WO2020162158A1 - 測定装置、測定システムおよび測定方法 - Google Patents

測定装置、測定システムおよび測定方法 Download PDF

Info

Publication number
WO2020162158A1
WO2020162158A1 PCT/JP2020/001879 JP2020001879W WO2020162158A1 WO 2020162158 A1 WO2020162158 A1 WO 2020162158A1 JP 2020001879 W JP2020001879 W JP 2020001879W WO 2020162158 A1 WO2020162158 A1 WO 2020162158A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
concentration
unit
measurement
measurement target
Prior art date
Application number
PCT/JP2020/001879
Other languages
English (en)
French (fr)
Inventor
康博 五所尾
泰明 松儀
斎藤 正
伊勢谷 順一
昌彦 千崎
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Publication of WO2020162158A1 publication Critical patent/WO2020162158A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods

Definitions

  • the present invention relates to a measuring device, a measuring system and a measuring method for measuring the concentration of a solution and a gas.
  • a technique of measuring the concentration of an aqueous solution such as a semiconductor etching liquid or a cleaning liquid by using light.
  • a technique of irradiating an aqueous solution with light emitted from a light emitting diode and measuring the concentration of the aqueous solution from the intensity of light received through the aqueous solution the light source emits light having a wavelength absorbed by the solute, and is dispersed using a diffraction grating or a color filter before passing through the aqueous solution or after passing through the aqueous solution, and based on the absorbance of the dispersed light, the concentration of the aqueous solution.
  • Techniques for measuring the are known.
  • the absorbance of an aqueous solution is measured using the light emitted from a light emitting diode, light with a broad wavelength is used, and the concentration of the aqueous solution cannot be measured accurately. Further, when light is dispersed using a diffraction grating or a color filter, the optical system becomes complicated.
  • the present application is intended to solve such a problem, and its purpose is to accurately measure the concentrations of solutes dissolved in various solutions such as aqueous solutions and the concentration of each gas in a mixed gas with a simple configuration.
  • the measuring device a light source unit that emits light including a specific wavelength corresponding to the concentration measurement target, a Fabry-Perot spectroscopic unit that disperses the light emitted from the light source unit via the measurement target, And a measurement unit that measures the concentration of the measurement target based on the intensity of the light dispersed by the unit.
  • the light source unit may have one or more light emitting elements capable of emitting light including a specific wavelength.
  • the light source unit emits light including a plurality of specific wavelengths corresponding to the measurement target
  • the spectroscopic unit disperses light including a plurality of specific wavelengths corresponding to the measurement target
  • the measurement unit is Alternatively, the concentration of the measurement target may be measured based on the intensities of the light of the plurality of specific wavelengths that are separated by the spectroscopic unit.
  • the light source unit emits light having a specific wavelength corresponding to each of the plurality of measurement targets
  • the spectroscopic unit disperses the light having a plurality of specific wavelengths
  • the measurement unit is a spectroscopic unit.
  • the densities of a plurality of measurement targets may be measured based on the intensities of a plurality of specific wavelengths of light separated by.
  • the light source unit emits light including at least the same number of specific wavelengths as the plurality of measurement targets
  • the spectroscopic unit disperses the light including the plurality of specific wavelengths emitted by the light source unit, for measurement.
  • the unit may measure the densities of the plurality of measurement targets based on the intensities of the lights of the plurality of specific wavelengths that are separated by the spectroscope.
  • the measuring unit is based on a matrix based on an extinction coefficient that converts the concentration of each measurement target into an absorbance at a specific wavelength, and an absorbance based on the intensity of light of a specific wavelength dispersed by the spectroscopic unit. Then, the concentration of each measurement target may be calculated.
  • the light source unit may emit light having a specific wavelength that is the wavelength of the light absorbed by the measurement target.
  • the light source unit emits light having a specific wavelength corresponding to the measurement target that is dissolved in a predetermined solvent
  • the spectroscopic unit is a light source unit via a solution in which the measurement target is dissolved in the predetermined solvent. The light emitted from may be received.
  • the light including the specific wavelength corresponding to the concentration measurement target is received through the measurement target, and the received light is dispersed by the Fabry-Perot type spectroscopic unit, and the light is obtained.
  • the concentration of the measurement target is measured based on the intensity of light of a specific wavelength.
  • the measurement device does not measure the concentration of the measurement target using light with a broad wavelength, but uses a Fabry-Perot spectroscope to separate the specific wavelength corresponding to the measurement target from the received light. Then, the concentration of the measurement target is measured based on the intensity of the separated light of the specific wavelength.
  • the measuring device can accurately estimate the concentration of the measurement target without having a complicated optical system such as a diffraction grating or a color filter.
  • FIG. 1 is a diagram illustrating a measurement method according to the first embodiment.
  • FIG. 2 is a graph showing absorption spectra of aqueous ammonia solution and hydrogen peroxide solution.
  • FIG. 3 is a graph showing the absorption spectrum of the sample.
  • FIG. 4 is a graph showing the relationship between the concentration of hydrogen peroxide solution and the absorbance of light of wavelength ⁇ 1 .
  • FIG. 5 is a graph showing the relationship between the concentration of hydrogen peroxide solution and the absorbance of light of wavelength ⁇ 2 .
  • FIG. 6 is a graph showing the relationship between the concentration of ammonia and the absorbance of light of wavelength ⁇ 1 .
  • FIG. 7 is a graph showing the relationship between the concentration of ammonia and the absorbance of light of wavelength ⁇ 2 .
  • FIG. 1 is a diagram illustrating a measurement method according to the first embodiment.
  • FIG. 2 is a graph showing absorption spectra of aqueous ammonia solution and hydrogen peroxide solution.
  • FIG. 8 is a graph showing the relationship between the concentration of ammonia calculated from the absorbance and the concentration of ammonia calculated from the mixing volume ratio.
  • FIG. 9 is a graph showing the relationship between the concentration of hydrogen peroxide calculated from the absorbance and the concentration of hydrogen peroxide calculated from the mixing volume ratio.
  • FIG. 10 is a graph showing absorption spectra of hydrochloric acid and hydrogen peroxide solution.
  • FIG. 11 is a graph showing the relationship between the concentration of hydrochloric acid calculated from the absorbance and the concentration of hydrochloric acid calculated from the mixing volume ratio.
  • FIG. 12 is a graph showing the relationship between the concentration of hydrogen peroxide calculated from the absorbance and the concentration of hydrogen peroxide calculated from the mixing volume ratio.
  • FIG. 13 is a diagram showing an outline of the measurement system in the second embodiment.
  • FIG. 14 is a diagram showing an example of the spectroscopic device according to the second embodiment.
  • FIG. 15 is a diagram showing an example of the functional configuration of the measuring apparatus according to the second embodiment.
  • FIG. 16 is a flowchart showing an example of operation timing of the measurement system according to the second embodiment.
  • an aqueous solution of hydrochloric acid, nitric acid, phosphoric acid, ammonium hydroxide, hydrogen peroxide, etc. has been used as a cleaning solution or etching solution for semiconductors, and a technique for measuring the concentration of the aqueous solution based on the absorbance of the aqueous solution is known. ing. It is considered that the concentration of various solutes in the aqueous solution can be accurately measured with a simple configuration simply by narrowing the wavelength range of the light with which the aqueous solution is irradiated.
  • the wavelength range of the light irradiated to the aqueous solution can be narrowed compared to a halogen lamp or the like, but the wavelength band is still broad.
  • the concentration of the aqueous solution is accurately measured.
  • the wavelength of light that easily absorbs differs depending on the substance, when the wavelength range of the light emitted from the light source is narrowed, it is possible to measure only the concentration of one of the solutes from an aqueous solution in which multiple solutes are dissolved, such as mixed acid. Can not.
  • the light emitted from the light source will be dispersed using a diffraction grating or color filter, and the configuration of the measurement device will be complicated.
  • the halogen lamp has a shorter life than that of a semiconductor light emitting element such as an LED, and requires replacement.
  • a wavelength band including light of a wavelength (hereinafter, referred to as “specific wavelength”) that is considered to be appropriate in measuring the concentration of the solute. It is considered that the solute concentration can be accurately measured by emitting the above light and separating the light received through the aqueous solution into light of a specific wavelength. Focusing on this point, using a Fabry-Perot spectroscope that is small and inexpensive, but has a relatively narrow wavelength range in which spectroscopic analysis is possible, resolves the problem by splitting the received light into light of a specific wavelength. I thought about what I could do.
  • FIG. 1 is a diagram illustrating a measurement method according to the first embodiment.
  • the configuration of a measurement system 1 for measuring the concentration of a solute dissolved in a liquid sample such as an aqueous solution is conceptually shown.
  • the measurement system 1 includes a light source device 2, a flow cell 3, a Fabry-Perot spectroscopy tunable filter 4, a light receiving element 5, and a measurement device 6.
  • the light source device 2 is a light source device capable of projecting light, and is realized by a light source such as a halogen lamp or an LED.
  • the light source device 2 emits light of a predetermined intensity under the control of the measuring device 6.
  • the light emitted by the light source device 2 in this manner is transmitted to the light receiving element 5 along the optical path OP, via the flow cell 3 and the Fabry-Perot spectroscopy tunable filter 4.
  • the light source device 2 may be a light source capable of emitting light in a wavelength band including a specific wavelength corresponding to one or each of the solutes whose concentration is to be measured simultaneously.
  • the light source device 2 can be realized by an LED having a full width at half maximum of approximately ⁇ 100 nanometers, and when the solute is ammonia and hydrogen peroxide, at least light in the wavelength band of 1525 nanometers to 1600 nanometers is sufficient. Any light source can be used as long as it can output light with various intensities.
