱性に劣るため、得られる粒子の空隙率が低下するおそれがあるからである。
 非架橋性単量体は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。
 非架橋性単量体の総質量を100質量部としたとき、非架橋性単量体中の親水性単量体の含有量は、好適には10~50質量部であり、より好適には15~40質量部である。親水性単量体の含有量が10~50質量部であることにより、後述する塩基添加工程において粒子中に塩基が浸透し易くなることが多く、粒子中の中空部が速やかに形成されやすくなり、さらに前記モノビニル単量体及び親水性単量体による共重合反応が安定して進行しやすい。
 [架橋性単量体]
 本開示においては、架橋性単量体を非架橋性単量体と組み合わせて用いることにより、得られる中空樹脂粒子シェルの機械的特性を高めることができる。また、架橋性単量体は重合可能な官能基を複数有するため、重合体鎖同士を連結することができ、特に親水性単量体(その中でも特に酸基含有単量体)が中空樹脂粒子外部に溶出することを抑えることができ、かつ得られる中空樹脂粒子の耐熱性を高めることができる。
 架橋性単量体としては、例えば、ジビニルベンゼン、ジアリルフタレート、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート等が挙げられ、このうちジビニルベンゼン及びエチレングリコールジ(メタ)アクリレートが好ましい。
 混合液中の重合性単量体(非架橋性単量体と架橋性単量体の全て)の含有量は、水系媒体を除く混合液中成分の総質量を100質量部としたとき、好適には6質量部以上とし、より好適には12質量部以上とする。重合性単量体の含有量が6質量部以上であることにより、得られる中空樹脂粒子の中空構造を維持できる程度に当該中空樹脂粒子の機械的特性を従来よりも向上させることができる。
 本開示においては、非架橋性単量体及び架橋性単量体の総質量を100質量部としたとき、架橋性単量体の含有量を35~95質量部とし、好適には38~93質量部、より好適には40~90質量部、さらに好適には50~90質量部、特に好適には70~90質量部とする。架橋性単量体の含有量が35~95質量部であれば、得られる中空樹脂粒子の空隙率を高くした場合でも十分な粒子強度を維持し粒子のへこみを抑制するだけでなく、耐熱性も向上する。
 本開示においては、重合性単量体の溶解度パラメータ(SP値)を、8.70~9.42とし、好適には8.71~9.41とし、より好適には8.72~9.40とする。重合性単量体のSP値が8.70未満の場合、及び9.42を超える場合には、懸濁液の重合安定性が悪くなり、得られる樹脂粒子が凝集するおそれがある。
 また本開示においては、重合性単量体の溶解度パラメータ(SP値)と炭化水素系溶剤の溶解度パラメータ(SP値)との差を0.60以上とし、好適には0.65以上、より好適には0.70以上、さらに好適には1.00以上、特に好適には1.25以上とする。重合性単量体のSP値と炭化水素系溶剤のSP値との差が0.60未満の場合には生成するポリマーと炭化水素系溶剤が相分離しにくく、単孔の中空樹脂粒子のみではなく、中実微粒子や多孔性の中空樹脂粒子となるおそれがある。
 また 本開示においては、重合性単量体の溶解度パラメータ(SP値)と炭化水素系溶剤の溶解度パラメータ(SP値)との差を好適には3.00以下とし、より好適には2.75以下、さらに好適には2.50以下、特に好適には2.30以下とする。重合性単量体のSP値と炭化水素系溶剤のSP値との差が3.00以下の場合には、懸濁液の重合安定性が良好になり、得られる樹脂粒子の凝集が抑制されやすい。
 なお、本開示において、“重合性単量体の溶解度パラメータ(SP値)(SP1)”と“炭化水素系溶剤の溶解度パラメータ(SP値)(SP2)”との差は、“前記重合性単量体の溶解度パラメータ(SP値)(SP1)”-“炭化水素系溶剤の溶解度パラメータ(SP値)(SP2)”の式で求められる。例えば、当該差が-0.70の場合には、重合性単量体の溶解度パラメータ(SP値)と炭化水素系溶剤の溶解度パラメータ(SP値)との差が0.60以上である場合には含まれない。
 重合性単量体の溶解度パラメータ(SP値)を上記範囲内とし、且つ、重合性単量体の溶解度パラメータ(SP値)と炭化水素系溶剤の溶解度パラメータ(SP値)との差を上記範囲内とすることによって、炭化水素系溶剤がモノマー液滴の内部に集まりやすくなることにより、樹脂粒子の内部に大きな単孔構造の中空部を形成することができるため、空隙率が高い単孔構造の中空樹脂粒子を形成することができる。
 本開示においてSP値とは、沖津俊直、「接着」、高分子刊行会、40巻8号(1996)p342-350に記載された、下記表1に記載した沖津による各種原子団のΔF、Δv値を用い、下記式(1)により算出した溶解性パラメーターδを意味する。また、混合溶剤、共重合体の場合は、下記式(2)により算出した溶解性パラメーターδmixを意味する。
 δ=ΣΔF/ΣΔv 式(1)
 δmix=φ1δ1+φ2δ2+・・・φnδn 式(2)
[式中、ΔFは、下記表1におけるΔFを表し、Δvは、下記表1におけるモル容積Δvを表す。φは、容積分率又はモル分率を表し、φ1+φ2+・・・φn=1である。]
Figure JPOXMLDOC01-appb-T000001
 例えば、溶剤としてのシクロヘキサンのSP値は以下のように求める。
 シクロヘキサンは、原子団として、-CH-を6個有する。この原子団について表1よりΔF、Δv値を求める。
  ΣΔF=132×6=792 ΣΔv=16.5×6=99
 従って、上記式(1)よりシクロヘキサンのδhexは、以下のように求められる。
  δhex=ΣΔF/ΣΔv=792/99=8.00 
 例えば、メタクリル酸40部、エチレングリコールジメタクリレート60部の共重合体のSP値は以下のようにして求める。メタクリル酸単独のSP値は9.40、エチレングリコールジメタクリレート単独のSP値は9.42である。メタクリル酸の分子量は86、エチレングリコールジメタクリレートの分子量は198であることから、共重合体のモル分率は、メタクリル酸:エチレングリコールジメタクリレート=40/86:60/198=0.46:0.30となる。上記式より、共重合体のSP値は、以下のように求められる。 
 δmix=0.46/(0.46+0.30)×9.40+0.30/(0.46+0.30)×9.42=9.41
 (B)油溶性重合開始剤
 本開示においては、混合液中に油溶性重合開始剤を含有させることが好ましい。混合液を懸濁後にモノマー液滴を重合する方法として、水溶性重合開始剤を用いる乳化重合法と、油溶性重合開始剤を用いる懸濁重合法があるが、油溶性重合開始剤を用いることにより懸濁重合を行うことができる。
