WO2020162183A1 - 下層膜形成用材料、レジスト下層膜および積層体 - Google Patents

下層膜形成用材料、レジスト下層膜および積層体 Download PDF

Info

Publication number
WO2020162183A1
WO2020162183A1 PCT/JP2020/002157 JP2020002157W WO2020162183A1 WO 2020162183 A1 WO2020162183 A1 WO 2020162183A1 JP 2020002157 W JP2020002157 W JP 2020002157W WO 2020162183 A1 WO2020162183 A1 WO 2020162183A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
lower layer
general formula
forming material
Prior art date
Application number
PCT/JP2020/002157
Other languages
English (en)
French (fr)
Inventor
井上 浩二
啓介 川島
藤井 謙一
小田 隆志
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN202080012316.6A priority Critical patent/CN113365820A/zh
Priority to US17/429,063 priority patent/US20220050379A1/en
Priority to EP20752770.6A priority patent/EP3922456A4/en
Priority to KR1020217024954A priority patent/KR20210112361A/ko
Priority to JP2020571089A priority patent/JPWO2020162183A1/ja
Publication of WO2020162183A1 publication Critical patent/WO2020162183A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]

Definitions

  • the present invention relates to a material for forming an underlayer film, a resist underlayer film, and a laminate.
  • a multi-layer resist process is used to obtain a high degree of integration.
  • a resist underlayer film is first formed on a substrate using a material for forming an underlayer film, then a resist layer is formed on the upper surface side of the resist underlayer film, and then a resist pattern is formed. Subsequently, the resist pattern is transferred to the resist underlayer film by etching, and the resist underlayer film pattern is transferred to the substrate to obtain a desired pattern.
  • the substrate not only a flat substrate but also a substrate having a concavo-convex structure in which a large circuit shape is preliminarily formed in order to form a more complicated circuit may be used. That is, a multi-patterning method for forming a fine circuit by further processing a circuit shape having a large size has been introduced in the latest circuit forming process.
  • the resist underlayer film used in such a multi-layer resist process has such properties as embedding in the uneven portion of a substrate having an uneven structure, the flatness of the surface on which the resist layer is formed, an appropriate refractive index and an extinction coefficient. Characteristics such as optical characteristics and good etching resistance are required.
  • the number of cases where a fine structure is formed by multi-patterning by a multilayer resist method using a substrate having a fine uneven structure is increasing. Specifically, the unevenness of a substrate having an uneven structure is filled with a material for forming an underlayer film to form a flat resist underlayer film, and then an intermediate layer or a resist layer is provided on the resist underlayer film. There are cases.
  • the resist underlayer film itself may be required to exhibit the performance as a hard mask having sufficient etching resistance.
  • the concavo-convex structure can be embedded in the substrate, and the occurrence of voids is required for the lower layer film forming material.
  • the surface of the resist underlayer film formed by embedding the uneven structure of the substrate is required to be flat regardless of the uneven structure (step) of the substrate. This is because the intermediate layer or the resist layer is formed on the upper layer of the resist lower layer film. If the flatness is insufficient, the desired fine structure may not be finally obtained.
  • the inventors of the present invention have found that there is room for improvement in the conventional materials for forming the lower layer film from the viewpoints of these etching resistance, embedding property of uneven structure and flatness.
  • the present invention has been made in view of the above circumstances.
  • One of the objects of the present invention is to provide a material for forming an underlayer film, which has sufficient etching resistance, has a good embedding property of a concavo-convex structure, and can form a flat resist underlayer film.
  • the present inventors have found that the material for forming an underlayer film can be improved by using a specific resin, or by using a combination of two or more specific resins.
  • the present invention is as follows.
  • a lower layer film forming material used in a multilayer resist process The material for forming an underlayer film, wherein the solid content of the material for forming an underlayer film satisfies the following (i) to (iii).
  • the elemental composition ratio Re defined by the following mathematical formula (1) is 1.5 to 2.8.
  • the glass transition temperature is 30 to 250°C.
  • a resin having a structural unit represented by the following general formula (A) and a resin having a structural unit represented by the following general formula (B) are included.
  • NH is the number of hydrogen atoms in the solid content of the lower layer film forming material
  • N C is the number of carbon atoms in the solid content of the lower layer film-forming material
  • N 2 O is the number of oxygen atoms in the solid content of the lower layer film forming material.
  • Ar 1 represents a divalent aromatic group at least substituted with a hydroxy group and/or a glycidyloxy group
  • R a is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an alkoxyalkyl group having 2 to 10 carbon atoms, or an alkyl group having 7 to 10 carbon atoms. It represents any substituent selected from an aryloxyalkyl group.
  • each R c independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an alkyl group having 2 to 10 carbon atoms.
  • Ar 12 represents any of the structures represented by the following general formulas (B1) to (B3).
  • NH is the number of hydrogen atoms in the solid content of the lower layer film forming material
  • N C is the number of carbon atoms in the solid content of the lower layer film-forming material
  • N O is the number of oxygen atoms in the solid content of the lower layer film forming material
  • N N is the number of nitrogen atoms in the solid content of the lower layer film forming material.
  • a material for forming an underlayer film wherein the structural unit represented by the general formula (A) includes a structural unit represented by the following general formula (a1) or general formula (a2).
  • m1 is 1 to 4
  • n1 is 0 to 3
  • m2 is 1 to 6
  • n2 is 0 to 5
  • R is independently a hydrogen atom or a glycidyl group when a plurality of Rs are present
  • Ra is as defined in formula (A)
  • R b's each independently, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, Alkoxyalkyl group having 2 to 10
  • a material for forming a lower layer film according to any one of A material for forming an underlayer film wherein the structural unit represented by the general formula (B) includes a structural unit represented by the following general formula (b).
  • R c has the same meaning as R c in formula (B)
  • R d has the same meaning as R d in the general formulas (B1) to (B3) each independently when a plurality of R d are present
  • Ar 2 is a structure represented by the general formula (B1) or (B2)
  • p is 0 to 4. 5.
  • a material for forming a lower layer film according to any one of In addition to the resin having the structural unit represented by the general formula (A) and the resin having the structural unit represented by the general formula (B), a structure represented by the following general formula (1) An underlayer film forming material containing a resin having units.
  • R 1 to R 4 are each independently a hydrogen atom, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an aryloxyalkyl group having 7 to 20 carbon atoms, or an aryloxy group having 7 to 20 carbon atoms.
  • R 1 to R 4 is a group other than a hydrogen atom, and R 1 to R 4 may be bonded to each other to form a ring structure, n represents an integer of 0 to 2, X 1 and X 2 each independently represent —CH 2 — or —O—. 6.
  • An underlayer film forming material used in a multilayer resist process wherein the solid content of the underlayer film forming material satisfies the following (i) to (iii).
  • the elemental composition ratio Re defined by the following mathematical formula (1) is 1.5 to 2.8.
  • the glass transition temperature is 30 to 250°C.
  • a resin having a structural unit represented by the following general formula (1) is included.
  • NH is the number of hydrogen atoms in the solid content of the lower layer film forming material
  • N C is the number of carbon atoms in the solid content of the lower layer film-forming material
  • N 2 O is the number of oxygen atoms in the solid content of the lower layer film forming material.
  • R 1 to R 4 are each independently a hydrogen atom, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an aryloxyalkyl group having 7 to 20 carbon atoms, or an aryloxy group having 7 to 20 carbon atoms. It is any group selected from the group consisting of an aryloxycarbonyl group, an alkylarylaminocarbonyl group having 8 to 20 carbon atoms, an alkoxycarbonylaryl group having 8 to 30 carbon atoms, and an aryloxycarbonylalkyl group having 8 to 20 carbon atoms.
  • R 1 to R 4 is a group other than a hydrogen atom, and R 1 to R 4 may be bonded to each other to form a ring structure, n represents an integer of 0 to 2, X 1 and X 2 each independently represent —CH 2 — or —O—. 7. 6. A material for forming a lower layer film according to The material for forming an underlayer film, wherein the solid content of the material for forming the underlayer film has an element composition ratio Re′ defined by the following mathematical formula (2) of 1.5 to 2.8.
  • NH is the number of hydrogen atoms in the solid content of the lower layer film forming material
  • N C is the number of carbon atoms in the solid content of the lower layer film-forming material
  • N O is the number of oxygen atoms in the solid content of the lower layer film forming material
  • N N is the solid content of the underlayer coating forming material, the number of nitrogen atoms 8. 6.
  • R c is each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an alkoxyalkyl group having 2 to 10 carbon atoms, or a carbon number.
  • Ar 11 represents a divalent aromatic group (which may be substituted or unsubstituted)
  • Ar 12 represents any of the structures represented by the following general formulas (B1) to (B3).
  • a material for forming a lower layer film according to A material for forming an underlayer film wherein the structural unit (B) contains a structural unit represented by the following general formula (b).
  • R c has the same meaning as R c in formula (B)
  • R d has the same meaning as R d in the general formulas (B1) to (B3) each independently when a plurality of R d are present
  • Ar 2 is a structure represented by the general formula (B1) or (B2)
  • p is 0 to 4. 10.
  • a material for forming a lower layer film according to A material for forming an underlayer film which further contains a resin having a structural unit represented by the following general formula (A) in addition to the resin having a structural unit represented by the general formula (1).
  • Ar 1 represents a divalent aromatic group at least substituted with a hydroxy group and/or a glycidyloxy group
  • R a is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an alkoxyalkyl group having 2 to 10 carbon atoms, or an alkyl group having 7 to 10 carbon atoms.
  • a material for forming a lower layer film according to A material for forming an underlayer film wherein the structural unit represented by the general formula (A) includes a structural unit represented by the following general formula (a1) or general formula (a2).
  • m1 is 1 to 4
  • n1 is 0 to 3
  • m2 is 1 to 6
  • n2 is 0 to 5
  • R is independently a hydrogen atom or a glycidyl group when a plurality of Rs are present
  • Ra is as defined in formula (A)
  • R b's each independently, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, Alkoxyalkyl group having 2 to 10 carbon atoms, aryloxyalkyl group having 7 to 20 carbon atoms, alkoxycarbonyl group having 2 to 20 carbon atoms, dialkylaminocarbonyl group having 3 to 10 carbon atoms
  • H av is an average value of the film thickness when the film thickness of the resist underlayer film is measured at any 10 positions on the surface ⁇
  • H max is the maximum value of the film thickness of the resist underlayer film
  • H min is the minimum value of the film thickness of the resist underlayer film. 15. 13. Or 14.
  • the laminated body according to any one of The substrate has an uneven structure on at least one surface,
  • the resist underlayer film is formed on the uneven structure,
  • the concavo-convex structure has a height of 5 to 500 nm and a convex-convex interval of 1 nm to 10 mm.
  • an underlayer film of the present invention By using the material for forming an underlayer film of the present invention, it is possible to manufacture a flat resist underlayer film which has excellent etching resistance, good embeddability in a concave-convex structure.
  • FIG. 3 is a schematic diagram for explaining the structure of the laminate, the thickness of the resist underlayer film, the height of the uneven structure, the interval between the projections of the uneven structure, and the like.
  • the description of “x to y” regarding the numerical range means that it is from x to y.
  • the description “1 to 5%” means 1% or more and 5% or less.
  • notation not indicating whether it is substituted or unsubstituted includes both that having no substituent and those having a substituent.
  • an “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the drawings are for illustration purposes only. The shapes and dimensional ratios of the respective parts in the drawings do not necessarily correspond to actual articles.
  • the lower layer film forming material of the first embodiment is used in a multilayer resist process.
  • the solid content of the lower layer film forming material satisfies the following (i) to (iii).
  • the elemental composition ratio Re defined by the following mathematical formula (1) is 1.5 to 2.8.
  • the glass transition temperature is 30 to 250°C.
  • a resin having a structural unit represented by the following general formula (A) and a resin having a structural unit represented by the following general formula (B) are included.
  • NH is the number of hydrogen atoms in the solid content of the lower layer film forming material
  • N C is the number of carbon atoms in the solid content of the lower layer film-forming material
  • N 2 O is the number of oxygen atoms in the solid content of the lower layer film forming material.
  • Ar 1 represents a divalent aromatic group at least substituted with a hydroxy group and/or a glycidyloxy group
  • R a is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an alkoxyalkyl group having 2 to 10 carbon atoms, or an alkyl group having 7 to 10 carbon atoms. It represents any substituent selected from an aryloxyalkyl group.
  • each R c independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an alkyl group having 2 to 10 carbon atoms.
  • Ar 12 represents any of the structures represented by the following general formulas (B1) to (B3).
  • the “solid content” is a component (nonvolatile component) that does not volatilize and remains on the substrate when the lower layer film forming material is applied to the substrate to form a film.
  • the “solid content” can be regarded as all the components other than the solvent in the lower layer film forming material.
  • the material for forming the lower layer film of the first embodiment is for forming a “resist lower layer film” arranged between a resist layer and a substrate (including a substrate having an uneven structure) in a semiconductor device manufacturing process. It is the material of.
  • an intermediate layer such as a hard mask layer or an antireflection layer may be arranged between the resist underlayer film and the resist layer.
  • the element composition ratio Re substantially represents the ratio of the carbon elements constituting the material.
  • an unsaturated compound such as an aromatic compound has a smaller number of hydrogen atoms than a saturated hydrocarbon structure having a similar carbon skeleton. Therefore, the value of the numerator of the Re formula becomes small, and Re becomes small.
  • PHS polyhydroxystyrene
  • Re becomes 2.4.
  • the inventors of the present invention have found that in the etching of both materials under oxygen gas, the etching rate of PHS is about 0.75 times smaller than that of the material obtained by hydrogenating all the carbons of the aromatic ring of PHS (difficult to etch). ), a material with a small Re shows good etching resistance.
  • NH is the number of hydrogen atoms in the solid content of the lower layer film forming material
  • N C is the number of carbon atoms in the solid content of the lower layer film-forming material
  • N O is the number of oxygen atoms in the solid content of the lower layer film forming material
  • N N is the number of nitrogen atoms in the solid content of the lower layer film forming material.
  • Re and Re′ are 1.5 to 2.8, preferably 1.5 to 2.6, and more preferably 1.5 to 2.5.
  • Re is, for example, an elemental analysis of a sample after applying the lower layer film forming material to a substrate and heating the element by using a commercially available elemental analyzer, and from the elemental analysis value obtained by the analysis, the element of each constituent element is obtained. It can be calculated by calculating the number. By doing so, it is possible to calculate Re that reflects the actual state of the resist underlayer film when actually dry-etching, even for a material that undergoes a reaction such as crosslinking due to heating after coating.
  • the solid content of the lower layer film-forming material of the first embodiment has a glass transition temperature of 30 to 250° C., preferably 40 to 230° C., more preferably 50 to 200° C., and particularly preferably 50 to 190° C. is there.
  • the solid content in the lower layer film forming material is appropriately flowed, and the embedding property in the uneven structure of the substrate is improved.
  • the flatness of the film can be improved. Further, when two or more kinds of materials are mixed and used, it is possible to form a uniform resist underlayer film with good resin compatibility in the substrate heating step.
  • the solid content has a glass transition temperature of higher than 250° C., even if heating (baking) is performed, no fluidity is exhibited and flatness may be deteriorated. If the glass transition temperature of the solid content is less than 30° C., the resist underlayer film after baking may flow without maintaining the properties as a solid, and the flatness may be deteriorated.
  • the glass transition temperature can be measured by a commonly used device such as a differential scanning calorimeter (DSC) or a solid viscoelasticity measuring device.
  • DSC differential scanning calorimeter
  • the midpoint of the calorimetric curve representing the phase transition from the solid state to the glass state is used as the peak top of the loss tangent (tan ⁇ ) which is the ratio of the storage elastic modulus to the loss elastic modulus in the case of the solid viscoelasticity measuring device.
  • Tan ⁇ loss tangent
  • the DSC measurement is preferable because it is easy to measure and a small amount of sample can be measured.
  • the lower layer film forming material of the first embodiment includes two kinds of resins, a resin having a structural unit represented by the general formula (A) and a resin having a structural unit represented by the general formula (B). By including it, good performance is achieved. Although details are unknown, uniform coating is difficult when only a resin having a structural unit represented by the general formula (B) is used as the resin as shown in Comparative Example 3 below.
  • the structural unit represented by the general formula (A) preferably includes a structural unit represented by the following general formula (a1) or general formula (a2).
  • the structural unit represented by the general formula (A) preferably includes the structural unit represented by the following general formula (a1).
  • m1 is 1 to 4
  • n1 is 0 to 3
  • m2 is 1 to 6
  • n2 is 0 to 5
  • R is independently a hydrogen atom or a glycidyl group when a plurality of Rs are present
  • Ra is as defined in formula (A)
  • R b's each independently, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, Alkoxyalkyl group having 2 to 10 carbon atoms, aryloxyalkyl group having 7 to 20 carbon atoms, alkoxycarbonyl group having 2 to 20 carbon atoms, dialkylaminocarbonyl group having 3 to 10 carbon atoms,
  • the structural unit represented by the general formula (B) preferably includes a structural unit represented by the following general formula (b).
  • R c has the same meaning as R c in formula (B)
  • R d has the same meaning as R d in the general formulas (B1) to (B3) each independently when a plurality of R d are present
  • Ar 2 is a structure represented by the general formula (B1) or (B2)
  • p is 0 to 4.
  • the resin having the structural unit represented by the general formula (A) include so-called novolac resins and novolac epoxy resins.
  • the novolac resin include phenol novolac resin, cresol novolac resin, naphthol novolac resin, and the like, but there is no particular limitation, and various resins used as a resist or an underlayer film can be used. Further, by converting the hydrogen atom of the phenolic hydroxyl group of the novolac resin into a glycidyl group, a novolac type epoxy resin can be manufactured.
  • the novolac resin can be produced by a method generally used for producing the novolac resin.
  • phenols include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2,3.
  • aldehydes examples include formaldehyde, furfural, benzaldehyde, nitrobenzaldehyde, acetaldehyde and the like.
  • the catalyst for the addition condensation reaction is not particularly limited, but for example, as the acid catalyst, hydrochloric acid, nitric acid, sulfuric acid, formic acid, oxalic acid, acetic acid or the like is used.
  • a commercially available novolac resin or novolac type epoxy resin may be used.
  • the resin having the structural unit represented by the general formula (B) include so-called naphthol aralkyl resin.
  • Ar 12 preferably has a structure (containing a naphthol skeleton) represented by the general formula (B1).
  • the flatness becomes particularly good. It is considered that the presence of a flat naphthalene ring in the resin facilitates the alignment of molecules. Therefore, it is considered that the free volume is reduced as compared with the case where only the resin represented by the general formula (A) is used, so that the shrinkage in the cooling process after the heating process is suppressed and the flatness is further improved. ..
  • naphthol aralkyl resin has a high carbon density and therefore has poor polarity, and when used alone, it is often incompatible with the solvent commonly used in semiconductor processes and a uniform solution cannot be prepared in many cases. Further, even if a uniform solution can be prepared, the compatibility with the surface of the substrate that has been subjected to the hydrophilic treatment is usually poor, and a uniform coating film may not be obtained in some cases. That is, the use of only the naphthol aralkyl resin alone limits industrially the type of solvent and the substrate.
  • novolac resin is a specific example represented by the general formula (A)
  • naphthol aralkyl resin is a specific example represented by the general formula (B).
  • Good solubility in semiconductor process solvents such as propylene glycol-1-monomethyl ether-2-acetate (PGMEA) and propylene glycol monomethyl ether (PGME) only when blended in the ratio [(A)/(B)] described below. It was found that a coating film having good coatability on a substrate and good flatness after heating was obtained.
  • the naphthol aralkyl resin can be produced by a method generally used for producing the naphthol aralkyl resin. For example, it can be obtained by reacting naphthol with p-xylylene glycol dimethyl ether in the presence of a catalyst.
  • naphthol include ⁇ -naphthol and ⁇ -naphthol, which can be used alone or in combination.
  • commercially available resins such as SN-485 (trade name) and SN-495V (trade name) manufactured by Nittetsu Chemical & Materials Co., Ltd. may be used.
  • the material for forming the lower layer film of the first embodiment includes, in addition to the resin having the structural unit represented by the general formula (A) and the resin having the structural unit represented by the general formula (B), It is preferable to include a resin having a structural unit represented by the general formula (1).
  • R 1 to R 4 are each independently a hydrogen atom, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an aryloxyalkyl group having 7 to 20 carbon atoms, or an aryloxy group having 7 to 20 carbon atoms. It is any group selected from the group consisting of an aryloxycarbonyl group, an alkylarylaminocarbonyl group having 8 to 20 carbon atoms, an alkoxycarbonylaryl group having 8 to 30 carbon atoms, and an aryloxycarbonylalkyl group having 8 to 20 carbon atoms.
  • R 1 to R 4 is a group other than a hydrogen atom, and R 1 to R 4 may be bonded to each other to form a ring structure, n represents an integer of 0 to 2, X 1 and X 2 each independently represent —CH 2 — or —O—.
  • Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, naphthyl group, anthracenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-dimethylphenyl group, 2,4 -Dimethylphenyl group, 2,6-dimethylphenyl group, 2,4,6-trimethylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 4-i-propylphenyl group, 4 Examples include -tert-butylphenyl group, biphenyl group, 2-phenalenyl group, 4-pyrenyl group, 9-fluorenyl group, 9-phenanthrenyl group, 1-chrysenyl group, 4-triphenylmethylphenyl group and phenol group.
  • aryloxy group having 6 to 20 carbon atoms examples include phenyloxy group, naphthyloxy group, anthracenyloxy group, o-tolyloxy group, m-tolyloxy group, p-tolyloxy group, 4-oxy-1. , 1'-biphenyl group, 4-hydroxyphenyloxy group and the like.
  • aryloxyalkyl group having 7 to 20 carbon atoms examples include phenyloxymethyl group, naphthyloxymethyl group, anthracenyloxymethyl group, o-tolyloxymethyl group, m-tolyloxymethyl group, p-tolyloxy group.
  • Examples thereof include a methyl group, 4-oxy-1,1′-biphenylmethyl group, 4-hydroxyphenyloxymethyl group and the like.
  • Examples of the aryloxycarbonyl group having 7 to 20 carbon atoms include phenoxycarbonyl group, benzyloxycarbonyl group, 4-methylphenoxycarbonyl group, 3,4-dimethylphenoxycarbonyl group, 1-naphthoxycarbonyl group, 2- Examples thereof include naphthoxycarbonyl group and 1-anthracenoxycarbonyl group.
  • alkylarylaminocarbonyl group having 8 to 20 carbon atoms examples include a methylphenylaminocarbonyl group, an ethylphenylaminocarbonyl group, a butylphenylaminocarbonyl group, a cyclohexylphenylaminocarbonyl group and the like.
  • alkoxycarbonylaryl group having 8 to 30 carbon atoms examples include methoxycarbonylphenyl group, methoxycarbonyl-o-tolyl group, methoxycarbonyl-m-tolyl group, methoxycarbonyl-p-tolyl group, methoxycarbonylxylyl group, Methoxycarbonyl- ⁇ -naphthyl group, methoxycarbonyl- ⁇ -naphthyl group, ethoxycarbonylphenyl group, n-propoxycarbonylphenyl group, i-propoxycarbonylphenyl group, n-butoxycarbonylphenyl group, tert-butoxycarbonylphenyl group, n -Pentyloxycarbonylphenyl group, cyclopentyloxycarbonylphenyl group, n-hexyloxycarbonylphenyl group, cyclohexyloxycarbonylphenyl group, n-oc
  • Examples of the aryloxycarbonylalkyl group having 8 to 20 carbon atoms include phenoxycarbonylmethyl group, benzyloxycarbonylmethyl group, 4-methylphenoxycarbonylmethyl group, 3,4-dimethylphenoxycarbonylmethyl group and 1-naphthoxycarbonyl group. Examples thereof include a methyl group, a 2-naphthoxycarbonylmethyl group and a 1-anthracenoxycarbonylmethyl group.
  • R 1 to R 4 may form a ring structure. Specifically, at least two of R 1 to R 4 may be bonded. Examples of the structure in which at least two of R 1 to R 4 are bonded include the structures represented by the following general formulas (2) to (7). R 1 to R 4 form a ring structure to form a bond chain in the unit structure, and even if a part of the ring structure is broken by etching, the other bond does not remain and does not volatilize, which is a substantially good etching. Expected to show resistance.
  • R 1 , R 4 , X 1 , X 2 and n have the same meaning as in formula (1).
  • R 11 to R 16 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an aryloxy group having 6 to 20 carbon atoms.
  • An alkoxyalkyl group having 2 to 10 carbon atoms and an aryloxyalkyl group having 7 to 20 carbon atoms, and two or more of R 13 to R 16 may be bonded to each other to form a ring structure.
  • R 1 , R 4 , X 1 , X 2 and n have the same meaning as in formula (1).
  • R 13 to R 16 have the same meaning as in the general formula (2).
  • R 21 to R 32 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryloxy group having 6 to 20 carbon atoms. Selected from an alkoxyalkyl group having 2 to 10 carbon atoms and an aryloxyalkyl group having 7 to 20 carbon atoms, and two or more of R 25 to R 32 may be bonded to each other to form a ring structure.
  • R 41 to R 46 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an aryloxy group having 6 to 20 carbon atoms. Selected from an alkoxyalkyl group having 2 to 10 carbon atoms and an aryloxyalkyl group having 7 to 20 carbon atoms, and two or more of R 41 to R 46 may be bonded to each other to form a ring structure.
  • R 51 to R 54 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an aryloxy group having 6 to 20 carbon atoms.
  • An alkoxyalkyl group having 2 to 10 carbon atoms and an aryloxyalkyl group having 7 to 20 carbon atoms, and two or more of R 51 to R 54 may be bonded to each other to form a ring structure. ..
  • R 1 , R 4 , X 1 , X 2 and n have the same meaning as in formula (1).
  • R 61 is hydrogen or an aryl group having 6 to 20 carbon atoms, and may have an alkoxy group or an ester group as a substituent.
  • the resin having the structural unit represented by the general formula (1) may contain a structural unit other than those described above in order to adjust various physical properties.
  • a cyclic olefin structural unit such as the structural unit [A] represented by the general formula (1) described in Patent Document 3 and/or the structural unit [B] represented by the general formula (2) is included. But it's okay.
  • the resin having the structural unit represented by the general formula (1) contains a structural unit other than the above, the amount thereof is, for example, 1 in all structural units of the resin having the structural unit represented by the general formula (1). It is ⁇ 50 mol %, preferably 1-40 mol %, more preferably 1-30 mol %.
  • the resin having the structural unit represented by the general formula (1) can be obtained, for example, by polymerizing a cyclic olefin monomer represented by the following general formula (8) by ring-opening metathesis polymerization.
  • R 1 to R 4 , X 1 , X 2 and n have the same meaning as in the general formula (1).
  • the cyclic olefin monomer as a polymerization raw material may contain two or more kinds of monomers in which at least one of R 1 to R 4 in the structure represented by the general formula (8) is different from each other.
  • the polymerization raw material may include a cyclic olefin monomer represented by the general formula (8) and other monomers (for example, the monomer described in Patent Document 3).
  • the catalyst used when polymerizing the resin having the structural unit represented by the general formula (1) may be a catalyst capable of ring-opening metathesis polymerization of a cyclic olefin monomer (for example, one represented by the general formula (8)).
  • a catalyst capable of ring-opening metathesis polymerization of a cyclic olefin monomer for example, one represented by the general formula (8).
  • examples thereof include organic transition metal alkylidene complex catalysts such as molybdenum (Mo), tungsten (W), and ruthenium (Ru); ring-opening metathesis catalysts obtained by combining an organic transition metal complex with a Lewis acid as a cocatalyst.
  • an organic transition metal alkylidene complex catalyst such as molybdenum (Mo), tungsten (W), ruthenium (Ru) is used.
  • a catalyst capable of copolymerizing a cycloolefin monomer having a high polarity and containing a hetero atom is particularly preferable.
  • an organic transition metal alkylidene complex such as molybdenum (Mo), tungsten (W), or ruthenium (Ru) is used as a ring-opening metathesis polymerization catalyst, a highly polar cyclic olefin monomer can be efficiently copolymerized. ..
  • Examples of the ring-opening metathesis polymerization catalyst for an organic transition metal alkylidene complex include W(N-2,6-Pr i 2 C 6 H 3 )(CHBut)(OBut) 2 and W(N-2,6-Pr i).
  • Examples of the polymerization catalyst metal component when polymerizing the resin having the structural unit represented by the general formula (1) include transitions of molybdenum, tungsten, rhenium, iridium, tantalum, ruthenium, vanadium, titanium, palladium, rhodium and the like. Examples include metals. Molybdenum, tungsten, ruthenium and rhodium are preferable, and molybdenum and tungsten are more preferable.
  • the molar ratio of the cyclic olefin monomer to the ring-opening metathesis polymerization catalyst of the organic transition metal alkylidene complex is, for example, 10 equivalents to 50,000 equivalents of the cyclic olefin monomer, preferably 1 equivalent to the ring-opening metathesis polymerization catalyst. It is 50 equivalents to 30,000 equivalents, and more preferably 100 equivalents to 20,000 equivalents.
  • the polymerization reaction may be carried out without solvent or may be carried out using a solvent.
  • the solvent include ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, dimethoxyethane and dioxane; aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; aliphatic hydrocarbons such as pentane, hexane and heptane; cyclo.
  • Aliphatic cyclic hydrocarbons such as pentane, cyclohexane, methylcyclohexane, dimethylcyclohexane and decalin; halogenated hydrocarbons such as methylene dichloride, dichloroethane, dichloroethylene, tetrachloroethane, chlorobenzene and trichlorobenzene; esters such as methyl acetate and ethyl acetate Can be mentioned.
  • the solvent one type may be used alone, or two or more types may be used in combination.