  • the flow cell 3 is made of a material (for example, quartz) that is transparent to the light emitted from the light source device 2, and a sample such as an aqueous solution can be flown inside.
  • the flow cell 3 may be realized by a test tube, a cell or the like. Further, the flow cell 3 does not need to be made of a transparent material as a whole, and the incident portion on which the light emitted from the light source device 2 is incident and the emission portion on which the incident light is emitted through the sample are transparent. I wish I had it.
  • the Fabry-Perot spectroscopic tunable filter 4 is a Fabry Perot Interferometer that can change the wavelength of light that can be transmitted, and has two semi-transparent mirrors arranged in parallel.
  • the Fabry-Perot spectroscopy tunable filter 4 has an upper mirror UM which is a semi-transparent mirror installed on the light source device 2 side and a lower mirror DM which is a semi-transparent mirror arranged on the light receiving element 5 side. Then, the Fabry-Perot spectroscopy tunable filter 4 controls the distance between the upper mirror UM and the lower mirror DM so that the light received through the flow cell 3 corresponds to the distance between the upper mirror UM and the lower mirror DM. Light of different wavelengths is transmitted. For example, the Fabry-Perot spectroscopy tunable filter 4 transmits the light of a specific wavelength corresponding to the solute from the light received through the sample under the control of the measuring device 6.
  • the light receiving element 5 is an element that measures the intensity of the received light when it receives the light transmitted by the Fabry-Perot spectroscopy tunable filter 4, and is realized by a photoelectric element such as a photodiode, for example. For example, when the light receiving element 5 receives the transmitted light, the light receiving element 5 generates an electric signal indicating the intensity of the received light, and transmits the generated electric signal to the measuring device 6.
  • the measuring device 6 measures the concentration of the solute contained in the sample based on the intensity of the light received by the light receiving element 5. For example, the measurement device 6 controls the light source device 2 to emit light in a wavelength band including a specific wavelength, and controls the Fabry-Perot spectroscopy tunable filter 4 to transmit light of a specific wavelength. The measuring device 6 measures the intensity of the light of the specific wavelength received by the light receiving element 5.
  • the measuring device 6 measures the intensity of the light received by the light receiving element 5 in the state where there is no sample in the flow cell 3 as I 0 , and measures the light intensity received by the light receiving element 5 in the state where the sample is present in the flow cell 3. The intensity is measured as I 1 . Then, the measuring device 6 calculates the absorbance A of the sample at the specific wavelength using the following formula (1), and measures the concentration of the solute contained in the sample based on the calculated absorbance A.
  • the measuring device 6 measures the intensity of light received by the light receiving element 5 in a state where only the predetermined solvent in which the solute is not dissolved is present in the flow cell 3 and the solution in which the solute is dissolved in the predetermined solvent in the flow cell 3. It is also possible to calculate the logarithm of the ratio with the intensity of the light received by the light receiving element 5 in a certain state, and calculate the value obtained by reversing the sign of the calculated logarithm as the absorbance of the solute with respect to the solvent.
  • Example of measurement method Hereinafter, an example of the process of measuring the concentration of the solute contained in the sample based on the absorbance of the sample will be described.
  • an aqueous solution of ammonia (NH 3 ) and hydrogen peroxide (H 2 O 2 ) is used as a sample will be described, but the embodiment is not limited to this.
  • the measuring device 6 may calculate the concentration of the solute from the absorbance of the sample containing the arbitrary solute. Further, in the following description, the logarithm of the ratio of the intensity of the transmitted light of only water as a solute to the intensity of the transmitted light of the sample was taken, and the value obtained by inverting the sign was taken as the absorbance of the sample.
  • FIG. 2 is a graph showing absorption spectra of aqueous ammonia solution and hydrogen peroxide solution.
  • the wavelength is plotted along the horizontal axis and the absorbance for water as the solvent is plotted along the vertical axis, and the absorbance of the aqueous ammonia solution and hydrogen peroxide solution is shown for each wavelength.
  • ammonia has an absorption peak near 1530 nanometers
  • hydrogen peroxide water has a gentle peak continuing from 1500 nanometers to 1850 nanometers.
  • the graph shown in FIG. 3 can be obtained by drawing the absorption spectrum of a sample, which is an aqueous solution in which ammonia and hydrogen peroxide are dissolved, from the absorption spectrum shown in FIG.
  • FIG. 3 is a graph showing the absorption spectrum of the sample.
  • the sample has two peaks near the absorption peak of the aqueous ammonia solution and near the absorption peak of the hydrogen peroxide solution.
  • the measuring device 6 selects two specific wavelengths and measures the concentrations of ammonia and hydrogen peroxide from the absorbance of the sample at the selected specific wavelengths. More specifically, the measuring device 6 selects, for each solute contained in the sample, a wavelength at which a peak of absorbance of the solute appears as a specific wavelength. Then, the measuring device 6 measures the absorbance of the sample at the selected specific wavelength, and calculates the concentration of each solute contained in the sample from the measured absorbance.
  • the wavelength near the absorption peak of the aqueous ammonia solution is set to a specific wavelength ⁇ 1
  • the wavelength near the absorption peak of the hydrogen peroxide solution is set to a specific wavelength ⁇ 2
  • the concentration of ammonia is [NH 3 ]
  • the concentration of hydrogen peroxide is [H 3 2 0 2 ].
  • the absorbance of the sample at a specific wavelength ⁇ 1 is specified as A 1 .
  • the absorbance of the sample at the wavelength ⁇ 2 is A 2
  • the following equations (2) and (3) are obtained.
  • the coefficient a of the formula (2) is the absorption coefficient of ammonia at the specific wavelength ⁇ 1
  • the coefficient b of the formula (2) is the absorption coefficient of hydrogen peroxide at the specific wavelength ⁇ 1
  • the coefficient c of the formula (3) is the absorption coefficient of ammonia at the specific wavelength ⁇ 2
  • the coefficient d of the formula (3) is the absorption coefficient of hydrogen peroxide at the specific wavelength ⁇ 2 .
  • Equation (4) is a matrix of absorption coefficients, as shown in Expression (5).
  • P may be described as a coefficient matrix.
  • the measurement device 6 from the sample absorbance A 2 Metropolitan in absorbance A 1 and specific wavelength lambda 2 of the sample at a specific wavelength lambda 1, the concentration of ammonia [NH 3] and the concentration of hydrogen peroxide [H 2 0 2] Can be calculated by the following equation (6).
  • FIG. 4 is a graph showing the relationship between the concentration of hydrogen peroxide solution and the absorbance of light of wavelength ⁇ 1 .
  • FIG. 5 is a graph showing the relationship between the concentration of hydrogen peroxide solution and the absorbance in the light of wavelength ⁇ 2 .
  • the absorbance of the hydrogen peroxide solution with respect to the light of each wavelength is plotted for each concentration.
  • the concentration of hydrogen peroxide solution and the absorbance have a proportional relationship with respect to light of each wavelength.
  • the coefficient for converting the concentration of the hydrogen peroxide solution into the absorbance with respect to the light having the wavelength ⁇ 1 that is, the value of the absorption coefficient b is, for example, “0.0015”.
  • the coefficient for converting the concentration of the hydrogen peroxide solution into the absorbance with respect to the light having the wavelength ⁇ 2 that is, the value of the absorption coefficient d is, for example, “0.0046”.
  • FIGS. 6 and 7 were obtained as the relationship between the concentration of ammonia and the absorbance.
  • FIG. 6 is a graph showing the relationship between the concentration of ammonia and the absorbance of light of wavelength ⁇ 1 .
  • FIG. 7 is a graph showing the relationship between the concentration of ammonia and the absorbance of light of wavelength ⁇ 2 .
  • the absorbance of ammonia with respect to light of each wavelength is plotted for each concentration.
  • the concentration of ammonia and the absorbance have a substantially proportional relationship with respect to the light of each wavelength in the concentration range of 2% to 5%.
  • the coefficient for converting the concentration of ammonia into the absorbance with respect to the light having the wavelength ⁇ 1 that is, the value of the absorption coefficient a is, for example, “0.0097”.
  • the coefficient for converting the concentration of ammonia into the absorbance with respect to the light having the wavelength ⁇ 2 that is, the value of the absorption coefficient c is, for example, “0.0043”.
  • the coefficient matrix P in the aqueous solution in which hydrogen peroxide and ammonia are dissolved can be expressed by the following equation (7) for the light of wavelength ⁇ 1 and the light of wavelength ⁇ 2 .
  • the inverse matrix P ⁇ 1 of the coefficient matrix can be expressed by the following equation (8).
  • FIG. 8 is a graph showing the relationship between the concentration of ammonia calculated from the absorbance and the concentration of ammonia calculated from the mixing volume ratio.
  • FIG. 9 is a graph showing the relationship between the concentration of hydrogen peroxide calculated from the absorbance and the concentration of hydrogen peroxide calculated from the mixing volume ratio.
  • the vertical axis represents the concentration calculated from the absorbance
  • the concentration calculated from the mixed volume ratio of ammonia or hydrogen peroxide in the aqueous solution in which ammonia and hydrogen peroxide are dissolved represents the mixed volume.
  • the relationship between the concentration calculated from the ratio and the concentration calculated from the absorbance of the sample was plotted.
  • a suitable concentration can be calculated from the absorbance in the concentration range of 2 to 5%
  • for hydrogen peroxide a suitable concentration can be calculated from the absorbance for each concentration.
  • the sample is an aqueous solution in which ammonia and hydrogen peroxide are dissolved, but the embodiment is not limited to this.
  • the measuring device 6 calculates the concentration of hydrochloric acid and hydrogen peroxide from the absorbance of the sample by performing the same process as the above-described process on the sample in which hydrochloric acid (HCl) and hydrogen peroxide are dissolved. Good.
  • FIG. 10 is a graph showing absorption spectra of hydrochloric acid and hydrogen peroxide solution.