 油溶性重合開始剤は、20℃の水に対する溶解度が0.2質量%以下の親油性のものであれば特に制限されない。油溶性重合開始剤としては、例えば、ベンゾイルペルオキシド、ラウロイルペルオキシド、t一ブチルペルオキシド一2-エチルヘキサノエート、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル等が挙げられる。
 混合液中の重合性単量体の総質量を100質量部としたとき、油溶性重合開始剤の含有量は、好適には0.1~10質量部であり、より好適には0.5~7質量部であり、さらに好適には1~5質量部である。油溶性重合開始剤の含有量が0.1~10質量部であることにより、重合反応を十分進行させ、かつ重合反応終了後に油溶性重合開始剤が残存するおそれが小さく、予期せぬ副反応が進行するおそれも小さい。
 (C)炭化水素系溶剤
 炭化水素系溶剤は、非重合性の炭化水素系有機溶剤であり、粒子内部に中空部を形成する働きを有する。後述する懸濁液調製工程において、炭化水素系溶剤を含むモノマー液滴が水系媒体中に分散した懸濁液が得られる。懸濁液調製工程においては、モノマー液滴において相分離が発生する結果、極性の低い炭化水素系溶剤がモノマー液滴の内部に集まりやすくなる。最終的に、モノマー液滴においては、その内部に炭化水素系溶剤が、その周縁に炭化水素系溶剤以外の他の材料が各自の極性に従って分布することとなる。
 そして、後述する重合工程において、炭化水素系溶剤を内包した前駆体粒子を含む前駆体組成物が得られる。すなわち、炭化水素系溶剤が粒子内部に集まることにより、得られる前駆体粒子の内部には、炭化水素系溶剤で満たされた中空部が形成されることとなる。
 炭化水素系溶剤の種類は、前記の重合性単量体の溶解度パラメータ(SP値)と炭化水素系溶剤の溶解度パラメータ(SP値)との差の範囲を満たすものであれば、特に限定されない。炭化水素系溶剤としては、脂肪族炭化水素系溶剤、芳香族炭化水素系溶剤、及び炭化水素系エステル溶剤からなる群から選択される少なくとも1種が挙げられる。脂肪族炭化水素系溶剤としては、例えば、ブタン、ペンタン、ノルマルヘキサン、シクロヘキサン、ヘプタン、オクタン等を挙げることができる。芳香族炭化水素系溶剤としては、例えば、ベンゼン、トルエン、キシレン等を挙げることができる。炭化水素系エステル溶剤としては、極性の点からSP値が8.82以下の溶剤が挙げられ、例えば、酢酸n-ブチル、酢酸イソブチル、酢酸イソプロピル等を挙げることができる。
 本開示に使用される炭化水素系溶剤は、20℃における比誘電率が3以下であることが好ましい。比誘電率は、化合物の極性の高さを示す指標の1つである。炭化水素系溶剤の比誘電率が3以下と十分に小さい場合には、モノマー液滴中で相分離が速やかに進行し、中空が形成されやすいと考えられる。
 20℃における比誘電率が3以下の溶剤の例は、以下の通りである。カッコ内は比誘電率の値である。
 ヘプタン(1.9)、シクロヘキサン(2.0)、ベンゼン(2.3)、トルエン(2.4)。
 20℃における比誘電率に関しては、公知の文献(例えば、日本化学会編「化学便覧基礎編」、改訂4版、丸善株式会社、平成5年9月30日発行、II-498~II-503ページ)に記載の値、及びその他の技術情報を参照できる。20℃における比誘電率の測定方法としては、例えば、JISC 2101:1999の23に準拠し、かつ測定温度を20℃として実施される比誘電率試験等が挙げられる。
 本開示に使用される炭化水素系溶剤は、炭素数5~7の炭化水素化合物であってもよい。炭素数5~7の炭化水素化合物は、重合工程時に前駆体粒子中に容易に内包され、かつ溶剤除去工程時に前駆体粒子中から容易に除去することができる。中でも、炭化水素系溶剤は、炭素数6の炭化水素化合物であることが好ましく、シクロヘキサン及びノルマルヘキサンの少なくとも1種が好適に用いられる。
 混合液中の重合性単量体の総質量を100質量部としたとき、炭化水素系溶剤の含有量は、好適には100~900質量部であり、より好適には150~700質量部であり、さらに好適には200~500質量部である。炭化水素系溶剤の前記含有量が100~900質量部であることにより、得られる中空樹脂粒子の空隙率が従来よりも高くなるとと共に、中空を維持できる程度に当該中空樹脂粒子の機械的特性を向上させることができる。
 (D)懸濁安定剤
 懸濁安定剤は、後述する懸濁重合法における懸濁液中の懸濁状態を安定化させる剤である。懸濁安定剤は、界面活性剤を含有していてもよい。界面活性剤は、後述する懸濁重合法において、非架橋性単量体、架橋性単量体、油溶性重合開始剤及び炭化水素系溶剤などの親油性成分を含むミセルを形成する材料である。
 界面活性剤としては、陽イオン性界面活性剤、陰イオン性界面活性剤、非イオン性界面活性剤のいずれも用いることができ、それらを組み合わせて用いることもできる。これらの中でも、陰イオン性界面活性剤及び非イオン性界面活性剤が好ましく、陰イオン性界面活性剤がより好ましい。
 陰イオン性界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ナフタレンスルホン酸のホルマリン縮合物塩等が挙げられる。
 非イオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等が挙げられる。
 陽イオン性界面活性剤としては、例えば、ジデシルジメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド等が挙げられる。
 懸濁安定剤は、難水溶性無機化合物や水溶性高分子等を含有していてもよい。
 混合液中の重合性単量体の総質量を100質量部としたとき、懸濁安定剤の含有量は、通常0.1~6質量部、好適には0.1~5質量部、より好適には0.1~4質量部、さらに好適には0.5~4質量部、特に好適には1~4質量部、最も好適には2~4質量部である。懸濁安定剤の前記含有量が0.1質量部以上の場合には、水系媒体中にミセルを形成しやすい。一方、懸濁安定剤の前記含有量が6質量部以下の場合には、炭化水素系溶剤を除去する工程において発泡による生産性の低下が起きにくい。
 (E)水系媒体
 本開示において水系媒体とは、水、親水性溶媒、及び、水と親水性溶媒との混合物からなる群より選ばれる媒体を意味する。
 本開示における親水性溶媒は、水と十分に混ざり合い相分離を起こさないものであれば特に制限されない。親水性溶媒としては、例えば、メタノール、エタノール等のアルコール類;テトラヒドロフラン(THF);ジメチルスルフォキシド(DMSO)等が挙げられる。
 水系媒体の中でも、その極性の高さから、水を用いることが好ましい。水と親水性溶媒の混合物を用いる場合には、モノマー液滴を形成する観点から、当該混合物全体の極性が低くなりすぎないことが重要である。この場合、例えば、水と親水性溶媒との混合比(質量比)を、水:親水性溶媒=99:1~50:50等としてもよい。
