WO2024090042A1 - 分析装置、レーザ素子の駆動方法、及び、分析方法 - Google Patents

分析装置、レーザ素子の駆動方法、及び、分析方法 Download PDF

Info

Publication number
WO2024090042A1
WO2024090042A1 PCT/JP2023/032392 JP2023032392W WO2024090042A1 WO 2024090042 A1 WO2024090042 A1 WO 2024090042A1 JP 2023032392 W JP2023032392 W JP 2023032392W WO 2024090042 A1 WO2024090042 A1 WO 2024090042A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser element
pulse
sample
laser light
laser
Prior art date
Application number
PCT/JP2023/032392
Other languages
English (en)
French (fr)
Inventor
知二 寺門
正之 足立
茂 中谷
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Publication of WO2024090042A1 publication Critical patent/WO2024090042A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Definitions

  • the present invention relates to an analysis device, a method for driving a laser element, and an analysis method.
  • a conventional gas analyzer is an analyzer that uses a quantum cascade laser (QCL) and a Fabry-Perot element that oscillates in multiple modes in the QCL.
  • QCL quantum cascade laser
  • Fabry-Perot element that oscillates in multiple modes in the QCL.
  • Patent Document 1 As described in Patent Document 1, a Fabry-Perot element that oscillates in multiple modes emits broader light than a distributed feedback (DFB) element that oscillates in a single mode.
  • DFB distributed feedback
  • Patent Document 1 uses a driving method that allows continuous operation with a constant current, and the oscillation spectrum has discrete oscillation wavelengths that correspond to the element dimensions.
  • the inventors of this application are developing a new analytical device that uses a laser element that oscillates in multiple longitudinal modes to analyze samples.
  • the sample is irradiated with laser light having multiple oscillation wavelengths, making it possible to analyze multiple components contained in the sample.
  • the absorption wavelengths of multiple components match the oscillation wavelength, it is not possible to accurately measure components that have an absorption wavelength that differs from the oscillation wavelength.
  • the present invention was made to solve the above-mentioned problems, and its main objective is to provide a high-performance analytical device that utilizes a laser element that oscillates in multiple longitudinal modes.
  • the analytical device comprises a laser element that irradiates a sample with laser light, a drive unit that drives the laser element, a photodetector that detects the laser light that has passed through the sample, and a signal processing unit that acquires an output signal from the photodetector and analyzes the sample, the laser element oscillates in multiple longitudinal modes and irradiates laser light having multiple oscillation wavelengths, and the drive unit pulse-drives the laser element and sweeps the multiple oscillation wavelengths within each pulse.
  • a laser element that oscillates in multiple longitudinal modes is pulse-driven, so that a drive current (drive voltage) is supplied to the laser element in each pulse, causing the temperature of the laser element to rise, which in turn causes the refractive index inside the laser element to change continuously, resulting in continuous changes in the multiple oscillation wavelengths. Therefore, multiple oscillation wavelengths can be swept within each pulse, and the sample can be irradiated with laser light that has a broad spectrum (spectrum of a specified width) like an LED when viewed on a time average. As a result, absorption over a wide wavelength range can be utilized, allowing the components contained in the sample to be measured with high accuracy.
  • sweeping based on the wavelength intervals of the multiple longitudinal modes includes (1) sweeping the multiple oscillation wavelengths by the wavelength intervals of the longitudinal modes, (2) sweeping the multiple oscillation wavelengths at intervals narrower than the wavelength intervals of the longitudinal modes, and (3) sweeping the multiple oscillation wavelengths at intervals wider than the wavelength intervals of the longitudinal modes.
  • the driving unit prefferably pulses the laser element with a driving pulse having a pulse width determined based on the wavelength interval of the multiple longitudinal modes.
  • the driver may pulse drive the laser element with a drive pulse in which the off time is set longer than the on time.
  • the off time of the drive pulse is a time set to return the temperature of the laser element to the temperature immediately before the on time of the drive pulse.
  • the driving unit may pulse drive the laser element with a pulse width of 10 ⁇ sec or less, a repetition frequency of 0.1 to 10 MHz, and a duty ratio of 5% or more and less than 50%.