  • the wavelength is plotted along the horizontal axis and the absorbance for water as the solvent is plotted along the vertical axis, and the absorbances of hydrochloric acid and hydrogen peroxide solution are shown for each wavelength.
  • hydrochloric acid has an absorption peak near 1825 nanometers. Therefore, the measuring device 6 calculates the coefficient matrix by setting the specific wavelength ⁇ 1 to 1825 nm, and uses the inverse matrix of the calculated coefficient matrix to measure the concentrations of hydrochloric acid and hydrogen peroxide solution from the absorbance of the sample. Good.
  • the measuring device 6 does not necessarily have to select the specific wavelength in accordance with the peak of the absorbance of the solute. For example, when the peak of the absorbance of the solute exceeds the wavelength range in which the Fabry-Perot spectroscopic tunable filter 4 can disperse, the measuring device 6 determines the upper limit of the wavelength in which the Fabry-Perot spectroscopic tunable filter 4 can disperse. Alternatively, the lower limit may be the specific wavelength.
  • the specific wavelength ⁇ 1 is set as the upper limit of the tunable filter 4 for Fabry-Perot spectroscopy
  • the specific wavelength ⁇ 2 is set as the wavelength corresponding to hydrogen peroxide
  • the concentration of an aqueous solution in which hydrochloric acid and hydrogen peroxide are dissolved is measured as a sample.
  • the coefficient matrix P for performing is calculated. More specifically, as in the case of measuring the concentration of the aqueous solution in which ammonia and hydrogen peroxide are dissolved, the coefficient matrix P is calculated from the absorption coefficients of hydrochloric acid and hydrogen peroxide, and the inverse matrix of the absorption matrix P is calculated. Using P ⁇ 1 and the formula (6), the concentrations of hydrochloric acid and hydrogen peroxide are measured from the absorbance of an aqueous solution in which hydrochloric acid and hydrogen peroxide are dissolved.
  • FIGS. 11 and 12 can be obtained for the concentrations of hydrochloric acid and hydrogen peroxide.
  • FIG. 11 is a graph showing the relationship between the concentration of hydrochloric acid calculated from the absorbance and the concentration of hydrochloric acid calculated from the mixing volume ratio.
  • FIG. 12 is a graph showing the relationship between the concentration of hydrogen peroxide calculated from the absorbance and the concentration of hydrogen peroxide calculated from the mixing volume ratio.
  • the vertical axis represents the concentration calculated from the absorbance
  • the horizontal axis represents the concentration calculated from the mixed volume ratio
  • the sample calculated from the mixed volume ratio was plotted.
  • a suitable concentration can be calculated from the absorbance.
  • FIG. 13 is a diagram showing an outline of the measurement system in the second embodiment.
  • the measurement system 10 includes an LED 11, fibers 12, 16, a light projecting unit 13, a flow cell 14, a light receiving unit 15, a spectroscopic device 17, and a measuring device 100.
  • the LED 11 is a light source as the light source device 2 and emits light including a specific wavelength corresponding to the solute.
  • the LED 11 is a light emitting element capable of outputting light having a half width of about 100 nanometers.
  • the fiber 12 is a fiber that transmits the light emitted from the LED to the light projecting unit 13, and is realized by, for example, a single-phase optical fiber or the like. Upon receiving the light emitted by the LED 11 via the fiber 12, the light projecting unit 13 emits the received light to the flow cell 14.
  • the flow cell 14 is a flow cell through which a sample flows.
  • the content of the flow cell 14 is a sample of the semiconductor cleaning liquid supplied from the cleaning liquid supply device CP to the cleaning device CM.
  • the light receiving unit 15 receives the light emitted from the light emitting unit 13 via the sample in the flow cell 14. Then, the light receiving unit 15 outputs the received light to the fiber 16. Similar to the fiber 12, the fiber 16 is a fiber that transmits the light output from the light receiving unit 15 to the spectroscopic device 17, and is realized by, for example, a single-phase optical fiber or the like.
  • the configuration shown in FIG. 13 is merely an example.
  • the measurement system 10 may not include the fibers 12, 16, the light projecting unit 13, and the light receiving unit 15.
  • the spectroscopic device 17 is a Fabry-Perot type spectroscopic device that disperses the received light when it receives the light emitted from the LED 11 through the sample. For example, the spectroscopic device 17 disperses the light received from the fiber 16 into light having a predetermined specific wavelength.
  • FIG. 14 is a diagram showing an example of a spectroscopic device according to the second embodiment.
  • the spectroscopic device 17 includes a bandpass filter 17a, an upper mirror 17b, an air gap 17c, a lower mirror 17d, a substrate 17e, a spacer 17f, a light receiving element 17g, in order from the side that receives light from the fiber 16. And a wiring board 17h.
  • the upper mirror 17b, the air gap 17c, the lower mirror 17d, and the substrate 17e correspond to the Fabry-Perot spectroscopy tunable filter 4 shown in FIG. 1, and the light receiving element 17g corresponds to the light receiving element 5 shown in FIG. ..
  • the bandpass filter 17a is a filter that attenuates the intensity of light that is incident from the fiber 16 and is outside the preset wavelength band.
  • the upper mirror 17b is a semi-transparent mirror arranged on the side of the bandpass filter 17a and has a membrane (thin film) structure.
  • the lower mirror 17d is a semi-transparent mirror that faces the upper mirror 17b, and is arranged on the light receiving element 17g side.
  • the air gap 17c is a space between the upper mirror 17b and the lower mirror 17d.
  • the substrate 17e is a substrate of the Fabry-Perot spectrometer and is transparent.
  • the spacer 17f is a spacer that holds the space between the substrate 17e and the light receiving element 17g.
  • the light-receiving element 17g is a photodiode installed on the wiring board 17h, and measures the intensity of light received through the board 17e.
  • the wiring board 17h transmits an electric signal indicating the intensity of light measured by the light receiving element 17g to the measuring apparatus 100.
  • the measuring apparatus 100 generates an electrostatic attractive force between the upper mirror 17b and the lower mirror 17d by applying a voltage between the upper mirror 17b and the lower mirror 17d, so that the upper mirror 17b having the membrane structure is connected to the lower mirror 17d.
  • the distance of the air gap 17c is adjusted by bringing it closer to the side.
  • the upper mirror 17b and the lower mirror 17d can transmit light having a wavelength corresponding to the distance of the air gap 17c, and allow the light having the transmitted wavelength to enter the light receiving element 17g via the substrate 17e.
  • the configuration of the spectroscopic device 17 shown in FIG. 14 is merely an example.
  • the measurement system 10 may employ any spectroscope other than the spectroscope 17 shown in FIG. 14 as long as the incident light is spectroscopically split into a specific wavelength by using the principle of the Fabry-Perot interferometer.
  • the measuring device 100 measures the concentration of the sample based on the intensity of the light dispersed by the spectroscopic device 17. For example, the measuring device 100 measures the concentration of the solute dissolved in the aqueous solution flowing in the flow cell 14.
  • FIG. 15 is a diagram showing an example of the functional configuration of the measuring apparatus according to the second embodiment.
  • the measuring apparatus 100 includes a light source control unit 110, a spectroscopic control unit 120, a light receiving control unit 130, an input unit 140, an output unit 150, a storage unit 160, and a control unit 170.
  • the light source control unit 110 is a control device that controls the lighting of the LED 11 under the control of the control unit 170, and is realized by, for example, a lighting circuit of the LED 11.
  • the light source control unit 110 controls the LED 11 to emit light in a predetermined wavelength band with a predetermined intensity.
  • the light source controller 110 may have various control means so that the wavelength band and intensity of the light emitted from the LED 11 are constant.
  • the spectroscopic control unit 120 is a control device that controls the spectroscopic device 17 under the control of the control unit 170, and is realized by, for example, a control circuit of the spectroscopic device 17.
  • the spectroscopic control unit 120 controls the voltage applied between the upper mirror 17b and the lower mirror 17d of the spectroscopic device 17 to appropriately control the wavelength of light received by the light receiving element 17g.
  • the light reception control unit 130 is a control device for measuring the intensity of light dispersed according to the control of the control unit 170, and is realized by, for example, a control circuit of the light receiving element 177 included in the spectroscopic device 17. For example, when the light reception control unit 130 receives an electric signal indicating the intensity of light measured by the spectroscopic device 17, the light reception control unit 130 converts the received electric signal into a numerical value indicating the intensity of light, and notifies the control unit 170 of the converted numerical value. To do.
  • the input unit 140 is an input device that receives an operation from a user, and is realized by, for example, a keyboard or a mouse.
  • the output unit 150 is an output device for outputting the measurement result of the measuring device 100, and is realized by, for example, a liquid crystal monitor, a printer, or the like.
  • the storage unit 160 is a storage device that stores various kinds of information, and is realized by a semiconductor memory device such as a RAM (Random Access Memory) or a flash memory (Flash Memory), or a storage device such as a hard disk or an optical disk. ..
  • the storage unit 160 stores various measurement logs, a solute to be measured (for example, ammonia, hydrochloric acid, hydrogen peroxide, etc.) and an extinction coefficient or a coefficient matrix preset for each set of specific wavelengths. be registered.
  • the control unit 170 is realized by a processor such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit) executing various programs stored in a storage device inside the measuring apparatus 100 using a RAM or the like as a work area. To be done. Further, the control unit 170 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • a processor such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit) executing various programs stored in a storage device inside the measuring apparatus 100 using a RAM or the like as a work area. To be done. Further, the control unit 170 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • control unit 170 has an acquisition unit 171, a calculation unit 172, and a provision unit 173.
  • the acquisition unit 171 controls the LED 11 and the spectroscopic device 17, and acquires the intensity of light of a specific wavelength that the spectroscopic device 17 disperses through the sample.