 前記の各材料及び必要に応じ他の材料を単に混合し、適宜攪拌等することによって混合液が得られる。当該混合液においては、上記(A)重合性単量体、(B)油溶性重合開始剤、及び(C)炭化水素系溶剤などの親油性材料を含む油相が、(D)懸濁安定剤及び(E)水系媒体などを含む水相中において、粒径数mm程度の大きさで分散している。混合液におけるこれら材料の分散状態は、材料の種類によっては、肉眼でも観察が可能である。
 混合液調製工程は、上記(A)重合性単量体、(B)油溶性重合開始剤、及び(C)炭化水素系溶剤などの親油性材料を含む油相と、(D)懸濁安定剤及び(E)水系媒体などを含む親水性材料を含む水相とを予め別に調製し、これらを混合する工程であってもよい。このように油相と水相を予め別に調製した上で、これらを混合することにより、シェル部分の組成が均一な中空樹脂粒子を製造することができる。
 (2)懸濁液調製工程
 本工程は、上述した混合液を懸濁させることにより、炭化水素系溶剤を含むモノマー液滴が水系媒体中に分散した懸濁液を調製する工程である。
 モノマー液滴を形成するための懸濁方法は特に限定されないが、例えば、インライン型乳化分散機(大平洋機工社製、商品名:マイルダー)、高速乳化分散機(プライミクス株式会社製、商品名:T.K.ホモミクサー MARK II型)等の強攪拌が可能な装置を用いて行う。
 本工程で調製される懸濁液においては、上記親油性材料を含みかつ0.1μm~10μm程度の粒径を持つモノマー液滴が、水系媒体中に均一に分散している。このようなモノマー液滴は肉眼では観察が難しく、例えば光学顕微鏡等の公知の観察機器により観察できる。
 本工程においては、モノマー液滴中に相分離が生じるため、極性の低い炭化水素系溶剤がモノマー液滴の内部に集まりやすくなる。その結果、得られるモノマー液滴は、その内部に炭化水素系溶剤が、その周縁に炭化水素系溶剤以外の材料が分布することとなる。
 上述したように、本開示においては、乳化重合法ではなく懸濁重合法を採用する。そこで以下、乳化重合法と対比しながら、懸濁重合法及び油溶性重合開始剤を用いる利点について説明する。
 図3は、乳化重合用の分散液を示す模式図である。図3中のミセル60は、その断面を模式的に示すものとする。
 図3には、水系媒体51中に、ミセル60、ミセル前駆体60a、溶媒中に溶出した単量体53a、及び水溶性重合開始剤54が分散している様子が示されている。ミセル60は、油溶性の単量体組成物53の周囲を、界面活性剤52が取り囲むことにより構成される。単量体組成物53中には、重合体の原料となる単量体等が含まれるが、重合開始剤は含まれない。
 一方、ミセル前駆体60aは、界面活性剤52の集合体ではあるものの、その内部に十分な量の単量体組成物53を含んでいない。ミセル前駆体60aは、溶媒中に溶出した単量体53aを内部に取り込んだり、他のミセル60等から単量体組成物53の一部を調達したりすることにより、ミセル60へと成長する。
 水溶性重合開始剤54は、水系媒体51中を拡散しつつ、ミセル60やミセル前駆体60aの内部に侵入し、これらの内部の油滴の成長を促す。したがって、乳化重合法においては、各ミセル60は水系媒体51中に単分散しているものの、ミセル60の粒径は数百nmまで成長することが予測される。
 図2は、本工程における懸濁液の一実施形態を示す模式図である。図2中のミセル10は、その断面を模式的に示すものとする。なお、図2はあくまで模式図であり、本開示における懸濁液は、必ずしも図2に示すものに限定されない。図2の一部は、上述した図1の(2)に対応する。
 図2には、水系媒体1中に、ミセル10及び水系媒体中に分散した重合性単量体4a(非架橋性単量体及び架橋性単量体を含む。)が分散している様子が示されている。ミセル10は、油溶性の単量体組成物4の周囲を、界面活性剤3が取り囲むことにより構成される。単量体組成物4中には油溶性重合開始剤5、並びに、重合性単量体(非架橋性単量体及び架橋性単量体を含む。)及び炭化水素系溶剤(いずれも図示せず)が含まれる。
 図2に示すように、本工程においては、ミセル10の内部に単量体組成物4を含む微小油滴を予め形成した上で、油溶性重合開始剤5により、重合開始ラジカルが微小油滴中で発生する。したがって、微小油滴を成長させ過ぎることなく、目的とする粒径の前駆体粒子を製造することができる。
 また、懸濁重合(図2)と乳化重合(図3)とを比較すると分かるように、懸濁重合(図2)においては、油溶性重合開始剤5が、水系媒体1中に分散した重合性単量体4aと接触する機会は存在しない。したがって、油溶性重合開始剤を使用することにより、目的とする中空部を有する樹脂粒子の他に、余分なポリマー粒子が生成することを防止できる。
 (3)重合工程
 本工程は、上述した懸濁液を重合反応に供することにより、中空部を有し且つ当該中空部に炭化水素系溶剤を内包する前駆体粒子を含む前駆体組成物を調製する工程である。ここで、前駆体粒子とは、主に上述した非架橋性単量体と架橋性単量体との共重合により形成される粒子である。
 重合方式に特に限定はなく、例えば、回分式(バッチ式)、半連続式、連続式等が採用できる。重合温度は、好ましくは40~80℃であり、更に好ましくは50~70℃である。また、重合の反応時間は好ましくは1~20時間であり、更に好ましくは2~15時間、特に好ましくは2.5~8時間である。
 炭化水素系溶剤を内部に含むモノマー液滴を用いるため、前駆体粒子の内部には、炭化水素系溶剤を含む中空が形成される。
 (4)固液分離工程
 本工程は、上述した前駆体組成物を固液分離することにより前駆体粒子を得る工程である。
 水系媒体を含むスラリー中で、前駆体粒子に内包される炭化水素系溶剤をスラリーの水系媒体に置換した後、スラリーを乾燥し、水系媒体を除去する方法により、前駆体粒子内の炭化水素系溶剤を除去することもできる。この場合、中空部が気体で満たされた中空樹脂粒子を得るためには、水を内包する前駆体粒子から、水を除去する必要がある。
 これに対し、本例の製造方法においては、重合工程後のスラリーを固液分離した上で、得られる固形分を気中で乾燥する。この場合、前駆体粒子内部から抜けた炭化水素系溶剤と同体積の空気が容易に粒子内に入り込むため、中空形状を保った中空樹脂粒子が得られる。そして、炭化水素系溶剤を内包する前駆体粒子は、水を内包する前駆体粒子よりも潰れにくい傾向にある。
 炭化水素系溶剤を内包する前駆体粒子が水を内包する前駆体粒子よりも潰れにくい理由は、未だ明らかではない。しかし、シェルを構成するポリマーの自由体積を考慮した場合、以下のようなメカニズムが推定される。