  • the driving unit may repeat a pulse driving period in which the laser element is pulse-driven and a stop period in which the pulse driving of the laser element is stopped.
  • the analytical device of the present invention has a sample cell that contains the sample gas and a reference cell that contains a reference gas, the laser element irradiates the sample cell and the reference cell with laser light, and the photodetector is considered to be a pneumatic detector that detects the laser light that has passed through the sample cell and the reference cell.
  • the method of driving a laser element is a method of driving a laser element that irradiates a sample with laser light, the laser element oscillates in multiple longitudinal modes and irradiates laser light having multiple oscillation wavelengths, and is characterized in that the laser element is pulse-driven and the multiple oscillation wavelengths are swept within each pulse.
  • the analytical method according to the present invention comprises a laser element that irradiates a sample with laser light, a drive unit that drives the laser element, a photodetector that detects the laser light that has passed through the sample, and a signal processing unit that acquires an output signal from the photodetector and analyzes the sample, the laser element oscillates in multiple longitudinal modes and irradiates laser light having multiple oscillation wavelengths, and the drive unit pulse-drives the laser element and sweeps the multiple oscillation wavelengths within each pulse.
  • the analysis program of the present invention is an analysis program used in an analysis device that includes a laser element that irradiates a sample with laser light, a drive unit that drives the laser element, a photodetector that detects the laser light that has passed through the sample, and a signal processing unit that acquires an output signal from the photodetector and analyzes the sample, the laser element oscillating in multiple longitudinal modes and irradiating laser light having multiple oscillation wavelengths, and is characterized in that the analysis program causes the drive unit to pulse-drive the laser element and perform the function of sweeping the multiple oscillation wavelengths within each pulse.
  • the present invention configured in this way, can provide a high-performance analytical device using a laser element that oscillates in multiple longitudinal modes.
  • FIG. 1 is a schematic diagram showing an analysis device according to an embodiment of the present invention.
  • 2 is a schematic diagram showing oscillation wavelengths of a plurality of longitudinal modes of the laser element of the embodiment.
  • FIG. 3A to 3C are schematic diagrams showing the driving mode and time-averaged spectrum of the laser element of the embodiment.
  • 4A to 4C are schematic diagrams showing the sweep of the oscillation wavelength in each pulse in the embodiment and the time-averaged spectrum.
  • FIG. 13 is a schematic diagram showing an analysis device according to a modified embodiment.
  • the analytical device 100 measures the concentration of a measurement component contained in a sample gas (hereinafter, sample gas) by infrared absorption.
  • the analytical device 100 includes a sample cell 21 that contains a sample gas, a reference cell 22 that contains a reference gas, a laser light source 3 having a laser element 31 that irradiates the sample cell 51 and the reference cell 52 with infrared laser light L1, a drive unit 4 that drives the laser element 31, a photodetector 5 that detects the laser light L1 that has passed through the sample cell 51 and the reference cell 52, and a signal processing unit 6 that acquires a light intensity signal from the photodetector 5 and calculates the concentration of the component to be measured.
  • the sample cell 21 is a single-pass cell having a storage space for storing sample gas, and has an inlet port P1 for introducing the sample gas into the storage space, and an outlet port P2 for extracting the sample gas from the storage space.
  • the sample cell 21 also has an entrance window W11 through which the laser light L1 enters the cell 21, and an exit window W12 through which the laser light L1 that has passed through the sample gas in the cell 21 exits the cell 21.
  • the entrance window W11 and the exit window W12 are arranged opposite each other, and are made of a material that is transparent to infrared rays.
  • the reference cell 22 is a single-pass cell having a storage space for storing a reference gas, and is provided with an entrance window W21 through which the laser light L1 enters the cell 22, and an exit window W22 through which the laser light L1 that has passed through the reference gas in the cell 22 exits the cell 22.
  • the entrance window W21 and the exit window W22 are arranged opposite each other and are made of a material that is transparent to infrared rays.
  • the reference cell 22 is filled with a reference gas.
  • the reference gas is an inert gas such as nitrogen (N 2 ) that does not absorb infrared rays.