  • the acquisition unit 171 when the acquisition unit 171 receives from the input unit 140 the selection of the target (measurement target) whose concentration is to be measured, such as solute, the acquisition unit 171 acquires the light intensity of the specific wavelength corresponding to the measurement target selected from the light passing through the sample. To do. For example, when ammonia and hydrogen peroxide are selected, the acquisition unit 171 selects a specific wavelength corresponding to ammonia and a specific wavelength corresponding to hydrogen peroxide. Then, the acquisition unit 171 controls the light source control unit 110 to turn on the LED 11 to emit light in a wavelength band including a specific wavelength.
  • the acquisition unit 171 also controls the spectroscopic control unit 120 to disperse light of a specific wavelength from the light received by the spectroscopic device 17 via the sample. Then, the acquisition unit 171 acquires the intensity of the light of the specific wavelength measured by the spectroscopic device 17 via the light reception control unit 130. For example, the acquisition unit 171 measures the light intensity of a specific wavelength corresponding to ammonia, and then measures the light intensity of a specific wavelength corresponding to hydrogen peroxide. And the acquisition part 171 acquires the intensity
  • the calculation unit 172 measures the concentration of the measurement target based on the measured intensities of the light having the specific wavelengths. For example, the calculation unit 172 measures the densities of the plurality of measurement targets based on the measured intensities of the light of the plurality of specific wavelengths. As a more specific example, when the calculation unit 172 acquires the intensity of light of a specific wavelength corresponding to ammonia and the intensity of light of a specific wavelength corresponding to hydrogen peroxide, the calculation unit 172 uses the above-described formula (8). The inverse matrix P ⁇ 1 shown and the equation (6) are used to calculate the concentrations of ammonia and hydrogen peroxide, respectively.
  • the calculation unit 172 calculates the concentration of each measurement target based on the matrix based on the extinction coefficient that converts the concentration of each measurement target into the absorbance at the specific wavelength and the absorbance based on the intensity of the measured light of the specific wavelength. To calculate.
  • the providing unit 173 provides the user with the concentration of each measurement target measured by the calculation unit 172. For example, the providing unit 173 outputs a value indicating the density of the measurement target selected by the user via the output unit 150.
  • FIG. 16 is a flowchart showing an example of operation timing of the measurement system according to the second embodiment.
  • the measuring apparatus 100 causes the LED 11 which is a light source to emit light (step S101).
  • the spectroscopic device 17 receives the light emitted from the LED 11 that is the light source via the measurement target (step S102). Then, the spectroscopic device 17 measures the light of the specific wavelength that is separated by using the tunable filter for Fabry-Perot spectroscopy (step S103).
  • the measuring apparatus 100 calculates the absorbance of the sample at the specific wavelength based on the intensity of the measurement light (step S104), and then determines whether or not all the specific wavelengths have been measured (step S105). Then, when there is a specific wavelength that has not been measured (step S105: No), the measuring apparatus 100 causes the spectroscopic device 17 to execute step S103. On the other hand, when measuring all the specific wavelengths (step S105: Yes), the measuring apparatus 100 uses the inverse matrix of the coefficient matrix that converts the absorbance at each specific wavelength into the concentration, and calculates the concentration of the measurement target from the calculated absorbance. Is calculated (step S106). After that, the measuring apparatus 100 outputs the calculated concentration as the measurement result (step S107), and ends the process.
  • the measuring apparatus 100 uses the Fabry-Perot type spectroscopic device to disperse the light of the specific wavelength corresponding to the measurement target from the light received through the sample, and measure the intensity of the spectroscopically-specified light of the specific wavelength. Based on this, the concentration of the measurement target is measured.
  • the measuring apparatus 100 can accurately measure the concentration of the measurement target without having a configuration such as a diffraction grating or a color filter. Therefore, the concentration of the measurement target can be accurately measured with a simple configuration. can do.
  • the wavelength at which the absorbance peak of ammonia or hydrogen peroxide to be measured exists is selected as the specific wavelength. In this way, when the wavelength at which the peak of the absorbance is present is set to the specific wavelength, the measurement accuracy of the concentration can be improved.
  • the embodiment is not limited to this.
  • the measurement systems 1 and 10 select at least a specific wavelength for each measurement target of the concentration contained in the sample, and measure the concentration of each measurement target from the intensity of the selected specific wavelength. May be selected as
  • the measurement systems 1 and 10 may select the specific wavelength based on the range of wavelengths that the Fabry-Perot spectroscopic tunable filter 4 and the spectroscopic device 17 can disperse.
  • the measurement systems 1 and 10 may employ an arbitrary wavelength as the specific wavelength according to the wavelength band or the like from which the light source device 2 or the LED 11 can emit.
  • the measurement system 1 specifies any two or more wavelengths from the range of wavelengths that the Fabry-Perot spectroscopy tunable filter 4 can disperse.
  • the wavelength of the solute may be selected, and the concentration of each solute may be measured from the absorbance of each solute and the absorbance of the aqueous solution of the sample at the selected wavelength.
  • the measurement systems 1 and 10 are required to be able to disperse light in a wavelength band including the same number of specific wavelengths as the measurement target.
  • the measurement system 1 when measuring the concentration of each measurement target from the absorbance of a sample containing a plurality of measurement targets, the measurement system 1 outputs from the light source device 2 light in a wavelength band including a plurality of specific wavelengths corresponding to each measurement target. It suffices to emit light, disperse light of a specific wavelength from the light passing through the sample, and calculate the concentration of the measurement target from the intensity of the disperse light.
  • the measurement systems 1 and 10 when the sample includes the first measurement target and the second measurement target, the measurement systems 1 and 10 have the first specific wavelength corresponding to the first measurement target and the second specific wavelength corresponding to the second measurement target. To set. Subsequently, the measurement systems 1 and 10 measure the absorbance of the first measurement target at each of the first specific wavelength and the second specific wavelength, and the absorbance of the second measurement target at each of the first specific wavelength and the second specific wavelength. From, the inverse matrix of the coefficient matrix is calculated. Then, the measurement systems 1 and 10 may calculate the concentration of the first measurement target and the concentration of the second measurement target from the absorbance and the inverse matrix of the sample at each of the first specific wavelength and the second specific wavelength. ..
  • the measurement systems 1 and 10 may measure the concentration of each solute from the absorbance of the sample in which three or more solutes are dissolved, and all or some of the solutes dissolved in the sample may be measured. May be measured. For example, let n be the number of solutes whose concentration is to be measured among the solutes dissolved in the sample. In such a case, the measurement systems 1 and 10 select at least n specific wavelengths, and, like the equations (2) and (3), calculate an equation for calculating the absorbance of the sample from the concentrations of the n solutes. By setting for each specific wavelength, a coefficient matrix P that is an n ⁇ n matrix is obtained. Then, the measuring device 6 may measure the absorbance of the sample for each of the n specific wavelengths, and measure the concentration of each solute from the inverse matrix P ⁇ 1 and the measured absorbance.
  • the measurement systems 1 and 10 may measure the concentration using a predetermined equation that calculates the concentration of the solute from the absorbance, instead of using the determinant. Further, in order to further improve the measurement accuracy, the measurement systems 1 and 10 select m (m>n) specific wavelengths for n solutes, and calculate the n number of specific wavelengths from the absorbance for each selected specific wavelength. The solute concentration may be measured. For example, when converting the concentration of hydrogen peroxide into the absorbance using two specific wavelengths, the measurement systems 1 and 10 calculate the concentration of hydrogen peroxide from the average value of the concentrations calculated from the absorbance of the sample measured for each specific wavelength. The concentration may be measured.
  • the measurement systems 1 and 10 may measure the concentration of each measurement target based on the intensity of light of m specific wavelengths where n ⁇ m, for n measurement targets. For example, the measurement systems 1 and 10 measure the light intensity of three or more specific wavelengths with respect to two measurement targets, and calculate the concentration candidates of each measurement target from the measured light intensities. When such a calculation is performed, the measurement systems 1 and 10 obtain a plurality of concentration candidates for one measurement target. Therefore, the measurement systems 1 and 10 calculate the concentration of the measurement target based on the obtained average value of the candidates and the like.
  • the measurement systems 1 and 10 include the center wavelength and the half width of the light emitted from the light source device 2 and the LED 11, the wavelength band in which the Fabry-Perot spectroscopic tunable filter 4 and the spectroscopic device 17 can disperse, and the measurement target included in the sample.
  • Various weightings may be set when obtaining the average value of the candidates, based on the type of the, the assumed concentration, and the like.
  • the measurement systems 1 and 10 may use not only an aqueous solution in which various solutes are dissolved but also a solution such as an organic solvent in which various solutes are dissolved as a sample. Further, in such a case, the measurement systems 1 and 10 may employ the absorbance calculated from the ratio of the absorbance of the solvent and the absorbance of the solute using the formula (1). Further, the measurement systems 1 and 10 may measure not only the solution but also various gases such as a mixed gas as a sample and measure the concentration of any gas among the gases contained in the sample. Further, the measurement systems 1 and 10 may measure the concentration of the substance serving as a solvent instead of the solute.
  • the measurement device 6 may be a device that has the light source device 2, the Fabry-Perot spectroscopy tunable filter 4, and the light receiving element 5, and that measures the concentration of the measurement target in the sample in the flow cell 3.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