 H.Eyringらによって提唱された液体の構造を説明する模型において、液体は、分子と、自由体積(すなわち、分子が存在しない空間)とからなるとされる。この自由体積は、液体中において分子程度の大きさの空孔の集まりからなり、通常の温度と圧力の下では、約3%程度の自由体積が液体中を占めるとされる。この模型は、ポリマー等の規則性を有する分子を含む固体構造にも適用できる。
 本開示においては、前駆体粒子のシェルを構成するポリマーの極性は一般的に高い。したがって、水はポリマーと馴染みやすく、水分子はポリマーの自由体積に取り込まれ易いと考えられる。換言すると、水分子のポリマーに対する溶解度係数は高い。一方、炭化水素系溶剤は、その低い極性のためポリマーと馴染みにくい。換言すると、炭化水素系溶剤分子のポリマーに対する溶解度係数は低い。その結果、炭化水素系溶剤分子は、ポリマーの自由体積に取り込まれにくい。
 したがって、水を内包する粒子においては、水分子がシェルを構成するポリマーの自由体積に取り込まれるため、シェル中に分子が存在しない空間が減る結果、シェル中の気体透過性が低下し、乾燥時の水の蒸発に伴う空気の流入が進行しにくくなり、粒子が潰れやすくなる。これに対し、炭化水素系溶剤を内包する粒子においては、炭化水素系溶剤分子がポリマーの自由体積に取り込まれにくいため、シェル中の気体透過性が比較的高く保たれる結果、溶剤除去工程において炭化水素系溶剤と空気との置換が速やかに進行し、中空部を維持した中空樹脂粒子が生成される。
 前駆体組成物を固液分離する方法は、前駆体粒子に内包される炭化水素系溶剤を除去することなく、前駆体粒子を含む固形分と、水系媒体を含む液体分を分離する方法であれば特に限定されず、公知の方法を用いることができる。固液分離の方法としては、例えば、遠心分離法、ろ過法、静置分離等が挙げられ、この中でも遠心分離法又はろ過法であってもよく、操作の簡便性の観点から遠心分離法を採用してもよい。
 固液分離工程後、後述する溶剤除去工程を実施する前に、予備乾燥工程等の任意の工程を実施してもよい。予備乾燥工程としては、例えば、固液分離工程後に得られた固形分を、乾燥機等の乾燥装置や、ハンドドライヤー等の乾燥器具により予備乾燥する工程が挙げられる。
 (5)溶剤除去工程
 本工程は、前駆体粒子に内包される炭化水素系溶剤を気中にて除去することにより、中空部が気体で満たされた中空樹脂粒子を得る工程である。
 本工程における「気中」とは、厳密には、前駆体粒子の外部に液体分が全く存在しない環境下、及び、前駆体粒子の外部に、炭化水素系溶剤の除去に影響しない程度のごく微量の液体分しか存在しない環境下を意味する。「気中」とは、前駆体粒子がスラリー中に存在しない状態と言い替えることもできるし、前駆体粒子が乾燥粉末中に存在する状態と言い替えることもできる。すなわち、本工程においては、前駆体粒子が外部の気体と直に接する環境下で炭化水素系溶剤を除去することが重要である。
 前駆体粒子中の炭化水素系溶剤を気中にて除去する方法は、特に限定されず、公知の方法が採用できる。当該方法としては、例えば、減圧乾燥法、加熱乾燥法、気流乾燥法又はこれらの方法の併用が挙げられる。
 特に、加熱乾燥法を用いる場合には、加熱温度は炭化水素系溶剤の沸点以上、かつ前駆体粒子のシェル構造が崩れない最高温度以下とする必要がある。したがって、前駆体粒子中のシェルの組成と炭化水素系溶剤の種類によるが、例えば、加熱温度を50~200℃としてもよく、70~180℃としてもよく、100~150℃としてもよい。
 気中における乾燥操作によって、前駆体粒子内部の炭化水素系溶剤が、外部の気体により置換される結果、中空部が気体で満たされた中空樹脂粒子が得られる。
 乾燥雰囲気は特に限定されず、中空樹脂粒子の用途によって適宜選択することができる。乾燥雰囲気としては、例えば、空気、酸素、窒素、アルゴン等が考えられる。また、いったん気体により中空樹脂粒子の中空部を満たした後、減圧乾燥することにより、一時的に中空部が真空である中空樹脂粒子も得られる。
 (6)その他
 上記(1)~(5)以外の工程としては、例えば、中空部の再置換工程や塩基添加工程を付加しても良い。
[中空部の再置換工程]
 本工程は、中空樹脂粒子の中空部の気体を、他の気体や液体により置換する工程である。このような置換により、中空樹脂粒子の中空部の環境を変えたり、中空樹脂粒子の中空部に選択的に分子を閉じ込めたり、用途に合わせて中空樹脂粒子の中空部の化学構造を修飾したりすることができる。
[塩基添加工程]
 本工程は、混合液中の重合性単量体の一部として親水性単量体を用い、重合工程により得られた前駆体組成物に塩基を添加することにより、当該前駆体組成物のpHを6.0以上とする工程である。親水性単量体を適量用いる場合には、重合工程により中空構造の前駆体粒子を得た後、塩基を添加することにより前駆体粒子のシェルを膨潤させ、炭化水素系溶剤の除去を容易にし、中空樹脂粒子の空隙率を大きくすることができる。
2.中空樹脂粒子
 ア.中空樹脂粒子の個数平均粒径
 本開示の製造方法で得られる中空樹脂粒子の個数平均粒径は、好適には0.1~10μm、より好適には0.5~8μm、さらに好適には1~6μm、よりさらに好適には1.5~5μm、特に好適には2~4μmである。
 中空樹脂粒子の個数平均粒径は、例えば、レーザー回折式粒度分布測定装置により、粒度分布を測定し、その個数平均を算出することにより求めることができる。
 中空樹脂粒子の個数平均粒径の変動係数は、例えば、レーザー回折式粒度分布測定装置により、個数基準の粒度分布を測定し、その標準偏差を個数平均粒径で除することにより求めることができる。
 本開示の製造方法においては、シェルを膨張させずに中空を形成するため、このように比較的個数平均粒径の変動係数が小さい中空樹脂粒子(すなわち、粒度分布がシャープである中空樹脂粒子)が得られる。そして、中空樹脂粒子の粒度分布がシャープであるほど、中空樹脂粒子を含む塗膜を平坦に形成することができる。
 イ.中空樹脂粒子の形状(モルホロジー)
 中空樹脂粒子の形状は、内部に中空部が形成されていれば特に限定されず、例えば、球形、楕円球形、不定形等が挙げられる。これらの中でも、製造の容易さから球形が好ましい。
 粒子内部は、1又は2以上の中空部を有していてもよく、多孔質状となっていてもよい。粒子内部は、中空樹脂粒子の高い空隙率と、中空樹脂粒子の機械強度との良好なバランスを維持するために、中空部を1つのみ有するものが好ましい。
 中空樹脂粒子は、平均円形度が、0.950~0.995であってもよい。
 中空樹脂粒子の形状のイメージの一例は、薄い皮膜からなりかつ気体で膨らんだ袋であり、その断面図は、後述する図1の(5)中の中空樹脂粒子100の通りである。この例においては、外側に薄い1枚の皮膜が設けられ、その内部が気体で満たされる。
 粒子形状は、例えば、SEMやTEMにより確認することができる。また、粒子内部の形状は、粒子を公知の方法で輪切りにした後、SEMやTEMにより確認することができる。
 ウ.中空樹脂粒子の空隙率