  • the polymerization reaction may be carried out in the presence of a chain transfer agent such as olefins and dienes.
  • chain transfer agents such as olefins and dienes.
  • olefins used as chain transfer agents include ⁇ -olefins such as ethylene, propylene, butene, pentene, hexene, and octene; silicon-containing compounds such as vinyltrimethylsilane, allyltrimethylsilane, allyltriethylsilane, and allyltriisopropylsilane. Examples thereof include olefins.
  • the dienes include non-conjugated dienes such as 1,4-pentadiene, 1,5-hexadiene, and 1,6-heptadiene.
  • the chain transfer agents may be used alone or in combination of two or more.
  • the amount of chain transfer agent used is preferably in the range of 0.001 to 1000 equivalents, and more preferably 0.01 to 100 equivalents, relative to 1 mol of the cyclic olefin monomer. From another viewpoint, the amount of the chain transfer agent used is preferably in the range of 0.1 to 2000 equivalents, more preferably 1 to 1000 equivalents, relative to 1 mol of the ring-opening metathesis polymerization catalyst. The magnitude of the molecular weight can be adjusted by arbitrarily setting these weight ratios.
  • the monomer concentration in the polymerization reaction may be appropriately adjusted depending on the reactivity of the cyclic olefin monomer and the solubility in the polymerization solvent, and is not particularly limited.
  • the amount of cyclic olefin monomer relative to 1 kg of solvent is in the range of, for example, 0.001 to 3 kg, preferably 0.01 to 2 kg, and more preferably 0.02 to 1 kg.
  • the reaction temperature may be appropriately adjusted depending on the types and amounts of the cyclic olefin monomer and the ring-opening metathesis catalyst, and is not particularly limited. As an example, the temperature is ⁇ 30 to 150° C., preferably 0 to 120° C., more preferably 15 to 100° C.
  • the reaction time is, for example, 1 minute to 10 hours, preferably 5 minutes to 8 hours, more preferably 10 minutes to 6 hours.
  • the polymerization rate of the cyclic olefin monomer is preferably from the viewpoint of reducing the amount of unpolymerized monomer in the obtained resin having the structural unit represented by the general formula (1) and further suppressing the generation of volatile components (outgas). 90% or more, more preferably 95% or more, and further preferably 100%.
  • the method for obtaining the polymer from the solution of the resin having the obtained structural unit represented by the general formula (1) is not particularly limited, and a known method can be appropriately applied.
  • a method of discharging the reaction solution into a poor solvent under stirring a method of depositing a polymer by a method such as steam stripping in which steam is blown into the reaction solution, or a method of evaporating and removing the solvent from the reaction solution by heating or the like.
  • a method of discharging the reaction solution into a poor solvent under stirring a method of depositing a polymer by a method such as steam stripping in which steam is blown into the reaction solution, or a method of evaporating and removing the solvent from the reaction solution by heating or the like.
  • the resin having the structural unit represented by the general formula (1) may have a form in which the double bond of the main chain is hydrogenated (also referred to as hydrogenated).
  • the double bond of the main chain is hydrogenated
  • the glass transition temperature of the polymer is appropriately lowered, and good fluidity during heating (baking) is easily obtained. .. That is, it is possible to form the resist underlayer film having a better embeddability in the uneven structure of the substrate and a better flatness.
  • the hydrogenation rate in the hydrogenation reaction is preferably 0.1 to 100 mol%, more preferably 1.0 to 95 mol%, further preferably 5 to 90 mol%, based on the whole double bonds of the main chain. is there.
  • the catalyst for hydrogenation may be either a homogeneous metal complex catalyst or a heterogeneous metal-supported catalyst.
  • a heterogeneous metal-supported catalyst capable of easily separating the catalyst. Examples thereof include palladium on activated carbon, palladium on alumina, rhodium on activated carbon, rhodium on alumina, ruthenium on activated carbon, and ruthenium on alumina.
  • the catalyst may be used alone or in combination of two or more kinds.
  • the solvent used for hydrogenation is not particularly limited as long as it dissolves the polymer and the solvent itself is not hydrogenated.
  • ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, dimethoxyethane, dioxane
  • aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene
  • aliphatic hydrocarbons such as pentane, hexane, heptane
  • cyclopentane, cyclohexane Aliphatic cyclic hydrocarbons such as methylcyclohexane, dimethylcyclohexane and decalin
  • halogenated hydrocarbons such as methylene dichloride, dichloroethane, dichloroethylene, tetrachloroethane, chlorobenzene and trichlorobenzene
  • esters such as methyl acetate and ethyl acetate.
  • one type of solvent may be used alone, or two or more types may be used in combination. Further, preferably, by using the same solvent as the solvent used in the above-mentioned polymerization reaction, the step suitable for productivity can be applied without the need for the solvent substitution step.
  • the hydrogen pressure is preferably atmospheric pressure to 10 MPa, more preferably 0.5 to 8 MPa, and particularly preferably 2 to 5 MPa.
  • the reaction temperature is preferably 0 to 200°C, more preferably room temperature to 150°C, and particularly preferably 50 to 100°C.
  • the mode of carrying out the hydrogenation reaction is not particularly limited, and examples thereof include a method in which the catalyst is dispersed or dissolved in a solvent, a method in which the catalyst is packed in a column and the polymer solution is circulated as a stationary phase, and the like. ..
  • the hydrogenation treatment even if the polymer polymerization solution before hydrogenation treatment is precipitated in a poor solvent and the polymer is isolated, then the polymer is isolated from the polymerization solution even if dissolved in the solvent again and subjected to hydrogenation treatment.
  • the hydrogenation treatment may be performed with the above hydrogenation catalyst.
  • the method of obtaining the polymer from the polymer solution after hydrogenation For example, by filtering, centrifuging, obtaining a polymer solution containing no catalyst by a method such as decantation, discharging the reaction solution into a poor solvent under stirring, a method such as steam stripping in which steam is blown into the reaction solution.
  • a heterogeneous metal-supported catalyst such as rhodium on activated carbon or ruthenium on activated carbon is used.
  • the polymer when the hydrogenation reaction is carried out using the heterogeneous metal-supported catalyst, the polymer can be obtained by the above-mentioned method after filtering the synthetic solution to separate the metal-supported catalyst.
  • the solution obtained by roughly removing the catalyst component may be filtered to obtain the polymer by the method described above.
  • the aperture of the filtration filter is preferably 0.05 to 10 ⁇ m, more preferably 0.10 to 10 ⁇ m, and further preferably 0.10 to 5 ⁇ m.
  • the weight average molecular weight (Mw) of the resin having the structural unit represented by the general formula (1) measured by gel permeation chromatography (GPC) using standard polystyrene as a reference substance is preferably 1,000 to 20,000, It is more preferably 1500 to 19000, and even more preferably 2000 to 18000.
  • the sample concentration in the GPC measurement can be, for example, 3.0 to 9.0 mg/ml.
  • the molecular weight distribution (Mw/Mn), which is the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn), of the resin having the structural unit represented by the general formula (1) is preferably 1.3 to 5 0.0, more preferably 1.3 to 4.0, still more preferably 1.3 to 3.0.
  • the performance can be further improved by appropriately adjusting the use ratio of the plurality of resins.
  • the mass ratio of the resin having the structural unit represented by the general formula (A) and the resin having the structural unit represented by the general formula (B) is usually the same as the structural unit represented by the general formula (A).
  • Resin/ Resin having structural unit represented by general formula (B) 5/95 to 95/5, preferably 10/90 to 90/10, more preferably 20/80 to 80/20, and further preferably It is 40/60 to 60/40.
  • the mass ratio is usually (the structural unit represented by the general formula (A)).
  • the lower layer film forming material of the first embodiment may include a resin (other resin) other than the above resin as long as the solid content satisfies the above (i) and (ii).
  • the lower layer film forming material can be prepared by dissolving or dispersing the above-mentioned resin in an organic solvent and, if necessary, removing foreign matter through a filter.
  • the material for forming the lower layer film thus prepared is usually in the form of a varnish suitable for coating on a substrate.
  • the organic solvent that can be used at this time is not particularly limited as long as it is a solvent that can dissolve or disperse the above resin.
  • organic solvent examples include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents and the like.
  • the alcohol solvent examples include an aliphatic monoalcohol solvent having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol; an alicyclic monoalcohol having 3 to 18 carbon atoms such as cyclohexanol.
  • the solvent examples include polyhydric alcohol solvents having 2 to 18 carbon atoms such as 1,2-propylene glycol; and polyhydric alcohol partial ether solvents having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
  • ether solvent examples include dialkyl ether solvents such as diethyl ether, dipropyl ether and dibutyl ether; cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; aromatic ring-containing ether solvents such as diphenyl ether and anisole. ..
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone.
  • Di-iso-butyl ketone Trimethylnonanone and other chain ketone solvents
  • cyclopentanone cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone and other cyclic ketone solvents
  • 2,4-pentanedione acetonyl Acetone, acetophenone, etc. are mentioned.
  • amide solvent examples include cyclic amide solvents such as N,N′-dimethylimidazolidinone and N-methylpyrrolidone; N-methylformamide, N,N-dimethylformamide, N,N-diethylformamide, acetamide, Examples thereof include chain amide solvents such as N-methylacetamide, N,N-dimethylacetamide and N-methylpropionamide.
  • ester solvent examples include monocarboxylic acid ester solvents such as acetic acid esters such as n-butyl acetate; polyhydric alcohol carboxylate solvents such as propylene glycol acetate; polyhydric alcohol partial alkyls such as propylene glycol monomethyl ether acetate.
  • Polyhydric alcohol partial ether carboxylate type solvents such as ether acetate; polyvalent carboxylic acid diester type solvents such as diethyl oxalate; lactone type solvents such as ⁇ -butyrolactone and ⁇ -valerolactone; diethyl carbonate, ethylene carbonate, propylene carbonate, etc.
  • the carbonate-based solvent and the like examples include monocarboxylic acid ester solvents such as acetic acid esters such as n-butyl acetate; polyhydric alcohol carboxylate solvents such as propylene glycol acetate; polyhydric alcohol partial alkyls such as propylene glycol monomethyl ether
  • hydrocarbon solvent examples include linear or branched hydrocarbons having 5 to 10 carbon atoms, alicyclic hydrocarbons having 5 to 12 carbon atoms, and aromatic hydrocarbons having 6 to 18 carbon atoms.
  • the hydrogen atoms on the rings of the alicyclic hydrocarbon and the aromatic hydrocarbon may be substituted with a linear or branched alkyl group having 1 to 5 carbon atoms.
  • the solvent may be appropriately selected in consideration of the volatilization rate during coating, the adaptability to the process, the productivity, and the like.
  • an oxygen-containing solvent such as an alcohol solvent, a chain ketone solvent, a cyclic ketone solvent, a chain ether solvent, a cyclic ether solvent or an ester solvent is selected.
  • the material for forming the lower layer film may contain one kind or two or more kinds of solvents.
  • the synthetic solvent and the lower layer film forming film are formed. It is also possible to use the same type of solvent as the material preparation solvent.
  • the resin concentration (when two or more types of resins are used, the sum of the respective concentrations) is preferably 0.01 to 50.0% by mass, more preferably 0. 0.1 to 45.0 mass%, more preferably 1.0 to 40.0 mass%.
  • the concentration of the resin can be selected in consideration of the solubility of the resin, the adaptability to the filtration process, the film forming property, the thickness of the lower layer film, and the like.
  • an acrylic resin, an epoxy resin, a styrene resin, a hydroxystyrene resin, a hydroxynaphthylene resin, and a silicone resin are used as long as the etching resistance and the embedding property/flatness are not excessively impaired.
  • Resins such as: combination of polymerizable monomer or oligomer and polymerization initiator (light or heat); thermosetting monomer; oxides of metals such as zirconium, hafnium, ruthenium, titanium; May be included.
  • the prepared varnish-like lower layer film forming material is filtered through a filter. This makes it possible to remove polymer insoluble matter, gel, foreign matter, etc. from the varnish-like material for forming the lower layer film. By reducing these components, the flatness during coating becomes better.
  • the opening of the filtration filter is preferably 0.001 to 1 ⁇ m, more preferably 0.001 to 0.5 ⁇ m, and further preferably 0.001 to 0.1 ⁇ m.
  • the material of the filter include organic materials such as polytetrafluoroethylene (PTFE), polypropylene (PP), polyether sulfone (PES), and cellulose; inorganic materials such as glass fiber and metal; and the like.
  • PTFE polytetrafluoroethylene
  • PP polypropylene
  • PES polyether sulfone
  • Filtration may be a multi-step process in which the varnish is sent from a filter with a large pore size to a filter with a small pore size. Of course, it may be a single process in which the varnish is directly sent to a filter having a small pore size.
  • Examples of the method of sending the varnish to the filter include a method of utilizing a pressure difference and a method of sending the varnish to the filter by mechanical driving via a screw or the like.
  • the filtration temperature may be appropriately selected within a range in which the filter performance, solution viscosity, and polymer solubility are taken into consideration.
  • the temperature is preferably ⁇ 10 to 200° C., more preferably 0 to 150° C., and further preferably room temperature to 100° C.
  • the lower layer film forming material of the second embodiment is used in a multilayer resist process.
  • the solid content of the lower layer film forming material satisfies the following (i) to (iii).
  • the elemental composition ratio Re defined by the following mathematical formula (1) is 1.5 to 2.8.
  • the glass transition temperature is 30 to 250°C.
  • a resin having a structural unit represented by the following general formula (1) is included.
  • NH is the number of hydrogen atoms in the solid content of the lower layer film forming material
  • N C is the number of carbon atoms in the solid content of the lower layer film-forming material
  • N 2 O is the number of oxygen atoms in the solid content of the lower layer film forming material.
  • R 1 to R 4 are each independently a hydrogen atom, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an aryloxyalkyl group having 7 to 20 carbon atoms, or an aryloxy group having 7 to 20 carbon atoms.
  • R 1 to R 4 is a group other than a hydrogen atom, and R 1 to R 4 may be bonded to each other to form a ring structure, n represents an integer of 0 to 2, X 1 and X 2 each independently represent —CH 2 — or —O—.
  • the technical significance of the element content ratio Re of the solid content being 1.5 to 2.8 and the glass transition temperature of the solid content being 30 to 250° C. is the first embodiment. Is the same as. Therefore, I will omit the explanation again.
  • Re is preferably 1.8 to 2.5, and more preferably 1.8 to 2.4.
  • preferred aspects of the resin itself having the structural unit represented by the general formula (1) are the same as those in the first embodiment. Therefore, I will omit the explanation again.
  • the elemental composition ratio Re′ defined by the mathematical expression (2) is 1.5 to 2.8.
  • the lower layer film forming material of the second embodiment further contains a resin having a structural unit represented by general formula (B), in addition to a resin having a structural unit represented by general formula (1). It is preferable. More preferably, in the second embodiment, it is preferable that, in addition to the resin having the structural unit represented by the general formula (1), a resin having the structural unit represented by the general formula (b) is further included. ..
  • the general formula (B) and the general formula (b) are as described in the first embodiment.
  • the mass ratio is usually represented by the general formula (1).
  • Resin having a structural unit represented by the formula/resin having a structural unit represented by the general formula (B) 5/95 to 95/5, preferably 10/90 to 90/10, more preferably 20/80 to 80/20 , And more preferably 40/60 to 60/40.
  • the lower layer film forming material of the second embodiment is a resin having a structural unit represented by general formula (A), in addition to a resin having a structural unit represented by general formula (1). It is preferable to include. More preferably, in the second embodiment, in addition to the resin having the structural unit represented by the general formula (1), a resin having the structural unit represented by the general formula (a1) or (a2) is further added. It is preferable to include.
  • the general formula (A) and the general formulas (a1) and (a2) are as described in the first embodiment.
  • the mass ratio of the resin having the structural unit represented by the general formula (1) and the resin having the structural unit represented by the general formula (A) is usually the same as that of the structural unit represented by the general formula (1).
  • Resin/ Resin having a structural unit represented by the general formula (A) 100/0 to 5/95, preferably 100/0 to 15/85, more preferably 100/0 to 30/70, and more preferably It is 100/0 to 45/55.
  • the lower layer film forming material of the second embodiment is not a resin having a structural unit represented by the general formula (A) as long as the solid content satisfies the above (i) to (iii).
  • a resin (other resin) which is not a resin having the structural unit represented by the general formula (B) may be included.
  • the lower layer film forming material of the second embodiment may include polyhydroxystyrene as another resin.
  • a resist underlayer film can be manufactured (formed) using the underlayer film forming material.
  • the method for producing a resist underlayer film includes a step of forming a coating film containing a material for forming an underlayer film on a substrate (hereinafter, also referred to as “coating film forming step”). If necessary, a step of heating the coating film (hereinafter, also referred to as “heating step”) may be performed.
  • the lower layer film forming material (first embodiment or second embodiment) it is possible to manufacture a resist lower layer film having good etching resistance and excellent embedding property and flatness.
  • the lower layer film forming material of the first embodiment or the second embodiment is excellent in embeddability in a substrate having a complicated shape. Therefore, a resist underlayer film having excellent embedding property and flatness can be produced on a substrate having a complicated shape such as a substrate having a step or a substrate having a plurality of types of trenches while satisfying etching resistance.
  • the etching resistance can be calculated, for example, by the formula of “etching rate of reference resist underlayer film for reference obtained by using polyhydroxystyrene/etching rate of target underlayer film” when oxygen plasma etching is performed.
  • the value obtained by this formula is preferably 1.03 to 3.00, more preferably 1.05 to 2.00.
  • oxygen plasma etching refer to Examples below.
  • the lower layer film forming material of the first or second embodiment contains a specific resin, and when it contains two or more specific resins, it can be applied neatly to a substrate and a coating film having a uniform film thickness. Can be obtained.
  • a coating film is formed on the substrate using the lower layer film forming material.
  • the substrate include a silicon wafer, an aluminum wafer, a nickel wafer and the like. An uneven structure may be provided on the surface of the substrate.
  • the concavo-convex structure includes, for example, a silica (SiO 2 ) film, a SiCN film, a SiOC film in which silica (SiO 2 ) is doped with carbon (C), a methylsiloxane-based organic film (SOG), and microscopic pores of several nm or less.
  • the film may be formed of a low dielectric material such as a silica insulating film that is uniformly distributed.
  • the lower layer film forming material of the first embodiment or the second embodiment the embeddability in the uneven structure becomes good.
  • a resist underlayer film having excellent flatness can be formed. Particularly, even when a substrate having a complicated shape such as a substrate having a step or a substrate having a plurality of types of trenches is used, it is easy to obtain good burying property and flatness.
  • the substrate having a plurality of types of trenches for example, substrates having different aspect ratios can be cited.
  • the aspect ratio may be a mixture of various values.
  • the ratio of the maximum value to the minimum value in the aspect ratio is preferably 1 to 30, more preferably 1 to 25, It is more preferably 1 to 20.
  • the method for forming the coating film is not particularly limited.
  • a method of applying the above-mentioned varnish-like material for forming the lower layer film to the substrate by using a method such as spin coating, solution casting coating, roll coating, slit coating, or inkjet coating can be used.
  • the film thickness of the resist underlayer film formed from the bottom of the concave portion on the substrate to the atmospheric surface is not particularly limited.
  • the average value H av described later is preferably 5 to 2000 nm, more preferably 5 to 1000 nm, and further preferably 5 to 500 nm.
  • the coating film formed in the coating film forming step is heated.
  • the heating temperature is preferably 100 to 400°C, more preferably 150 to 300°C, and further preferably 180 to 250°C.
  • the heating time is preferably 5 seconds to 60 minutes, more preferably 10 seconds to 10 minutes, further preferably 30 seconds to 3 minutes.
  • Examples of the heating atmosphere include air and an inert gas such as nitrogen gas or argon gas.
  • the heating method is, for example, a mode in which heating is performed for the purpose of removing the solvent in the coating film, and the coating film is fluidized by the subsequent heating to embed the coating film in the uneven structure of the substrate; To cure the heterogeneous substances such as thermosetting materials mixed to compensate for the above, and then to flow the coating film by heating to embed the coating film in the uneven structure of the substrate; the leaving group of the material for forming the lower layer film is eliminated.
  • the heating may be a multi-step process in which the temperature is raised stepwise.
  • the resist underlayer film thus obtained can be used as a process member for pattern formation by photolithography, for example.
  • the lower layer film obtained by using the lower layer film forming material of the first embodiment or the second embodiment has good solvent resistance. Thereby, when another layer (for example, a resist layer) is provided on the resist underlayer film, intermixing is more difficult to occur.
  • the residual film ratio measured by the following procedures (1) to (3) is preferably 50% or more, more preferably 50 to 100%, further preferably 60 to 100%, particularly preferably 70 to 100%. It is particularly preferably 80 to 100%.
  • a lower layer film forming material is applied onto a substrate, dried at 120° C. for 1 minute, cooled to room temperature, and then heated at 300° C. for 1 minute to form a film. The film thickness at this time is a.
  • a is typically adjusted to 300 to 400 nm, preferably 350 nm.
  • the residual film rate tends to be high especially because a specific resin is used in combination.
  • the reason why the mixed solvent having a mass ratio of PGME/PGMEA of 7/3 is used in (2) of the above procedure is that the solvent used for forming the intermediate layer provided on the upper layer of the resist underlayer film or the material used for forming the resist layer is a solvent. This is because PGME or PGMEA is often used as
  • the resist underlayer film When the residual film ratio is 50% or more, when the intermediate layer such as a hard mask or the resist layer is formed on the resist underlayer film, the resist underlayer film is dissolved or the resist underlayer film and the intermediate layer and/or the resist layer are formed. Can be prevented from being intermixed more than necessary. As a result, the adhesiveness between the intermediate layer and the resist underlayer film becomes appropriate, and a laminate having more excellent flatness can be realized.
  • the laminated body includes a substrate and a resist underlayer film formed by using an underlayer film forming material on one surface of the substrate. It is preferable that the substrate and the resist underlayer film are in contact with each other.
  • the resist underlayer film and the manufacturing method thereof have been already described in the above section ⁇ Resist underlayer film>, and therefore a repetitive description will be omitted.
  • FIG. 1 is a schematic diagram for explaining the structure of the laminated body. More specifically, FIG. 1 is a schematic diagram for explaining the film thickness 4 of the resist underlayer film 2, the height 5 of the concavo-convex structure 7 and the interval 6 between the convexes and convexes of the concavo-convex structure 7 in the laminated body 10.
  • the upper left and lower left views are schematic diagrams when (a) the substrate 1 has an uneven structure.
  • the upper right and lower right views are schematic views in the case where (b) the substrate 1 does not have an uneven structure.
  • the upper left figure and the lower left figure basically show the same laminate.
  • the upper right diagram and the lower right diagram basically show the same laminate.
  • reference numerals and auxiliary lines are different in the upper and lower figures.
  • the substrate 1 may have a structure having a flat surface as shown in (b), but it is preferable to have the concavo-convex structure 7 on one surface or both surfaces thereof as shown in (a).
  • the height of the unevenness in the uneven structure 7 is preferably 5 to 500 nm, more preferably 7 to 450 nm, and further preferably 10 to 400 nm.
  • the “height” of the unevenness means the height 5 of the uneven structure 7 shown in FIG. 1.
  • the height 5 of the concavo-convex structure 7 may be measured at arbitrary 10 points and the average value thereof may be adopted.
  • the interval between the protrusions in the uneven structure 7 is preferably 1 nm to 10 mm.
  • the lower limit of the interval between the protrusions in the uneven structure 7 is more preferably 3 nm or more, further preferably 5 nm or more, and particularly preferably 10 nm or more.
  • the convex-convex spacing in the concavo-convex structure 7 means the convex-convex spacing 6 in the concavo-convex structure 7 shown in FIG.
  • the convex-convex distance 6 in the concavo-convex structure 7 is arbitrarily measured at 10 points and the average value thereof is adopted. do it.
  • the upper limit of the interval between the protrusions in the uneven structure 7 is more preferably 5 mm or less, further preferably 1 mm or less, and particularly preferably 0.5 mm or less.
  • the thickness of the substrate 1 is preferably 0.01 to 10000 ⁇ m.
  • the lower limit value of the thickness of the substrate 1 is more preferably 0.03 ⁇ m or more, further preferably 0.05 ⁇ m or more, and particularly preferably 0.10 ⁇ m or more.
  • the upper limit of the thickness of the substrate 1 is more preferably 5000 ⁇ m or less, further preferably 3000 ⁇ m or less, and particularly preferably 1000 ⁇ m or less.
  • the thickness of the thinnest portion and the thickness of the thickest portion of the substrate 1 are preferably within the above numerical range.
  • the flatness ( ⁇ FT) of the surface 3 on the side opposite to the substrate is preferably 0 to 5%, more preferably 0 to 3%, and further preferably 0 to 1.5%, particularly preferably 0 to 1%.
  • ⁇ FT ⁇ (H max ⁇ H min )/H av ⁇ 100(%)
  • H av is an average value of the film thickness of the resist underlayer film when the film thickness of the resist underlayer film is measured at any 10 positions on the surface 3
  • H max is the maximum value of the film thickness of the resist underlayer film
  • H min is the minimum value of the film thickness of the resist underlayer film.
  • the distance from the bottom surface of the recess to the upper surface of the resist underlayer film (interface with the atmosphere) is measured to obtain H av , H max and H min .
  • the portions having the concave portions are selectively measured at 10 places to obtain H av , H max and H min .
  • the resist underlayer film having good flatness can be obtained by using the underlayer film forming material of the present embodiment.
  • the thickness of the resist layer can be more uniform regardless of the presence or absence of the intermediate layer.
  • a desired pattern can be obtained with good reproducibility in lithography.
  • the laminate obtained by using the lower layer film forming material of the first embodiment or the second embodiment has good (i) residual film rate, (ii) flatness, (iii) etching resistance, and the like. .. From these viewpoints, the laminated body can be expressed as follows. Such a laminate having excellent residual film ratio, flatness and etching resistance is extremely useful for manufacturing advanced semiconductor devices.
  • a resist lower layer film formed of a lower layer film forming material On one surface of the substrate, a resist lower layer film formed of a lower layer film forming material, And a laminate having at least the following characteristics (i) to (iii): (I)
  • the residual film ratio of the lower layer film forming material measured by the following procedures (1) to (3) is 80% or more.
  • a lower layer film forming material is applied onto a substrate, dried at 120° C. for 1 minute, cooled to room temperature, and then heated at 300° C. for 1 minute to form a film. The film thickness at this time is a.
  • H av is an average value of the film thickness when the film thickness of the resist underlayer film is measured at any 10 positions on the surface ⁇
  • H max is the maximum value of the film thickness of the resist underlayer film
  • H min is the minimum value of the film thickness of the resist underlayer film.
  • the pattern forming method includes, for example, (i) a step of forming a resist pattern on the upper surface side of the resist underlayer film (hereinafter, also referred to as “resist pattern forming step”), and (ii) masking the resist pattern. And a step of sequentially etching the resist underlayer film and the substrate (hereinafter, also referred to as “etching step”).
  • the pattern forming method is a step of forming an intermediate layer on the upper surface side of the resist underlayer film in the resist pattern forming step, forming a resist pattern on the upper surface side of the intermediate layer, and further etching the intermediate layer in the etching step.
  • the material for forming the lower layer film of the first embodiment or the second embodiment preferably contains two or more specific resins.
  • the resin having the structural unit represented by the general formula (1) alone has low etching resistance
  • the resin having the structural unit represented by the general formula (A) and/or the structure represented by the general formula (B) is used. It is possible to enhance etching resistance by combining resins having units with an appropriate composition.
  • the lower layer film forming material of the first embodiment or the second embodiment it is possible to form a resist lower layer film having good etching resistance and good flatness. Due to these things, a good pattern can be formed.
  • the lower layer film forming material contains the resin having the structural unit represented by the general formula (1), intermixing by the solvent contained in the intermediate layer forming material or the resist pattern forming material can be suppressed. .. Then, the flatness of the resist underlayer film is further improved, and a better pattern is easily formed.
  • each step will be described, but the present invention is not limited thereto.
  • a resist pattern is formed on the upper surface side of the resist lower layer film.
  • an intermediate layer may be formed on the upper surface side of the resist lower layer film, and a resist pattern may be formed on the upper surface side of this intermediate layer.
  • the intermediate layer is a layer having these functions in order to supplement the functions that the resist underlayer film and/or the resist film has, or to add the functions that these do not have, in the formation of a resist pattern and the like.
  • an antireflection film also referred to as an antireflection layer
  • the antireflection function of the resist underlayer film can be supplemented.
  • the hard mask layer is formed as an intermediate layer, the influence on the resist underlayer film when using an alkaline developer is suppressed, and/or after etching the resist underlayer film, the silicon underlayer, aluminum, It is possible to compensate for insufficient etching resistance of the resist pattern forming layer when etching a substrate made of nickel or the like.