本願に係る測定システム10は、濃度の測定対象と対応する特定波長を含む光を出射する光源部11と、測定対象を介して光源部11から出射された光を分光するファブリペロー型の分光部17と、分光部17により分光された特定波長の光の強度に基づいて、測定対象の濃度を測定する測定部100とを有する。

Description

測定装置、測定システムおよび測定方法
 本発明は、溶液および気体の濃度を測定する測定装置、測定システムおよび測定方法に関する。
 従来、光を用いて半導体のエッチング液や洗浄液といった水溶液の濃度を測定する技術が知られている。このような技術の一例として、発光ダイオードが出射した光を水溶液に照射し、水溶液を介して受光した光の強度から水溶液の濃度を測定する技術が知られている。また、光源から、溶質が吸収する波長の光を出射し、水溶液を介する前、あるいは水溶液を介した後に回折格子やカラーフィルタを用いて分光し、分光した光の吸光度に基づいて、水溶液の濃度を測定する技術が知られている。
特開平11-37936号公報 特許第3578470号公報
 しかしながら、上述した従来技術では、水溶液の濃度を簡易な構成で精度良く測定しているとは言えない場合がある。
 例えば、発光ダイオードが出射する光を用いて水溶液の吸光度を測定した場合、ブロードな波長の光を用いることとなり、水溶液の濃度を精度良く測定することができない。また、回折格子やカラーフィルタを用いて光を分光した場合、光学系が複雑化してしまう。
 なお、上述した従来技術と同様の構成により、水溶液の濃度以外にも、各種溶質が溶解した溶液や混合気体における各気体の濃度を測定する態様が考えられる。しかしながら、上述した従来技術では、各種溶液における溶質や気体の濃度を簡易な構成で精度良く測定できるとは言えない。
 本願はこのような課題を解決するためのものであり、水溶液といった各種溶液に溶解する溶質や混合気体における各気体等の濃度を簡易な構成で精度良く測定することを目的としている。
 本願に係る測定装置は、濃度の測定対象と対応する特定波長を含む光を出射する光源部と、測定対象を介して光源部から出射された光を分光するファブリペロー型の分光部と、分光部により分光された光の強度に基づいて、測定対象の濃度を測定する測定部とを有する。
 上記測定装置において、光源部は、特定波長を含む光を出射可能な発光素子を1つ以上有してもよい。
 また、上記測定装置において、光源部は、測定対象と対応する複数の特定波長を含む光を出射し、分光部は、測定対象と対応する複数の特定波長を含む光を分光し、測定部は、分光部により分光された複数の特定波長の光の強度に基づいて、測定対象の濃度を測定してもよい。
 また、上記測定装置において、光源部は、複数の測定対象のそれぞれと対応する特定波長を含む光を出射し、分光部は、複数の特定波長を含む光を分光し、測定部は、分光部により分光された複数の特定波長の光の強度に基づいて、複数の測定対象の濃度を測定してもよい。
 また、上記測定装置において、光源部は、少なくとも、複数の測定対象と同数の特定波長を含む光を出射し、分光部は、光源部が出射した複数の特定波長を含む光を分光し、測定部は、分光部により分光された複数の特定波長の光の強度に基づいて、複数の測定対象の濃度を測定してもよい。
 また、上記測定装置において、測定部は、各測定対象の濃度を特定波長における吸光度に変換する吸光係数に基づく行列と、分光部により分光された特定波長の光の強度に基づいた吸光度とに基づいて、各測定対象の濃度を算出してもよい。
 また、上記測定装置において、光源部は、測定対象が吸収する光の波長を特定波長とした光を出射してもよい。
 また、上記測定装置において、光源部は、所定の溶媒に溶解する測定対象と対応する特定波長を含む光を出射し、分光部は、所定の溶媒に測定対象が溶解した溶液を介して光源部から出射された光を受光してもよい。
 上述した測定装置によれば、濃度の測定対象と対応する特定波長を含む光を測定対象を介して受光し、ファブリペロー型の分光部により、受光した光を分光し、分光して得られた特定波長の光の強度に基づいて、測定対象の濃度を測定する。このように、測定装置は、ブロードな波長の光を用いて測定対象の濃度を測定するのではなく、ファブリペロー型の分光器を用いて、受光した光から測定対象と対応する特定波長を分光し、分光した特定波長の光の強度に基づいて、測定対象の濃度を測定する。この結果、測定装置は、回折格子やカラーフィルタ等の複雑な光学系を有さずとも、精度良く測定対象の濃度を推定することができる。
図1は、第1実施形態における測定手法を説明する図である。 図2は、アンモニア水溶液および過酸化水素水の吸収スペクトルを示すグラフである。 図3は、サンプルの吸収スペクトルを示すグラフである。 図4は、波長λの光における過酸化水素水の濃度と吸光度との関係を示すグラフである。 図5は、波長λの光における過酸化水素水の濃度と吸光度との関係を示すグラフである。 図6は、波長λの光におけるアンモニアの濃度と吸光度との関係を示すグラフである。 図7は、波長λの光におけるアンモニアの濃度と吸光度との関係を示すグラフである。 図8は、吸光度から計算されたアンモニアの濃度と、混合体積比から計算したアンモニアの濃度との関係を示すグラフである。 図9は、吸光度から計算された過酸化水素の濃度と、混合体積比から計算した過酸化水素の濃度との関係を示すグラフである。 図10は、塩酸と過酸化水素水の吸収スペクトルを示すグラフである。 図11は、吸光度から計算された塩酸の濃度と、混合体積比から計算した塩酸の濃度との関係を示すグラフである。 図12は、吸光度から計算された過酸化水素の濃度と、混合体積比から計算した過酸化水素の濃度との関係を示すグラフである。 図13は、第2実施形態における測定システムの概要を示す図である。 図14は、第2実施形態に係る分光装置の一例を示す図である。 図15は、第2実施形態に係る測定装置が有する機能構成の一例を示す図である。 図16は、第2実施形態に係る測定システムの動作タイミングの一例を示すフローチャートである。
 次に、実施の形態について図面を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。
[第1実施形態]
 従来、半導体の洗浄液やエッチング液として、塩酸、硝酸、リン酸、水酸化アンモニウム、過酸化水素等の水溶液が用いられており、水溶液の吸光度に基づいて、水溶液の濃度を測定する技術が知られている。単純には、水溶液に照射する光の波長領域を狭くすることで、水溶液中における各種溶質の濃度を簡易な構成で精度良く測定できると考えられる。
 ここで、LED(Light Emitting Diode)等の半導体発光素子を採用した場合、水溶液に照射される光の波長領域をハロゲンランプ等と比較して狭くすることができるものの、依然として波長帯がブロードなため、水溶液の濃度を精度良く測定しているとは言えない。また、物質により吸収しやすい光の波長は異なるため、光源から出射する光の波長領域を狭めた場合、混酸等、複数の溶質が溶解した水溶液から、いずれかの溶質の濃度しか測定することができない。
 また、光源としてハロゲンランプを採用した場合は、光源から出射する光を回折格子やカラーフィルタを用いて分光することとなり、測定装置の構成が複雑となる。また、ハロゲンランプは、LED等の半導体発光素子と比較して、寿命が短く、交換の手間がかかる。
 一方で、水溶液に溶解している溶質が何であるかが予め解っている場合、溶質の濃度測定において適切と考えられる波長(以下、「特定波長」と記載する。)の光を含んだ波長帯の光を出射し、水溶液を介して受光した光を、特定波長の光に分光すれば、精度よく溶質の濃度測定を実現できると考えられる。このような点に着眼し、小型で安価であるが分光可能な波長領域が比較的狭いファブリペロー型の分光器を用いて、受光した光を特定波長の光に分光することにより、課題を解決できることに想到した。
[測定手法について]
 以下、図1を用いて、第1実施形態における測定手法について説明する。図1は、第1実施形態における測定手法を説明する図である。図1に示す例では、水溶液等といった液体のサンプルに溶解する溶質の濃度を測定する測定システム1の構成を概念的に示した。
 例えば、測定システム1は、光源装置2、フローセル3、ファブリペロー分光用チューナブルフィルタ4、受光素子5、および測定装置6を有する。
 光源装置2は、光を投光可能な光源装置であり、例えば、ハロゲンランプやLED等の光源により実現される。例えば、光源装置2は、測定装置6による制御に従って、所定の強度の光を出射する。このようにして光源装置2により出射された光は、光路OPに沿って、フローセル3、およびファブリペロー分光用チューナブルフィルタ4を介し、受光素子5へと伝達される。
 ここで、光源装置2は、1つ若しくは同時に濃度を測定する溶質のそれぞれと対応する特定波長を含む波長帯の光を出射可能な光源であればよい。例えば、光源装置2は、半値幅が±100ナノメートル程度のLEDにより実現可能であり、溶質がアンモニアおよび過酸化水素である場合、少なくとも、1525ナノメートルから1600ナノメートルの波長帯の光を十分な強度で出力可能な光源であればよい。
 フローセル3は、光源装置2が出射する光に対して透明な素材(例えば、石英等)からなり、内部に水溶液等のサンプルを流すことができる。なお、フローセル3は、試験管やセル等により実現されてもよい。また、フローセル3は、全体が透明な素材である必要はなく、光源装置2から出射された光が入射される入射部分と、入射された光をサンプルを介して出射する出射部分とが透明であればよい。
 ファブリペロー分光用チューナブルフィルタ4は、透過可能な光の波長を変更することができるファブリペロー干渉計(Fabry Perot Interferometer)であり、平行に配置された2つの半透鏡を有する。例えば、ファブリペロー分光用チューナブルフィルタ4は、光源装置2側に設置された半透鏡である上部ミラーUMと、受光素子5側に配置された半透鏡である下部ミラーDMとを有する。そして、ファブリペロー分光用チューナブルフィルタ4は、上部ミラーUMと下部ミラーDMとの間隔を制御することで、フローセル3を介して受光した光から、上部ミラーUMと下部ミラーDMとの間隔に応じた波長の光を透過する。例えば、ファブリペロー分光用チューナブルフィルタ4は、測定装置6からの制御に従い、サンプルを介して受光した光から溶質と対応する特定波長の光を透過する。
 受光素子5は、ファブリペロー分光用チューナブルフィルタ4により透過された光を受光すると、受光した光の強度を測定する素子であり、例えば、フォトダイオード等の光電素子等により実現される。例えば、受光素子5は、透過された光を受光すると、受光した光の強さを示す電気信号を生成し、生成した電気信号を測定装置6へと伝達する。
 測定装置6は、受光素子5が受光した光の強度に基づいて、サンプルに含まれる溶質の濃度を測定する。例えば、測定装置6は、光源装置2を制御し、特定波長を含む波長帯の光を出射させ、ファブリペロー分光用チューナブルフィルタ4を制御して、特定波長の光を透過させる。測定装置6は、受光素子5が受光した特定波長の光の強度を測定する。
 ここで、測定装置6は、フローセル3内にサンプルがない状態で受光素子5が受光した光の強度をIとして測定し、フローセル3内にサンプルがある状態で受光素子5が受光した光の強度をIとして測定する。そして、測定装置6は、以下の式(1)を用いて、特定波長におけるサンプルの吸光度Aを算出し、算出した吸光度Aに基づいて、サンプルに含まれる溶質の濃度を測定する。
Figure JPOXMLDOC01-appb-M000001
 なお、測定装置6は、フローセル3内に溶質が溶解していない所定の溶媒のみがある状態で受光素子5が受光した光の強度と、フローセル3内に溶質が所定の溶媒に溶解した溶液がある状態で受光素子5が受光した光の強度との比率の対数を算出し、算出した対数の符号を逆転させた値を、溶質の溶媒に対する吸光度として算出してもよい。
[測定手法の一例について]
 以下、サンプルの吸光度に基づいて、サンプルに含まれる溶質の濃度を測定する処理の一例について説明する。なお、以下の説明では、アンモニア(NH)および過酸化水素(H)の水溶液をサンプルとする例について説明するが、実施形態は、これに限定されるものではない。測定装置6は、任意の溶質を含むサンプルの吸光度から、溶質の濃度の算出を行ってよい。また、以下の説明では、溶質となる水のみの透過光の強度に対し、サンプルの透過光の強度との割合の対数を取り、符号を反転させた値をサンプルの吸光度とした。
 例えば、図2は、アンモニア水溶液および過酸化水素水の吸収スペクトルを示すグラフである。なお、図2に示す例では、横軸方向に波長を、縦軸方向に溶媒である水に対する吸光度を採り、アンモニア水溶液および過酸化水素水の吸光度を、波長ごとに示した。図2に示すように、アンモニアは、1530ナノメートル付近に吸光度のピークを有し、過酸化水素水は、1500ナノメートルから1850ナノメートルにかけて緩やかなピークが続いている。
 図2に示す吸収スペクトルから、アンモニアおよび過酸化水素が溶解した水溶液であるサンプルの吸収スペクトルを模式的に描くと、図3に示すグラフを得ることができる。図3は、サンプルの吸収スペクトルを示すグラフである。図3に示すように、サンプルは、アンモニア水溶液の吸光度のピーク付近と、過酸化水素水の吸光度のピーク付近との2か所にピークを有している。