 本開示の製造方法において、中空樹脂粒子の空隙率は、60%以上とすることができ、より好適には65%以上、さらに好適には70%以上、特に好適には75%以上とすることができる。粒子の強度を維持する観点から、中空樹脂粒子の空隙率は、好適には95%以下、さらにより好適には93%以下、さらに好適には90%以下とする。
 中空樹脂粒子の空隙率(%)は、中空樹脂粒子の見かけ密度Dと真密度Dにより、下記式(I)により算出される。
 式(I)
 空隙率(%)=100-(見かけ密度D/真密度D)×100
 中空樹脂粒子の見かけ密度Dの測定法は以下の通りである。まず、容量100cmのメスフラスコに約30cmの中空樹脂粒子を充填し、充填した中空樹脂粒子の質量を精確に秤量する。次に、中空樹脂粒子の充填されたメスフラスコに、気泡が入らないように注意しながら、イソプロパノールを標線まで精確に満たす。メスフラスコに加えたイソプロパノールの質量を精確に秤量し、下記式(II)に基づき、中空樹脂粒子の見かけ密度D(g/cm)を計算する。
 式(II)
 見かけ密度D=[中空樹脂粒子の質量]/(100-[イソプロパノールの質量]÷[測定温度におけるイソプロパノールの比重])
 見かけ密度Dは、中空部が中空樹脂粒子の一部であるとみなした場合の、中空樹脂粒子全体の比重に相当する。
 中空樹脂粒子の真密度Dの測定法は以下の通りである。中空樹脂粒子を予め粉砕した後、容量100cmのメスフラスコに中空樹脂粒子の粉砕片を約10g充填し、充填した粉砕片の質量を精確に秤量する。あとは、上記見かけ密度の測定と同様にイソプロパノールをメスフラスコに加え、イソプロパノールの質量を精確に秤量し、下記式(III)に基づき、中空樹脂粒子の真密度D(g/cm)を計算する。
 式(III)
 真密度D=[中空樹脂粒子の粉砕片の質量]/(100-[イソプロパノールの質量]÷[測定温度におけるイソプロパノールの比重])
 真密度Dは、中空樹脂粒子のうちシェル部分のみの比重に相当する。上記測定方法から明らかなように、真密度Dの算出に当たっては、中空部は中空樹脂粒子の一部とはみなされない。
 中空樹脂粒子の空隙率は、中空樹脂粒子の比重において中空部が占める割合であると言い替えることができる。
 オ.中空樹脂粒子の耐圧性
 本開示の中空樹脂粒子は、粒子強度が強いため、強い外力が付加された場合でもその外形及び内部形状が崩れにくく、中空を維持することができる。
 圧縮強度は、以下の方法で測定することができる。
 中空樹脂粒子の圧縮強度の測定方法としては、例えば、以下の方法が挙げられる。
 微小圧縮試験機(例えば、MCTM-500、島津製作所社製等)を用いて、下記試験条件の下、粒子の10%圧縮強度を測定する。
(試験条件)
 圧子の種類:FLAT50
 対物レンズ倍率:50
 負荷速度:0.8924 mN/sec
 中空樹脂粒子の用途にもよるが、例えば、中空樹脂粒子の圧縮強度が5.0MPa以上であれば、その中空樹脂粒子は高い圧縮強度を有すると評価できる。
3.中空樹脂粒子の用途
 中空樹脂粒子の用途としては、例えば、感熱紙のアンダーコート材等が考えられる。一般的に、アンダーコート材には断熱性、緩衝性(クッション性)が要求され、これに加えて感熱紙用途に即した耐熱性も要求される。本開示の中空樹脂粒子は、その高い空隙率、潰れにくい中空形状、比較的小さい個数平均粒径、及び高い耐熱性により、これらの要求に応えることができる。
 また、中空樹脂粒子は、例えば、光沢、隠ぺい力等に優れたプラスチックピグメントとして有用である。また、内部に香料、薬品、農薬、インキ成分等の有用成分を浸漬処理、減圧または加圧浸漬処理等の手段により封入して得られる中空樹脂粒子は、内部に含まれる成分に応じて各種用途に利用することができる。
 以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。なお、部及び%は、特に断りのない限り質量基準である。
 本実施例及び比較例において行った試験方法は以下のとおりである。
1.溶解性パラメーター(SP値)の計算
 重合性単量体、溶剤のSP値(δ)は、上記したように沖津俊直、「接着」、高分子刊行会、40巻8号(1996)p342-350に記載された、前記表1に記載した沖津による各種原子団のΔF、Δv値を用い、下記式(1)により算出した。また、混合溶剤、共重合体ののSP値(δmix)は、下記式(2)により算出した。
 δ=ΣΔF/ΣΔv 式(1)
 δmix=φ1δ1+φ2δ2+・・・φnδn 式(2)
[式中、ΔFは、下記表1におけるΔFを表し、Δvは、下記表1におけるモル容積Δvを表す。φは、容積分率又はモル分率を表し、φ1+φ2+・・・φn=1である。]
式中、ΔF、Δvは、下記表1におけるモル容積Δvを表す。φは、物質量を表す。]
2.中空樹脂粒子の個数平均粒径
 上記したように、レーザー回折式粒度分布測定装置(堀場製作所社製、商品名:LA-960)により中空樹脂粒子の粒径を測定し、その個数平均を算出し、得られた値をその粒子の個数平均粒径とした。
3.粒子内部のモルホロジー
 中空樹脂粒子の断面をイオンミリングにて露出させ、透過型電子顕微鏡にて観察した。
4.中空樹脂粒子の空隙率
 上記方法に従って中空樹脂粒子の見かけ密度Dと真密度Dを測定し、下記式(I)により空隙率(%)を算出した。
 式(I)
 空隙率(%)=100-(見かけ密度D/真密度D)×100
5.耐圧性
 上記方法に従って中空樹脂粒子の圧縮強度を測定した。
[実施例1]
(1)混合液調製工程
 メタクリル酸40部、エチレングリコールジメタクリレート60部(これらの重合性単量体の混合物のSP値は9.41である)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(油溶性重合開始剤、和光純薬社製、商品名:V-65)3.0部、およびシクロヘキサン310部(SP値は8.00である)を混合し、これを油相とした。
 次いで、イオン交換水800部に、界面活性剤4.0部を混合し、これを水相とした。そして、水相と油相とを混合することにより、混合液を調製した。
(2)懸濁液調製工程
 上記混合液調製工程で得られた混合液を、インライン型乳化分散機(大平洋機工社製、商品名:マイルダー)により、回転数15,000rpmの条件下で5分間攪拌して懸濁させ、シクロヘキサンを内包したモノマー液滴が水中に分散した懸濁液を調製した。
(3)重合工程
 上記懸濁液調製工程で得られた懸濁液を、窒素雰囲気で65℃の温度条件下で4時間攪拌し、重合反応を行った。この重合反応により、シクロヘキサンを内包した中空樹脂粒子前駆体を含む前駆体組成物を調製した。
(4)固液分離工程
 上記重合工程で得られた前駆体組成物につき、冷却高速遠心機(コクサン社製、商品名:H-9R)により、ローターMN1、回転数3,000rpm、遠心分離時間20分間の条件で遠心分離を行い、固形分を脱水した。脱水後の固形分を乾燥機にて40℃の温度で乾燥させ、シクロヘキサンを内包した中空樹脂粒子前駆体を得た。