  • the intermediate layer may have a function of either or both of an antireflection layer and a hard mask layer.
  • an antireflection layer or a hard mask layer may be formed directly on the resist underlayer film.
  • the material and physical properties of the intermediate layer may be appropriately selected in consideration of the characteristics and productivity of the resist material, the material of the processed substrate, and the like.
  • the intermediate layer can be formed of an organic compound or an inorganic oxide.
  • organic compound examples include DUV-42, DUV-44, ARC-28, ARC-29 (manufactured by Brewer Science), AR-3, AR-19 (manufactured by Rohm and Haas) and the like.
  • inorganic oxide examples include NFC SOG series (manufactured by JSR), polysiloxane formed by the CVD method, titanium oxide, alumina oxide, tungsten oxide and the like.
  • the method for forming the intermediate layer is not particularly limited.
  • a coating method, a CVD method and the like can be mentioned. Of these, the coating method is preferred.
  • the intermediate layer can be continuously formed after forming the resist underlayer film.
  • the thickness of the intermediate layer is not particularly limited.
  • the film thickness may be appropriately selected according to the function required for the intermediate layer. It is typically 1 nm to 5 ⁇ m, preferably 5 nm to 3 ⁇ m, more preferably 10 nm to 0.3 ⁇ m.
  • Examples of the method for forming the resist pattern on the upper surface side of the resist lower layer film or the intermediate layer include a method using photolithography and the like.
  • the method using photolithography is, for example, using a resist composition, a step of forming a resist film on the upper surface side of the resist underlayer film (hereinafter, also referred to as “resist film forming step”), a step of exposing the resist film (hereinafter, It may include a "exposure step”) and a step of developing the exposed resist film (hereinafter also referred to as “developing step”).
  • resist film forming step a step of exposing the resist film on the upper surface side of the resist underlayer film
  • exposure step a step of exposing the resist film
  • developing step a step of developing the exposed resist film
  • a resist composition is used to form a resist film on the upper surface side of the resist underlayer film. Specifically, the resist composition is applied so that the obtained resist film has a predetermined film thickness, and then the solvent in the coating film is volatilized by prebaking to form the resist film.
  • the resist composition examples include a positive or negative chemically amplified resist composition containing a resin and a photoacid generator; a positive resist composition comprising an alkali-soluble resin and a quinonediazide-based photosensitizer; an alkali-soluble resin. And a cross-linking agent; a negative resist composition; and the like.
  • the solid content concentration of the resist composition may be selected in an appropriate range in consideration of the target film thickness and productivity.
  • the range is preferably 0.1 to 50% by mass, more preferably 0.5 to 50% by mass, and further preferably 1.0 to 50% by mass.
  • the resist composition is preferably prepared by filtering with a filter having a pore size of about 0.1 ⁇ m.
  • a commercially available resist composition can be used as it is.
  • the method of applying the resist composition is not particularly limited. For example, it can be carried out by a method such as spin coating, cast coating, or roll coating.
  • the prebaking temperature may be appropriately selected according to the type of resist composition used and the like. It is typically 30 to 200°C, preferably 50 to 150°C.
  • the resist film formed in the resist film forming step is exposed.
  • the exposure is performed via, for example, a predetermined mask pattern and, if necessary, an immersion liquid.
  • the exposure light include electromagnetic waves such as visible light, ultraviolet rays, far ultraviolet rays, X-rays and ⁇ rays, depending on the type of photo-acid generator used in the resist composition; electron beam, molecular beam, ion beam, It is appropriately selected from particle beams such as ⁇ rays.
  • KrF excimer laser light (248 nm), ArF excimer laser light (193 nm), F 2 excimer laser light (wavelength 157 nm), Kr 2 excimer laser light (wavelength 147 nm), ArKr excimer laser light (wavelength 147 nm).
  • a wavelength of 134 nm) and extreme ultraviolet (wavelength of 13 nm) are more preferable, and ArF excimer laser light is further preferable.
  • post-baking can be performed to improve the resolution, pattern profile, developability, etc. of the resist pattern formed (Post Exposure Bake).
  • the temperature at this time may be appropriately adjusted according to the type of resist composition used and the like. It is typically 50 to 200°C, preferably 70 to 150°C.
  • the developer used for development may be appropriately selected depending on the type of resist composition used.
  • alkali development for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanol.
  • alkaline aqueous solutions for example, a water-soluble organic solvent such as alcohols such as methanol and ethanol, or a surfactant can be added in an appropriate amount.
  • a developing solution containing an organic solvent can also be used as the developing solution.
  • the organic solvent include esters, ketones, ethers, alcohols, amides, hydrocarbons and the like. The solvent used in the organic solvent development is appropriately selected according to the characteristics of the resist underlayer film.
  • the intermediate layer as described above, the influence of the developer on the resist underlayer film can be suppressed.
  • a resist pattern is formed by developing with a developing solution, washing, and drying.
  • the resist pattern forming step may be a method using a nanoimprint method, a method using a self-assembling composition, etc. other than the method using photolithography as described above.
  • the resist underlayer film and the substrate are sequentially etched using the obtained resist pattern as a mask. As a result, a pattern is formed on the substrate.
  • the intermediate layer is also etched.
  • the etching may be dry etching or wet etching. Dry etching can be performed using a known dry etching apparatus.
  • the source gas for dry etching is, for example, a gas containing oxygen atoms such as O 2 , CO, or CO 2 ; an inert gas such as He, N 2 , or Ar; chlorine such as Cl 2 , BCl 3 or the like.
  • a system gas a fluorine system gas such as CHF 3 or CF 4 ; a gas of H 2 or NH 3 can be used. These gases may be mixed and used.
  • the composition of the source gas may be appropriately selected depending on the elemental composition of the material to be etched.
  • Step of removing unnecessary resist underlayer film, etc. In this step, after the resist pattern is transferred and formed on the substrate by the etching step, the unnecessary resist lower layer film and the like are removed.
  • the removal method may be a dry method, a wet method using a solvent or the like, or a combination thereof. It may be appropriately selected in consideration of physical properties of the material and process adaptability.
  • a dry etching device used in the etching process can be used. Therefore, there is no need to change the manufacturing line from the etching process to the removal process. That is, the dry method is preferably used from the viewpoint of productivity.
  • a gas source when using a dry etching apparatus, for example, a gas containing oxygen atoms such as O 2 , CO, and CO 2 ; an inert gas such as He, N 2 , and Ar; Cl 2 , A chlorine-based gas such as BCl 3 ; a fluorine-based gas such as CHF 3 or CF 4 ; a gas of H 2 or NH 3 can be used. You may use these gas in mixture of 2 or more types.
  • the composition of the gas source is appropriately selected depending on the elemental composition of the material to be etched.
  • Glass-transition temperature A differential scanning calorimeter DSC-50 manufactured by Shimadzu Corporation was used to heat the measurement sample in a nitrogen atmosphere at a temperature rising rate of 10° C./min. The midpoint of the calorific curve showing the phase transition from the solid state to the glass state obtained at this time was defined as the glass transition temperature.
  • [Evaluation unevenness substrate used for embedding/flatness evaluation] A silicon substrate having a size of 3 cm ⁇ 3 cm in which a line & space pattern having a height of 200 nm, a convex portion width of 40 to 150 nm and a convex-convex width of 40 to 150 nm was formed on the substrate surface was used. Hereinafter, this substrate is also referred to as an “evaluation uneven substrate”.
  • [Embedding property evaluation] A sample in which a resist underlayer film was formed on the uneven surface of the above-mentioned uneven substrate for evaluation was divided to perform surface preparation for cross-section observation.
  • the embedding property was evaluated by observing the substrate cross section of the portion having a convex-convex width of 40 nm.
  • SEM scanning electron microscope JSM-6701F
  • the height from the bottom surface of the concave portion to the atmospheric surface in an area having a convex width of 40 nm and a convex-convex width of 120 nm was measured at 10 points, and the average value was defined as H av .
  • PGME propylene glycol monomethyl ether
  • etching rate [Measuring method of etching rate] Using a spectroscopic ellipsometer GES5E manufactured by Nippon Semi-Labo Co., Ltd., the film thickness of the surface of the substrate was measured before etching (0 seconds), after 60 seconds etching, after 180 seconds etching and after 300 seconds etching. The measurement was performed at any three points in the film, and the average value was adopted as the film thickness. As a result, film thickness data was obtained at etching times of 0 seconds, 60 seconds, 180 seconds, and 300 seconds. These film thickness data were plotted by plotting time (second) on the horizontal axis and decreasing film thickness (nm) on the vertical axis, and approximated with a straight line (linear function). Then, the etching rate (nm/sec) was calculated from the slope of the straight line.
  • Example 1 Synthesis of cyclic olefin polymer
  • a glass autoclave equipped with a magnetic stirrer under a nitrogen atmosphere 12.9 g (0.071 mol) of 1,4,4a,9a-tetrahydro-1,4-methanofluorene and 1,5-hexadiene were added. 0.65 g (0.008 mol) was dissolved in 50.9 g of tetrahydrofuran (hereinafter referred to as THF) and stirred.
  • THF tetrahydrofuran
  • the polymer 1 contains the structural unit represented by the above general formula (2).
  • the glass transition temperature of Polymer 1 was 121°C.
  • PGMEA propylene glycol-1-monomethyl ether-2-acetate
  • CH cyclohexanone
  • Elemental analysis was performed using a white powder obtained by shaving a part of this film with a spatula as a sample.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the polymer 1 in the material for forming the lower layer film was uniformly embedded in the groove having a narrow line width of 40 nm between projections (height of 200 nm) without defects such as voids. The H av was 278 nm, the H max was 278 nm, the H min was 278 nm, and the flatness ( ⁇ FT) was 0.0%. That is, the embeddability and flatness were very good.
  • the residual film ratio measured by using the obtained lower layer film forming material as described in [Measurement of residual film ratio] was 100%. That is, the residual film rate was very good.
  • the polymer 2 contains the structural unit represented by the above general formula (6).
  • the glass transition temperature of Polymer 2 was 140°C.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the polymer 2 in the material for forming the lower layer film was uniformly embedded in the groove having a narrow line width between projections of 40 nm (height of 200 nm) without defects such as voids. Further, H av was 253 nm, H max was 254 nm, H min was 253 nm, and the flatness ( ⁇ FT) was 0.4%. That is, the embeddability and flatness were very good.
  • the residual film ratio measured by using the obtained lower layer film forming material as described in [Measurement of residual film ratio] was 99%. That is, the residual film rate was very good.
  • polymer 3 contains the structural unit represented by the above general formula (5).
  • the glass transition temperature of Polymer 3 was 138°C.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the polymer 3 in the material for forming the lower layer film was uniformly filled in the groove having a narrow line width of 40 nm (height of 200 nm) between the projections without defects such as voids. The H av was 261 nm, the H max was 261 nm, the H min was 260 nm, and the flatness ( ⁇ FT) was 0.4%. That is, the embeddability and flatness were very good.
  • the residual film ratio measured by using the obtained lower layer film forming material as described in [Measurement of residual film ratio] was 100%. That is, the residual film rate was very good.
  • the molar ratio of the structural unit derived from the monomer A and the structural unit derived from the monomer B, which was analyzed by 1 H-NMR, was A/B 90/10.
  • a cyclic olefin polymer was precipitated from the obtained ring-opening metathesis polymer solution and dried under reduced pressure at 80° C. to obtain a white powder solid (Polymer 4).
  • the polymer 4 contains a structural unit represented by the above general formula (2).
  • the glass transition temperature of polymer 4 was 119°C.
  • a lower layer film forming material was obtained.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate having no pattern under the conditions of 1000 rpm and 10 sec, and heated at 300° C. for 1 minute in a nitrogen atmosphere to form a film. Elemental analysis was performed using a white powder obtained by shaving a part of this film with a spatula as a sample.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the polymer 4 in the lower layer film forming material was uniformly embedded in the groove having a narrow line width of 40 nm between projections (height of 200 nm) without defects such as voids. Further, H av was 208 nm, H max was 208 nm, H min was 208 nm, and the flatness ( ⁇ FT) was 0.0%. That is, the embeddability and flatness were very good.
  • the residual film ratio measured by using the obtained lower layer film forming material as described in the above [Measurement of residual film ratio] was 94%. That is, the residual film rate was good.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate without a pattern under the conditions of 1000 rpm and 10 sec, and dried under a nitrogen atmosphere at 120° C. for 1 minute to form a film.
  • the glass transition temperature was measured using a white powder obtained by shaving a part of this film with a spatula. The glass transition temperature was 122°C.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate having no pattern under the conditions of 1000 rpm and 10 sec, and heated at 300° C. for 1 minute in a nitrogen atmosphere to form a film. Elemental analysis was performed using a white powder obtained by shaving a part of this film with a spatula as a sample.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the mixture of Polymer 1 and PHS in the material for forming the lower layer film was uniformly embedded in the groove having a narrow line width of 40 nm (height 200 nm) between the projections without defects such as voids. Further, H av was 210 nm, H max was 210 nm, H min was 210 nm, and the flatness ( ⁇ FT) was 0.0%. That is, the embeddability and flatness were very good.
  • the residual film rate measured by using the obtained lower layer film forming material as described in the above [Measurement of residual film rate] was 91%. That is, the residual film rate was good.
  • a lower layer film forming material was obtained.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate without a pattern under the conditions of 1000 rpm and 10 sec, and dried under a nitrogen atmosphere at 120° C. for 1 minute to form a film.
  • the glass transition temperature was measured using a white powder obtained by shaving a part of this film with a spatula. The glass transition temperature was 110°C.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate having no pattern under the conditions of 1000 rpm and 10 sec, and heated at 300° C. for 1 minute in a nitrogen atmosphere to form a film. Elemental analysis was performed using a white powder obtained by shaving a part of this film with a spatula as a sample.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the mixture of the novolac resin and the naphthol aralkyl resin in the material for forming the lower layer film was uniformly embedded in the groove having a narrow line width of 40 nm (height 200 nm) between the projections without defects such as voids. .. Further, H av was 195 nm, H max was 195 nm, H min was 195 nm, and the flatness ( ⁇ FT) was 0.0%. That is, the embeddability and flatness were very good.
  • the residual film ratio measured by using the obtained lower layer film forming material as described in [Measurement of residual film ratio] was 100%. That is, the residual film rate was good.
  • a lower layer film forming material was obtained.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate without a pattern under the conditions of 1000 rpm and 10 sec, and dried under a nitrogen atmosphere at 120° C. for 1 minute to form a film.
  • the glass transition temperature was measured using a white powder obtained by shaving a part of this film with a spatula. The glass transition temperature was 98°C.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate having no pattern under the conditions of 1000 rpm and 10 sec, and heated at 300° C. for 1 minute in a nitrogen atmosphere to form a film. Elemental analysis was performed using a white powder obtained by shaving a part of this film with a spatula as a sample.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the mixture of the novolac resin and the naphthol aralkyl resin in the material for forming the lower layer film was uniformly embedded in the groove having a narrow line width of 40 nm (height 200 nm) between the projections without defects such as voids. .. Further, H av was 234 nm, H max was 234 nm, H min was 233 nm, and the flatness ( ⁇ FT) was 0.4%. That is, the embeddability and flatness were very good.
  • the residual film ratio measured by using the obtained lower layer film forming material as described in [Measurement of residual film ratio] was 100%. That is, the residual film rate was good.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate without a pattern under the conditions of 1000 rpm and 10 sec, and dried under a nitrogen atmosphere at 120° C. for 1 minute to form a film.
  • the glass transition temperature was measured using a white powder obtained by shaving a part of this film with a spatula. The glass transition temperature was 141°C.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate without a pattern under the conditions of 1000 rpm and 10 sec, and heated in a nitrogen atmosphere at 300° C. for 1 minute to form a film. Elemental analysis was performed using a white powder obtained by shaving a part of this film with a spatula as a sample.
  • the elemental composition ratio (Re and Re′) calculated from the elemental analysis values is 2.0. there were.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the mixture of the polymer 5 and the naphthol aralkyl resin in the material for forming the lower layer film was uniformly embedded in the groove with a narrow line width of 40 nm (height 200 nm) between the projections without defects such as voids. .. Further, H av was 245 nm, H max was 245 nm, H min was 244 nm, and the flatness ( ⁇ FT) was 0.4%. That is, the embeddability and flatness were very good.
  • the residual film ratio measured by using the obtained lower layer film forming material as described in [Measurement of residual film ratio] was 100%. That is, the residual film rate was good.
  • Example 9 (Preparation of material for forming lower layer film)
  • the amount of the mixed solvent was adjusted so that the concentration was 10% by mass. As a result, a lower layer film forming material was obtained.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate without a pattern under the conditions of 1000 rpm and 10 sec, and dried under a nitrogen atmosphere at 120° C. for 1 minute to form a film.
  • the glass transition temperature was measured using a white powder obtained by shaving a part of this film with a spatula. The glass transition temperature was 119°C.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate having no pattern under the conditions of 1000 rpm and 10 sec, and heated at 300° C. for 1 minute in a nitrogen atmosphere to form a film. Elemental analysis was performed using a white powder obtained by shaving a part of this film with a spatula as a sample.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the mixture of polymer 4 and naphthol aralkyl resin in the material for forming the lower layer film was uniformly embedded in the groove having a narrow line width of 40 nm (height of 200 nm) between the projections without defects such as voids. .. Further, H av was 240 nm, H max was 240 nm, H min was 239 nm, and the flatness ( ⁇ FT) was 0.4%. That is, the embeddability and flatness were very good.
  • the residual film rate measured by using the obtained lower layer film forming material as described in the above [Measurement of residual film rate] was 91%. That is, the residual film rate was good.
  • naphthol aralkyl resin Naippon Steel Chemical & Materials Co., Ltd. trade
  • the obtained lower layer film forming material was spin-coated on a silicon substrate without a pattern under the conditions of 1000 rpm and 10 sec, and dried under a nitrogen atmosphere at 120° C. for 1 minute to form a film.
  • the glass transition temperature was measured using a white powder obtained by shaving a part of this film with a spatula. The glass transition temperature was 119°C.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate having no pattern under the conditions of 1000 rpm and 10 sec, and heated at 300° C. for 1 minute in a nitrogen atmosphere to form a film. Elemental analysis was performed using a white powder obtained by shaving a part of this film with a spatula as a sample.
  • the elemental composition ratios (Re and Re′) calculated from the elemental analysis values are 2.4. there were.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the mixture of the novolac resin and the naphthol aralkyl resin in the material for forming the lower layer film was uniformly embedded in the groove having a narrow line width of 40 nm (height 200 nm) between the projections without defects such as voids. .. Further, H av was 280 nm, H max was 281 nm, H min was 279 nm, and the flatness ( ⁇ FT) was 0.7%. That is, the embeddability and flatness were very good.
  • the residual film ratio measured by using the obtained lower layer film forming material as described in [Measurement of residual film ratio] was 100%. That is, the residual film rate was good.
  • naphthol aralkyl resin Naippon Steel Chemical & Materials Co., Ltd. trade
  • the obtained lower layer film forming material was spin-coated on a silicon substrate without a pattern under the conditions of 1000 rpm and 10 sec, and dried under a nitrogen atmosphere at 120° C. for 1 minute to form a film.
  • the glass transition temperature was measured using a white powder obtained by shaving a part of this film with a spatula. The glass transition temperature was 117°C.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate having no pattern under the conditions of 1000 rpm and 10 sec, and heated at 300° C. for 1 minute in a nitrogen atmosphere to form a film. Elemental analysis was performed using a white powder obtained by shaving a part of this film with a spatula as a sample.
  • the elemental composition ratios (Re and Re′) calculated from the elemental analysis values are 2.3. there were.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the mixture of the novolac resin and the naphthol aralkyl resin in the material for forming the lower layer film was uniformly embedded in the groove having a narrow line width of 40 nm (height 200 nm) between the projections without defects such as voids. .. Further, H av was 244 nm, H max was 245 nm, H min was 243 nm, and the flatness ( ⁇ FT) was 0.8%. That is, the embeddability and flatness were very good.
  • the residual film ratio measured by using the obtained lower layer film forming material as described in [Measurement of residual film ratio] was 100%. That is, the residual film rate was good.
  • a lower layer film forming material was obtained.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate without a pattern under the conditions of 1000 rpm and 10 sec, and dried under a nitrogen atmosphere at 120° C. for 1 minute to form a film.
  • the glass transition temperature was measured using a white powder obtained by shaving a part of this film with a spatula. The glass transition temperature was 106°C.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the mixture of the novolac resin and the naphthol aralkyl resin in the material for forming the lower layer film was uniformly embedded in the groove having a narrow line width of 40 nm (height 200 nm) between the projections without defects such as voids. .. Further, H av was 256 nm, H max was 257 nm, H min was 255 nm, and the flatness ( ⁇ FT) was 0.8%. That is, the embeddability and flatness were very good.
  • the residual film ratio measured by using the obtained lower layer film forming material as described in [Measurement of residual film ratio] was 100%. That is, the residual film rate was good.
  • a lower layer film forming material was obtained.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate without a pattern under the conditions of 1000 rpm and 10 sec, and dried under a nitrogen atmosphere at 120° C. for 1 minute to form a film.
  • the glass transition temperature was measured using a white powder obtained by shaving a part of this film with a spatula. The glass transition temperature was 104°C.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate having no pattern under the conditions of 1000 rpm and 10 sec, and heated at 300° C. for 1 minute in a nitrogen atmosphere to form a film. Elemental analysis was performed using a white powder obtained by shaving a part of this film with a spatula as a sample.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the mixture of the novolac resin and the naphthol aralkyl resin in the material for forming the lower layer film was uniformly embedded in the groove having a narrow line width of 40 nm (height 200 nm) between the projections without defects such as voids. .. The H av was 277 nm, the H max was 278 nm, the H min was 276 nm, and the flatness ( ⁇ FT) was 0.7%. That is, the embeddability and flatness were very good.
  • the residual film ratio measured by using the obtained lower layer film forming material as described in [Measurement of residual film ratio] was 100%. That is, the residual film rate was good.
  • Example 14 (Preparation of material for forming lower layer film)
  • MER-44S trade name
  • the amount of the mixed solvent was adjusted so that the concentration was 10% by mass. As a result, a lower layer film forming material was obtained.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate without a pattern under the conditions of 1000 rpm and 10 sec, and dried under a nitrogen atmosphere at 120° C. for 1 minute to form a film.
  • the glass transition temperature was measured using a white powder obtained by shaving a part of this film with a spatula. The glass transition temperature was 116°C.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate having no pattern under the conditions of 1000 rpm and 10 sec, and heated at 300° C. for 1 minute in a nitrogen atmosphere to form a film. Elemental analysis was performed using a white powder obtained by shaving a part of this film with a spatula as a sample.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the mixture of the polymer 4 and the novolac resin in the material for forming the lower layer film was uniformly embedded in the groove having a narrow line width of 40 nm (height of 200 nm) between the projections without defects such as voids. Further, H av was 236 nm, H max was 237 nm, H min was 236 nm, and the flatness ( ⁇ FT) was 0.4%. That is, the embeddability and flatness were very good.
  • the residual film ratio measured by using the obtained lower layer film forming material as described above in [Measurement of residual film ratio] was 93%. That is, the residual film rate was good.
  • Example 15 (Preparation of material for forming lower layer film)
  • MER-44S trade name
  • the amount of the mixed solvent was adjusted so that the concentration was 10% by mass. As a result, a lower layer film forming material was obtained.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate without a pattern under the conditions of 1000 rpm and 10 sec, and dried under a nitrogen atmosphere at 120° C. for 1 minute to form a film.
  • the glass transition temperature was measured using a white powder obtained by shaving a part of this film with a spatula. The glass transition temperature was 107°C.
  • the obtained lower layer film forming material was spin-coated on a silicon substrate having no pattern under the conditions of 1000 rpm and 10 sec, and heated at 300° C. for 1 minute in a nitrogen atmosphere to form a film. Elemental analysis was performed using a white powder obtained by shaving a part of this film with a spatula as a sample.
  • the elemental composition ratios (Re and Re′) calculated from the elemental analysis values are 2.4. there were.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the mixture of the polymer 4 and the novolac resin in the material for forming the lower layer film was uniformly embedded in the groove having a narrow line width of 40 nm (height of 200 nm) between the projections without defects such as voids. Further, H av was 255 nm, H max was 255 nm, H min was 254 nm, and the flatness ( ⁇ FT) was 0.4%. That is, the embeddability and flatness were very good.
  • the residual film ratio measured by using the obtained lower layer film forming material as described in [Measurement of residual film ratio] was 100%. That is, the residual film rate was good.
  • the polymer 6 contains the structural unit represented by the above general formula (7).
  • the glass transition temperature of Polymer 6 was 126°C.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. As a result, a resist lower layer film was formed. The section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, the polymer 2 in the material for forming the lower layer film was uniformly embedded in the groove having a narrow line width between projections of 40 nm (height of 200 nm) without defects such as voids. The H av was 238 nm, the H max was 239 nm, the H min was 237 nm, and the flatness ( ⁇ FT) was 0.8%. That is, the embeddability and flatness were very good.
  • the residual film ratio measured by using the obtained lower layer film forming material as described above in [Measurement of residual film ratio] was 96%. That is, the residual film rate was very good.
  • Comparative Polymer 1 The glass transition temperature of Comparative Polymer 1 was 172°C.
  • the elemental composition ratios (Re and Re′) calculated from the elemental analysis values.
  • the residual film ratio measured as described in [Measurement of residual film ratio] was 11%. That is, the residual film rate was slightly inferior to those of Examples 1 to 5.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. Then, it heated at 300 degreeC for 1 minute(s) in nitrogen atmosphere. Thus, the resist underlayer film was formed.
  • the section of the substrate was observed by SEM as described in the above [Evaluation of embedding property] [Evaluation of flatness]. As a result, voids were generated in the grooves having a narrow line width of 40 nm between projections (height of 200 nm). Further, H av was 250 nm, H max was 264 nm, H min was 233 nm, and the flatness ( ⁇ FT) was 12.4%. Further, the interface between the resist underlayer film and the atmosphere was distorted. That is, the embeddability and flatness were inferior to those of Example 1 and the like.
  • the obtained lower layer film forming material was spin-coated on a 4-inch silicon wafer under the conditions of 1000 rpm and 10 sec. Then, it was dried at 300° C. for 1 minute under a nitrogen atmosphere.
  • the obtained lower layer film forming material was applied to the surface of the above-mentioned uneven substrate for evaluation under the conditions of 1000 rpm and 10 sec. After that, it was heated in a nitrogen atmosphere at 300° C. for 1 minute, but the naphthol aralkyl resin aggregated on the substrate, a uniform film could not be obtained, and the cross section of the substrate could not be observed by SEM.
  • the residual film ratio could not be measured because a uniform coating film could not be obtained on a 4-inch silicon wafer.
  • each of the lower layer film forming materials obtained in Examples 1 to 16 and Comparative Examples 1 and 2 was applied to a silicon wafer and heated at 300° C. for 1 minute to obtain a resist lower layer film.
  • the etching rate (nm/sec) was calculated as described in [Evaluation of plasma etching characteristics] and [Method of measuring etching rate] described above.
  • Example 1 (Polymer 1) is 1.1
  • Example 2 (Polymer 2) is 1.2
  • Example 3 (Polymer 3) is 1.3
  • Example 4 (Polymer 4) is 1.1
  • Example 5 (mixture of polymer 1 and PHS in mass ratio 90/10) is 1.2
  • Example 6 (mixture of novolac resin and naphthol aralkyl resin in mass ratio 58/42) is 1.1
  • Example 7 (polymer 5) And a novolac resin/naphthol aralkyl resin in a mass ratio of 19/13/68) of 1.1
  • Example 8 (polymer 5 and naphthol aralkyl resin in a mass ratio of 12/88) of 1.2
  • Example 9 (Mixture of polymer 4 and naphthol aralkyl resin in mass ratio 80/20)
  • Resin/naphthol aralkyl resin mass ratio 80/20 is 1.1
  • Example 12 novolak resin/naphthol aralkyl resin mass ratio 20/80
  • Example 13 novolak resin
  • a mixture of naphthol aralkyl resin in a mass ratio of 5/95) is 1.3
  • Example 14 a mixture of polymer 4 and a novolac resin in a mass ratio of 80/20
  • Example 15 polymer 4 and a novolac resin are mixed.
  • the mixture (mass ratio 20/80) was 1.1
  • Example 16 Polymer 6
  • Comparative Example 1 Comparative Polymer 1
  • Comparative Example 2 was 0.5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