 ここで、測定装置6は、2つの特定波長を選択し、選択した特定波長におけるサンプルの吸光度から、アンモニアおよび過酸化水素の濃度をそれぞれ測定する。より具体的には、測定装置6は、サンプルに含まれる溶質ごとに、溶質の吸光度のピークが現れる波長を特定波長として選択する。そして、測定装置6は、選択した特定波長におけるサンプルの吸光度を測定し、測定した吸光度から、サンプルに含まれる各溶質の濃度を算出する。
 例えば、アンモニア水溶液の吸収ピーク付近の波長を特定波長λ、過酸化水素水の吸収ピーク付近の波長を特定波長λとし、アンモニアの濃度を[NH]、過酸化水素の濃度を[H]とする。ここで、ランベルト・ベールの法則によれば、光路長が一定であるならば、サンプルの吸光度はサンプルに含まれる溶質の濃度に比例するので、特定波長λにおけるサンプルの吸光度をA、特定波長λにおけるサンプルの吸光度をAとすると、以下の式(2)および(3)を得ることとなる。なお、式(2)の係数aは、特定波長λにおけるアンモニアの吸光係数であり、式(2)の係数bは、特定波長λにおける過酸化水素の吸光係数となる。また、式(3)の係数cは、特定波長λにおけるアンモニアの吸光係数であり、式(3)の係数dは、特定波長λにおける過酸化水素の吸光係数となる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 ここで、式(2)、式(3)を1つの行列式に変形すると、以下の式(4)を得ることができる。ここで、式(4)に示すPは、式(5)に示すように、吸光係数の行列である。なお、以下の説明では、Pを係数行列と記載する場合がある。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 よって、測定装置6は、特定波長λにおけるサンプルの吸光度Aと特定波長λにおけるサンプルの吸光度Aとから、アンモニアの濃度[NH]および過酸化水素の濃度[H]を以下の式(6)で求めることができる。
Figure JPOXMLDOC01-appb-M000006
[吸光係数の一例について]
 続いて、吸光係数の一例について説明する。なお、以下の説明では、特定波長λと特定波長λとの吸光度から吸光係数を算出する処理の一例について説明する。
 例えば、式(2)および式(3)においてアンモニアの濃度[NH]を0とすれば、過酸化水素水における過酸化水素の濃度と、過酸化水素水の吸光度Aおよび吸光度Aから、吸光係数bおよびdを求めることができる。そこで、波長λの光、および、波長λの光について、過酸化水素水の濃度を変化させながら過酸化水素水の吸光度Aおよび吸光度Aを測定した所、図4および図5を得ることができる。
 図4は、波長λの光における過酸化水素水の濃度と吸光度との関係を示すグラフである。また、図5は、波長λの光における過酸化水素水の濃度と吸光度との関係を示すグラフである。なお、図4および図5に示す例では、縦軸を吸光度とし、横軸を過酸化水素の濃度とした場合に、各波長の光に対する過酸化水素水の吸光度を濃度ごとにプロットした。
 図4および図5に示すように、各波長の光に対して、過酸化水素水の濃度と吸光度とは、比例関係を有することが解る。また、図4に示すように、波長λの光に対して、過酸化水素水の濃度を吸光度に変換する係数、すなわち、吸光係数bの値は、例えば、「0.0015」となる。また、図5に示すように、波長λの光に対して、過酸化水素水の濃度を吸光度に変換する係数、すなわち、吸光係数dの値は、例えば、「0.0046」となる。
 続いて、アンモニアと過酸化水素が溶解した水溶液の吸光度を実測し、実測した吸光度からそれぞれの波長における過酸化水素による吸光度を差し引いた値をアンモニアによる吸光度として算出した。このような処理の結果、アンモニアの濃度と吸光度との関係として図6および図7を得ることができた。
 図6は、波長λの光におけるアンモニアの濃度と吸光度との関係を示すグラフである。また、図7は、波長λの光におけるアンモニアの濃度と吸光度との関係を示すグラフである。なお、図6および図7に示す例では、縦軸を吸光度とし、横軸をアンモニアの濃度とした場合に、各波長の光に対するアンモニアの吸光度を濃度ごとにプロットした。
 図6、図7に示すように、各波長の光に対し、濃度が2%~5%の範囲においては、アンモニアの濃度と吸光度とがほぼ比例関係を有することが解る。また、図6に示すように、波長λの光に対して、アンモニアの濃度を吸光度に変換する係数、すなわち、吸光係数aの値は、例えば、「0.0097」となる。また、図7に示すように、波長λの光に対して、アンモニアの濃度を吸光度に変換する係数、すなわち、吸光係数cの値は、例えば、「0.0043」となる。
 このような実測値から、波長λの光、および、波長λの光に対し、過酸化水素およびアンモニアが溶解した水溶液における係数行列Pは、以下の式(7)で示すことができ、係数行列の逆行列P-1は、以下の式(8)で示すことができる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 このような逆行列P-1と式(6)とを用いて、アンモニアと過酸化水素が溶解した水溶液の吸光度からアンモニアと過酸化水素との濃度を測定する実験を行った。このような実験により、アンモニアの濃度と過酸化水素との濃度について、図8および図9に示す結果を得た。
 図8は、吸光度から計算されたアンモニアの濃度と、混合体積比から計算したアンモニアの濃度との関係を示すグラフである。また、図9は、吸光度から計算された過酸化水素の濃度と、混合体積比から計算した過酸化水素の濃度との関係を示すグラフである。なお、図8および図9に示す例では、縦軸を吸光度から計算した濃度とし、アンモニアと過酸化水素とが溶解した水溶液におけるアンモニア若しくは過酸化水素の混合体積比から計算した濃度として、混合体積比から計算した濃度とサンプルの吸光度から計算した濃度との関係をプロットした。図8、図9に示すように、アンモニアについては、濃度が2~5%の範囲で吸光度から好適な濃度を算出することができ、過酸化水素については、各濃度について、吸光度から好適な濃度を算出することができた。
[他の溶質について]
 なお、上述した例では、アンモニアと過酸化水素が溶解した水溶液をサンプルとしたが、実施形態は、これに限定されるものではない。例えば、測定装置6は、塩酸(HCl)と過酸化水素とが溶解したサンプルについて、上述した処理と同様の処理を実行することにより、サンプルの吸光度から塩酸および過酸化水素の濃度を算出してもよい。ここで、図10は、塩酸と過酸化水素水の吸収スペクトルを示すグラフである。
 なお、図10に示す例では、横軸方向に波長を、縦軸方向に溶媒である水に対する吸光度を採り、塩酸および過酸化水素水の吸光度を、波長ごとに示した。図10に示すように、塩酸は、1825ナノメートル付近で吸光度のピークを有する。そこで、測定装置6は、特定波長λを1825ナノメートルとして係数行列を算出し、算出した係数行列の逆行列を用いて、サンプルの吸光度から塩酸および過酸化水素水の濃度を測定してもよい。
 なお、測定装置6は、必ずしも溶質が有する吸光度のピークに合わせて特定波長を選択する必要はない。例えば、測定装置6は、溶質が有する吸光度のピークがファブリペロー分光用チューナブルフィルタ4の分光可能な波長の範囲を超えている場合、ファブリペロー分光用チューナブルフィルタ4が分光可能な波長の上限若しくは下限を特定波長としてもよい。
 例えば、特定波長λをファブリペロー分光用チューナブルフィルタ4の上限とし、特定波長λを過酸化水素に対応する波長とし、サンプルとして、塩酸と過酸化水素とが溶解した水溶液の濃度を測定するための係数行列Pを算出する。より具体的には、上述したアンモニアと過酸化水素とが溶解した水溶液の濃度を測定する場合と同様に、塩酸と過酸化水素の吸光係数から係数行列Pを算出し、吸光行列Pの逆行列P-1と式(6)と用いて、塩酸と過酸化水素が溶解した水溶液の吸光度から塩酸と過酸化水素との濃度を測定する。
 このような例においては、塩酸の濃度と過酸化水素との濃度について、図11および図12に示す関係を得ることができる。図11は、吸光度から計算された塩酸の濃度と、混合体積比から計算した塩酸の濃度との関係を示すグラフである。また、図12は、吸光度から計算された過酸化水素の濃度と、混合体積比から計算した過酸化水素の濃度との関係を示すグラフである。なお、図11および図12に示す例では、図8、図9と同様に、縦軸を吸光度から計算した濃度とし、横軸を混合体積比から計算した濃度として、混合体積比から計算したサンプルの濃度とサンプルの吸光度から計算した濃度との関係をプロットした。図11、図12に示すように、塩酸および過酸化水素ともに、各濃度について、吸光度から好適な濃度を算出することができる。
[第2実施形態]
 以下、上述した測定手法を用いてサンプルの濃度を測定する第2実施形態の一例について、図13を用いて説明する。図13は、第2実施形態における測定システムの概要を示す図である。図13に示す例では、測定システム10は、LED11、ファイバ12、16、投光部13、フローセル14、受光部15、分光装置17、および測定装置100を有する。
 LED11は、光源装置2としての光源であり、溶質と対応する特定波長を含む光を出射する。例えば、LED11は、半値幅が100ナノメートル程度の光を出力可能な発光素子である。
 ファイバ12は、LEDから出射された光を投光部13へと伝達するファイバであり、例えば、単相の光ファイバ等により実現される。投光部13は、ファイバ12を介して、LED11が出射した光を受光すると、受光した光をフローセル14へと出射する。
 フローセル14は、サンプルが流れるフローセルである。例えば、図13に示す例では、フローセル14の内容には、洗浄液供給装置CPから洗浄装置CMへと供給される半導体の洗浄液がサンプルとして流れている。
 受光部15は、投光部13から投光された光を、フローセル14内のサンプルを介して受光する。そして、受光部15は、受光した光をファイバ16へと出力する。ファイバ16は、ファイバ12と同様に、受光部15から出力された光を分光装置17へと伝達するファイバであり、例えば、単相の光ファイバ等により実現される。なお、図13に示す構成は、あくまで一例である。例えば、測定システム10は、ファイバ12、16、投光部13、および受光部15を有さずともよい。
 分光装置17は、サンプルを介してLED11から出射された光を受光すると、受光した光を分光するファブリペロー型の分光装置である。例えば、分光装置17は、ファイバ16から受光した光を、所定の特定波長の光に分光する。
 例えば、図14は、第2実施形態に係る分光装置の一例を示す図である。図14に示すように、分光装置17は、ファイバ16から光を受光する側から順に、バンドパスフィルタ17a、上部ミラー17b、エアギャップ17c、下部ミラー17d、基板17e、スペーサ17f、受光素子17g、および配線基板17hを有する。なお、上部ミラー17b、エアギャップ17c、下部ミラー17d、および基板17eは、図1に示すファブリペロー分光用チューナブルフィルタ4に対応し、受光素子17gは、図1に示す受光素子5に対応する。
 バンドパスフィルタ17aは、ファイバ16から入射された光のうち、予め設定された波長帯以外の光の強度を減衰させるフィルタである。上部ミラー17bは、バンドパスフィルタ17a側に配置された半透鏡であり、メンブレン(薄膜)構造を有している。また、下部ミラー17dは、上部ミラー17bと対向する半透鏡であり、受光素子17g側に配置されている。エアギャップ17cは、上部ミラー17bおよび下部ミラー17dの間の空間である。また、基板17eは、ファブリペロー分光計の基板であり、透過性を有する。
 スペーサ17fは、基板17eと受光素子17gとの間隔を保持するスペーサである。また、受光素子17gは、配線基板17h上に設置されたフォトダイオードであり、基板17eを介して受光する光の強度を測定する。配線基板17hは、受光素子17gにより測定された光の強度を示す電気信号を、測定装置100へと伝達する。
 ここで、測定装置100は、上部ミラー17bおよび下部ミラー17d間に電圧を印加することで、上部ミラー17bおよび下部ミラー17d間に静電引力を発生させ、メンブレン構造の上部ミラー17bを下部ミラー17d側に近づけることで、エアギャップ17cの距離を調整する。そして、上部ミラー17bおよび下部ミラー17dは、エアギャップ17cの距離に応じた波長の光を透過し、基板17eを介して、透過した波長の光を受光素子17gに入射させることができる。
 なお、図14に示す分光装置17の構成は、あくまで一例である。測定システム10は、図14に示す分光装置17以外にも、ファブリペロー干渉計の原理を用いて入射された光を特定波長に分光するのであれば、任意の分光計を採用してよい。
 図13に戻り、説明を続ける。測定装置100は、分光装置17により分光された光の強度に基づいて、サンプルの濃度を測定する。例えば、測定装置100は、フローセル14内を流れる水溶液に溶解している溶質の濃度を測定する。