(5)溶剤除去工程
 上記固液分離工程で得られた中空樹脂粒子前駆体を、真空乾燥機にて、気中で80℃、15時間加熱処理することで、中空樹脂粒子を得た。得られた中空樹脂粒子について、上記方法にしたがって、個数平均粒径、空隙率および圧縮強度の測定を行った。結果を表1に示す。なお、得られた中空樹脂粒子は、走査型電子顕微鏡の観察結果および空隙率の値から、これらの粒子が球状であり、かつ中空部を1つのみ有するものであることが確認され、また、その樹脂部を構成する単量体単位の割合は、仕込み量とほぼ同じであった。
[実施例2~6、比較例1~4]
 重合性単量体(非架橋性単量体、架橋性単量体)、重合開始剤、炭化水素系溶剤の種類及び含有量を表2の記載に従って変更した以外は実施例1と同様の手順で、中空樹脂粒子を製造した。
[比較例5]
 重合用モノマー成分(非架橋性単量体としてメタクリル酸メチル56部、メタクリル酸イソブチル24部、及び、架橋性単量体としてトリメチロールプロパントリアクリレート20部)、有機溶剤としてシクロヘキサン100部、重合開始剤としてのアゾビスイソブチロニトリル(AIBN)0.5部を混合、撹拌し、重合用モノマー溶液を調製した。ついで極性溶媒としてのイオン交換水(全使用量の50重量%)および分散剤(界面活性剤)として水溶性高分子水溶液(PVA:部分ケン化ポリ酢酸ビニル水溶液)を添加、ホモジナイザーにて撹拌し、懸濁液を調製した。一方、撹拌機、ジャケット、還流冷却器、および温度計を備えた20リットルの重合器に、残りのイオン交換水、水溶性重合禁止剤としての亜硫酸ナトリウムを入れて、攪拌を開始した。重合器内を減圧して容器内の脱酸素をおこなった後、窒素により圧力を大気圧まで戻して、内部を窒素雰囲気とした後、上記懸濁液を重合槽に一括投入したのち、重合槽を60℃まで昇温し重合を開始した。4時間で重合を終了し、その後1時間の熟成期間をおいた後、重合槽を室温まで冷却した。スラリーを遠心分離機にて脱水し、その後真空乾燥により有機溶剤を除去し中空ポリマー粒子を得た。
[比較例6]
 異種ポリマーとしての市販のポリスチレン樹脂(新日鉄化学(株)製、数平均分子量15万)10部を、トルエン300部、メチルメタクリレート90部、ジビニルベンゼン10部およびベンゾイルペルオキシド3部の混合物に溶解した。この溶液を、分散剤(界面活性剤)としてポリビニルアルコールを水800部に溶解した水溶液に入れ、撹拌しながら80℃で4時間重合を行なったところ、重合収率98%で粒子径2~10μmのポリマー粒子の分散液が得られた。これを光学顕微鏡で観察したところ、ポリマー粒子は二重の輪郭を有するカプセル粒子であることが分った。次に、このポリマー粒子の分散液にスチームを吹き込んでスチームストリップ処理を行なったところ、ポリマー粒子内部のトルエンが除去され、内部に水を含む含水中空ポリマー粒子が得られた。また、上記含水中空ポリマー粒子およびスチームストリップ処理を行う前のトルエンを内部に含むカプセル粒子をスライドガラス上に乗せカバーグラスを乗せずに顕微鏡で観察したところ、1~2分でともに粒子内部の水あるいはトルエンが蒸発し、中空の粒子になる様子が見られた。
[結果]
 表2に、各実験例で用いた材料の種類、使用量、SP値、及び試験結果を示す。
Figure JPOXMLDOC01-appb-T000002
 [考察]
 以下、表2を参照しながら、各実験例の評価結果について検討する。
 比較例1においては、非架橋性単量体と架橋性単量体の総量100部に対し架橋性単量体を60部含み、架橋性単量体の量が充分だったため、中空樹脂粒子の圧縮強度は15.5MPaとなり、粒子強度が大きかった。しかし、重合性単量体のSP値と炭化水素系溶剤のSP値との差が0.38と小さかったため、空隙率は30%と低く、中空性の程度が劣っていた。また、粒子内部のモルホロジーでは多孔質構造が観察され、単孔構造を形成することができなかった。
 比較例2においては、非架橋性単量体と架橋性単量体の総量100部に対し架橋性単量体を50部含み、架橋性単量体の量が充分だったため、中空樹脂粒子の圧縮強度は10.1となり、粒子強度が大きかった。しかし、重合性単量体のSP値と炭化水素系溶剤のSP値との差が-0.27と小さかったため、空隙率は20%と低く、中空性の程度が劣っていた。また、粒子内部のモルホロジーでは多孔質構造が観察され、単孔構造を形成することができなかった。
 比較例3においては、重合性単量体のSP値が8.60であり低すぎたため、重合安定性が悪くなり、重合時に樹脂粒子が凝集した。中空樹脂粒子として使用可能な物性が得られなかったため、空隙率、圧縮強度、モルホロジー観察は実施しなかった。
 比較例4においては、重合性単量体のSP値が9.43であり高すぎたため、重合安定性が悪くなり、重合時に樹脂粒子が凝集した。中空樹脂粒子として使用可能な物性が得られなかったため、空隙率、圧縮強度、モルホロジー観察は実施しなかった。
 比較例5においては、重合性単量体のSP値と炭化水素系溶剤のSP値との差が-0.25と小さかったため、空隙率は50%と低く、中空性の程度が劣っていた。また、粒子内部のモルホロジーでは多孔質構造が観察され、単孔構造を形成することができなかった。また個数平均粒径が40μmであり、粒子サイズが大きすぎた。
 比較例6においては、重合性単量体のSP値と炭化水素系溶剤のSP値との差が-0.26と小さかったが、重合性単量体のSP値と炭化水素系溶剤のSP値との差を利用する方法ではないため、単孔構造で高い空隙率(75%)の中空樹脂粒子が得られた。しかし、中空樹脂粒子の圧縮強度は2.1MPaと小さかった。従って、比較例6においては、空隙率が高く且つ粒子強度が大きい中空樹脂粒子は得られなかった。
 一方、実施例1~実施例6においては、個数平均粒径が2.8μm~3.1μmであり、高い空隙率(70%~90%)、及び、十分な圧縮強度(7.0MPa~13.8MPa)を有する、単孔構造の中空樹脂粒子が得られた。特に、実施例3の中空樹脂粒子は、架橋性単量体の含有量(重合性単量体100部に対し90部)が大きかったため、圧縮強度が実施例のなかで最も大きかった。また実施例2の中空樹脂粒子は、重合性単量体のSP値と炭化水素系溶剤のSP値との差が2.17と大きかったため、空隙率が実施例のなかで最も大きかった。
1 水系媒体
2 親油性材料
3 懸濁安定剤
4 単量体組成物
4a 水系媒体中に分散した単量体
5 油溶性重合開始剤
6 シェル
7 炭化水素系溶剤
8 中空部
10 ミセル
20 前駆体粒子
51 水系媒体
52 界面活性剤
53 単量体組成物
53a 水系媒体中に溶出した単量体
54 水溶性重合開始剤
60 ミセル
60a ミセル前駆体
100 中空樹脂粒子