(i)以下数式(1)で定義される元素構成比率Reが1.5~2.8であり、(ii)ガラス転移温度が30~250℃であり、(iii)特定の構造単位を有する樹脂を少なくとも1種(好ましくは2種以上)含む、多層レジストプロセスに用いられる下層膜形成用材料。数式(1)中、NHは、下層膜形成用材料の固形分中の、水素原子の数であり、NCは、下層膜形成用材料の固形分中の、炭素原子の数であり、NOは、下層膜形成用材料の固形分中の、酸素原子の数である。

Description

下層膜形成用材料、レジスト下層膜および積層体
 本発明は、下層膜形成用材料、レジスト下層膜および積層体に関する。
 半導体デバイスの製造では、高い集積度を得るために多層レジストプロセスが用いられている。このプロセスでは、一般的に、まず基板上に下層膜形成用材料を用いてレジスト下層膜を形成し、次いで、レジスト下層膜の上面側にレジスト層を形成し、そしてレジストパターンを形成する。続いて、エッチングにより上記レジストパターンをレジスト下層膜に転写し、レジスト下層膜パターンを基板に転写することにより所望のパターンを得る。
 基板としては、平坦な形状の基板だけでなく、より複雑な回路の形成を行うために予備的に大きな回路形状を形成した凹凸構造を有する基板が用いられることもある。すなわち、寸法サイズが大きな回路形状をさらに加工して、微細な回路を形成するマルチパターンニング法が、最先端の回路形成プロセスでは導入されている。
 このような多層レジストプロセスに用いられるレジスト下層膜には、凹凸構造を有する基板の凹凸部への埋め込み性、レジスト層を形成する側の表面の平坦性、適度な屈折率や消衰係数等の光学特性、良好なエッチング耐性等の特性が要求される。
 近年、集積度をより高めるためにパターンの微細化がさらに進んでいる。この微細化に対応すべく、下層膜形成用材料に用いられる化合物等の構造や官能基等について種々の検討が行われている(例えば、特許文献2、3、4等参照)。
特開2004-177668号公報 国際公開第2009/008446号 国際公開第2018/221575号 国際公開第2017/183612号
 最近、微細な凹凸構造を有する基板を用いて、多層レジスト法によるマルチパターニングで微細構造を形成する場合が増えてきている。具体的には、凹凸構造を有する基板の凹凸を下層膜形成用材料で埋めて平坦なレジスト下層膜を形成し、その後、そのレジスト下層膜の上に中間層やレジスト層を設けることが行われる場合がある。
 多層レジスト法によるマルチパターニングでは、レジスト下層膜自体が十分なエッチング耐性を有するハードマスクとしての性能を示すことが求められる場合がある。
 また、基板が微細な凹凸構造を有する場合、その凹凸構造を埋め込み可能であり、ボイドの発生が少ないことなどが、下層膜形成用材料には求められる。
 さらに、基板の凹凸構造を埋め込んで形成されたレジスト下層膜の表面は、基板の凹凸構造(段差)にかかわらず平坦であることが求められる。レジスト下層膜の上層に、中間層またはレジスト層が形成されるためである。平坦性が不十分であると、最終的に所望の微細構造が得られない場合がある。
 本発明者らの知見として、これら、エッチング耐性、凹凸構造の埋め込み性および平坦性の観点で、従来の下層膜形成用材料には改善の余地があった。
 本発明は上記事情に鑑みてなされたものである。本発明は、特に、十分なエッチング耐性を有し、凹凸構造の埋め込み性が良好で、かつ、平坦なレジスト下層膜を形成可能な下層膜形成用材料を提供することを目的の1つとする。
 本発明者らは、特定の樹脂を用いることや、特定の2種以上の樹脂を組み合わせて用いること等により、下層膜形成用材料を改良できることを見出した。
 本発明は、以下の通りである。
1.
 多層レジストプロセスに用いられる下層膜形成用材料であって、
 当該下層膜形成用材料の固形分が、以下(i)~(iii)を満たす下層膜形成用材料。
 (i)以下数式(1)で定義される元素構成比率Reが1.5~2.8である。
 (ii)ガラス転移温度が30~250℃である。
 (iii)下記一般式(A)で表される構造単位を有する樹脂、及び、下記一般式(B)で表される構造単位を有する樹脂を含む。
Figure JPOXMLDOC01-appb-M000017
 数式(1)中、
 Nは、下層膜形成用材料の固形分中の、水素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、炭素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、酸素原子の数である。
Figure JPOXMLDOC01-appb-C000018
 一般式(A)中、
 Arは、ヒドロキシ基および/またはグリシジルオキシ基で少なくとも置換された2価の芳香族基を表し、
 Rは、水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、炭素数2~10のアルコキシアルキル基、炭素数7~10のアリールオキシアルキル基、から選ばれるいずれかの置換基を表す。
Figure JPOXMLDOC01-appb-C000019
 一般式(B)中
 Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、炭素数2~10のアルコキシアルキル基、炭素数7~10のアリールオキシアルキル基を表し、
 Ar11は、2価の芳香族基(置換でも無置換でもよい)を表し、
 Ar12は、以下一般式(B1)~(B3)で表される構造のいずれかを表す。
Figure JPOXMLDOC01-appb-C000020
 一般式(B1)~(B3)において、
 Rは、複数存在する場合はそれぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数1~10のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~10のアルコキシアルキル基、炭素数7~20のアリールオキシアルキル基、炭素数2~20のアルコキシカルボニル基、炭素数3~10のジアルキルアミノカルボニル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数3~20のアルコキシカルボニルアルキル基、炭素数8~20のアルコキシカルボニルアリール基、炭素数8~20のアリールオキシカルボニルアルキル基、炭素数3~20のアルコキシアルキルオキシカルボニル基および炭素数4~20のアルコキシカルボニルアルキルオキシカルボニル基、から選ばれるいずれかを表し、
 r1は、1以上(6-q1)以下であり、
 q1は、0以上5以下であり、
 r2は、1以上(4-q2)以下であり、
 q2は、0以上3以下であり、
 r3は、0以上4以下であり、r4は、0以上4以下であり、ただしr3+r4は1以上であり、
 q3は0以上4以下であり、q4は0以上4以下であり、ただしq3+q4は7以下であり、
 Xは、単結合または炭素数1~3のアルキレン基を表す。
2.
1.に記載の下層膜形成用材料であって、
 当該下層膜形成用材料の固形分の、以下数式(2)で定義される元素構成比率Re'が、1.5~2.8である下層膜形成用材料。
Figure JPOXMLDOC01-appb-M000021
 数式(2)中、
 Nは、下層膜形成用材料の固形分中の、水素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、炭素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、酸素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、窒素原子の数である。
3.
 1.また2に記載の下層膜形成用材料であって、
 前記一般式(A)で表される構造単位が、以下一般式(a1)または一般式(a2)で表される構造単位を含む下層膜形成用材料。
Figure JPOXMLDOC01-appb-C000022
 一般式(a1)および(a2)中、
 m1は1~4、n1は0~3、ただしm1+n1は1以上4以下であり、
 m2は1~6、n2は0~5、ただしm2+n2は1以上6以下であり、
 Rは、複数存在する場合はそれぞれ独立に、水素原子またはグリシジル基であり、
 Rは、式(A)におけるそれと同義であり、
 Rは、複数存在する場合はそれぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数1~10のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~10のアルコキシアルキル基、炭素数7~20のアリールオキシアルキル基、炭素数2~20のアルコキシカルボニル基、炭素数3~10のジアルキルアミノカルボニル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数3~20のアルコキシカルボニルアルキル基、炭素数8~20のアルコキシカルボニルアリール基、炭素数8~20のアリールオキシカルボニルアルキル基、炭素数3~20のアルコキシアルキルオキシカルボニル基および炭素数4~20のアルコキシカルボニルアルキルオキシカルボニル基、から選ばれるいずれかであり、
 nが2以上であるとき、複数存在するRは互いに結合して環構造を形成してもよい。
4.
 1.~3.のいずれか1つに記載の下層膜形成用材料であって、
 前記一般式(B)で表される構造単位が、以下一般式(b)で表される構造単位を含む下層膜形成用材料。
Figure JPOXMLDOC01-appb-C000023
 一般式(b)中、
 Rは、前記一般式(B)におけるRと同義であり、
 Rは、複数存在する場合はそれぞれ独立に、前記一般式(B1)~(B3)におけるRと同義であり、
 Arは、前記一般式(B1)または(B2)で表される構造であり、
 pは0~4である。
5.
 1.~4.のいずれか1つに記載の下層膜形成用材料であって、
 前記一般式(A)で表される構造単位を有する樹脂、及び、前記一般式(B)で表される構造単位を有する樹脂に加えて、さらに、下記一般式(1)で表される構造単位を有する樹脂を含む下層膜形成用材料。
Figure JPOXMLDOC01-appb-C000024
 一般式(1)中、
 R~Rは、それぞれ独立に、水素原子、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数7~20のアリールオキシアルキル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数8~30のアルコキシカルボニルアリール基および炭素数8~20のアリールオキシカルボニルアルキル基なる群より選ばれるいずれかの基であり、かつ、R~Rのうち少なくとも1つは水素原子以外の基であり、さらに、R~Rが互いに結合して環構造を形成していてもよく、
 nは、0~2の整数を表し、
 XおよびXは、それぞれ独立に、-CH-または-O-を表す。
6.
 多層レジストプロセスに用いられる下層膜形成用材料であって、当該下層膜形成用材料の固形分が、以下(i)~(iii)を満たす下層膜形成用材料。
(i)以下数式(1)で定義される元素構成比率Reが1.5~2.8である。
(ii)ガラス転移温度が30~250℃である。
(iii)下記一般式(1)で表される構造単位を有する樹脂を含む。
下層膜形成用材料。
Figure JPOXMLDOC01-appb-M000025
 数式(1)中、
 Nは、下層膜形成用材料の固形分中の、水素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、炭素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、酸素原子の数である。
Figure JPOXMLDOC01-appb-C000026
 一般式(1)中、
 R~Rは、それぞれ独立に、水素原子、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数7~20のアリールオキシアルキル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数8~30のアルコキシカルボニルアリール基および炭素数8~20のアリールオキシカルボニルアルキル基なる群より選ばれるいずれかの基であり、かつ、R~Rのうち少なくとも1つは水素原子以外の基であり、さらに、R~Rが互いに結合して環構造を形成していてもよく、
 nは、0~2の整数を表し、
 XおよびXは、それぞれ独立に-CH-または-O-を表す。
7.
 6.に記載の下層膜形成用材料であって、
 当該下層膜形成用材料の固形分の、以下数式(2)で定義される元素構成比率Re'が、1.5~2.8である下層膜形成用材料。
Figure JPOXMLDOC01-appb-M000027
 数式(2)中、
 Nは、下層膜形成用材料の固形分中の、水素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、炭素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、酸素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、窒素原子の数である
8.
 6.または7.に記載の下層膜形成用材料であって、
 前記一般式(1)で表される構造単位を有する樹脂に加えて、さらに、下記一般式(B)で表される構造単位を有する樹脂を含む下層膜形成用材料。
Figure JPOXMLDOC01-appb-C000028
 一般式(B)中、
 Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、炭素数2~10のアルコキシアルキル基、炭素数7~10のアリールオキシアルキル基を表し、
 Ar11は、2価の芳香族基(置換でも無置換でもよい)を表し、
 Ar12は、以下一般式(B1)~(B3)で表される構造のいずれかを表す。
Figure JPOXMLDOC01-appb-C000029
 一般式(B1)~(B3)において、
 Rは、複数存在する場合はそれぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数1~10のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~10のアルコキシアルキル基、炭素数7~20のアリールオキシアルキル基、炭素数2~20のアルコキシカルボニル基、炭素数3~10のジアルキルアミノカルボニル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数3~20のアルコキシカルボニルアルキル基、炭素数8~20のアルコキシカルボニルアリール基、炭素数8~20のアリールオキシカルボニルアルキル基、炭素数3~20のアルコキシアルキルオキシカルボニル基および炭素数4~20のアルコキシカルボニルアルキルオキシカルボニル基、から選ばれるいずれかを表し、
 r1は、1以上(6-q1)以下であり、
 q1は、0以上5以下であり、
 r2は、1以上(4-q2)以下であり、
 q2は、0以上3以下であり、
 r3は、0以上4以下であり、r4は、0以上4以下であり、ただしr3+r4は1以上であり、
 q3は0以上4以下であり、q4は0以上4以下であり、ただしq3+q4は7以下であり、
 Xは、単結合または炭素数1~3のアルキレン基を表す。
9.
 8.に記載の下層膜形成用材料であって、
 構造単位(B)が、以下一般式(b)で表される構造単位を含む下層膜形成用材料。
Figure JPOXMLDOC01-appb-C000030
 一般式(b)中、
 Rは、前記一般式(B)におけるRと同義であり、
 Rは、複数存在する場合はそれぞれ独立に、前記一般式(B1)~(B3)におけるRと同義であり、
 Arは、前記一般式(B1)または(B2)で表される構造であり、
 pは0~4である。
10.
 6.または7.に記載の下層膜形成用材料であって、
 前記一般式(1)で表される構造単位を有する樹脂に加えて、さらに、下記一般式(A)で表される構造単位を有する樹脂を含む下層膜形成用材料。
Figure JPOXMLDOC01-appb-C000031
 一般式(A)中、
 Arは、ヒドロキシ基および/またはグリシジルオキシ基で少なくとも置換された2価の芳香族基を表し、
 Rは、水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、炭素数2~10のアルコキシアルキル基、炭素数7~10のアリールオキシアルキル基、から選ばれるいずれかの置換基を表す。
11.
 10.に記載の下層膜形成用材料であって、
 前記一般式(A)で表される構造単位が、以下一般式(a1)または一般式(a2)で表される構造単位を含む下層膜形成用材料。
Figure JPOXMLDOC01-appb-C000032
 上記一般式(a1)および(a2)中、
 m1は1~4、n1は0~3、ただしm1+n1は1以上4以下であり、
 m2は1~6、n2は0~5、ただしm2+n2は1以上6以下であり、
 Rは、複数存在する場合はそれぞれ独立に、水素原子またはグリシジル基であり、
 Rは、式(A)におけるそれと同義であり、
 Rは、複数存在する場合はそれぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数1~10のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~10のアルコキシアルキル基、炭素数7~20のアリールオキシアルキル基、炭素数2~20のアルコキシカルボニル基、炭素数3~10のジアルキルアミノカルボニル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数3~20のアルコキシカルボニルアルキル基、炭素数8~20のアルコキシカルボニルアリール基、炭素数8~20のアリールオキシカルボニルアルキル基、炭素数3~20のアルコキシアルキルオキシカルボニル基および炭素数4~20のアルコキシカルボニルアルキルオキシカルボニル基、から選ばれるいずれかであり、
nが2以上であるとき、複数存在するRは互いに結合して環構造を形成してもよい。
12.
 1.~11.のいずれか1つに記載の下層膜形成用材料により形成されたレジスト下層膜。
13.
 基板と、当該基板の一方の面に1.~11.のいずれか1つに記載の下層膜形成用材料により形成されたレジスト下層膜と、を備える積層体。
14.
 13.に記載の積層体であって、
 前記レジスト下層膜の、前記基板とは反対側の表面αにおいて、下記数式により算出される平坦度ΔFTが0~5%である積層体。
  ΔFT={(Hmax-Hmin)/Hav}×100(%)
 上記数式において、
 Havは、前記表面αの任意の10カ所において前記レジスト下層膜の膜厚を測定したときの、膜厚の平均値であり、
 Hmaxは、前記レジスト下層膜の膜厚の最大値であり、
 Hminは、前記レジスト下層膜の膜厚の最小値である。
15.
 13.または14.に記載の積層体であって、
 前記レジスト下層膜の表面αの任意の10カ所において前記レジスト下層膜の膜厚を測定したときの、膜厚の平均値Havが、5~500nmである積層体。
16.
 13.~15.のいずれか1つに記載の積層体であって、
 前記基板は少なくとも一方の表面に凹凸構造を有し、
 前記凹凸構造上に前記レジスト下層膜が形成されており、
 前記凹凸構造は、高さが5~500nmであり、凸-凸間の間隔が1nm~10mmである積層体。
 本発明の下層膜形成用材料を用いることで、エッチング耐性に優れ、凹凸構造への埋め込み性が良好で、かつ、平坦なレジスト下層膜を製造可能である。
積層体の構造、レジスト下層膜の厚み、凹凸構造の高さ、凹凸構造の凸-凸間の間隔などについて説明するための模式図である。
 以下、本発明の実施の形態について説明する。
 数値範囲に関する「x~y」との記載は、特に断りがなければ、x以上y以下であることを表す。例えば、「1~5%」との記載は、1%以上5%以下を意味する。
 基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 図面はあくまで説明用のものである。図面中の各部の形状や寸法比などは、必ずしも現実の物品と対応しない。
<第一実施形態>
第一実施形態の下層膜形成用材料は、多層レジストプロセスに用いられる。
この下層膜形成用材料の固形分は、以下(i)~(iii)を満たす。
(i)以下数式(1)で定義される元素構成比率Reが1.5~2.8である。
(ii)ガラス転移温度が30~250℃である。
(iii)下記一般式(A)で表される構造単位を有する樹脂、及び、下記一般式(B)で表される構造単位を有する樹脂を含む。
Figure JPOXMLDOC01-appb-M000033
 数式(1)中、
 Nは、下層膜形成用材料の固形分中の、水素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、炭素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、酸素原子の数である。
Figure JPOXMLDOC01-appb-C000034
 一般式(A)中、
 Arは、ヒドロキシ基および/またはグリシジルオキシ基で少なくとも置換された2価の芳香族基を表し、
 Rは、水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、炭素数2~10のアルコキシアルキル基、炭素数7~10のアリールオキシアルキル基、から選ばれるいずれかの置換基を表す。
Figure JPOXMLDOC01-appb-C000035
 一般式(B)中
 Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、炭素数2~10のアルコキシアルキル基、炭素数7~10のアリールオキシアルキル基を表し、
 Ar11は、2価の芳香族基(置換でも無置換でもよい)を表し、
 Ar12は、以下一般式(B1)~(B3)で表される構造のいずれかを表す。
Figure JPOXMLDOC01-appb-C000036
 一般式(B1)~(B3)において、
 Rは、複数存在する場合はそれぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数1~10のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~10のアルコキシアルキル基、炭素数7~20のアリールオキシアルキル基、炭素数2~20のアルコキシカルボニル基、炭素数3~10のジアルキルアミノカルボニル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数3~20のアルコキシカルボニルアルキル基、炭素数8~20のアルコキシカルボニルアリール基、炭素数8~20のアリールオキシカルボニルアルキル基、炭素数3~20のアルコキシアルキルオキシカルボニル基および炭素数4~20のアルコキシカルボニルアルキルオキシカルボニル基、から選ばれるいずれかを表し、
 r1は、1以上(6-q1)以下であり、
 q1は、0以上5以下であり、
 r2は、1以上(4-q2)以下であり、
 q2は、0以上3以下であり、
 r3は、0以上4以下であり、r4は、0以上4以下であり、ただしr3+r4は1以上であり、
 q3は0以上4以下であり、q4は0以上4以下であり、ただしq3+q4は7以下であり、
 Xは、単結合または炭素数1~3のアルキレン基を表す。
 ここで、「固形分」とは、下層膜形成用材料を、基板上に塗布して膜としたときに、揮発せず基板上に残存する成分(不揮発成分)のことである。
 通常、「固形分」は、下層膜形成用材料中の、溶媒以外の全成分であるとみなして差し支えない。
 第一実施形態の下層膜形成用材料は、半導体デバイスの製造工程において、レジスト層と、基板(凹凸構造を有する基板を含む。)との間に配置される「レジスト下層膜」を形成するための材料である。ここで、レジスト下層膜とレジスト層の間には、ハードマスク層や反射防止層などの中間層が配置されてもよい。
 元素構成比率Reは、実質的に、材料を構成する炭素元素の比率を表すと理解できる。
 例えば、芳香族化合物のような不飽和化合物の場合、同様の炭素骨格を有する飽和炭化水素構造と比べて水素原子の数は少ない。よって、Reの式の分子の値が小さくなり、Reは小さくなる。
 例えば、有機材料では比較的高いエッチング耐性を有する不飽和化合物であるポリヒドロキシスチレン(以下、PHSと略記する)では、1つの構造単位あたり、N=8、N=8、N=1であり、Reは2.4となる。また、PHSの芳香環の炭素全てが水素化された形態では、N=8、N=14、N=1であり、Reは3.3である。
 本発明者らが知見したこととして、両材料の酸素ガス下エッチングでは、PHSのエッチング速度は、PHSの芳香環の炭素を全て水素化した材料に対して0.75倍程度小さく(エッチングされ難い)、Reが小さい材料は良好なエッチング耐性を示す。
 ちなみに、過去にも、材料の元素構成に関するパラメーターと、エッチング耐性の関係を、様々な材料で検討した結果が開示されている(例えば、H.Gokan, S.Esho and Y.Ohnishi, J.Electrochem. Soc.:SOLID-STATE SCIENCE AND TECHNOLOGY pp.143-146,1983)。この中で、酸素ガスまたはアルゴンガスによるドライエッチングでは、元素構成比率が小さな材料は、高いエッチング耐性を有することが経験的パラメーターとして報告されている。しかし、構成元素については炭素、水素および酸素に限定されている。
 そこで、本発明者らは、検討の結果、前述のパラメーターRe(炭素、水素および酸素を考慮)に加え、窒素についても係数1/2を掛けて考慮した新たなパラメーターRe'(以下数式)を設計指針として層膜形成用材料を設計することが好ましいことを知見した。特に下層膜形成用材料の固形分が窒素原子を含む場合には、Reに加えてRe'も適切に調整することで、より高いエッチング耐性を有する下層膜形成用材料が得られる。
Figure JPOXMLDOC01-appb-M000037
 数式(2)中、
 Nは、下層膜形成用材料の固形分中の、水素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、炭素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、酸素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、窒素原子の数である。
 具体的には、ReおよびRe'は、1.5~2.8、好ましくは1.5~2.6、より好ましくは1.5~2.5である。Reを適切に調整することで、より高いエッチング耐性を有する下層膜形成用材料が得られる。
 Reは、例えば、下層膜形成材料を基板に塗布して加熱した後の試料を、市販の元素分析装置を用いるなどして元素分析し、その分析で得られる元素分析値から各構成元素の元素数を算出することで、求めることができる。このようにすることで、塗布後の加熱により架橋等の反応を伴う材料であっても、実際にドライエッチングされる際のレジスト下層膜の実態を反映したReの算出が可能になる。
 また、第一実施形態の下層膜形成用材料の固形分の、ガラス転移温度は、30~250℃、好ましくは40~230℃、さらに好ましくは50~200℃、特に好ましくは50~190℃である。これにより、下層膜形成用材料を基板に塗布した後のベーク工程において、下層膜形成用材料中の固形分が適度に流動して基板の凹凸構造に対する埋込性が良好となり、また、レジスト下層膜の平坦性を高めることができる。さらに、2種類以上の材料を混合して用いる際、基板の加熱工程において樹脂の相溶性良く、均一なレジスト下層膜を形成することができる。
 固形分のガラス転移温度が250℃超である場合、加熱(ベーク)を行っても流動が発現せず、平坦性が悪化する場合がある。また、固形分のガラス転移温度が30℃未満である場合、ベーク後のレジスト下層膜が固体としての性状を保てず流動し、平坦性が悪化する場合がある。
 ガラス転移温度は、示差走査熱量計(DSC)や固体粘弾性測定装置など通常用いられる装置で測定することができる。DSCを用いる場合、固体状態からガラス状態への相転移を表わす熱量カーブの中点を、固体粘弾性測定装置の場合、貯蔵弾性率と損失弾性率の比である損失正接(tanδ)のピークトップを通常ガラス転移温度として用いる。測定の簡便性、少量の試料でも測定可能であること等から、DSCでの測定が好ましい。
 さらに、第一実施形態の下層膜形成材料は、一般式(A)で表される構造単位を有する樹脂と、一般式(B)で表される構造単位を有する樹脂という、2種の樹脂を含むことにより、良好な性能を奏する。詳細は不明だが、後掲の比較例3で示されるように、樹脂として一般式(B)で表される構造単位を有する樹脂のみを用いた場合、均一塗布が難しい。
 以下、第一実施形態の下層膜形成用材料についてより具体的に説明する。
 一般式(A)で表される構造単位は、好ましくは、以下一般式(a1)または一般式(a2)で表される構造単位を含む。特に、合成/入手容易性やコストの点では、一般式(A)で表される構造単位は、好ましくは、以下一般式(a1)で表される構造単位を含む。
Figure JPOXMLDOC01-appb-C000038
 一般式(a1)および(a2)中、
 m1は1~4、n1は0~3、ただしm1+n1は1以上4以下であり、
 m2は1~6、n2は0~5、ただしm2+n2は1以上6以下であり、
 Rは、複数存在する場合はそれぞれ独立に、水素原子またはグリシジル基であり、
 Rは、式(A)におけるそれと同義であり、
 Rは、複数存在する場合はそれぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数1~10のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~10のアルコキシアルキル基、炭素数7~20のアリールオキシアルキル基、炭素数2~20のアルコキシカルボニル基、炭素数3~10のジアルキルアミノカルボニル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数3~20のアルコキシカルボニルアルキル基、炭素数8~20のアルコキシカルボニルアリール基、炭素数8~20のアリールオキシカルボニルアルキル基、炭素数3~20のアルコキシアルキルオキシカルボニル基および炭素数4~20のアルコキシカルボニルアルキルオキシカルボニル基、から選ばれるいずれかであり、
 nが2以上であるとき、複数存在するRは互いに結合して環構造を形成してもよい。
 一般式(B)で表される構造単位は、好ましくは、以下一般式(b)で表される構造単位を含む。
Figure JPOXMLDOC01-appb-C000039
 一般式(b)中、
 Rは、前記一般式(B)におけるRと同義であり、
 Rは、複数存在する場合はそれぞれ独立に、前記一般式(B1)~(B3)におけるRと同義であり、
 Arは、前記一般式(B1)または(B2)で表される構造であり、
 pは0~4である。
 一般式(A)で表される構造単位を有する樹脂の具体例としては、いわゆるノボラック樹脂や、ノボラック型エポキシ樹脂を挙げることができる。ノボラック樹脂としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂等を例示することができるが、特に制限はなくレジストや下層膜として使用される種々の樹脂を使用できる。また、ノボラック樹脂のフェノール性水酸基の水素原子をグリシジル基にすることで、ノボラック型エポキシ樹脂を製造することができる。
 ノボラック樹脂の製造は、一般的にノボラック樹脂の製造に用いられている方法により行うことができる。例えば、フェノール性水酸基を持つ芳香族化合物とアルデヒド類とを酸触媒下で付加縮合させることにより得ることができる。
 フェノール類としては、例えばフェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、o-ブチルフェノール、m-ブチルフェノール、p-ブチルフェノール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール、p-フェニルフェノール、レゾルシノール、ヒドロキノン、ヒドロキノンモノメチルエーテル、ピロガロール、フロログリシノール、ヒドロキシジフェニル、ビスフェノールA、α-ナフトール、β-ナフトール等が挙げられる。
 アルデヒド類としては、例えばホルムアルデヒド、フルフラール、ベンズアルデヒド、ニトロベンズアルデヒド、アセトアルデヒド等が挙げられる。
 付加縮合反応時の触媒は、特に限定されるものではないが、例えば酸触媒では、塩酸、硝酸、硫酸、蟻酸、蓚酸、酢酸等が使用される。
 第一実施形態においては、一般的に市販されているノボラック樹脂またはノボラック型エポキシ樹脂を使用してもよい。
 一般式(A)で表される構造単位の具体例を以下に図示する。以下で「Gly」はグリシジル基を表す。
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 一般式(B)で表される構造単位を有する樹脂の具体例としては、いわゆるナフトールアラルキル樹脂を挙げることができる。別の言い方として、一般式(B)において、Ar12は、一般式(B1)で表される構造(ナフトール骨格含有)であることが好ましい。これにより、特に平坦性が良好となる。樹脂中に平坦なナフタレン環が存在することにより、分子の配向が揃いやすくなると考えられる。このため、一般式(A)で表す樹脂単独使用の場合よりも自由体積が減少することで、加熱工程後の冷却過程での収縮が抑制され、平坦性が一層向上するのではないかと考えられる。
 一方、ナフトールアラルキル樹脂は炭素密度が高いため極性に乏しく、単独で用いると、半導体プロセスで慣用される溶剤との相性が悪く、均一な溶液を調製できないことが多い。また、均一な溶液を調製できても、通常、親水化処理を施された基板表面との相性が悪く、均一な塗布膜が得られない場合がある。つまり、ナフトールアラルキル樹脂のみを単独使用することは、工業的に、溶剤の種類や基板の適応が限定的である。