[測定装置の機能構成の一例]
 以下、図15を用いて、測定装置100が有する機能構成の一例について説明する。図15は、第2実施形態に係る測定装置が有する機能構成の一例を示す図である。図15に示すように、測定装置100は、光源制御部110、分光制御部120、受光制御部130、入力部140、出力部150、記憶部160、および制御部170を有する。
 光源制御部110は、制御部170からの制御に従ってLED11の点灯を制御する制御装置であり、例えば、LED11の点灯回路等により実現される。例えば、光源制御部110は、LED11を制御し、所定の波長帯の光を所定の強度で出射させる。なお、光源制御部110は、LED11から出射される光の波長帯や強度が一定になるように、各種の制御手段を有していてもよい。
 分光制御部120は、制御部170からの制御に従って分光装置17を制御する制御装置であり、例えば、分光装置17の制御回路により実現される。例えば、分光制御部120は、分光装置17が有する上部ミラー17bと下部ミラー17dとの間に印加する電圧を制御することで、受光素子17gが受光する光の波長を適宜制御する。
 受光制御部130は、制御部170からの制御に従って分光された光の強度を測定するための制御装置であり、例えば、分光装置17が有する受光素子177の制御回路により実現される。例えば、受光制御部130は、分光装置17が測定した光の強度を示す電気信号を受付けると、受付けた電気信号を光の強度を示す数値に変換し、変換後の数値を制御部170に通知する。
 入力部140は、利用者からの操作を受付ける入力装置であり、例えば、キーボードやマウス等により実現される。また、出力部150は、測定装置100による測定結果を出力するための出力装置であり、例えば、液晶モニタやプリンタ等により実現される。
 記憶部160は、各種の情報を記憶する記憶装置であり、例えば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。例えば、記憶部160には、各種の測定ログや、測定対象となる溶質(例えば、アンモニア、塩酸若しくは過酸化水素等)と特定波長ごとの組ごとに予め設定された吸光係数や係数行列等が登録される。
 制御部170は、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサによって、測定装置100内部の記憶装置に記憶されている各種プログラムがRAM等を作業領域として実行されることにより実現される。また、制御部170は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。
 図15に示す例では、制御部170は、取得部171、演算部172、および提供部173を有する。取得部171は、LED11および分光装置17を制御し、分光装置17がサンプルを介して分光した特定波長の光の強度を取得する。
 例えば、取得部171は、溶質等といった濃度を測定する対象(測定対象)の選択を入力部140から受付けると、サンプルを介した光から選択された測定対象と対応する特定波長の光強度を取得する。例えば、取得部171は、アンモニアと過酸化水素とが選択された場合、アンモニアと対応する特定波長と、過酸化水素と対応する特定波長とを選択する。そして、取得部171は、光源制御部110を制御し、LED11を点灯させることで、特定波長を含む波長帯の光を出射させる。
 また、取得部171は、分光制御部120を制御し、サンプルを介して分光装置17が受光した光から特定波長の光を分光させる。そして、取得部171は、受光制御部130を介して、分光装置17が測定した特定波長の光の強度を取得する。例えば、取得部171は、アンモニアと対応する特定波長の光強度を測定させた後、過酸化水素と対応する特定波長の光強度を測定させる。そして、取得部171は、測定された各特定波長の光の強度を取得する。
 演算部172は、測定された複数の特定波長の光の強度に基づいて、測定対象の濃度を測定する。例えば、演算部172は、測定された複数の特定波長の光の強度に基づいて、複数の測定対象の濃度を測定する。より具体的な例を挙げると、演算部172は、アンモニアと対応する特定波長の光の強度と、過酸化水素と対応する特定波長の光の強度とを取得すると、上述した式(8)に示す逆行列P-1と、式(6)とを用いて、アンモニアおよび過酸化水素の濃度をそれぞれ算出する。すなわち、演算部172は、各測定対象の濃度を特定波長における吸光度に変換する吸光係数に基づく行列と、測定された特定波長の光の強度に基づいた吸光度とに基づいて、各測定対象の濃度を算出する。
 提供部173は、演算部172により測定された各測定対象の濃度を利用者に提供する。例えば、提供部173は、出力部150を介して、利用者が選択した測定対象の濃度を示す値を出力する。
[実施形態における動作タイミングの一例]
 次に、図16を参照して、実施形態に係る測定システム10の動作タイミングの一例について説明する。図16は、第2実施形態に係る測定システムの動作タイミングの一例を示すフローチャートである。
 例えば、測定装置100は、光源であるLED11から光を出射させる(ステップS101)。このような場合、分光装置17は、測定対象を介して、光源であるLED11が出射した光を受光する(ステップS102)。そして、分光装置17は、ファブリペロー分光用チューナブルフィルタを用いて分光した特定波長の光を測定する(ステップS103)。
 続いて、測定装置100は、測定光の強度に基づいて、特定波長におけるサンプルの吸光度を算出し(ステップS104)、その後、全ての特定波長を測定したか否かを判定する(ステップS105)。そして、測定装置100は、測定していない特定波長が存在する場合は(ステップS105:No)、分光装置17にステップS103を実行させる。一方、測定装置100は、全ての特定波長を測定した場合は(ステップS105:Yes)、各特定波長における吸光度を濃度に変換する係数行列の逆行列を用いて、算出した吸光度から測定対象の濃度を算出する(ステップS106)。その後、測定装置100は、算出した濃度を測定結果として出力し(ステップS107)、処理を終了する。
[実施形態における効果]
 上述したように、測定装置100は、ファブリペロー型の分光装置を用いて、サンプルを介して受光した光から測定対象と対応する特定波長の光を分光し、分光した特定波長の光の強度に基づいて、測定対象の濃度を測定する。このような構成により、測定装置100は、回折格子やカラーフィルタといった構成を有さずとも、測定対象の濃度を精度良く測定することができるので、簡易な構成で測定対象の濃度を精度良く測定することができる。
[実施形態の拡張]
 上記の説明では、サンプルに含まれる測定対象の濃度を測定する測定システム1、10について説明したが、実施形態は、これに限定されるものではない。以下の説明では、測定システム1、10が実行する測定手法のバリエーションについて説明する。
[1.特定波長について]
 上述した測定システム1、10では、測定対象となるアンモニアや過酸化水素の吸光度のピークが存在する波長を特定波長として選択した。このように、吸光度のピークが存在する波長を特定波長とした場合、濃度の測定精度を向上させることができる。しかしながら、実施形態は、これに限定されるものではない。測定システム1、10は、少なくとも、サンプルに含まれる濃度の測定対象ごとに特定波長を選択し、選択した特定波長の強度から各測定対象の濃度を測定するのであれば、任意の波長を特定波長として選択してもよい。
 例えば、測定システム1、10は、ファブリペロー分光用チューナブルフィルタ4や分光装置17が分光可能な波長の範囲に基づいて、特定波長の選択を行ってもよい。また、測定システム1、10は、光源装置2やLED11が出射可能な波長帯等に応じて、任意の波長を特定波長として採用してもよい。例えば、測定システム1は、2つの溶質が溶解した水溶液における各溶質の濃度を測定する場合、ファブリペロー分光用チューナブルフィルタ4が分光可能な波長の範囲から、任意の2つ以上の波長を特定波長として選択し、選択波長における各溶質の吸光度とサンプルの水溶液の吸光度から、各溶質の濃度を測定すればよい。
 ここで、測定システム1、10は、少なくとも、測定対象と同数の特定波長を含む波長帯の光を分光できればよい。例えば、測定システム1は、複数の測定対象を含むサンプルの吸光度から、各測定対象の濃度を測定する場合、測定対象のそれぞれと対応する複数の特定波長を含む波長帯の光を光源装置2から出射させ、サンプルを介した光から特定波長の光を分光し、分光した光の強度から測定対象の濃度を算出すればよい。
 例えば、サンプルに第1測定対象と第2測定対象が含まれる場合、測定システム1、10は、第1測定対象に対応する第1特定波長と、第2測定対象に対応する第2特定波長とを設定する。続いて、測定システム1、10は、第1特定波長と第2特定波長とのそれぞれにおける第1測定対象の吸光度と、第1特定波長と第2特定波長とのそれぞれにおける第2測定対象の吸光度とから、係数行列の逆行列を算出する。そして、測定システム1、10は、第1特定波長と第2特定波長とのそれぞれにおけるサンプルの吸光度と逆行列とから、第1測定対象の濃度と第2測定対象の濃度とを算出すればよい。
 また、測定システム1、10は、3種類以上の溶質が溶解しているサンプルの吸光度から、各溶質の濃度を測定してもよく、サンプルに溶解している溶質のうち全て若しくは一部の溶質の濃度を測定してもよい。例えば、サンプルに溶解している溶質のうち濃度の測定対象となる溶質の数をnとする。このような場合、測定システム1、10は、少なくともn個の特定波長を選択し、式(2)や式(3)と同様に、n個の溶質の濃度からサンプルの吸光度を算出する式を特定波長ごとに設定することで、n×n行列である係数行列Pを得る。そして、測定装置6は、n個の特定波長ごとにサンプルの吸光度を測定し、逆行列P-1と測定した吸光度とから、各溶質の濃度を測定してもよい。
 また、測定システム1、10は、行列式ではなく、吸光度から溶質の濃度を算出する所定の方程式を用いて、濃度の測定を行ってもよい。また、測定システム1、10は、測定精度をさらに向上させるため、n個の溶質に対し、m個(m>n)の特定波長を選択し、選択した特定波長ごとの吸光度から、n個の溶質の濃度を測定してもよい。例えば、測定システム1、10は、2つの特定波長を用いて過酸化水素の濃度を吸光度へと変換する場合、特定波長ごとに測定したサンプルの吸光度から算出した濃度の平均値から過酸化水素の濃度を測定してもよい。
 また、測定システム1、10は、n個の測定対象に対し、n<mとなるm個の特定波長の光の強度に基づいて、各測定対象の濃度を測定してもよい。例えば、測定システム1、10は、2つの測定対象に対して3つ以上の特定波長の光の強度を測定し、測定した光の強度から各測定対象の濃度の候補をそれぞれ算出する。このような計算を行った場合、測定システム1、10は、1つの測定対象に対して複数の濃度の候補を得ることとなる。そこで、測定システム1、10は、得られた候補の平均値等に基づいて、測定対象の濃度を算出する。なお、測定システム1、10は、光源装置2やLED11が出射する光の中心波長や半値幅、ファブリペロー分光用チューナブルフィルタ4や分光装置17が分光可能な波長帯、サンプルに含まれる測定対象の種類や想定されうる濃度等に基づいて、候補の平均値を得る際に各種の重みづけを設定してもよい。
[サンプルについて]
 また、測定システム1、10は、各種溶質が溶解した水溶液のみならず、例えば、各種溶質が溶解した有機溶剤等の溶液をサンプルとしてもよい。また、このような場合、測定システム1、10は、溶媒の吸光度と溶質の吸光度との割合から式(1)を用いて算出される吸光度を採用してもよい。また、測定システム1、10は、溶液のみならず、混合気体等、各種の気体をサンプルとし、サンプルに含まれる気体のうち任意の気体の濃度を測定してもよい。また、測定システム1、10は、溶質ではなく、溶媒となる物質の濃度を測定してもよい。
[装置構成について]
 なお、測定システム1、10の装置構成は、上述した説明に限定されるものではない。例えば、測定装置6は、光源装置2、ファブリペロー分光用チューナブルフィルタ4、および受光素子5を有し、フローセル3内のサンプルにおける測定対象の濃度を測定する装置であってもよい。
 以上、実施形態の一例を説明したが、これらは例示であり、本実施形態は上記した説明に限定されるものではない。発明の開示の欄に記載の態様を始めとして、実施形態の構成や詳細は、当業者の知識に基づいて種々の変形、改良を施した他の形態で実施することができる。また、各実施形態については、矛盾しない範囲で任意に組み合わせて実施することができる。
 1、10 測定システム
 2 光源装置
 3、14 フローセル
 4 ファブリペロー分光用チューナブルフィルタ
 5、177 受光素子
 6、100 測定装置
 11 LED
 12、16 ファイバ
 13 投光部
 15 受光部
 17 分光装置
 110 光源制御部
 120 分光制御部
 130 受光制御部
 140 入力部
 150 出力部
 160 記憶部
 170 制御部
 171 取得部
 172 演算部
 173 提供部