Claims (3)

  1.  少なくとも1つの非架橋性単量体及び少なくとも1つの架橋性単量体を含む重合性単量体、炭化水素系溶剤、並びに、水系媒体を含む混合液を懸濁させることにより、炭化水素系溶剤を含むモノマー液滴が水系媒体中に分散した懸濁液を調製し、前記懸濁液を重合反応に供することにより、中空部を有し且つ当該中空部に炭化水素系溶剤を内包する前駆体粒子を形成し、前記前駆体粒子に内包される炭化水素系溶剤を除去することにより中空樹脂粒子を製造する方法であって、
     前記混合液中に、前記重合性単量体の総質量100質量部に対し前記架橋性単量体を35~95質量部含み、
     前記重合性単量体の溶解度パラメータ(SP値)が8.70~9.42であり、且つ、
     前記重合性単量体の溶解度パラメータ(SP値)と前記炭化水素系溶剤の溶解度パラメータ(SP値)との差が0.60以上
    であることを特徴とする中空樹脂粒子の製造方法。
  2.  前記中空樹脂粒子の空隙率が60~95%であることを特徴とする請求項1に記載の中空樹脂粒子の製造方法。
  3.  前記中空樹脂粒子の個数平均粒径が0.1~10μmであることを特徴とする請求項1又は2に記載の中空樹脂粒子の製造方法。
PCT/JP2020/003335 2019-02-06 2020-01-30 中空樹脂粒子の製造方法 WO2020162300A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020571129A JP7476804B2 (ja) 2019-02-06 2020-01-30 中空樹脂粒子の製造方法
CN202080009215.3A CN113302210B (zh) 2019-02-06 2020-01-30 中空树脂颗粒的制造方法
US17/425,987 US20220153881A1 (en) 2019-02-06 2020-01-30 Method for producing hollow resin particles
EP20752086.7A EP3922650A4 (en) 2019-02-06 2020-01-30 PROCESS FOR PRODUCTION OF HOLLOW RESIN PARTICLES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019019441 2019-02-06
JP2019-019441 2019-02-06