 本発明者らは鋭意検討した結果、一般式(A)で表される具体例としてノボラック樹脂、および/または、ノボラック型エポキシ樹脂、および一般式(B)で表される具体例としてナフトールアラルキル樹脂を後述する比率[(A)/(B)]で配合した場合のみプロピレングリコール-1-モノメチルエーテル-2-アセテート(PGMEA)やプロピレングリコールモノメチルエーテル(PGME)などの半導体プロセス溶剤に良好な溶解性を示し、基板への塗布性良く、加熱後の平坦性良好な塗布膜が得られる事を知見した。
 また、SPIE Vol.469 Advances in Resist Technology(1984)pp.72~79によると、ノボラック樹脂は180℃以上で架橋反応することが知られており、ナフトールアラルキル樹脂でも同様な反応が起こることが想定される。加熱工程で平坦になった状態で架橋反応が起こって構造が固定される結果、冷却過程での収縮が抑制されて、平坦性が向上するのではないかとも考えられる。
 ナフトールアラルキル樹脂の製造は、一般的にナフトールアラルキル樹脂の製造に用いられている方法により行うことができる。例えば、ナフトールとp-キシリレングリコールジメチルエーテルを触媒の存在下で反応することで得ることができる。ナフトールとしては、α-ナフトール、β-ナフトール等が挙げられ、単独または併用して用いることができる。ナフトールアラルキル樹脂としては、市販の樹脂、例えば日鉄ケミカル&マテリアル(株)製のSN-485(商品名)、SN-495V(商品名)等を使用してもよい。
  一般式(B)で表される構造単位の具体例を以下に図示する。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
(追加の樹脂)
 第一実施形態の下層膜形成用材料は、一般式(A)で表される構造単位を有する樹脂、及び、一般式(B)で表される構造単位を有する樹脂に加えて、さらに、下記一般式(1)で表される構造単位を有する樹脂を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000046
 一般式(1)中、
 R~Rは、それぞれ独立に、水素原子、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数7~20のアリールオキシアルキル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数8~30のアルコキシカルボニルアリール基および炭素数8~20のアリールオキシカルボニルアルキル基なる群より選ばれるいずれかの基であり、かつ、R~Rのうち少なくとも1つは水素原子以外の基であり、さらに、R~Rが互いに結合して環構造を形成していてもよく、
 nは、0~2の整数を表し、
 XおよびXは、それぞれ独立に、-CH-または-O-を表す。
 炭素原子数が6~20のアリール基としては、例えば、フェニル基、ナフチル基、アントラセニル基、o-トリル基、m-トリル基、p-トリル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,6-ジメチルフェニル基、2,4,6-トリメチルフェニル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、4-i-プロピルフェニル基、4-tert-ブチルフェニル基、ビフェニル基、2-フェナレニル基、4-ピレニル基、9-フルオレニル基、9-フェナントレニル基、1-クリセニル基、4-トリフェニルメチルフェニル基、フェノ-ル基等が挙げられる。
 炭素原子数が6~20のアリールオキシ基としては、例えば、フェニルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、o-トリルオキシ基、m-トリルオキシ基、p-トリルオキシ基、4-オキシ-1,1'-ビフェニル基、4-ヒドロキシフェニルオキシ基等が挙げられる。
炭素数7~20のアリールオキシアルキル基としては、例えば、フェニルオキシメチル基、ナフチルオキシメチル基、アントラセニルオキシメチル基、o-トリルオキシメチル基、m-トリルオキシメチル基、p-トリルオキシメチル基、4-オキシ-1,1'-ビフェニルメチル基、4-ヒドロキシフェニルオキシメチル基等が挙げられる。
 炭素原子数7~20のアリールオキシカルボニル基としては、例えば、フェノキシカルボニル基、ベンジルオキシカルボニル基、4-メチルフェノキシカルボニル基、3、4-ジメチルフェノキシカルボニル基、1-ナフトキシカルボニル基、2-ナフトキシカルボニル基、1-アントラセノキシカルボニル基等が挙げられる。
 炭素数8~20のアルキルアリールアミノカルボニル基としては、例えば、メチルフェニルアミノカルボニル基、エチルフェニルアミノカルボニル基、ブチルフェニルアミノカルボニル基、シクロヘキシルフェニルアミノカルボニル基等が挙げられる。
 炭素数8~30のアルコキシカルボニルアリール基としては、例えば、メトキシカルボニルフェニル基、メトキシカルボニル-o-トリル基、メトキシカルボニル-m-トリル基、メトキシカルボニル-p-トリル基、メトキシカルボニルキシリル基、メトキシカルボニル-α-ナフチル基、メトキシカルボニル-β-ナフチル基、エトキシカルボニルフェニル基、n-プロポキシカルボニルフェニル基、i-プロポキシカルボニルフェニル基、n-ブトキシカルボニルフェニル基、tert-ブトキシカルボニルフェニル基、n-ペンチルオキシカルボニルフェニル基、シクロペンチルオキシカルボニルフェニル基、n-ヘキシルオキシカルボニルフェニル基、シクロヘキシルオキシカルボニルフェニル基、n-オクチルオキシカルボニルフェニル基、シクロオクチルオキシカルボニルフェニル基、1-エチルシクロペンチルオキシカルボニルフェニル基、1-メチルシクロヘキシルオキシカルボニルフェニル基、メトキシカルボニルナフチル基、メトキシカルボニルエチル基、エトキシカルボニルフナフチル基、n-プロポキシカルボニルナフチル基、i-プロポキシカルボニルナフチル基、n-ブトキシカルボニルナフチル基、tert-ブトキシカルボニルナフチル基、n-ペンチルオキシカルボニルナフチル基、シクロペンチルオキシカルボニルナフチル基、n-ヘキシルオキシカルボニルナフチル基、シクロヘキシルオキシカルボニルナフチル基、n-オクチルオキシカルボニルナフチル基、シクロオクチルオキシカルボニルナフチル基、1-エチルシクロペンチルオキシカルボニルナフチル基、1-メチルシクロヘキシルオキシカルボニルナフチル基等が挙げられる。
 炭素数8~20のアリールオキシカルボニルアルキル基としては、例えば、フェノキシカルボニルメチル基、ベンジルオキシカルボニルメチル基、4-メチルフェノキシカルボニルメチル基、3、4-ジメチルフェノキシカルボニルメチル基、1-ナフトキシカルボニルメチル基、2-ナフトキシカルボニルメチル基、1-アントラセノキシカルボニルメチル基等が挙げられる。
 R~Rは環構造を形成してもよい。具体的には、R~Rの少なくとも2つが結合してもよい。
 R~Rの少なくとも2つが結合した構造としては、例えば、下記一般式(2)~(7)で表される構造が挙げられる。
 R~Rが環構造を形成することで単位構造内に結合連鎖を形成し、エッチングにより環構造の一部が切れても、他方の結合は残り揮発せず、実質的に良好なエッチング耐性を示すことが期待される。
Figure JPOXMLDOC01-appb-C000047
 一般式(2)中、
 R、R、X、Xおよびnは一般式(1)と同義である。
 R11~R16は、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数1~10のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~10のアルコキシアルキル基、炭素数7~20のアリールオキシアルキル基、から選ばれ、R13~R16のうち2つ以上が互いに結合して環構造を形成してもよい。
Figure JPOXMLDOC01-appb-C000048
 一般式(3)中、
 R、R、X、Xおよびnは一般式(1)と同義である。
 R13~R16は上記一般式(2)と同義である。
Figure JPOXMLDOC01-appb-C000049
 一般式(4)中、
 R、R、X、Xおよびnは一般式(1)と同義である。
 R21~R32は、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数1~10のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~10のアルコキシアルキル基、炭素数7~20のアリールオキシアルキル基、から選ばれ、R25~R32のうち2つ以上が互いに結合して環構造を形成してもよい。
Figure JPOXMLDOC01-appb-C000050
 一般式(5)中、
 R、R、X、Xおよびnは、一般式(1)と同義である。
 R41~R46は、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数1~10のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~10のアルコキシアルキル基、炭素数7~20のアリールオキシアルキル基、から選ばれ、R41~R46のうち2つ以上が互いに結合して環構造を形成してもよい。
Figure JPOXMLDOC01-appb-C000051
 一般式(6)中、
 X、Xおよびnは一般式(1)と同義である。
 R51~R54は、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数1~10のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~10のアルコキシアルキル基、炭素数7~20のアリールオキシアルキル基、から選ばれ、R51~R54のうち2つ以上が互いに結合して環構造を形成していてもよい。
Figure JPOXMLDOC01-appb-C000052
 一般式(7)中、
 R、R、X、Xおよびnは一般式(1)と同義である。
 R61は、水素または炭素数6~20のアリール基であり、置換基としてアルコキシ基、エステル基を有していてもよい。
 一般式(2)で表される構造単位の例としては、下記を示すことができる。
Figure JPOXMLDOC01-appb-C000053
 一般式(3)で表される構造単位の例としては、下記を示すことができる。
Figure JPOXMLDOC01-appb-C000054
 一般式(4)で表される構造単位の例としては、下記を示すことができる。
Figure JPOXMLDOC01-appb-C000055
 一般式(5)で表される構造単位の例としては、下記を示すことができる。
Figure JPOXMLDOC01-appb-C000056
 一般式(6)で表される構造単位の例としては、下記を示すことができる。
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
 一般式(7)で表される構造単位の例としては、下記を示すことができる。
Figure JPOXMLDOC01-appb-C000059
 一般式(1)で表される構造単位を有する樹脂は、種々の物性調整などのため、上記以外の構造単位を含んでいてもよい。例えば、特許文献3に記載の一般式(1)で表される構造単位[A]、および/または、一般式(2)で表される構造単位[B]のような環状オレフィン構造単位を含んでもよい。
 一般式(1)で表される構造単位を有する樹脂が上記以外の構造単位を含む場合、その量は、一般式(1)で表される構造単位を有する樹脂の全構造単位中、例えば1~50mol%、好ましくは1~40mol%、さらに好ましくは1~30mol%である。
 一般式(1)で表される構造単位を有する樹脂は、例えば、下記一般式(8)で表される環状オレフィンモノマーを開環メタセシス重合により重合することにより得ることができる。一般式(8)中、R~R、X、Xおよびnは、一般式(1)と同義である。
Figure JPOXMLDOC01-appb-C000060
 重合原料としての環状オレフィンモノマーは、一般式(8)で表される構造における、R~Rの少なくとも1つが互いに異なる二種類以上のモノマーを含んでいてもよい。また、重合原料は、一般式(8)で表される環状オレフィンモノマーと、それ以外のモノマー(例えば、特許文献3に記載のモノマー)とを含んでもよい。
 一般式(1)で表される構造単位を有する樹脂を重合する際に使用される触媒は、環状オレフィンモノマー(例えば一般式(8)で表されるもの)を開環メタセシス重合できる触媒であれば特に限定されない。
 例えば、モリブデン(Mo)、タングステン(W)、ルテニウム(Ru)等の有機遷移金属アルキリデン錯体触媒;有機遷移金属錯体と、助触媒としてのルイス酸との組合せによる開環メタセシス触媒等が挙げられる。好ましくは、モリブデン(Mo)、タングステン(W)、ルテニウム(Ru)等の有機遷移金属アルキリデン錯体触媒が用いられる。
 本実施形態では、特に、ヘテロ原子を含有する、極性の高い環状オレフィンモノマーを共重合できる触媒が好ましい。例えば、モリブデン(Mo)、タングステン(W)、ルテニウム(Ru)等の有機遷移金属アルキリデン錯体を開環メタセシス重合触媒に使用した場合に、極性の高い環状オレフィンモノマーを効率よく共重合することができる。
 有機遷移金属アルキリデン錯体の開環メタセシス重合触媒としては、例えば、W(N-2,6-Pr )(CHBut)(OBut)、W(N-2,6-Pr )(CHBut)(OCMeCF、W(N-2,6-Pr )(CHBut)(OCMe(CF、W(N-2,6-Pr )(CHCMePh)(OBut)、W(N-2,6-Pr )(CHCMePh)(OCMeCF、W(N-2,6-Pr )(CHCMePh)(OCMe(CF、W(N-2,6-Pr )(CHCMePh)(OC(CF、W(N-2,6-Me)(CHCMePh)(OC(CF(式中のPrはiso-プロピル基、Butはtert-ブチル基、Meはメチル基、Phはフェニル基を表す。)等のタングステン系アルキリデン触媒;W(N-2,6-Me)(CHCHCMePh)(OBut)(PMe)、W(N-2,6-Me)(CHCHCMe)(OBut)(PMe)、W(N-2,6-Me)(CHCHCPh)(OBut)(PMe)、W(N-2,6-Me)(CHCHCMePh)(OCMe(CF))2(PMe)、W(N-2,6-Me)(CHCHCMe)(OCMe(CF))(PMe)、W(N-2,6-Me)(CHCHCPh)(OCMe(CF))(PMe)、W(N-2,6-Me)(CHCHCMe)(OCMe(CF(PMe)、W(N-2,6-Me)(CHCHCMe)(OCMe(CF(PMe)、W(N-2,6-Me)(CHCHCPh)(OCMe(CF(PMe)、W(N-2,6-Pr )(CHCHCMePh)(OCMe(CF))(PMe)、W(N-2,6-Pr )(CHCHCMePh)(OCMe(CF(PMe)、W(N-2,6-Pr )(CHCHCMePh)(OPh)(PMe)、(式中のPrはiso-プロピル基、Butはtert-ブチル基、Meはメチル基、Phはフェニル基を表す。)等のタングステン系アルキリデン触媒;Mo(N-2,6-Pr )(CHBut)(OBut)、Mo(N-2,6-Pr )(CHBut)(OCMeCF、Mo(N-2,6-Pr )(CHBut)(OCMe(CF、Mo(N-2,6-Pr )(CHBut)(OC(CF、Mo(N-2,6-Pr )(CHCMePh)(OBut)、Mo(N-2,6-Pr )(CHCMePh)(OCMeCF、Mo(N-2,6-Pr )(CHCMePh)(OCMe(CF、Mo(N-2,6-Pr )(CHCMePh)(OC(CF、Mo(N-2,6-Me)(CHCMePh)(OBut)、Mo(N-2,6-Me)(CHCMePh)(OCMeCF、Mo(N-2,6-Me)(CHCMePh)(OCMe(CF、Mo(N-2,6-Me)(CHCMePh)(OC(CF(式中のPrはiso-プロピル基、Butはtert-ブチル基、Meはメチル基、Phはフェニル基を表す。)等のモリブデン系アルキリデン触媒;Ru(P(C11(CHPh)Cl2(式中のPhはフェニル基を表す。)等のルテニウム系アルキリデン触媒等が挙げられる。
 開環メタセシス重合触媒は、単独で使用してもよいし、2種以上を併用して使用してもよい。
 一般式(1)で表される構造単位を有する樹脂を重合する際の重合触媒金属成分としては、例えば、モリブデン、タングステン、レニウム、イリジウム、タンタル、ルテニウム、バナジウム、チタン、パラジウム、ロジウム等の遷移金属が挙げられる。好ましくはモリブデン、タングステン、ルテニウム、ロジウムであり、より好ましくはモリブデン、タングステンである。
 重合反応において、環状オレフィンモノマーと有機遷移金属アルキリデン錯体の開環メタセシス重合触媒のモル比については、開環メタセシス重合触媒1モルに対して、環状オレフィンモノマーは例えば10当量~50000当量で、好ましくは50当量~30000当量、より好ましくは100当量~20000当量である。
 重合反応は、無溶媒で行ってもよいし、溶媒を使用して行ってもよい。
 溶媒としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、ジメトキシエタン、ジオキサン等のエーテル類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、デカリン等の脂肪族環状炭化水素;メチレンジクロライド、ジクロロエタン、ジクロロエチレン、テトラクロロエタン、クロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素;酢酸メチル、酢酸エチル等のエステル等が挙げられる。
溶媒は1種類を単独で用いてもよいし、2種類以上を併用してもよい。
 また、重合反応は、オレフィン類やジエン類等の連鎖移動剤の存在下で行ってもよい。
 連鎖移動剤として用いられるオレフィン類としては、例えば、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、オクテン等のα-オレフィン;ビニルトリメチルシラン、アリルトリメチルシラン、アリルトリエチルシラン、アリルトリイソプロピルシラン等のケイ素含有オレフィン等が挙げられる。また、ジエン類としては、例えば、1、4-ペンタジエン、1、5-ヘキサジエン、1、6-ヘプタジエン等の非共役系ジエンが挙げられる。
連鎖移動剤は1種単独で使用してもよいし、2種類以上を併用してもよい。
 連鎖移動剤の使用量は、環状オレフィンモノマー1モルに対して、好ましくは0.001~1000当量、より好ましくは0.01~100当量の範囲である。
 別観点として、連鎖移動剤の使用量は、開環メタセシス重合触媒1モルに対して、好ましくは0.1~2000当量、より好ましくは1~1000当量の範囲である。
 これら量比を任意に設定することにより、分子量の大きさを調整することができる。
 重合反応におけるモノマー濃度は、環状オレフィンモノマーの反応性や重合溶媒ヘの溶解性等によって適宜調整すればよく、特に限定されない。一例として、溶媒1kgに対する環状オレフィンモノマーの量は、例えば0.001~3kg、好ましくは0.01~2kg、さらに好ましくは0.02~1kgの範囲である。
 反応温度は、環状オレフィンモノマーおよび開環メタセシス触媒の種類や量等によって適宜調整すればよく、特に限定されない。一例として、-30~150℃、好ましくは0~120℃、さらに好ましくは15~100℃である。
 反応時間は、例えば、1分~10時間、好ましくは5分~8時間、さらに好ましくは10分~6時間である。
 重合反応後、ブチルアルデヒド等のアルデヒド類、アセトン等のケトン類、メタノール等のアルコール類等で反応を停止することで、一般式(1)で表される構造単位を有する樹脂の溶液を得ることができる。
環状オレフィンモノマーの重合率は、得られる一般式(1)で表される構造単位を有する樹脂中の未重合モノマーの量を減らし、揮発成分(アウトガス)の発生をより抑制する観点から、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは100%である。
 得られた一般式(1)で表される構造単位を有する樹脂の溶液からポリマーを取得する方法に、特に制限はなく、公知の方法を適宜適用することができる。例えば、撹拌下の貧溶媒に反応溶液を排出する方法、反応溶液中にスチームを吹き込むスチームストリッピング等の方法によってポリマーを析出させる方法、または、反応溶液から溶媒を加熱等によって蒸発除去する方法等が挙げられる。
 一般式(1)で表される構造単位を有する樹脂は、主鎖の二重結合を水素添加(水素化ともいう)した形態であってもよい。これにより、主鎖の二重結合でポリマー鎖の運動を制限している束縛をとき、例えば、ポリマーのガラス転移温度を適度に低下させ、加熱(ベーク)時の良好な流動性を得やすくなる。つまり、基板の凹凸構造への埋込性がより良好となり、また、平坦性がより良好なレジスト下層膜を形成することができる。
 水素化反応における水添率は、主鎖の二重結合全体を基準として、好ましくは0.1~100モル%、より好ましくは1.0~95モル%、さらに好ましくは5~90モル%である。
 水素添加のための触媒は、均一系金属錯体触媒でも不均一系の金属担持触媒のいずれであってもよい。好ましくは、触媒を容易に分離できる不均一系金属担持触媒である。例えば、活性炭担持パラジウム、アルミナ担持パラジウム、活性炭担持ロジウム、アルミナ担持ロジウム、活性炭担持ルテニウム、アルミナ担持ルテニウム等が挙げられる。
触媒は、単独で用いてもよく、または二種類以上を組合せて使用することもできる。
 水素添加の際に用いられる溶媒については、ポリマーを溶解し、かつ、溶媒自身が水素添加されないものであれば特に制限はない。例えば、テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、ジメトキシエタン、ジオキサン等のエーテル類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、デカリン等の脂肪族環状炭化水素;メチレンジクロライド、ジクロロエタン、ジクロロエチレン、テトラクロロエタン、クロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素;酢酸メチル、酢酸エチル等のエステル等が挙げられる。
水素添加の際、溶媒は1種類を単独で用いてもよいし、2種類以上を併用してもよい。また、好ましくは上記の重合反応で用いた溶媒と同種の溶媒を用いることで、溶媒置換工程を要せず、生産性に適した工程を適用することができる。
 水素添加反応において、水素圧力は、常圧~10MPaであることが好ましく、0.5~8MPaであることがより好ましく、2~5MPaであることが特に好ましい。また、反応温度は、0~200℃が好ましく、室温~150℃がより好ましく、50~100℃が特に好ましい。水素添加反応の実施様式に特に制限は無く、例えば、触媒を溶媒中に分散または溶解して行う方法、触媒をカラム等に充填し、固定相としてポリマー溶液を流通させて行う方法等が挙げられる。
 さらに、水素添加処理は、水素添加処理前のポリマーの重合溶液を貧溶媒に析出させポリマーを単離した後に、再度溶媒に溶解して水素添加処理を行なっても、重合溶液からポリマーを単離することなく、上記の水添触媒で水素添加処理を行なってもよい。
 水素添加後、ポリマー溶液からポリマーを取得する方法に、特に制限はない。例えば、ろ過、遠心分離、デカンテーション等の方法で触媒を含有しないポリマー溶液を取得し、撹拌下の貧溶媒に反応溶液を排出する方法、反応溶液中にスチームを吹き込むスチームストリッピング等の方法によってポリマーを析出させる方法、または、反応溶液から溶媒を加熱等によって蒸発除去する方法等が挙げられる。これら方法は、特に、活性炭担持ロジウム、活性炭担持ルテニウム等の不均一系金属担持触媒を用いる場合に好ましく適用される。
 また、不均一系金属担持触媒を利用して水素添加反応を実施した場合は、合成液をろ過して金属担持触媒をろ別した後に、上述の方法でポリマーを得ることもできる。半導体デバイス製造工程で望まれる金属不純物量が少ないポリマー溶液を得るため、触媒成分を粗取りした溶液をろ過し、上記した方法でポリマーを取得してもよい。
特に、触媒成分を精密ろ過することが好適である。この場合、ろ過フィルターの目開きは、好ましくは0.05~10μm、より好ましくは0.10~10μm、さらに好ましくは0.10~5μmである。
 一般式(1)で表される構造単位を有する樹脂の、標準ポリスチレンを基準物質としたゲルパーミュエーションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)は、好ましくは1000~20000、より好ましくは1500~19000、さらに好ましくは2000~18000である。ここで、GPC測定の際の試料濃度は、例えば3.0~9.0mg/mlとすることができる。
重量平均分子量(Mw)を上記範囲とすることにより、基板の凹凸構造の表面に本実施形態の下層膜形成用材料を塗布した後のベーク工程における、通常の半導体デバイス製造工程で適応される200~250℃の加熱において、より一層良好な加熱溶融流動性を発現することができる。その結果、ボイド等の欠陥がより一層抑制され、平坦性により一層優れ、より一層良好な状態の埋め込み性を発現した下層膜を形成することができる。
 一般式(1)で表される構造単位を有する樹脂の、重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)は、好ましくは1.3~5.0、より好ましくは1.3~4.0、さらに好ましくは1.3~3.0である。分子量分布(Mw/Mn)を適切な範囲とすることにより、ベーク工程での加熱に対して溶融ムラをより一層抑制でき、樹脂はより一層均一に溶融する。その結果、ボイド等の欠陥がより一層抑制され、平坦性により一層優れ、より一層良好な埋め込み性を有する下層膜を形成することができる。
 複数の樹脂の使用比率を適切に調整することで、性能をより良好とすることができる。
 一般式(A)で表される構造単位を有する樹脂と、一般式(B)で表される構造単位を有する樹脂との質量比は、通常、一般式(A)で表される構造単位を有する樹脂/一般式(B)で表される構造単位を有する樹脂=5/95~95/5、好ましくは10/90~90/10、より好ましくは20/80~80/20、さらに好ましくは40/60~60/40である。
 第一実施形態の下層膜形成材料が、さらに一般式(1)で表される構造単位を有する樹脂を含む場合には、質量比は、通常、(一般式(A)で表される構造単位を有する樹脂+一般式(1)で表される構造単位を有する樹脂)/(一般式(B)で表される構造単位を有する樹脂)=5/95~95/5、好ましくは10/90~90/10、より好ましくは20/80~80/20、さらに好ましくは40/60~60/40である。
 念のため述べておくと、第一実施形態の下層膜形成材料は、固形分が上記(i)および(ii)を満たす限り、上述した樹脂以外の樹脂(他の樹脂)を含んでもよい。
 下層膜形成用材料は、上述の樹脂を、有機溶媒に溶解または分散させ、必要に応じて、フィルターを通して異物を除去することで調製することができる。このようにして調製した下層膜形成用材料は、通常、基板上に塗布するのに好適なワニス状である。
 この際に用いることが可能な有機溶媒は、上述の樹脂を溶解または分散可能な溶媒であれば特に限定されない。
 有機溶媒としては、例えば、アルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。
 アルコール系溶媒としては、例えば、4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒;シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒;1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒;プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒等が挙げられる。
 エーテル系溶媒としては、例えば、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のジアルキルエーテル系溶媒;テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒等が挙げられる。
 ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒;シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒;2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
 アミド系溶媒としては、例えば、N,N'-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒等が挙げられる。
 エステル系溶媒としては、例えば、酢酸n-ブチル等の酢酸エステル等のモノカルボン酸エステル系溶媒;酢酸プロピレングリコール等の多価アルコールカルボキシレート系溶媒;酢酸プロピレングリコールモノメチルエーテル等の多価アルコール部分アルキルエーテルアセテート等の多価アルコール部分エーテルカルボキシレート系溶媒;シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒;γ-ブチロラクトン、δ-バレロラクトン等のラクトン系溶媒;ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒等が挙げられる。
 炭化水素系溶媒としては、例えば、炭素数5~10の直鎖状または分岐鎖状炭化水素、炭素数5~12の脂環式炭化水素、炭素数6~18の芳香族炭化水素等が挙げられる。脂環式炭化水素および芳香族炭化水素の環上の水素原子の一部または全部は、炭素数1~5の直鎖状または分岐鎖状アルキル基によって置換されていてもよい。
 溶媒は、塗工時の揮発速度、プロセスへの適応性、生産性等を考慮して適宜選択すればよい。
好ましくは、アルコール系溶媒、鎖状ケトン系溶媒、環状ケトン系溶媒、鎖状エーテル溶媒、環状エーテル溶媒、エステル系溶媒等の含酸素溶媒が選択される。
 下層膜形成用材料は、溶媒を1種または2種以上含んでいてもよい。
 また、例えば前述の一般式(1)で表される構造単位を有する樹脂の合成工程において、例えば、水添工程において溶媒が水添されるなどの変質が無ければ、合成溶媒と下層膜形成用材料の調製溶媒として同種のものを使用することもできる。
 また、本実施形態の下層膜形成用材料において、樹脂の濃度(2種以上の樹脂を用いる場合は、各濃度の総和)は、好ましくは0.01~50.0質量%、より好ましくは0.1~45.0質量%、さらに好ましくは1.0~40.0質量%である。樹脂の濃度は、樹脂の溶解性、ろ過プロセスへの適応性、製膜性、下層膜としての厚み等を考慮して選択することができる。
 さらに、レジスト下層膜としての物性を調整する目的で、エッチング耐性や埋め込み性・平坦性を過度に損なわない範囲で、アクリル樹脂、エポキシ樹脂、スチレン樹脂、ヒドロキシスチレン樹脂、ヒドロキシナフチレン樹脂、シリコーン樹脂等の樹脂:重合性モノマーまたはオリゴマーと重合開始剤(光または熱)との組み合わせ;熱硬化系のモノマー;ジルコニウム、ハフ二ウム、ルテニウム、チタニウム等金属の酸化物を、下層膜形成用材料は含んでもよい。
 次いで、調製されたワニス状の下層膜形成用材料を、フィルターを通過させてろ過する。これによって、ワニス状の下層膜形成用材料からポリマー不溶分やゲル、異物等を除去できる。これら成分が低減されることで、塗布時の平坦性がより良好となる。
 ろ過フィルターの目開きは、好ましくは0.001~1μm、より好ましくは0.001~0.5μm、さらに好ましくは0.001~0.1μmである。フィルターの材質としては、ポリテトラフルオロエチレン(PTFE)、ポリプロピレン(PP)、ポリエーテルスルホン(PES)、セルロース等の有機材料;ガラス繊維、金属等の無機材料;等が挙げられる。レジスト下層膜としての機能に影響を及ぼさない限り、ワニス特性、プロセス適応性等を考慮して任意のものを選択することができる。
ろ過は、孔径の大きなフィルターから小さなフィルターへワニスを送る多段プロセスであってもよい。もちろん、孔径の小さなフィルターへワニスを直接送る単一プロセスであってもよい。
 ワニスをフィルターへ送る方法としては、例えば、圧力差を利用する方法、スクリュー等を介して機械的な駆動によってワニスをフィルターへ送液する方法等が挙げられる。
ろ過の温度は、フィルター性能、溶液粘度、ポリマーの溶解性を考慮した範囲で適宜選択すればよい。好ましくは-10~200℃、より好ましくは0~150℃、さらに好ましくは室温~100℃の範囲である。
<第二実施形態>
 第二実施形態の下層膜形成用材料は、多層レジストプロセスに用いられる。
 この下層膜形成用材料の固形分は、以下(i)~(iii)を満たす。
(i)以下数式(1)で定義される元素構成比率Reが1.5~2.8である。
(ii)ガラス転移温度が30~250℃である。
(iii)下記一般式(1)で表される構造単位を有する樹脂を含む。
Figure JPOXMLDOC01-appb-M000061
 数式(1)中、
 Nは、下層膜形成用材料の固形分中の、水素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、炭素原子の数であり、
 Nは、下層膜形成用材料の固形分中の、酸素原子の数である。
Figure JPOXMLDOC01-appb-C000062
 一般式(1)中、