Claims (10)

  1.  濃度の測定対象と対応する特定波長を含む光を出射する光源部と、
     前記測定対象を介して前記光源部から出射された光を分光するファブリペロー型の分光部と、
     前記分光部により分光された前記特定波長の光の強度に基づいて、前記測定対象の濃度を測定する測定部と
     を有することを特徴とする測定装置。
  2.  前記光源部は、前記特定波長を含む光を出射可能な発光素子を1つ以上有する
     ことを特徴とする請求項1に記載の測定装置。
  3.  前記光源部は、前記測定対象と対応する複数の特定波長の光を出射し、
     前記分光部は、前記測定対象と対応する複数の特定波長の光をそれぞれ分光し、
     前記測定部は、前記分光部により分光された複数の特定波長の光の強度に基づいて、前記測定対象の濃度を測定する
     ことを特徴とする請求項1または2に記載の測定装置。
  4.  前記光源部は、複数の測定対象のそれぞれと対応する特定波長を含む光を出射し、
     前記分光部は、複数の特定波長を含む光を分光し、
     前記測定部は、前記分光部により分光された複数の特定波長の光の強度に基づいて、前記複数の測定対象の濃度を測定する
     ことを特徴とする請求項1~3のうちいずれか1つに記載の測定装置。
  5.  前記光源部は、少なくとも、前記複数の測定対象と同数の特定波長を含む光を出射し、
     前記分光部は、前記光源部が出射した複数の特定波長を含む光を分光し、
     前記測定部は、前記分光部により分光された複数の特定波長の光の強度に基づいて、前記複数の測定対象の濃度を測定する
     ことを特徴とする請求項4に記載の測定装置。
  6.  前記測定部は、各測定対象の濃度を特定波長における吸光度に変換する吸光係数に基づく行列と、前記分光部により分光された特定波長の光の強度に基づいた吸光度とに基づいて、各測定対象の濃度を算出する
     ことを特徴とする請求項3~5のうちいずれか1つに記載の測定装置。
  7.  前記光源部は、当該測定対象が吸収する光の波長を前記特定波長とした光を出射する
     ことを特徴とする請求項1~6のうちいずれか1つに記載の測定装置。
  8.  前記光源部は、所定の溶媒に溶解する測定対象と対応する特定波長を含む光を出射し、
     前記分光部は、前記所定の溶媒に前記測定対象が溶解した溶液を介して前記光源部から出射された光を受光する
     ことを特徴とする請求項1~7のうちいずれか1つに記載の測定装置。
  9.  濃度の測定対象と対応する波長の光を出射する光源装置と、
     前記測定対象を介して前記光源装置から出射された光を分光するファブリペロー型の分光装置と、
     前記分光装置により分光された光の強度に基づいて、前記測定対象の濃度を測定する測定装置と
     を有することを特徴とする測定システム。
  10.  測定装置が実行する測定方法であって、
     光源から出射された濃度の測定対象と対応する波長の光を、濃度の測定対象を介して受光し、ファブリペロー型の分光器を用いて、受光した光を分光する分光工程と、
     前記分光工程により分光された光の強度に基づいて、前記測定対象の濃度を測定する測定工程と
     を含むことを特徴とする測定方法。
PCT/JP2020/001879 2019-02-08 2020-01-21 測定装置、測定システムおよび測定方法 WO2020162158A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-022041 2019-02-08
JP2019022041A JP2020128940A (ja) 2019-02-08 2019-02-08 測定装置、測定システムおよび測定方法

Publications (1)

Publication Number Publication Date
WO2020162158A1 true WO2020162158A1 (ja) 2020-08-13

Family

ID=71948142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001879 WO2020162158A1 (ja) 2019-02-08 2020-01-21 測定装置、測定システムおよび測定方法

Country Status (2)

Country Link
JP (1) JP2020128940A (ja)
WO (1) WO2020162158A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229239A (ja) * 2007-03-23 2008-10-02 Hitachi Ltd 生体光計測装置および生体計測用半導体レーザ装置
JP2013205113A (ja) * 2012-03-27 2013-10-07 National Institute Of Information & Communication Technology 多波長測定装置
JP2015052586A (ja) * 2013-08-06 2015-03-19 株式会社東芝 呼気診断装置
JP2017187503A (ja) * 2012-04-05 2017-10-12 ドレーゲルヴェルク アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト アウフ アクチェンDraegerwerk AG & Co.KGaA 流体の吸収スペクトルを高速取得するための装置および方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998043A (en) * 1989-05-01 1991-03-05 Fujikura Ltd. LED stabilizing light source device
JP2838235B2 (ja) * 1990-12-29 1998-12-16 株式会社堀場製作所 過酸化水素・アンモニア混合液の成分濃度測定方法
JP3213123B2 (ja) * 1993-06-02 2001-10-02 東京瓦斯株式会社 気体の分光装置
JP3261264B2 (ja) * 1994-07-13 2002-02-25 株式会社堀場製作所 多成分水溶液の分析方法およびその分析装置
WO2001053803A1 (fr) * 2000-01-17 2001-07-26 Norihiro Kiuchi Procede de detection de concentrations dans un liquide et dispositif a cet effet
DE102011116367A1 (de) * 2011-10-19 2013-04-25 Bluepoint Medical Gmbh & Co. Kg Vorrichtung zur hoch aufgelösten Bestimmung der Konzentration von Substanzen in fluiden Medien
JP2014157124A (ja) * 2013-02-18 2014-08-28 Sumitomo Electric Ind Ltd 人検出装置
JP2016050965A (ja) * 2014-08-28 2016-04-11 セイコーエプソン株式会社 光学モジュール及び電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229239A (ja) * 2007-03-23 2008-10-02 Hitachi Ltd 生体光計測装置および生体計測用半導体レーザ装置
JP2013205113A (ja) * 2012-03-27 2013-10-07 National Institute Of Information & Communication Technology 多波長測定装置
JP2017187503A (ja) * 2012-04-05 2017-10-12 ドレーゲルヴェルク アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト アウフ アクチェンDraegerwerk AG & Co.KGaA 流体の吸収スペクトルを高速取得するための装置および方法
JP2015052586A (ja) * 2013-08-06 2015-03-19 株式会社東芝 呼気診断装置

Also Published As

Publication number Publication date
JP2020128940A (ja) 2020-08-27

Similar Documents

Publication Publication Date Title
CN109416318B (zh) 光热干涉测量装置和方法
Krzempek et al. CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell
US6775001B2 (en) Laser-based spectrometer for use with pulsed and unstable wavelength laser sources
US20150192462A1 (en) Dual spectrometer
US20130195131A1 (en) Chemical detection and laser wavelength stabilization employing spectroscopic absorption via laser compliance voltage sensing
JPS59178339A (ja) 吸光度測定装置
US9389171B2 (en) Device for high-resolution determination of the concentration of substances in fluid media
JP6252176B2 (ja) ガス分析計
Islam et al. Liquid-phase broadband cavity-enhanced absorption spectroscopy measurements in a 2 mm cuvette
WO2020162158A1 (ja) 測定装置、測定システムおよび測定方法
Qu et al. High sensitivity liquid phase measurements using broadband cavity enhanced absorption spectroscopy (BBCEAS) featuring a low cost webcam based prism spectrometer
JP7475151B2 (ja) 測定装置、および測定方法
JP2005274507A (ja) レーザ分光分析装置
CN212432972U (zh) 一种复用ccd的双光路分光光度测量装置
US11243116B2 (en) Spectrometry device and spectrometry method
JP2023092288A (ja) 濃度測定装置、濃度測定システム及び濃度測定方法
WO2020241182A1 (ja) 測定装置、測定システムおよび測定方法
JP2023092289A (ja) 濃度表示装置及び濃度表示方法
JP6917824B2 (ja) 分光測定装置及び分光測定方法
JPH10115583A (ja) 分光分析装置
JP7438774B2 (ja) 測定装置
WO2023176091A1 (ja) 濃度測定装置
JP2021124385A (ja) 測定装置、測定方法および生成方法
WO2024090042A1 (ja) 分析装置、レーザ素子の駆動方法、及び、分析方法
JP2022146244A (ja) 濃度測定方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20753158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20753158

Country of ref document: EP

Kind code of ref document: A1