  • the laser light source 3 in this embodiment is provided corresponding to each of the sample cell 21 and the reference cell 22, and each laser light source 3 has a laser element 31 that emits infrared laser light L1, and a shaping optical system 32 such as a lens or concave mirror that shapes the laser light L1 from the laser element 31. Note that the laser light source 3 may be configured without the shaping optical system 32.
  • the laser element 31 is a semiconductor laser that emits infrared laser light L1, and in this embodiment is a quantum cascade laser. Specifically, the laser element 31 is a Fabry-Perot quantum cascade laser that is cleaved at both ends. This laser element 31 is supplied with a driving current or driving voltage by the driving unit 4, and oscillates in multiple longitudinal modes to emit laser light L1 having multiple oscillation wavelengths. While FIG. 2 shows an example in which it oscillates in nine longitudinal modes and has nine oscillation wavelengths, the number of longitudinal modes can be changed depending on the driving current or driving voltage. The method of driving the laser element 31 by the driving unit 4 will be described later.
  • the photodetector 5 is an infrared detector that detects the laser light L1 that has passed through the sample cell 21 and the reference cell 22.
  • the photodetector 5 is a pneumatic detector that outputs a detection signal according to the difference in intensity between the laser light L1 that has passed through the sample cell 21 and the laser light L1 that has passed through the reference cell 22.
  • an optical filter such as a bandpass filter may be provided between the photodetector 5 and the sample cell 21 and the reference cell 22.
  • This pneumatic detector 5 uses a condenser microphone, and the two chambers separated by a diaphragm of the condenser microphone are filled with a measurement component gas or a component gas with the same or similar light absorption characteristics as the measurement component gas.
  • Laser light L1 that has passed through a sample cell 21 is incident on one chamber, and laser light L1 that has passed through a reference cell 22 is incident on the other chamber.
  • the laser light L1 is incident on each chamber of the pneumatic detector 5
  • the laser light L1 is absorbed, causing the gas in each chamber to expand and create a pressure difference, which deforms the diaphragm and changes the capacitance.
  • the pneumatic detector 5 outputs a detection signal according to this change in capacitance.
  • the signal processing unit 6 calculates the concentration of the measured component contained in the sample gas using the light intensity signal output from the light detector 5.
  • This signal processing unit 6 has an amplifier 61 that amplifies the light intensity signal from the light detector 5, and a concentration conversion unit 62 that converts the amplified light intensity signal into a concentration.
  • the concentration converted by the concentration conversion unit 62 can be displayed on a display unit 7 such as a display.
  • the driving unit 4 repeats a pulse driving period T1 in which the laser element 31 is pulse driven and a stop period T2 in which the pulse driving of the laser element 31 is stopped.
  • the pulse driving period T1 and the stop period T2 are for making the laser element 31 perform the function of a mechanical chopper used in the conventional NDIR method.
  • the stop period T2 is a period required to generate a pressure change inside the pneumatic detector 5 and to extract a detection signal.
  • the pulse driving period T1 and the stop period T2 are determined based on the operating speed of the photodetector 5, and each period T1, T2 is, for example, about 0.1 to 10 seconds.
  • the driving unit 4 of this embodiment is provided for each of the two laser elements 31, and drives the two laser elements 31 in synchronization with each other.
  • the driver 4 pulse-drives the laser element 31 during the pulse drive period T1 and sweeps multiple oscillation wavelengths within each pulse.
  • the driver 4 pulse-drives the laser element 31 with a drive pulse DP having a pulse width determined based on the wavelength interval ( ⁇ ) of a plurality of longitudinal modes.
  • the on-time of the drive pulse DP is t 1 and the off-time is t 2.
  • the driver 4 pulse-drives the laser element 31 with a drive pulse DP (t 1 ⁇ t 2 ) in which the off-time t 2 is set longer than the on-time t 1.
  • the driver 4 pulse-drives the laser element 31 with a pulse width of 10 ⁇ sec or less, a repetition frequency of 0.1 to 10 MHz, and a duty ratio of 5% or more and less than 50%.