 R~Rは、それぞれ独立に、水素原子、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数7~20のアリールオキシアルキル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数8~30のアルコキシカルボニルアリール基および炭素数8~20のアリールオキシカルボニルアルキル基なる群より選ばれるいずれかの基であり、かつ、R~Rのうち少なくとも1つは水素原子以外の基であり、さらに、R~Rが互いに結合して環構造を形成していてもよく、
 nは、0~2の整数を表し、
 XおよびXは、それぞれ独立に-CH-または-O-を表す。
 第二実施形態において、固形分の元素構成比率Reが1.5~2.8であることや、固形分のガラス転移温度が30~250℃であることの技術的意義は、第一実施形態と同様である。よって、改めての説明は割愛する。ちなみに、第二実施形態において、Reは、好ましくは1.8~2.5、より好ましくは1.8~2.4である。
 第二実施形態において、一般式(1)で表される構造単位を有する樹脂そのものの好ましい態様などは、第一実施形態と同様である。よって、改めての説明は割愛する。
 第二実施形態においても、数式(2)で定義される元素構成比率Re'が、1.5~2.8であることが好ましい。
 一例として、第二実施形態の下層膜形成材料は、一般式(1)で表される構造単位を有する樹脂に加えて、さらに、一般式(B)で表される構造単位を有する樹脂を含むことが好ましい。より好ましくは、第二実施形態においては、一般式(1)で表される構造単位を有する樹脂に加えて、さらに、一般式(b)で表される構造単位を有する樹脂を含むことが好ましい。
 一般式(B)や一般式(b)については、第一実施形態で説明したとおりである。
 一般式(1)で表される構造単位を有する樹脂と、一般式(B)で表される構造単位を有する樹脂とを併用する場合、質量比は、通常、一般式(1)で表される構造単位を有する樹脂/一般式(B)で表される構造単位を有する樹脂=5/95~95/5、好ましくは10/90~90/10、より好ましくは20/80~80/20、さらに好ましくは40/60~60/40である。
 別の例として、第二実施形態の下層膜形成材料は、一般式(1)で表される構造単位を有する樹脂に加えて、さらに、一般式(A)で表される構造単位を有する樹脂を含むことが好ましい。より好ましくは、第二実施形態においては、一般式(1)で表される構造単位を有する樹脂に加えて、さらに、一般式(a1)または(a2)で表される構造単位を有する樹脂を含むことが好ましい。
 一般式(A)や一般式(a1)、(a2)については、第一実施形態で説明したとおりである。
 一般式(1)で表される構造単位を有する樹脂と、一般式(A)で表される構造単位を有する樹脂との質量比は、通常、一般式(1)で表される構造単位を有する樹脂/一般式(A)で表される構造単位を有する樹脂=100/0~5/95、好ましくは100/0~15/85、より好ましくは100/0~30/70、より好ましくは100/0~45/55である。
 念のため述べておくと、第二実施形態の下層膜形成材料は、固形分が上記(i)~(iii)を満たす限り、一般式(A)で表される構造単位を有する樹脂でもなく、一般式(B)で表される構造単位を有する樹脂でもない樹脂(他の樹脂)を含んでもよい。例えば、第二実施形態の下層膜形成材料は、他の樹脂としてポリヒドロキシスチレンを含んでもよい。
 一般式(1)で表される構造単位を有する樹脂と、他の樹脂との質量比は、通常、一般式(1)で表される構造単位を有する樹脂/他の樹脂=100/0~55/45、好ましくは100/0~60/40、より好ましくは100/0~70/30である。
 第二実施形態の下層膜形成材料の調製方法や、使用可能な溶剤などは、第一実施形態と同様である。よって、改めての説明は割愛する。
<レジスト下層膜>
 下層膜形成用材料を用いて、レジスト下層膜を製造(形成)することができる。
 レジスト下層膜の製造方法は、下層膜形成用材料を含む塗膜を基板上に形成する工程(以下、「塗膜形成工程」ともいう)を含む。
 必要に応じて、上記塗膜を加熱する工程(以下、「加熱工程」ともいう)を行ってもよい。
 上述の下層膜形成用材料(第一実施形態または第二実施形態)を用いることで、エッチング耐性が良好で、かつ、埋め込み性や平坦性に優れたレジスト下層膜を製造することができる。
 特に、第一実施形態または第二実施形態の下層膜形成用材料は、複雑な形状の基板に対する埋め込み性に優れる。よって、段差を有する基板や、複数種のトレンチを有する基板等の複雑な形状の基板上に、エッチング耐性を満たすとともに、埋め込み性や平坦性に優れたレジスト下層膜を作製することができる。
 ちなみに、エッチング耐性は、例えば、酸素プラズマエッチングを行った際の「ポリヒドロキシスチレンを用いて得た参照用のレジスト下層膜エッチングレート÷対象下層膜のエッチングレート」の式により算出することができる。この式により求められる値は、好ましくは1.03~3.00、より好ましくは1.05~2.00である。
 酸素プラズマエッチングの詳細については後掲の実施例を参照されたい。
 以下、各工程について説明するが、本発明はこれらによって限定されるものではない。
[塗膜形成工程]
 第一実施形態または第二実施形態の下層膜形成材料は、特定の樹脂を含むこと、また、特定の樹脂を2種以上含むことにより、基板にきれいに塗布可能となり、均一な膜厚の塗膜を得ることができる。
 塗膜形成工程では、下層膜形成用材料を用いて、基板上に塗膜を形成する。
 基板としては、例えば、シリコンウェハー、アルミニウムウェハー、ニッケルウェハー等が挙げられる。
 基板の表面には凹凸構造が設けられていてもよい。凹凸構造は、例えば、シリカ(SiO)膜、SiCN膜、シリカ(SiO)にカーボン(C)をドープしたSiOC膜、メチルシロキサン系有機膜(SOG)、数nm以下の微小な空孔が均一に分布したシリカ絶縁膜等の低誘電材料で被膜が形成されたものであってもよい。
 第一実施形態または第二実施形態の下層膜形成用材料を用いることで、凹凸構造への埋め込み性が良好となる。また、平坦性に優れるレジスト下層膜を形成することができる。特に、段差を有する基板や複数種のトレンチを有する基板等、複雑な形状の基板を用いたとしても、良好な埋め込み性や平坦性を得やすい。
 複数種のトレンチを有する基板としては、例えば、互いに異なるアスペクト比を有する基板も挙げることができる。アスペクト比は、種々の値が混在したものを用いることができ、例えば、基板のトレンチにおいて、アスペクト比における最大値と最小値の比としては、好ましくは1~30、より好ましくは1~25、さらに好ましくは1~20である。
 塗膜の形成方法(塗布方法)は特に限定されない。例えば、スピンコート、溶液流延塗布、ロール塗布、スリットコート、インクジェット塗布等の方法を用いて、前述したワニス状の下層膜形成用材料を基板へ塗布する方法が挙げられる。
 この際、形成されるレジスト下層膜の、基板上の凹部底から大気面までの膜厚は、特に限定されない。例えば、後述する平均値Havの値として、好ましくは5~2000nm、より好ましくは5~1000nm、さらに好ましくは5~500nmである。
[加熱工程]
 加熱工程においては、塗膜形成工程において形成された塗膜を加熱する。加熱の温度は、好ましくは100~400℃、より好ましくは150~300℃、さらに好ましくは180~250℃である。加熱時間は好ましくは5秒~60分、より好ましくは10秒~10分、さらに好ましくは30秒~3分である。加熱の雰囲気としては、例えば、空気、窒素ガスやアルゴンガス等の不活性ガス;等が挙げられる。
 加熱様式としては、例えば、塗膜中の溶媒を除去する目的で加熱し、その後の加熱で塗膜を流動させ基板の凹凸構造に塗膜を埋め込む態様;本発明の効果を損なわない範囲で機能を補うために混合した熱硬化系材料等の異種物質を硬化させ、その後の加熱で塗膜を流動させ基板の凹凸構造に塗膜を埋め込む態様;下層膜形成用材料の脱離基を脱離させる目的で加熱し、その後の加熱で塗膜を流動させ基板の凹凸構造に塗膜を埋め込む態様;等が挙げられる。
 加熱は、段階的に温度を上げる多段プロセスであってもよい。
 このようにして得られたレジスト下層膜は、例えば、フォトリソグラフィーによるパターン形成のための工程部材として用いることができる。
 第一実施形態または第二実施形態の下層膜形成用材料を用いて得られた下層膜の溶媒耐性は良好であることが好ましい。これにより、レジスト下層膜の上に他の層(例えばレジスト層)を設ける場合、インターミキシングをより起こしにくくなる。
 例えば、下記(1)~(3)の手順で測定される残膜率は、好ましくは50%以上、より好ましくは50~100%、さらに好ましくは60~100%、特に好ましくは70~100%、とりわけ好ましくは80~100%である。
[手順]
(1)下層膜形成用材料を基板上に塗布し、120℃で1分間乾燥させ、室温まで冷却し、その後、300℃で1分間加熱して膜を形成する。このときの膜厚をaとする。aは、典型的には300~400nm、好ましくは350nmに調整する。
(2)(1)で形成された膜を、プロピレングリコールモノメチルエーテル(PGME)/プロピレングリコール-1-モノメチルエーテル-2-アセテート(PGMEA)の質量比7/3の混合溶媒に、23℃で5分間浸漬する。
(3)(2)の浸漬後の膜を、150℃で3分間加熱して溶媒を乾燥させる。このときの膜厚をbとする。そして、(b/a)×100(%)の式により残膜率を算出する。
 第一実施形態または第二実施形態の下層膜形成用材料においては、特に、特定の樹脂が組み合わせて用いられていることにより、残膜率が高い傾向がある。
 上記手順の(2)で、PGME/PGMEAの質量比7/3の混合溶媒を用いている理由は、レジスト下層膜の上層に設けられる中間層やレジスト層の形成に用いられる材料には、溶媒としてPGMEやPGMEAが用いられる場合が多いからである。
 残膜率が50%以上であることで、レジスト下層膜上にハードマスク等の中間層やレジスト層を形成する場合、レジスト下層膜が溶解したり、レジスト下層膜と中間層および/またはレジスト層が必要以上にインターミキシングしたりすることを抑制することができる。その結果、中間層とレジスト下層膜との密着性が適切となったり、より平坦性に優れた積層体を実現したりすることができる。
<積層体>
 積層体は、基板と、その基板の一方の面に、下層膜形成用材料を用いて形成されたレジスト下層膜と、を備える。
 基板とレジスト下層膜は、接触する構造であることが好ましい。
 ここで、レジスト下層膜およびその製造方法は、前述の<レジスト下層膜>の項で説明済のため、改めての説明は省略する。
 図1は、積層体の構造を説明するための模式図である。より具体的には、図1は、積層体10において、レジスト下層膜2の膜厚4、凹凸構造7の高さ5および凹凸構造7の凸-凸間の間隔6を説明するための模式図である。
 図1に示されている4つの積層体10のうち、左上および左下の図は、(a)基板1に凹凸構造がある場合の模式図である。また、右上及び右下の図は、(b)基板1に凹凸構造がない場合の模式図である。左上の図と左下の図は、基本的に同じ積層体を示すものである。同様に、右上の図と右下の図は、基本的に同じ積層体を示すものである。ただし、説明のため、上の図と下の図で、符号や補助線などを変えている。
 基板1は、(b)のように、平坦な表面を有する構造であってもよいが、(a)のように、その片面または両面に、凹凸構造7を有することが好ましい。凹凸構造7における凹凸の高さは、好ましくは5~500nm、より好ましくは7~450nm、さらに好ましくは10~400nmの範囲である。
 ここで、凹凸の「高さ」は、図1に示される凹凸構造7の高さ5を意味する。基板1全体としての「平均的な高さ」を求めたい場合には、例えば、凹凸構造7の高さ5を任意に10点測定し、それらの平均値を採用すればよい。
 凹凸構造7における凸-凸間の間隔は、好ましくは1nm~10mmである。凹凸構造7における凸-凸間の間隔の下限値は3nm以上であることがより好ましく、5nm以上であることがさらに好ましく、10nm以上であることが特に好ましい。
 ここで、凹凸構造7における凸-凸間の間隔は、図1に示される凹凸構造7における凸-凸間の間隔6を意味する。基板1全体としての「平均的な凸-凸間の間隔」を求めたい場合には、例えば、凹凸構造7における凸-凸間の間隔6を任意に10点測定し、それらの平均値を採用すればよい。
 凹凸構造7における凸-凸間の間隔の上限値は5mm以下であることがより好ましく、1mm以下あることがさらに好ましく、0.5mm以下であることが特に好ましい。
 基板1が上記のような凹凸構造を有する場合、レジスト下層膜2の効果がより顕著に発現する傾向がある。
 基板1の厚さは0.01~10000μmであることが好ましい。基板1の厚さの下限値は0.03μm以上であることがより好ましく、0.05μm以上であることがさらに好ましく、0.10μm以上であることが特に好ましい。
 基板1の厚さの上限値は5000μm以下であることがより好ましく、3000μm以下であることがさらに好ましく、1000μm以下であることが特に好ましい。
 ここで、基板1が凹凸構造7を有する場合には、基板1の最薄部の厚みと最厚部の厚みが、上記数値範囲内にあることが好ましい。
 レジスト下層膜2において、基板とは反対側の表面3の、下記数式により算出される平坦度(△FT)は、好ましくは0~5%、より好ましくは0~3%、さらに好ましくは0~1.5%、特に好ましくは0~1%である。
  ΔFT={(Hmax―Hmin)/Hav}×100(%)
 上記数式において、
 Havは、表面3の任意の10カ所において、レジスト下層膜の膜厚を測定したときの、膜厚の平均値であり、
 Hmaxは、レジスト下層膜の膜厚の最大値であり、
 Hminは、レジスト下層膜の膜厚の最小値である。
 基板に凹凸がある場合には、凹部底面からレジスト下層膜の上面(大気との界面)までの距離(図1の左下の積層体10に示した膜厚4)を測定することで、Hav、HmaxおよびHminを求める。換言すると、基板に凹凸がある場合には、凹部がある部分を選択的に10カ所測定して、Hav、HmaxおよびHminを求める。
 前述のように、本実施形態の下層膜形成用材料を用いることで、平坦性が良好なレジスト下層膜を得ることができる。
 平坦性が良好なレジスト下層膜が得られることにより、中間層の有無に関わらず、レジスト層の厚みを一層均一にできる。これにより、リソグラフィーにおいて所望のパターンを再現性良く得ることができる。
 まとめると、第一実施形態または第二実施形態の下層膜形成材料を用いて得られる積層体は、(i)残膜率、(ii)平坦度、(iii)エッチング耐性、などが良好である。これら観点で、積層体を以下のように表現することもできる。このような、残膜率、平坦度およびエッチング耐性が鼎立した積層体は、先端半導体デバイスの製造に極めて有用である。
 基板と、
 基板の一方の面に、下層膜形成用材料により形成されたレジスト下層膜と、
を備え、少なくとも下記の(i)~(iii)の特徴を有する積層体。
(i)下層膜形成用材料の、以下(1)~(3)の手順で測定される残膜率が80%以上である。
<手順>
(1)下層膜形成用材料を基板上に塗布し、120℃で1分間乾燥させ、室温まで冷却し、その後、300℃で1分間加熱して膜を形成する。このときの膜厚をaとする。
(2)(1)で形成された膜を、プロピレングリコールモノメチルエーテル/プロピレングリコール-1-モノメチルエーテル-2-アセテートの質量比7/3の混合溶媒に、23℃で5分間浸漬する。
(3)(2)の浸漬後の膜を、150℃で3分間加熱して溶媒を乾燥させる。このときの膜厚をbとする。そして、(b/a)×100(%)の式により残膜率を算出する。
(ii)レジスト下層膜の基板とは反対側の表面αにおいて、下記数式により算出される平坦度ΔFTが0~1.5%である。
  ΔFT={(Hmax-Hmin)/Hav}×100(%)
 上記数式において、
 Havは、前記表面αの任意の10カ所において前記レジスト下層膜の膜厚を測定したときの、膜厚の平均値であり、
 Hmaxは、前記レジスト下層膜の膜厚の最大値であり、
 Hminは、前記レジスト下層膜の膜厚の最小値である。
(iii)「ポリヒドロキシスチレンを用いて得た参照用のレジスト下層膜エッチングレート÷対象下層膜のエッチングレート」の式により算出したエッチング耐性の値が、1.03~3.00である。
<パターン形成方法>
 パターン形成方法は、例えば、(i)上述のようなレジスト下層膜の上面側に、レジストパターンを形成する工程(以下、「レジストパターン形成工程」ともいう)と、(ii)そのレジストパターンをマスクとし、レジスト下層膜および基板を順次エッチングする工程(以下、「エッチング工程」ともいう)とを備える。
 また、パターン形成方法は、レジストパターン形成工程において、レジスト下層膜の上面側に中間層を形成し、この中間層の上面側にレジストパターンを形成し、エッチング工程において、さらに中間層をエッチングする工程であってもよい。
 第一実施形態または第二実施形態の下層膜形成用材料は、好ましくは、2種以上の特定の樹脂を含む。例えば一般式(1)で表される構造単位を有する樹脂単独ではエッチング耐性が低い場合、一般式(A)で表される構造単位を有する樹脂および/または一般式(B)で表される構造単位を有する樹脂を適切な組成で組み合わせることによりエッチング耐性を高めることが可能である。第一実施形態または第二実施形態の下層膜形成用材料を用いることで、エッチング耐性が良好で、かつ、平坦性が良好なレジスト下層膜を形成することができる。これらのことにより、良好なパターンを形成することができる。
 また、特に下層膜形成用材料が前述の一般式(1)で表される構造単位を有する樹脂を含むことで、中間層形成用材料やレジストパターン形成用材料が含む溶媒によるインターミキシングが抑えられる。そして、レジスト下層膜の平坦性が一層良好となり、さらに良好なパターンを形成しやすい。
 以下、各工程について説明するが、本発明はこれらによって限定されるものではない。
[レジストパターン形成工程]
 本工程においては、レジスト下層膜の上面側にレジストパターンを形成する。または、レジスト下層膜の上面側に中間層を形成し、この中間層の上面側にレジストパターンを形成してもよい。
 中間層は、レジストパターン形成等において、レジスト下層膜および/またはレジスト膜が有する機能を補い、またはこれらが有していない機能を付与するためにこれらの機能を有する層のことである。例えば反射防止膜(反射防止層ともいう)を中間層として形成した場合、レジスト下層膜の反射防止機能を補うことができる。別の例として、ハードマスク層を中間層として形成した場合、アルカリ現像液を使用する際のレジスト下層膜に対する影響を抑制し、および/または、レジスト下層膜をエッチング後、下層のシリコン、アルミニウム、ニッケル等からなる基板をエッチングする際のレジストパターン形成層のエッチング耐性不足を補うことができる。
 さらには、中間層は、反射防止層とハードマスク層の何れか、または両方の機能を備えたものであってもよい。層構成は、レジスト下層膜の直上には反射防止層を形成しても、ハードマスク層を形成してもよい。中間層の素材や物性などは、レジスト材料、加工基板等の材料の特性、生産性などを考慮して適宜選択すればよい。
 中間層は、有機化合物や無機酸化物などにより形成することができる。有機化合物としては、例えば、DUV-42、DUV-44、ARC-28、ARC-29(Brewer Science社製)や、AR-3、AR-19(ロームアンドハース社製)等が挙げられる。また、無機酸化物としては、例えば、NFC SOGシリーズ(JSR社製)、CVD法により形成されるポリシロキサン、酸化チタン、酸化アルミナ、酸化タングステン等が挙げられる。
 中間層を形成する方法は特に限定されない。例えば、塗布法やCVD法等が挙げられる。これらの中で、塗布法が好ましい。塗布法を用いた場合、レジスト下層膜を形成後、中間層を連続して形成することができる。
 中間層の膜厚は特に限定されない。膜厚は、中間層に求められる機能などに応じて適宜選択すればよい。典型的には1nm~5μm、好ましくは5nm~3μm、より好ましくは10nm~0.3μmである。
 レジスト下層膜または中間層の上面側にレジストパターンを形成する方法としては、例えば、フォトリソグラフィーを用いる方法等が挙げられる。
 フォトリソグラフィーを用いる方法は、例えば、レジスト組成物を用い、レジスト下層膜の上面側にレジスト膜を形成する工程(以下、「レジスト膜形成工程」ともいう)、レジスト膜を露光する工程(以下、「露光工程」ともいう)、および露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)を含むことができる。
 以下、これら工程について説明する。
(レジスト膜形成工程) 
 本工程では、レジスト組成物を用い、レジスト下層膜の上面側にレジスト膜を形成する。具体的には、得られるレジスト膜が所定の膜厚となるようにレジスト組成物を塗布し、その後、プリベークすることによって塗膜中の溶媒を揮発させ、レジスト膜を形成する。
 レジスト組成物としては、例えば、樹脂と光酸発生剤を含有するポジ型またはネガ型の化学増幅型レジスト組成物;アルカリ可溶性樹脂とキノンジアジド系感光剤とからなるポジ型レジスト組成物;アルカリ可溶性樹脂と架橋剤とからなるネガ型レジスト組成物;等が挙げられる。
 レジスト組成物の固形分濃度は、対象とする膜厚や、生産性を考慮して適切な範囲で選択すればよい。好ましくは0.1~50質量%、より好ましくは0.5~50質量%、さらに好ましくは1.0~50質量%の範囲である。
 レジスト組成物は、孔径0.1μm程度のフィルターでろ過して調製されることが好ましい。
 レジスト組成物としては、市販のレジスト組成物をそのまま使用することもできる。
 レジスト組成物の塗布方法は特に限定されない。例えば、スピンコート、流延塗布、ロール塗布等の方法で実施することができる。
 プリベークの温度は、使用されるレジスト組成物の種類等に応じて適宜選択すればよい。典型的には30~200℃、好ましくは50~150℃である。
(露光工程)
 本工程では、レジスト膜形成工程で形成されたレジスト膜を露光する。露光は、例えば、所定のマスクパターンおよび必要に応じて液浸液を介して行われる。
 露光光としては、レジスト組成物に使用される光酸発生剤の種類に応じて、例えば、可視光線、紫外線、遠紫外線、X線、γ線等の電磁波;電子線、分子線、イオンビーム、α線等の粒子線等から適切に選択される。これらの中でも、遠紫外線が好ましく、KrFエキシマレーザー光(248nm)、ArFエキシマレーザー光(193nm)、Fエキシマレーザー光(波長157nm)、Krエキシマレーザー光(波長147nm)、ArKrエキシマレーザー光(波長134nm)、極紫外線(波長13nm等)がより好ましく、ArFエキシマレーザー光がさらに好ましい。
 露光後に、形成されるレジストパターンの解像度、パターンプロファイル、現像性等を向上させるため、ポストベークを行うことができる(Post Exposure Bake)。このときの温度は、使用されるレジスト組成物の種類等に応じて適宜調整すればよい。典型的には50~200℃、好ましくは70~150℃である。
(現像工程)
 本工程では、露光工程で露光されたレジスト膜を現像する。
 現像に用いられる現像液としては、使用されるレジスト組成物の種類に応じて適宜選択すればよい。アルカリ現像の場合、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等のアルカリ性水溶液等が挙げられる。
 アルカリ性水溶液には、例えば、メタノール、エタノール等のアルコール類等の水溶性有機溶媒や、界面活性剤を適量添加することもできる。
 また、現像液としては、有機溶媒を含有する現像液を用いることもできる。この有機溶媒としては、例えば、エステル類、ケトン類、エーテル類、アルコール類、アミド類、炭化水素類等が挙げられる。有機溶媒現像で使用する溶媒は、レジスト下層膜の特性に応じて適時選ばれる。
 なお、上述のようにして中間層を形成しておくことで、現像液の、レジスト下層膜に対する影響を抑制することができる。
 現像液を用いて現像した後、洗浄し、乾燥することによって、レジストパターンが形成される。
 レジストパターン形成工程は、上述のようにフォトリソグラフィーを用いる方法以外にも、ナノインプリント法を用いる方法、自己組織化組成物を用いる方法等であってもよい。
[エッチング工程]
 本工程においては、得られたレジストパターンをマスクとし、レジスト下層膜および基板を順次エッチングする。これにより、基板にパターンが形成される。なお、中間層を形成した場合は、さらに中間層もエッチングする。
 エッチングは、ドライエッチングでもよいし、ウェットエッチングでもよい。ドライエッチングは、公知のドライエッチング装置を用いて行うことができる。また、ドライエッチングをする際のソースガスとしては、例えば、O、CO、CO等の酸素原子を含むガス;He、N、Ar等の不活性ガス;Cl、BCl等の塩素系ガス;CHF、CF等のフッ素系ガス;H、NHのガス等を使用することができる。これらのガスは混合して用いることもできる。ソースガスの組成は、被エッチング物の元素組成などにより適宜選択すればよい。
[不要となったレジスト下層膜等の除去工程]
 本工程では、エッチング工程により基板にレジストパターンを転写・形成した後に、不要となったレジスト下層膜等を除去する。除去方法は、ドライ法でも、溶媒等を用いるウェット法でも、これらの併用でもよい。材料の物性やプロセス適応性を考慮して適宜選択すればよい。
 ドライ法の場合、エッチング工程で用いられるドライエッチング装置を使用することができる。従って、エッチング工程からこの除去工程において、製造ラインを変更する必要性がない。すなわち、生産性の観点からドライ法が好ましく用いられる。
 この除去工程において、ドライエッチング装置を使用する際のガスソースとしては、例えば、O、CO、CO等の酸素原子を含むガス;He、N、Ar等の不活性ガス;Cl、BCl等の塩素系ガス;CHF、CF等のフッ素系ガス;H、NHのガス等を使用することができる。これらのガスは2種類以上を混合して用いてもよい。ガスソースの組成は、被エッチング物の元素組成により適宜選択される。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、本実施形態を、実施例・比較例を参照して詳細に説明する。本実施形態は、これらの実施例の記載に何ら限定されるものではない。
 まず、各種の測定・評価の方法を説明する。
[ポリマーの重量平均分子量(Mw)および分子量分布(Mw/Mn)の測定]
 下記の条件でゲルパーミュエーションクロマトグラフィー(GPC)を使用して、テトラヒドロフラン(THF)に溶解したポリマーの重量平均分子量(Mw)および数平均分子量(Mn)を測定した。そして、ポリスチレンスタンダードによって分子量を較正した。
・検出器:日本分光社製RI-2031および875-UV、または、Viscotec社製Model270
・直列連結カラム:Shodex K-806M、804、803、802.5
・カラム温度:40℃
・流量:1.0ml/分
・試料濃度:3.0~9.0mg/ml
[ガラス転移温度]
 島津製作所社製の示差走査熱量計DSC-50を用い、測定試料を窒素雰囲下で10℃/分の昇温速度で加熱した。このときに得られた、固体状態からガラス状態への相転移を表わす熱量カーブの中点を、ガラス転移温度とした。
[元素分析]
 炭素原子、水素原子および窒素原子については、ヤナコ社製の装置「CHNコーダーMT-6型」を用いて測定した。酸素原子については、エレメンター社製の装置「vario EL III型」を用いて測定した。
[元素構成比率(ReおよびRe')の算出]
 上記の元素分析値を利用して、前述の式に従って元素構成比率(ReおよびRe')を算出した。
[埋め込み性・平坦性評価のために用いた評価用凹凸基板]
 基板表面に、高さ200nm、凸部幅40~150nm、凸-凸間幅40~150nmのライン&スペースパターンが形成された、サイズ3cm×3cmのシリコン製基板を使用した。
 以下では、この基板のことを「評価用凹凸基板」とも記載する。
[埋め込み性評価]
 上記評価用凹凸基板の凹凸表面上にレジスト下層膜を形成したサンプルを割って、断面観察用の面出しを行った。その後、日本分光社製走査型電子顕微鏡JSM-6701F(以下、SEMと表記する。)を使用して、凸-凸間幅が40nmの部分の基板断面を観察して埋め込み性を評価した(レジスト下層膜の形成方法については各実施例・比較例の記載を参照)。
[平坦性の評価]
 上記の埋め込み性を評価した基板断面において、凸幅40nm、凸-凸間幅120nmのエリアの、凹部底面から大気面までの高さを10点計測し、平均値をHavとした。
 次いで、10点計測した高さのうち最大高さ(Hmax)と最小高さ(Hmin)のそれぞれの値から以下の式により、平坦性の指標を示す平坦度を算出した。
 平坦度(ΔFT)={(Hmax-Hmin)/Hav}×100(%)
[残膜率測定]
 下層膜形成用材料を4インチのシリコンウェハーにスピンコートし、120℃で1分間乾燥させ、室温まで冷却し、その後、300℃で1分間加熱した。これにより厚さ300~400nmのコート膜を形成した。室温冷却後、コート膜を20mm×10mmのサイズで切り出した。
 切り出したコート膜を、有機溶媒(プロピレングリコールモノメチルエーテル(PGME)とプロピレングリコール-1-モノメチルエーテル-2-アセテート(PGMEA)の質量比がPGME/PGMEA=7/3の混合溶媒)に、23℃で5分間浸漬した。
 その後、コート膜を、150℃で3分間加熱し、コート膜中の残存溶媒を乾燥除去した。このときのコート膜の厚さbを測定し、残膜率((b/a)×100(%))を算出した。
[プラズマエッチング特性評価]
 シリコンウェハーに形成したレジスト下層膜をチャンバーに入れ、チャンバー内を5×10-6Torr(6.7×10-4Pa)まで真空引きした。その後、酸素を50sccm(約8.3×10-7m/s)でチャンバーに流し、チャンバー内圧力を0.15Torr(20Pa)に調整した。
 そして、100Wの酸素プラズマを照射した。
[エッチングレートの測定方法]
 日本セミラボ社製の分光エリプソメーターGES5Eを用いて、エッチング前(0秒)、60秒エッチング後、180秒エッチング後および300秒エッチング後の基板の表面の膜厚を測定した。測定は膜中の任意の3点で行い、平均値を膜厚として採用した。これにより、エッチング時間が0秒、60秒、180秒、300秒での膜厚データを得た。
 これら膜厚データを、横軸を時間(秒)、縦軸を減少膜厚量(nm)としてプロットし、直線(一次関数)で近似した。そして、直線の傾きから、エッチングレート(nm/sec)を算出した。
[実施例1]
(環状オレフィンポリマーの合成)
 窒素雰囲気下、磁気攪拌装置を備えた125mLのガラス製オートクレーブ内で、1,4,4a,9a-テトラヒドロ-1,4-メタノフルオレンを12.9g(0.071mol)および1,5-ヘキサジエンを0.65g(0.008mol)を、テトラヒドロフラン(以下、THFと記す)50.9gに溶解し、攪拌した。
 これに、開環メタセシス重合触媒としてMo(N-2,6-Pr )(CHCMePh)(OCMe(CFを10.8mg(0.014mmol)加え、60℃で1時間反応させた。その後、n-ブチルアルデヒド3.06mg(0.04mmol)を加え、さらに60℃で30分加熱した。
そして、冷却し、開環メタセシス重合体溶液63.8gを得た。得られたポリマーは、重合率=100%、Mw=5800、Mw/Mn=2.54であった。
 次いで、メタノールを用いて、得られた開環メタセシス重合体溶液から環状オレフィンポリマーを析出させ、80℃で減圧乾燥することにより、白色粉末固体(ポリマー1)を得た。
 ポリマー1は、前掲の一般式(2)で表される構造単位を含むものである。
 ポリマー1のガラス転移温度は121℃であった。
(下層膜形成用材料の作製)
 得られたポリマー1を、プロピレングリコール-1-モノメチルエーテル-2-アセテート(以下、PGMEAとも表記)と、シクロヘキサノン(以下、CHとも表記)の質量比がPGMEA/CH=5/5である混合溶剤に溶解し、濃度10質量%の溶液を調製した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。元素分析値は、C=92.1質量%、H=8.1質量%であり、元素分析値より計算した元素構成比率(ReおよびRe')は2.1であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のポリマー1は、凸-凸間の狭線幅40nm(高さ200nm)の溝中に、ボイド等の欠陥無く均一に埋め込まれていた。また、Havは278nm、Hmaxは278nm、Hminは278nmで、平坦度(ΔFT)は0.0%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は100%であった。すなわち、残膜率は非常に良好であった。
[実施例2]
(環状オレフィンポリマーの合成)
 窒素雰囲気下、磁気攪拌装置を備えた125mLのガラス製オートクレーブ内で、1,4-ジヒドロ-1,4-メタノナフタレンを10.1g(0.071mol)および1,5-ヘキサジエンを0.65g(0.008mol)を、THF50.9gに溶解し、攪拌した。
 これに、開環メタセシス重合触媒としてMo(N-2,6-Pr )(CHCMePh)(OCMe(CFを10.8mg(0.014mmol)加え、60℃で1時間反応させた。その後、n-ブチルアルデヒド3.06mg(0.04mmol)を加えてさらに60℃で30分加熱した。
そして、冷却し、開環メタセシス重合体溶液61.0gを得た。得られたポリマーは、重合率=100%、Mw=6000、Mw/Mn=2.51であった。
 次いで、メタノールを用いて、得られた開環メタセシス重合体溶液から環状オレフィンポリマーを析出させ、80℃で減圧乾燥することにより白色粉末固体(ポリマー2)を得た。
 ポリマー2は、前掲の一般式(6)で表される構造単位を含むものである。
 ポリマー2のガラス転移温度は140℃であった。
(下層膜形成用材料の作製)