Publications (1)

Publication Number Publication Date
WO2020162300A1 true WO2020162300A1 (ja) 2020-08-13

Family

ID=71947568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003335 WO2020162300A1 (ja) 2019-02-06 2020-01-30 中空樹脂粒子の製造方法

Country Status (5)

Country Link
US (1) US20220153881A1 (ja)
EP (1) EP3922650A4 (ja)
JP (1) JP7476804B2 (ja)
CN (1) CN113302210B (ja)
WO (1) WO2020162300A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092265A1 (ja) * 2020-10-30 2022-05-05 日本ゼオン株式会社 中空粒子の製造方法及び中空粒子

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127336A (ja) 1985-11-28 1987-06-09 Japan Synthetic Rubber Co Ltd 単一の内孔を有するポリマー粒子の製造方法
JP2004137341A (ja) * 2002-10-16 2004-05-13 Shinwa Kako Kk コポリマー、これを用いた吸着剤又は濃縮媒体、固相マイクロ抽出用注射針
WO2004067638A1 (ja) 2003-01-28 2004-08-12 Matsushita Electric Works, Ltd. 中空粒子を含有する樹脂組成物、同組成物を含むプリプレグおよび積層板
JP2006257415A (ja) 2005-02-17 2006-09-28 Kobe Univ 蓄熱カプセル及びその利用
JP2006336021A (ja) 2006-08-17 2006-12-14 Sekisui Chem Co Ltd 多孔質中空ポリマー粒子、多孔質中空ポリマー粒子の製造方法、多孔質セラミックフィルタおよび多孔質セラミックフィルタの製造方法
US20080318048A1 (en) 2005-03-04 2008-12-25 Basf Aktiengesellschaft Microscapsule Powder
JP2010149024A (ja) 2008-12-24 2010-07-08 Sekisui Chem Co Ltd マイクロカプセルの製造方法、マイクロカプセル、光学シート及び表皮材
JP2010185064A (ja) * 2008-09-29 2010-08-26 Sekisui Chem Co Ltd 単孔中空ポリマー微粒子の製造方法
JP2012007056A (ja) * 2010-06-24 2012-01-12 Pilot Corporation 中空樹脂粒子の製造方法および中空樹脂粒子
WO2012014279A1 (ja) 2010-07-27 2012-02-02 積水化学工業株式会社 単孔中空ポリマー微粒子の製造方法
JP2013221070A (ja) * 2012-04-16 2013-10-28 Sanko Kk 中空ポリマー微粒子とその製造方法
WO2019026899A1 (ja) * 2017-08-01 2019-02-07 日本ゼオン株式会社 ラテックスの製造方法及び中空樹脂粒子の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448930B2 (ja) * 2000-09-04 2010-04-14 財団法人新産業創造研究機構 中空高分子微粒子及びその製造法
JP4650595B2 (ja) * 2000-09-28 2011-03-16 Jsr株式会社 中空ポリマー粒子の製造方法
JP2003181274A (ja) * 2001-12-18 2003-07-02 Sekisui Chem Co Ltd 中空ポリマー粒子の製造方法
JP3935415B2 (ja) * 2002-09-30 2007-06-20 積水化学工業株式会社 造孔剤、造孔剤の製造方法、多孔質セラミックフィルタおよび多孔質セラミックフィルタの製造方法
JP4236944B2 (ja) * 2003-01-23 2009-03-11 花王株式会社 多孔質ポリマー粒子
JP4210566B2 (ja) * 2003-08-05 2009-01-21 積水化学工業株式会社 中空樹脂微粒子の製造方法及び中空樹脂微粒子
JP2007126533A (ja) * 2005-11-02 2007-05-24 Sanyo Chem Ind Ltd 中空樹脂粒子の製造方法
JP6520139B2 (ja) * 2015-01-22 2019-05-29 コニカミノルタ株式会社 中空樹脂粒子の製造方法
EP4234650A3 (en) * 2018-03-30 2023-09-06 Zeon Corporation Hollow resin particles and sheet
KR20210063334A (ko) * 2018-09-28 2021-06-01 니폰 제온 가부시키가이샤 중공 입자 및 그 제조 방법, 그리고 당해 중공 입자를 포함하는 수분산액

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127336A (ja) 1985-11-28 1987-06-09 Japan Synthetic Rubber Co Ltd 単一の内孔を有するポリマー粒子の製造方法
JP2004137341A (ja) * 2002-10-16 2004-05-13 Shinwa Kako Kk コポリマー、これを用いた吸着剤又は濃縮媒体、固相マイクロ抽出用注射針
WO2004067638A1 (ja) 2003-01-28 2004-08-12 Matsushita Electric Works, Ltd. 中空粒子を含有する樹脂組成物、同組成物を含むプリプレグおよび積層板
JP2006257415A (ja) 2005-02-17 2006-09-28 Kobe Univ 蓄熱カプセル及びその利用
US20080318048A1 (en) 2005-03-04 2008-12-25 Basf Aktiengesellschaft Microscapsule Powder
JP2006336021A (ja) 2006-08-17 2006-12-14 Sekisui Chem Co Ltd 多孔質中空ポリマー粒子、多孔質中空ポリマー粒子の製造方法、多孔質セラミックフィルタおよび多孔質セラミックフィルタの製造方法
JP2010185064A (ja) * 2008-09-29 2010-08-26 Sekisui Chem Co Ltd 単孔中空ポリマー微粒子の製造方法
JP2010149024A (ja) 2008-12-24 2010-07-08 Sekisui Chem Co Ltd マイクロカプセルの製造方法、マイクロカプセル、光学シート及び表皮材
JP2012007056A (ja) * 2010-06-24 2012-01-12 Pilot Corporation 中空樹脂粒子の製造方法および中空樹脂粒子
WO2012014279A1 (ja) 2010-07-27 2012-02-02 積水化学工業株式会社 単孔中空ポリマー微粒子の製造方法
JP2013221070A (ja) * 2012-04-16 2013-10-28 Sanko Kk 中空ポリマー微粒子とその製造方法
WO2019026899A1 (ja) * 2017-08-01 2019-02-07 日本ゼオン株式会社 ラテックスの製造方法及び中空樹脂粒子の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Chemical Society of Japan", 30 September 1993, MARUZEN PUBLISHING CO., article "Kagaku Binran, Kiso Hen, Kaitei 4 Ban", pages: 498 - 503
See also references of EP3922650A4
TOSHINAO OKITSU: "Setchaku", KOBUNSHI KANKOKAI, vol. 40, no. 8, 1996, pages 342 - 350

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092265A1 (ja) * 2020-10-30 2022-05-05 日本ゼオン株式会社 中空粒子の製造方法及び中空粒子
CN116323696A (zh) * 2020-10-30 2023-06-23 日本瑞翁株式会社 中空颗粒的制造方法及中空颗粒

Also Published As

Publication number Publication date
EP3922650A1 (en) 2021-12-15
CN113302210B (zh) 2023-06-06
CN113302210A (zh) 2021-08-24
JP7476804B2 (ja) 2024-05-01
US20220153881A1 (en) 2022-05-19
EP3922650A4 (en) 2022-10-26
JPWO2020162300A1 (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
JP7318531B2 (ja) ラテックスの製造方法及び中空樹脂粒子の製造方法
JP7342376B2 (ja) 中空樹脂粒子の製造方法
WO2021112117A1 (ja) 中空粒子の製造方法
WO2020261926A1 (ja) 中空樹脂粒子の製造方法
WO2020066623A1 (ja) 中空粒子及びその製造方法、並びに当該中空粒子を含む水分散液
WO2021172402A1 (ja) 中空樹脂粒子の製造方法
JP7310797B2 (ja) 中空樹脂粒子及びシート
WO2021112110A1 (ja) 中空粒子、樹脂組成物及び成形体
KR20130116817A (ko) 중공 폴리머 미립자와 그 제조 방법
WO2020162300A1 (ja) 中空樹脂粒子の製造方法
JP7468120B2 (ja) 中空粒子の製造方法
WO2022071276A1 (ja) 中空粒子の製造方法
CN115135678B (zh) 中空树脂颗粒的制造方法
JP2021172770A (ja) 中空粒子の製造方法
JP2022117067A (ja) 中空樹脂粒子の製造方法
JP2021172773A (ja) 中空粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571129

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020752086

Country of ref document: EP

Effective date: 20210906