 得られたポリマー2を、PGMEAとCHの質量比がPGMEA/CH=5/5である混合溶剤に溶解し、濃度10質量%の溶液を調製した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。元素分析値は、C=92.7質量%、H=7.4質量%であり、元素分析値より計算した元素構成比率(ReおよびRe')は2.0であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のポリマー2は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは253nm、Hmaxは254nm、Hminは253nmで、平坦度(ΔFT)は0.4%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は99%であった。すなわち、残膜率は非常に良好であった。
[実施例3]
(環状オレフィンポリマーの合成)
 窒素雰囲気下、磁気攪拌装置を備えた125mLのガラス製オートクレーブ内で、6b,7,10,10a-テトラヒドロ-7,10-メタノフルオランテンを15.5g(0.071mol)および1,5-ヘキサジエンを0.65g(0.008mol)を、THF50.9gに溶解し、攪拌した。
 これに、開環メタセシス重合触媒としてMo(N-2,6-Pr )(CHCMePh)(OCMe(CFを10.8mg(0.014mmol)加え、60℃で1時間反応させた。その後、n-ブチルアルデヒド3.06mg(0.04mmol)を加えてさらに60℃で30分加熱した。
そして、冷却し、開環メタセシス重合体溶液66.3gを得た。得られたポリマーは、重合率=100%、Mw=5400、Mw/Mn=2.55であった。
 次いで、メタノールを用いて、得られた開環メタセシス重合体溶液から環状オレフィンポリマーを析出させ、80℃で減圧乾燥することにより、白色粉末固体(ポリマー3)を得た。
 ポリマー3は、前掲の一般式(5)で表される構造単位を含むものである。
 ポリマー3のガラス転移温度は138℃であった。
(下層膜形成用材料の作製)
 得られたポリマー3を、PGMEAとCHの質量比がPGMEA/CH=5/5である混合溶剤に溶解し、濃度10質量%の溶液を調製した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。元素分析値は、C=93.7質量%、H=6.6質量%であり、元素分析値より計算した元素構成比率(ReおよびRe')は1.8であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のポリマー3は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは261nm、Hmaxは261nm、Hminは260nmで、平坦度(ΔFT)は0.4%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は100%であった。すなわち、残膜率は非常に良好であった。
[実施例4]
(環状オレフィンポリマーの合成)
 窒素雰囲気下、磁気攪拌装置を備えた125mLのガラス製オートクレーブ内で、1,4,4a,9a-テトラヒドロ-1,4-メタノフルオレン(モノマーA)を18.3g(0.101mol)、4,10-ジオキシ-トリシクロ[5.2.1.02,6]-8-デセン-3-オン(モノマーB)を1.7g(0.011mol)、および、1,5-ヘキサジエンを1.0g(0.012mol)を、THF44.4gに溶解し、攪拌した。
 これに、開環メタセシス重合触媒としてMo(N-2,6-Pr )(CHCMePh)(OCMe(CFを17.1mg(0.02mmol)加え、60℃で1時間反応させた。その後、n-ブチルアルデヒド4.8mg(0.07mmol)を加えさらに60℃で30分加熱した。
そして、冷却し、開環メタセシス重合体溶液64.4gを得た。得られたポリマーは、重合率=100%、Mw=6100、Mw/Mn=2.48であった。また、H-NMRで解析した、モノマーAに由来する構造単位とモノマーBに由来する構造単位のモル比は、A/B=90/10であった。
 次いで、メタノールを用いて、得られた開環メタセシス重合体溶液から環状オレフィンポリマーを析出し、80℃で減圧乾燥することにより、白色粉末固体(ポリマー4)を得た。
 ポリマー4は、前掲の一般式(2)で表される構造単位を含むものである。
 ポリマー4のガラス転移温度は119℃であった。
(下層膜形成用材料の作製)
 得られたポリマー4を、PGMEAとCHの質量比がPGMEA/CH=5/5である混合溶剤に溶解し、濃度10質量%の溶液を調製した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。元素分析値は、C=89.6質量%、H=7.7質量%、O=2.5質量%であり、元素分析値より計算した元素構成比率(ReおよびRe')は2.1であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のポリマー4は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは208nmで、Hmaxは208nm、Hminは208nmで、平坦度(ΔFT)は0.0%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は94%であった。すなわち、残膜率は良好であった。
[実施例5]
(下層膜形成用材料の作製)
 実施例1で合成したポリマー1と、ポリヒドロキシスチレン(以下、PHSと表記する。Polysciences,Inc.社製、Mw=5300、Mw/Mn=1.48)を、ポリマー1/PHSの質量比90/10の比率でPGMEA/CH=5/5に溶解させ、溶液を調製した。PGMEA/CH=5/5の量は濃度10質量%となるように調整した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で120℃、1分間乾燥して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、ガラス転移温度を測定した。ガラス転移温度は122℃であった。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。
 元素分析値はC=91.2質量%、H=7.4質量%、O=1.1質量%であり、元素分析値より計算した元素構成比率(ReおよびRe')は2.0であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のポリマー1とPHSの混合物は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは210nmで、Hmaxは210nm、Hminは210nmであり、平坦度(ΔFT)は0.0%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は91%であった。すなわち、残膜率は良好であった。
[実施例6]
(下層膜形成用材料の作製)
 ノボラック樹脂(明和化成(株)社製、商品名MER-44S、Mw=5100、Mw/Mn=3.55)、ナフトールアラルキル樹脂(日鉄ケミカル&マテリアル(株)社製、商品名SN-485、Mw=480、Mw/Mn=1.84)を、ノボラック樹脂/ナフトールアラルキル樹脂の質量比58/42の比率でPGMEA/CH=5/5に溶解させ、溶液を調製した。PGMEA/CH=5/5の量は濃度10質量%となるように調整した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で120℃、1分間乾燥して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、ガラス転移温度を測定した。ガラス転移温度は110℃であった。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。
 元素分析値はC=83.0質量%、H=6.2質量%、O=10.4質量%であり、元素分析値より計算した元素構成比率(ReおよびRe')は2.2であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のノボラック樹脂とナフトールアラルキル樹脂の混合物は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは195nmで、Hmaxは195nm、Hminは195nmであり、平坦度(ΔFT)は0.0%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は100%であった。すなわち、残膜率は良好であった。
[実施例7]
(環状オレフィンポリマーの合成)
 窒素雰囲気下、磁気攪拌装置を備えた250mLのガラス製オートクレーブ内で、ノルボルネン(モノマーA)を7.7g(0.817mol)、4,10-ジオキシ-トリシクロ[5.2.1.02,6]-8-デセン-3-オン(モノマーB)を12.4g(0.817mol)、および、1,5-ヘキサジエンを1.49g(0.018mol)を、THF114.0gに溶解し、攪拌した。
 これに、開環メタセシス重合触媒としてMo(N-2,6-Pr )(CHCMePh)(OCMe(CFを25.0mg(0.03mmol)加え、60℃で1時間反応させた。その後、n-ブチルアルデヒド6.5mg(0.09mmol)を加えさらに60℃で30分加熱した。
そして、冷却し、開環メタセシス重合体溶液134gを得た。得られたポリマーは、重合率=100%、Mw=7500、Mw/Mn=2.80であった。また、H-NMRで解析した、モノマーAに由来する構造単位とモノマーBに由来する構造単位のモル比は、A/B=50/50であった。
 次いで、水を用いて、得られた開環メタセシス重合体溶液から環状オレフィンポリマーを析出し、70℃で減圧乾燥することにより、白色粉末固体(ポリマー5)を得た。
 ポリマー5のガラス転移温度は72℃であった。
(下層膜形成用材料の作製)
 ポリマー5、ノボラック樹脂(明和化成(株)社製、商品名MER-44S、Mw=5100、Mw/Mn=3.55)、ナフトールアラルキル樹脂(日鉄ケミカル&マテリアル(株)社製、商品名SN-485、Mw=480、Mw/Mn=1.84)を、ポリマー5/ノボラック樹脂/ナフトールアラルキル樹脂の質量比19/13/68の比率でPGMEA/CH=5/5に溶解させ、溶液を調製した。PGMEA/CH=5/5の量は濃度10質量%となるように調整した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で120℃、1分間乾燥して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、ガラス転移温度を測定した。ガラス転移温度は98℃であった。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。
 元素分析値はC=84.3質量%、H=6.2質量%、O=9.8質量%であり、元素分析値より計算した元素構成比率(ReおよびRe')は2.2であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のノボラック樹脂とナフトールアラルキル樹脂の混合物は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは234nmで、Hmaxは234nm、Hminは233nmであり、平坦度(ΔFT)は0.4%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は100%であった。すなわち、残膜率は良好であった。
[実施例8]
(下層膜形成用材料の作製)
 ポリマー5(実施例7で合成した環状オレフィンポリマー)と、ナフトールアラルキル樹脂(日鉄ケミカル&マテリアル(株)社製、商品名SN-485、Mw=480、Mw/Mn=1.84)とを、ポリマー5/ナフトールアラルキル樹脂の質量比12/88の比率で、PGMEA/CH=5/5(質量比)の混合溶剤に溶解させ、溶液を調製した。PGMEA/CH=5/5の量は濃度10質量%となるように調整した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で120℃、1分間乾燥して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、ガラス転移温度を測定した。ガラス転移温度は141℃であった。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。元素分析値はC=86.3質量%、H=5.6質量%、O=7.9質量%であり、元素分析値より計算した元素構成比率(ReおよびRe')は2.0であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のポリマー5とナフトールアラルキル樹脂の混合物は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは245nmで、Hmaxは245nm、Hminは244nmであり、平坦度(ΔFT)は0.4%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は100%であった。すなわち、残膜率は良好であった。
[実施例9]
(下層膜形成用材料の作製)
 ポリマー4と、ナフトールアラルキル樹脂(日鉄ケミカル&マテリアル(株)社製、商品名SN-485、Mw=480、Mw/Mn=1.84)とを、ポリマー4/ナフトールアラルキル樹脂の質量比80/20の比率で、PGMEA/CH=5/5(質量比)の混合溶剤に溶解させ、溶液を調製した。混合溶剤の量は濃度10質量%となるように調整した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で120℃、1分間乾燥して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、ガラス転移温度を測定した。ガラス転移温度は119℃であった。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。
 元素分析値はC=89.2質量%、H=7.3質量%、O=3.3質量%であり、元素分析値より計算した元素構成比率(ReおよびRe')は2.1であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のポリマー4とナフトールアラルキル樹脂の混合物は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは240nmで、Hmaxは240nm、Hminは239nmであり、平坦度(ΔFT)は0.4%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は91%であった。すなわち、残膜率は良好であった。
[実施例10]
(下層膜形成用材料の作製)
 ノボラック樹脂(明和化成(株)社製、商品名MER-44S、Mw=5100、Mw/Mn=3.55)と、ナフトールアラルキル樹脂(日鉄ケミカル&マテリアル(株)社製、商品名SN-485、Mw=480、Mw/Mn=1.84)とを、ノボラック樹脂/ナフトールアラルキル樹脂の質量比95/5の比率で、PGMEA/CH=5/5(質量比)の混合溶剤に溶解させ、溶液を調製した。混合溶剤の量は濃度10質量%となるように調整した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で120℃、1分間乾燥して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、ガラス転移温度を測定した。ガラス転移温度は119℃であった。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。
 元素分析値はC=80.6質量%、H=6.8質量%、O=12.5質量%であり、元素分析値より計算した元素構成比率(ReおよびRe')は2.4であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のノボラック樹脂とナフトールアラルキル樹脂の混合物は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは280nmで、Hmaxは281nm、Hminは279nmであり、平坦度(ΔFT)は0.7%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は100%であった。すなわち、残膜率は良好であった。
[実施例11]
(下層膜形成用材料の作製)
 ノボラック樹脂(明和化成(株)社製、商品名MER-44S、Mw=5100、Mw/Mn=3.55)と、ナフトールアラルキル樹脂(日鉄ケミカル&マテリアル(株)社製、商品名SN-485、Mw=480、Mw/Mn=1.84)とを、ノボラック樹脂/ナフトールアラルキル樹脂の質量比80/20の比率で、PGMEA/CH=5/5(質量比)の混合溶剤に溶解させ、溶液を調製した。混合溶剤の量は濃度10質量%となるように調整した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で120℃、1分間乾燥して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、ガラス転移温度を測定した。ガラス転移温度は117℃であった。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。
 元素分析値はC=82.0質量%、H=6.3質量%、O=11.6質量%であり、元素分析値より計算した元素構成比率(ReおよびRe')は2.3であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のノボラック樹脂とナフトールアラルキル樹脂の混合物は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは244nmで、Hmaxは245nm、Hminは243nmであり、平坦度(ΔFT)は0.8%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は100%であった。すなわち、残膜率は良好であった。
[実施例12]
(下層膜形成用材料の作製)
 ノボラック樹脂(明和化成(株)社製、商品名MER-44S、Mw=5100、Mw/Mn=3.55)と、ナフトールアラルキル樹脂(日鉄ケミカル&マテリアル(株)社製、商品名SN-485、Mw=480、Mw/Mn=1.84)とを、ノボラック樹脂/ナフトールアラルキル樹脂の質量比20/80の比率で、PGMEA/CH=5/5(質量比)の混合溶剤に溶解させ、溶液を調製した。混合溶剤の量は濃度10質量%となるように調整した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で120℃、1分間乾燥して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、ガラス転移温度を測定した。ガラス転移温度は106℃であった。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。
 元素分析値はC=85.9質量%、H=5.7質量%、O=8.0質量%であり、元素分析値より計算した元素構成比率(Re)は2.0であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のノボラック樹脂とナフトールアラルキル樹脂の混合物は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは256nmで、Hmaxは257nm、Hminは255nmであり、平坦度(ΔFT)は0.8%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は100%であった。すなわち、残膜率は良好であった。
[実施例13]
(下層膜形成用材料の作製)
 ノボラック樹脂(明和化成(株)社製、商品名MER-44S、Mw=5100、Mw/Mn=3.55)と、ナフトールアラルキル樹脂(日鉄ケミカル&マテリアル(株)社製、商品名SN-485、Mw=480、Mw/Mn=1.84)とを、ノボラック樹脂/ナフトールアラルキル樹脂の質量比5/95の比率で、PGMEA/CH=5/5(質量比)の混合溶剤に溶解させ、溶液を調製した。混合溶剤の量は濃度10質量%となるように調整した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で120℃、1分間乾燥して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、ガラス転移温度を測定した。ガラス転移温度は104℃であった。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。
 元素分析値はC=87.2質量%、H=5.8質量%、O=6.8質量%であり、元素分析値より計算した元素構成比率(Re)は2.0であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のノボラック樹脂とナフトールアラルキル樹脂の混合物は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは277nmで、Hmaxは278nm、Hminは276nmであり、平坦度(ΔFT)は0.7%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は100%であった。すなわち、残膜率は良好であった。
[実施例14]
(下層膜形成用材料の作製)
 ポリマー4と、ノボラック樹脂(明和化成(株)社製、商品名MER-44S、Mw=5100、Mw/Mn=3.55)とを、ポリマー4/ノボラック樹脂の質量比80/20の比率で、PGMEA/CH=5/5(質量比)の混合溶剤に溶解させ、溶液を調製した。混合溶剤の量は濃度10質量%となるように調整した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で120℃、1分間乾燥して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、ガラス転移温度を測定した。ガラス転移温度は116℃であった。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。
 元素分析値はC=87.4質量%、H=7.5質量%、O=4.8質量%であり、元素分析値より計算した元素構成比率(ReおよびRe')は2.2であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のポリマー4とノボラック樹脂の混合物は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは236nmで、Hmaxは237nm、Hminは236nmであり、平坦度(ΔFT)は0.4%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は93%であった。すなわち、残膜率は良好であった。
[実施例15]
(下層膜形成用材料の作製) 
 ポリマー4と、ノボラック樹脂(明和化成(株)社製、商品名MER-44S、Mw=5100、Mw/Mn=3.55)とを、ポリマー4/ノボラック樹脂の質量比20/80の比率で、PGMEA/CH=5/5(質量比)の混合溶剤に溶解させ、溶液を調製した。混合溶剤の量は濃度10質量%となるように調整した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で120℃、1分間乾燥して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、ガラス転移温度を測定した。ガラス転移温度は107℃であった。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。
 元素分析値はC=81.6質量%、H=6.9質量%、O=11.0質量%であり、元素分析値より計算した元素構成比率(ReおよびRe')は2.4であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のポリマー4とノボラック樹脂の混合物は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは255nmで、Hmaxは255nm、Hminは254nmであり、平坦度(ΔFT)は0.4%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は100%であった。すなわち、残膜率は良好であった。
[実施例16]
(環状オレフィンポリマーの合成)
 窒素雰囲気下、磁気攪拌装置を備えた125mLのガラス製オートクレーブ内で、2-フェニル-3a,4,7,7a-テトラヒドロ-1H-メタノイソインドールー1,3(2H)-ジオンを17.1g(0.071mol)および1,5-ヘキサジエンを0.65g(0.008mol)を、THF50.9gに溶解し、攪拌した。
 これに、開環メタセシス重合触媒としてMo(N-2,6-Pr )(CHCMePh)(OCMe(CFを10.8mg(0.014mmol)加え、60℃で1時間反応させた。その後、n-ブチルアルデヒド3.06mg(0.04mmol)を加えてさらに60℃で30分加熱した。
 そして、冷却し、開環メタセシス重合体溶液67.8gを得た。得られたポリマーは、重合率=100%、Mw=5200、Mw/Mn=2.35であった。
 次いで、メタノールを用いて、得られた開環メタセシス重合体溶液から環状オレフィンポリマーを析出させ、80℃で減圧乾燥することにより白色粉末固体(ポリマー6)を得た。
 ポリマー6は、前掲の一般式(7)で表される構造単位を含むものである。
  ポリマー6のガラス転移温度は126℃であった。
(下層膜形成用材料の作製)
 得られたポリマー6を、PGMEAとCHの質量比がPGMEA/CH=5/5である混合溶剤に溶解し、濃度10質量%の溶液を調製した。これにより下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。この膜の一部をスパーテルで削り出して得られた白色粉末をサンプルとして、元素分析を行った。元素分析値は、C=75.3質量%、H=5.5質量%、N=5.8質量%、O=13.2質量%であり、Reは2.3、Re'は2.4であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中のポリマー2は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは238nm、Hmaxは239nm、Hminは237nmで、平坦度(ΔFT)は0.8%であった。すなわち、埋め込み性および平坦性は非常に良好であった。
 また、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は96%であった。すなわち、残膜率は非常に良好であった。
[比較例1]
(ポリマーの合成)
 窒素雰囲気下、磁気攪拌装置を備えたオートクレーブ内で、実施例5で使用したPHS100gをイソ酪酸メチル900gに溶解させた。これに2.0重量%Pd/ZrO触媒5gを加え、水素圧9MPa、180℃の条件で15時間水素添加反応を行った。得られたポリマーは、核水素添加率=99mol%、Mw=5400、Mw/Mn=1.29であった。
 次いで、実施例1と同様な方法で析出、乾燥して白色粉末固体(比較ポリマー1)を得た。
 比較ポリマー1のガラス転移温度は172℃であった。
 比較ポリマー1の元素分析値は、C=76.0質量%、H=11.4質量%、O=12.3質量%であり、元素分析値より計算した元素構成比率(ReおよびRe')は3.3であった。
(下層膜形成用材料の作製)
 得られた比較ポリマー1を、PGMEAとCHの質量比がPGMEA/CH=5/5である混合溶剤に溶解し、濃度10質量%溶液を調製した。これにより下層膜形成用材料を得た。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。これによりレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、下層膜形成用材料中の比較ポリマー1は、凸-凸間の狭線幅40nm(高さ200nm)の溝に対してボイド等の欠陥無く均一に埋め込まれていた。また、Havは310nmで、Hmaxは316nm、Hminは305nmで、平坦度(ΔFT)は3.6%であった。また、すなわち、埋め込み性は非常に良好で、平坦度もまずまず良好であった。
 一方、得られた下層膜形成用材料を用いて、前述の[残膜率測定]に記載のようにして測定した残膜率は11%であった。すなわち、残膜率は、実施例1~5の物に比べ、やや劣っていた。
[比較例2]
(下層膜形成用材料の作製)
 ポリメチルメタクリレートを10質量%でCH溶液に溶解し下層膜形成用材料を得た。
 得られた下層膜形成用材料を、パターン無のシリコン基板上に、1000rpm、10secの条件でスピンコートし、窒素雰囲気下で300℃、1分間加熱して膜を形成した。
 膜の一部をスパーテルで削り出して得られた白色粉末を用いて、元素分析を行った。元素分析値は、C=60.1質量%、H=8.3質量%、N=0.2質量%、O=31.1質量%であり、Reは5.0、Re'は5.0であった。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱した。このようにしてレジスト下層膜を形成した。
 前述の[埋め込み性評価][平坦性の評価]に記載のようにして、SEMにより基板の断面を観察した。その結果、凸-凸間の狭線幅40nm(高さ200nm)の溝中にボイドが生じていた。また、Havは250nm、Hmaxは264nm、Hminは233nmで、平坦度(ΔFT)は12.4%であった。さらに、レジスト下層膜の大気との界面には歪みを生じていた。すなわち、埋め込み性および平坦性は実施例1などに比べて劣った。
 また、得られた下層膜形成用材料を、1000rpm、10secの条件で、4インチのシリコンウェハーにスピンコートした。次いで、窒素雰囲気下で300℃、1分間乾燥した。PGME/PGMEA=7/3(質量比)の混合溶媒に対する残膜率は0%であった。
[比較例3]
(下層膜形成用材料の作製)
 ナフトールアラルキル樹脂(日鉄ケミカル&マテリアル(株)社製、商品名SN-485、Mw=480、Mw/Mn=1.84)を、PGMEAとCHの質量比がPGMEA/CH=5/5である混合溶剤に溶解し、濃度10質量%溶液を調製した。これにより下層膜形成用材料を得た。
(評価)
 得られた下層膜形成用材料を、1000rpm、10secの条件で、前述の評価用凹凸基板の表面に塗布した。その後、窒素雰囲気下で300℃、1分間加熱したが、基板上でナフトールアラルキル樹脂が凝集を起こし、均一な膜を得ることができず、SEMによる基板の断面観察ができなかった。
 残膜率についても、4インチシリコンウエハ上で均一な塗膜を得ることができなかったため、測定することができなかった。
[追加試験:プラズマエッチング耐性の評価]
 まず、実施例1~16および比較例1~2で得た下層膜形成用材料を、それぞれシリコンウェハーに塗布し、300℃で1分間加熱して、レジスト下層膜を得た。
 また、参照用として、実施例5で用いたPHSのみを、PGMEA/CH=5/5(質量比)の混合溶媒に溶解させて得た、濃度10質量%の下層膜形成用材料を、シリコンウェハーに塗布し、300℃で1分間加熱して、レジスト下層膜を得た。
 次いで、それぞれのレジスト下層膜を用いて、前述の[プラズマエッチング特性評価]および[エッチングレートの測定方法]に記載のようにして、エッチングレート(nm/sec)を算出した。
 「PHSを用いて得た参照用のレジスト下層膜のエッチングレート÷各下層膜のエッチングレート」の値により、エッチング耐性を評価した。この値が大きいほどエッチング耐性に優れる。
 実施例1(ポリマー1)が1.1、実施例2(ポリマー2)が1.2、実施例3(ポリマー3)が1.3、実施例4(ポリマー4)が1.1、実施例5(ポリマー1とPHSの質量比90/10の混合物)が1.2、実施例6(ノボラック樹脂とナフトールアラルキル樹脂の質量比58/42の混合物)が1.1、実施例7(ポリマー5とノボラック樹脂とナフトールアラルキル樹脂の質量比19/13/68の混合物)が1.1、実施例8(ポリマー5とナフトールアラルキル樹脂の質量比12/88の混合物)が1.2、実施例9(ポリマー4とナフトールアラルキル樹脂の質量比80/20の混合物)が1.2、実施例10(ノボラック樹脂とナフトールアラルキル樹脂の質量比95/5の混合物)が1.1、実施例11(ノボラック樹脂とナフトールアラルキル樹脂の質量比80/20の混合物)が1.1、実施例12(ノボラック樹脂とナフトールアラルキル樹脂の質量比20/80の混合物)が1.2、実施例13(ノボラック樹脂とナフトールアラルキル樹脂の質量比5/95の混合物)が1.3、実施例14(ポリマー4とノボラック樹脂の質量比80/20の混合物)が1.2、実施例15(ポリマー4とノボラック樹脂の質量比20/80の混合物)が1.1、実施例16(ポリマー6)が1.1、比較例1(比較ポリマー1)が0.7、比較例2が0.5であった。
 元素構成比率(ReまたはRe')がPHSより大きい実施例1~16の下層膜形成材料は、いずれもPHSより高いエッチング耐性を示した。一方で元素構成比率(ReまたはRe')がPHSより小さい比較例1および2の下層膜形成材料のエッチング耐性はPHSより低かった。
 この出願は、2019年2月7日に出願された日本出願特願2019-020570号、および、2019年9月11日に出願された日本出願特願2019-165498号を基礎とする優先権を主張し、これら開示の全てをここに取り込む。
1  基板
2  レジスト下層膜
3  表面(レジスト下層膜の、基板とは反対側の表面)
4  膜厚(レジスト下層膜2の膜厚)
5  高さ(凹凸構造7の高さ)
6  凸-凸間の間隔
7  凹凸構造
10 積層体

Claims (16)

  1.  多層レジストプロセスに用いられる下層膜形成用材料であって、
     当該下層膜形成用材料の固形分が、以下(i)~(iii)を満たす下層膜形成用材料。
     (i)以下数式(1)で定義される元素構成比率Reが1.5~2.8である。
     (ii)ガラス転移温度が30~250℃である。
     (iii)下記一般式(A)で表される構造単位を有する樹脂、及び、下記一般式(B)で表される構造単位を有する樹脂を含む。
    Figure JPOXMLDOC01-appb-M000001
     数式(1)中、
     Nは、下層膜形成用材料の固形分中の、水素原子の数であり、
     Nは、下層膜形成用材料の固形分中の、炭素原子の数であり、
     Nは、下層膜形成用材料の固形分中の、酸素原子の数である。
    Figure JPOXMLDOC01-appb-C000002
     一般式(A)中、
     Arは、ヒドロキシ基および/またはグリシジルオキシ基で少なくとも置換された2価の芳香族基を表し、
     Rは、水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、炭素数2~10のアルコキシアルキル基、炭素数7~10のアリールオキシアルキル基、から選ばれるいずれかの置換基を表す。
    Figure JPOXMLDOC01-appb-C000003
     一般式(B)中
     Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、炭素数2~10のアルコキシアルキル基、炭素数7~10のアリールオキシアルキル基を表し、
     Ar11は、2価の芳香族基(置換でも無置換でもよい)を表し、
     Ar12は、以下一般式(B1)~(B3)で表される構造のいずれかを表す。
    Figure JPOXMLDOC01-appb-C000004
     一般式(B1)~(B3)において、
     Rは、複数存在する場合はそれぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数1~10のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~10のアルコキシアルキル基、炭素数7~20のアリールオキシアルキル基、炭素数2~20のアルコキシカルボニル基、炭素数3~10のジアルキルアミノカルボニル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数3~20のアルコキシカルボニルアルキル基、炭素数8~20のアルコキシカルボニルアリール基、炭素数8~20のアリールオキシカルボニルアルキル基、炭素数3~20のアルコキシアルキルオキシカルボニル基および炭素数4~20のアルコキシカルボニルアルキルオキシカルボニル基、から選ばれるいずれかを表し、
     r1は、1以上(6-q1)以下であり、
     q1は、0以上5以下であり、
     r2は、1以上(4-q2)以下であり、
     q2は、0以上3以下であり、
     r3は、0以上4以下であり、r4は、0以上4以下であり、ただしr3+r4は1以上であり、
     q3は0以上4以下であり、q4は0以上4以下であり、ただしq3+q4は7以下であり、
     Xは、単結合または炭素数1~3のアルキレン基を表す。
  2. 請求項1に記載の下層膜形成用材料であって、
     当該下層膜形成用材料の固形分の、以下数式(2)で定義される元素構成比率Re'が、1.5~2.8である下層膜形成用材料。
    Figure JPOXMLDOC01-appb-M000005
     数式(2)中、
     Nは、下層膜形成用材料の固形分中の、水素原子の数であり、
     Nは、下層膜形成用材料の固形分中の、炭素原子の数であり、
     Nは、下層膜形成用材料の固形分中の、酸素原子の数であり、
     Nは、下層膜形成用材料の固形分中の、窒素原子の数である。
  3. 請求項1また2に記載の下層膜形成用材料であって、
     前記一般式(A)で表される構造単位が、以下一般式(a1)または一般式(a2)で表される構造単位を含む下層膜形成用材料。
    Figure JPOXMLDOC01-appb-C000006
     一般式(a1)および(a2)中、
     m1は1~4、n1は0~3、ただしm1+n1は1以上4以下であり、
     m2は1~6、n2は0~5、ただしm2+n2は1以上6以下であり、
     Rは、複数存在する場合はそれぞれ独立に、水素原子またはグリシジル基であり、
     Rは、式(A)におけるそれと同義であり、
     Rは、複数存在する場合はそれぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数1~10のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~10のアルコキシアルキル基、炭素数7~20のアリールオキシアルキル基、炭素数2~20のアルコキシカルボニル基、炭素数3~10のジアルキルアミノカルボニル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数3~20のアルコキシカルボニルアルキル基、炭素数8~20のアルコキシカルボニルアリール基、炭素数8~20のアリールオキシカルボニルアルキル基、炭素数3~20のアルコキシアルキルオキシカルボニル基および炭素数4~20のアルコキシカルボニルアルキルオキシカルボニル基、から選ばれるいずれかであり、
     nが2以上であるとき、複数存在するRは互いに結合して環構造を形成してもよい。
  4.  請求項1~3のいずれか1項に記載の下層膜形成用材料であって、
     前記一般式(B)で表される構造単位が、以下一般式(b)で表される構造単位を含む下層膜形成用材料。
    Figure JPOXMLDOC01-appb-C000007
     一般式(b)中、
     Rは、前記一般式(B)におけるRと同義であり、
     Rは、複数存在する場合はそれぞれ独立に、前記一般式(B1)~(B3)におけるRと同義であり、
     Arは、前記一般式(B1)または(B2)で表される構造であり、
     pは0~4である。
  5.  請求項1~4のいずれか1項に記載の下層膜形成用材料であって、
     前記一般式(A)で表される構造単位を有する樹脂、及び、前記一般式(B)で表される構造単位を有する樹脂に加えて、さらに、下記一般式(1)で表される構造単位を有する樹脂を含む下層膜形成用材料。
    Figure JPOXMLDOC01-appb-C000008
     一般式(1)中、
     R~Rは、それぞれ独立に、水素原子、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数7~20のアリールオキシアルキル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数8~30のアルコキシカルボニルアリール基および炭素数8~20のアリールオキシカルボニルアルキル基なる群より選ばれるいずれかの基であり、かつ、R~Rのうち少なくとも1つは水素原子以外の基であり、さらに、R~Rが互いに結合して環構造を形成していてもよく、
     nは、0~2の整数を表し、
     XおよびXは、それぞれ独立に、-CH-または-O-を表す。
  6.  多層レジストプロセスに用いられる下層膜形成用材料であって、当該下層膜形成用材料の固形分が、以下(i)~(iii)を満たす下層膜形成用材料。
    (i)以下数式(1)で定義される元素構成比率Reが1.5~2.8である。
    (ii)ガラス転移温度が30~250℃である。
    (iii)下記一般式(1)で表される構造単位を有する樹脂を含む。
    下層膜形成用材料。
    Figure JPOXMLDOC01-appb-M000009
     数式(1)中、
     Nは、下層膜形成用材料の固形分中の、水素原子の数であり、
     Nは、下層膜形成用材料の固形分中の、炭素原子の数であり、
     Nは、下層膜形成用材料の固形分中の、酸素原子の数である。
    Figure JPOXMLDOC01-appb-C000010
     一般式(1)中、
     R~Rは、それぞれ独立に、水素原子、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数7~20のアリールオキシアルキル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数8~30のアルコキシカルボニルアリール基および炭素数8~20のアリールオキシカルボニルアルキル基なる群より選ばれるいずれかの基であり、かつ、R~Rのうち少なくとも1つは水素原子以外の基であり、さらに、R~Rが互いに結合して環構造を形成していてもよく、
     nは、0~2の整数を表し、
     XおよびXは、それぞれ独立に-CH-または-O-を表す。
  7.  請求項6に記載の下層膜形成用材料であって、
     当該下層膜形成用材料の固形分の、以下数式(2)で定義される元素構成比率Re'が、1.5~2.8である下層膜形成用材料。
    Figure JPOXMLDOC01-appb-M000011
     数式(2)中、
     Nは、下層膜形成用材料の固形分中の、水素原子の数であり、
     Nは、下層膜形成用材料の固形分中の、炭素原子の数であり、
     Nは、下層膜形成用材料の固形分中の、酸素原子の数であり、
     Nは、下層膜形成用材料の固形分中の、窒素原子の数である
  8.  請求項6または7に記載の下層膜形成用材料であって、
     前記一般式(1)で表される構造単位を有する樹脂に加えて、さらに、下記一般式(B)で表される構造単位を有する樹脂を含む下層膜形成用材料。
    Figure JPOXMLDOC01-appb-C000012
     一般式(B)中、
     Rは、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、炭素数2~10のアルコキシアルキル基、炭素数7~10のアリールオキシアルキル基を表し、
     Ar11は、2価の芳香族基(置換でも無置換でもよい)を表し、
     Ar12は、以下一般式(B1)~(B3)で表される構造のいずれかを表す。
    Figure JPOXMLDOC01-appb-C000013
     一般式(B1)~(B3)において、
     Rは、複数存在する場合はそれぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数1~10のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~10のアルコキシアルキル基、炭素数7~20のアリールオキシアルキル基、炭素数2~20のアルコキシカルボニル基、炭素数3~10のジアルキルアミノカルボニル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数3~20のアルコキシカルボニルアルキル基、炭素数8~20のアルコキシカルボニルアリール基、炭素数8~20のアリールオキシカルボニルアルキル基、炭素数3~20のアルコキシアルキルオキシカルボニル基および炭素数4~20のアルコキシカルボニルアルキルオキシカルボニル基、から選ばれるいずれかを表し、
     r1は、1以上(6-q1)以下であり、
     q1は、0以上5以下であり、
     r2は、1以上(4-q2)以下であり、
     q2は、0以上3以下であり、
     r3は、0以上4以下であり、r4は、0以上4以下であり、ただしr3+r4は1以上であり、
     q3は0以上4以下であり、q4は0以上4以下であり、ただしq3+q4は7以下であり、
     Xは、単結合または炭素数1~3のアルキレン基を表す。
  9.  請求項8に記載の下層膜形成用材料であって、
     構造単位(B)が、以下一般式(b)で表される構造単位を含む下層膜形成用材料。
    Figure JPOXMLDOC01-appb-C000014
     一般式(b)中、
     Rは、前記一般式(B)におけるRと同義であり、
     Rは、複数存在する場合はそれぞれ独立に、前記一般式(B1)~(B3)におけるRと同義であり、
     Arは、前記一般式(B1)または(B2)で表される構造であり、
     pは0~4である。
  10.  請求項6または7に記載の下層膜形成用材料であって、
     前記一般式(1)で表される構造単位を有する樹脂に加えて、さらに、下記一般式(A)で表される構造単位を有する樹脂を含む下層膜形成用材料。
    Figure JPOXMLDOC01-appb-C000015
     一般式(A)中、
     Arは、ヒドロキシ基および/またはグリシジルオキシ基で少なくとも置換された2価の芳香族基を表し、
     Rは、水素原子、炭素数1~10のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基、炭素数2~10のアルコキシアルキル基、炭素数7~10のアリールオキシアルキル基、から選ばれるいずれかの置換基を表す。
  11.  請求項10に記載の下層膜形成用材料であって、
     前記一般式(A)で表される構造単位が、以下一般式(a1)または一般式(a2)で表される構造単位を含む下層膜形成用材料。
    Figure JPOXMLDOC01-appb-C000016
     上記一般式(a1)および(a2)中、
     m1は1~4、n1は0~3、ただしm1+n1は1以上4以下であり、
     m2は1~6、n2は0~5、ただしm2+n2は1以上6以下であり、
     Rは、複数存在する場合はそれぞれ独立に、水素原子またはグリシジル基であり、
     Rは、式(A)におけるそれと同義であり、
     Rは、複数存在する場合はそれぞれ独立に、炭素数1~10のアルキル基、炭素数6~20のアリール基、炭素数1~10のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数2~10のアルコキシアルキル基、炭素数7~20のアリールオキシアルキル基、炭素数2~20のアルコキシカルボニル基、炭素数3~10のジアルキルアミノカルボニル基、炭素数7~20のアリールオキシカルボニル基、炭素数8~20のアルキルアリールアミノカルボニル基、炭素数3~20のアルコキシカルボニルアルキル基、炭素数8~20のアルコキシカルボニルアリール基、炭素数8~20のアリールオキシカルボニルアルキル基、炭素数3~20のアルコキシアルキルオキシカルボニル基および炭素数4~20のアルコキシカルボニルアルキルオキシカルボニル基、から選ばれるいずれかであり、
    nが2以上であるとき、複数存在するRは互いに結合して環構造を形成してもよい。
  12.  請求項1~11のいずれか1項に記載の下層膜形成用材料により形成されたレジスト下層膜。
  13.  基板と、当該基板の一方の面に請求項1~11のいずれか1項に記載の下層膜形成用材料により形成されたレジスト下層膜と、を備える積層体。
  14.  請求項13に記載の積層体であって、
     前記レジスト下層膜の、前記基板とは反対側の表面αにおいて、下記数式により算出される平坦度ΔFTが0~5%である積層体。
      ΔFT={(Hmax-Hmin)/Hav}×100(%)
     上記数式において、
     Havは、前記表面αの任意の10カ所において前記レジスト下層膜の膜厚を測定したときの、膜厚の平均値であり、
     Hmaxは、前記レジスト下層膜の膜厚の最大値であり、
     Hminは、前記レジスト下層膜の膜厚の最小値である。
  15.  請求項13または14に記載の積層体であって、
     前記レジスト下層膜の表面αの任意の10カ所において前記レジスト下層膜の膜厚を測定したときの、膜厚の平均値Havが、5~500nmである積層体。
  16.  請求項13~15のいずれか1項に記載の積層体であって、
     前記基板は少なくとも一方の表面に凹凸構造を有し、
     前記凹凸構造上に前記レジスト下層膜が形成されており、
     前記凹凸構造は、高さが5~500nmであり、凸-凸間の間隔が1nm~10mmである積層体。
PCT/JP2020/002157 2019-02-07 2020-01-22 下層膜形成用材料、レジスト下層膜および積層体 WO2020162183A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080012316.6A CN113365820A (zh) 2019-02-07 2020-01-22 下层膜形成用材料、抗蚀剂下层膜及层叠体
US17/429,063 US20220050379A1 (en) 2019-02-07 2020-01-22 Material for forming underlayer film, resist underlayer film, and laminate
EP20752770.6A EP3922456A4 (en) 2019-02-07 2020-01-22 MATERIAL FOR UNDERCOAT FILM FORMATION, RESIST UNDERCOAT FILM AND LAMINATE
KR1020217024954A KR20210112361A (ko) 2019-02-07 2020-01-22 하층막 형성용 재료, 레지스트 하층막 및 적층체
JP2020571089A JPWO2020162183A1 (ja) 2019-02-07 2020-01-22 下層膜形成用材料、レジスト下層膜および積層体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019020570 2019-02-07
JP2019-020570 2019-02-07
JP2019-165498 2019-09-11
JP2019165498 2019-09-11

Publications (1)

Publication Number Publication Date
WO2020162183A1 true WO2020162183A1 (ja) 2020-08-13

Family

ID=71947048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002157 WO2020162183A1 (ja) 2019-02-07 2020-01-22 下層膜形成用材料、レジスト下層膜および積層体

Country Status (7)

Country Link
US (1) US20220050379A1 (ja)
EP (1) EP3922456A4 (ja)
JP (1) JPWO2020162183A1 (ja)
KR (1) KR20210112361A (ja)
CN (1) CN113365820A (ja)
TW (1) TW202040276A (ja)
WO (1) WO2020162183A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145923A1 (ja) * 2022-01-31 2023-08-03 日産化学株式会社 ナノインプリント用レジスト下層膜形成組成物

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177668A (ja) 2002-11-27 2004-06-24 Tokyo Ohka Kogyo Co Ltd 多層レジストプロセス用下層膜形成材料およびこれを用いた配線形成方法
JP2008026600A (ja) * 2006-07-21 2008-02-07 Shin Etsu Chem Co Ltd レジスト下層膜形成材料及びパターン形成方法
WO2009008446A1 (ja) 2007-07-11 2009-01-15 Nissan Chemical Industries, Ltd. レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
WO2013054702A1 (ja) * 2011-10-12 2013-04-18 Jsr株式会社 レジスト下層膜形成用組成物、その製造方法、パターン形成方法及びレジスト下層膜
JP2014174428A (ja) * 2013-03-12 2014-09-22 Shin Etsu Chem Co Ltd 珪素含有下層膜材料及びパターン形成方法
JP2017102420A (ja) * 2015-05-18 2017-06-08 信越化学工業株式会社 レジスト下層膜材料及びパターン形成方法
WO2017141612A1 (ja) * 2016-02-15 2017-08-24 Jsr株式会社 レジスト下層膜形成用組成物、レジスト下層膜及びパターニングされた基板の製造方法
WO2017183612A1 (ja) 2016-04-18 2017-10-26 日産化学工業株式会社 ナフトールアラルキル樹脂を含むレジスト下層膜形成組成物
WO2018221575A1 (ja) 2017-05-31 2018-12-06 三井化学株式会社 下層膜形成用材料、レジスト下層膜、レジスト下層膜の製造方法および積層体
JP2019020570A (ja) 2017-07-14 2019-02-07 Tdk株式会社 レンズ駆動装置
JP2019165498A (ja) 2010-11-05 2019-09-26 サン パテント トラスト 無線通信装置及び無線通信方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4627918B2 (ja) * 2000-04-13 2011-02-09 三井化学株式会社 開環メタセシス共重合体水素添加物およびその製造方法
US8211984B2 (en) * 2006-07-21 2012-07-03 Mitsui Chemicals, Inc. Ring-opening metathesis polymer, hydrogenated product thereof, method for preparing the same, and use thereof
TWI442186B (zh) * 2007-03-28 2014-06-21 Jsr Corp 光阻底層膜用組成物及雙鑲嵌結構之形成方法
JP2010085701A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp カラーフィルタの製造方法
JP5266294B2 (ja) * 2010-11-01 2013-08-21 信越化学工業株式会社 レジスト下層膜材料及びこれを用いたパターン形成方法
JP5806903B2 (ja) * 2011-09-30 2015-11-10 富士フイルム株式会社 ナノインプリント方法およびそれに用いられるレジスト組成物
CN104067175B (zh) * 2012-02-01 2018-01-02 日产化学工业株式会社 含有具有杂环的共聚树脂的抗蚀剂下层膜形成用组合物
CN107735729B (zh) * 2015-07-02 2021-09-28 日产化学工业株式会社 包含具有长链烷基的环氧基加成体的抗蚀剂下层膜形成用组合物
KR102647162B1 (ko) * 2015-10-19 2024-03-14 닛산 가가쿠 가부시키가이샤 장쇄 알킬기함유 노볼락을 포함하는 레지스트 하층막 형성 조성물
JP6959351B2 (ja) * 2017-10-06 2021-11-02 三井化学株式会社 下層膜形成用樹脂材料、レジスト下層膜、レジスト下層膜の製造方法および積層体
US11248086B2 (en) * 2018-05-01 2022-02-15 Tokyo Ohka Kogyo Co., Ltd. Hard-mask forming composition and method for manufacturing electronic component

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177668A (ja) 2002-11-27 2004-06-24 Tokyo Ohka Kogyo Co Ltd 多層レジストプロセス用下層膜形成材料およびこれを用いた配線形成方法
JP2008026600A (ja) * 2006-07-21 2008-02-07 Shin Etsu Chem Co Ltd レジスト下層膜形成材料及びパターン形成方法
WO2009008446A1 (ja) 2007-07-11 2009-01-15 Nissan Chemical Industries, Ltd. レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
JP2019165498A (ja) 2010-11-05 2019-09-26 サン パテント トラスト 無線通信装置及び無線通信方法
WO2013054702A1 (ja) * 2011-10-12 2013-04-18 Jsr株式会社 レジスト下層膜形成用組成物、その製造方法、パターン形成方法及びレジスト下層膜
JP2014174428A (ja) * 2013-03-12 2014-09-22 Shin Etsu Chem Co Ltd 珪素含有下層膜材料及びパターン形成方法
JP2017102420A (ja) * 2015-05-18 2017-06-08 信越化学工業株式会社 レジスト下層膜材料及びパターン形成方法
WO2017141612A1 (ja) * 2016-02-15 2017-08-24 Jsr株式会社 レジスト下層膜形成用組成物、レジスト下層膜及びパターニングされた基板の製造方法
WO2017183612A1 (ja) 2016-04-18 2017-10-26 日産化学工業株式会社 ナフトールアラルキル樹脂を含むレジスト下層膜形成組成物
WO2018221575A1 (ja) 2017-05-31 2018-12-06 三井化学株式会社 下層膜形成用材料、レジスト下層膜、レジスト下層膜の製造方法および積層体
JP2019020570A (ja) 2017-07-14 2019-02-07 Tdk株式会社 レンズ駆動装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. GOKANS. ESHOY. OHNISHI, J. ELECTROCHEM. SOC.: SOLID-STATE SCIENCE AND TECHNOLOGY, 1983, pages 143 - 146
SPIE, vol. 469, 1984

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145923A1 (ja) * 2022-01-31 2023-08-03 日産化学株式会社 ナノインプリント用レジスト下層膜形成組成物

Also Published As

Publication number Publication date
TW202040276A (zh) 2020-11-01
EP3922456A1 (en) 2021-12-15
KR20210112361A (ko) 2021-09-14
CN113365820A (zh) 2021-09-07
EP3922456A4 (en) 2022-11-30
JPWO2020162183A1 (ja) 2021-10-21
US20220050379A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
TWI669353B (zh) 金屬硬遮罩組合物及在半導體基板上形成精細圖案之方法
US11886119B2 (en) Material for forming underlayer film, resist underlayer film, method of producing resist underlayer film, and laminate
TWI610137B (zh) 感光性樹脂組成物及使用此感光性樹脂組成物而得之感光性薄膜
US9589788B2 (en) Polymer with a good heat resistance and storage stability, underlayer film composition containing the polymer and process for forming underlayer film using the composition
JP2022003142A (ja) 下層膜形成用樹脂材料、レジスト下層膜、レジスト下層膜の製造方法および積層体
WO2020162183A1 (ja) 下層膜形成用材料、レジスト下層膜および積層体
CN113348188B (zh) 含酚羟基树脂、感光性组合物、抗蚀膜、固化性组合物和固化物
JP2005156816A (ja) 下地材及び多層レジストパターン形成方法
JP6302643B2 (ja) ポジ型レジスト組成物、及びレジストパターン形成方法、並びに、メタル層からなるパターンの形成方法、及び貫通電極の製造方法
KR100705302B1 (ko) 방사선 감응성 수지 조성물
TWI505022B (zh) 光阻劑用樹脂組成物
TWI276919B (en) Resin for primer material, primer material, layered product, and method of forming resist pattern
JP2001312059A (ja) ポジ型ホトレジスト組成物、感光性膜付基板、レジストパターンの形成方法およびポジ型ホトレジスト組成物の製造方法
JP2004029840A (ja) ポジ型ホトレジスト組成物、感光性膜付基板およびレジストパターンの形成方法
JP2019148727A (ja) 化合物、樹脂、組成物及びパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571089

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217024954

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020752770

Country of ref document: EP

Effective date: 20210907