  • the on-time t1 (pulse width) of the drive pulse DP is set so as to sweep the multiple oscillation wavelengths by the wavelength interval ( ⁇ ) of multiple longitudinal modes.
  • the multiple oscillation wavelengths are swept to the next adjacent oscillation wavelength in the direction in which the wavelength increases.
  • the off-time t2 in the drive pulse DP is a time set to return the temperature of the laser element 31 to the temperature immediately before the on-time t1 in the drive pulse DP.
  • the off-time t2 is a time for returning the temperature change caused during the on-time t1 to the original temperature.
  • the oscillation wavelength ⁇ 1 is swept by ⁇ and changes to the oscillation wavelength ⁇ 2 (FIG. 4 (a) ⁇ (b) ⁇ (c)). That is, the oscillation wavelength ⁇ N before the sweep is swept by ⁇ and changes to the oscillation wavelength ⁇ N + 1.
  • the laser element 31 is cooled and returns to the temperature before the on-time t 1.
  • the oscillation wavelength ⁇ 1 is swept by ⁇ again and changes to the oscillation wavelength ⁇ 2 (FIG. 4 (a) ⁇ (b) ⁇ (c)). That is, the oscillation wavelength ⁇ N before the sweep is swept by ⁇ again and changes to the oscillation wavelength ⁇ N + 1 .
  • multiple oscillation wavelengths are swept in each pulse, and when viewed on a time average, laser light having a continuous spectrum with a wavelength range (wavelength width) of ⁇ 1 to ⁇ 9 + ⁇ is irradiated, as shown in Figures 3 and 4.
  • the laser element 31 oscillating in multiple longitudinal modes is pulse-driven, so that a driving current (driving voltage) is supplied to the laser element 31 in each pulse, causing the temperature of the laser element 31 to rise, which causes the refractive index inside the laser element 31 to change continuously, and the multiple oscillation wavelengths to change continuously. Therefore, multiple oscillation wavelengths can be swept within each pulse, and the sample can be irradiated with laser light L1 having a broad spectrum (spectrum of a predetermined width) like that of an LED when viewed on a time average. As a result, absorption in a wide wavelength range can be utilized, and the components contained in the sample can be measured with high accuracy.
  • the configuration includes the sample cell 21 and the reference cell 22, but the configuration may not include the reference cell 22.
  • a cross-flow method may be used in which a sample gas and a reference gas are alternately supplied to the sample cell 21 to perform analysis.
  • the sample cell 21 in which the sample is contained may be a multipass cell (a White or Herriot type multi-reflection cell) in addition to a single-pass cell.
  • the sample cell 21 and the reference cell 22 are each provided with a laser light source 3, but as shown in FIG. 5, the laser light source 3 may be common to the sample cell 21 and the reference cell 22.
  • the laser light emitted from the common laser light source 3 may be branched using a branching optical system 33, and the branched laser light may be irradiated to the sample cell 21 and the reference cell 22.
  • the photodetector 5 is not limited to a pneumatic detector, but may be, for example, a relatively inexpensive thermal type such as a thermopile, or a highly responsive quantum photoelectric element such as HgCdTe, InGaAs, InAsSb, or PbSe.
  • the signal processing unit 6 may calculate the concentration of the measured component by performing multivariate analysis of the spectrum.
  • the laser light is irradiated onto the sample cell 21 in which the sample is contained, but the laser light may be irradiated onto a sample that is not contained in a sample cell.
  • the laser element is not limited to a double-cleaved Fabry-Perot quantum cascade laser, but may be any other laser element that oscillates in multiple longitudinal modes and emits laser light with multiple oscillation wavelengths.
  • the present invention makes it possible to provide a high-performance analytical device using a laser element that oscillates in multiple longitudinal modes.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本発明は、複数の縦モードで発振するレーザ素子を利用しつつ高性能な分析装置を提供するものであり、サンプルにレーザ光L1を照射するレーザ素子31と、レーザ素子31を駆動する駆動部4と、サンプルを通過したレーザ光L1を検出する光検出器5とを備え、レーザ素子31は、複数の縦モードで発振して、複数の発振波長を有するレーザ光L1を照射するものであり、駆動部4は、レーザ素子31をパルス駆動するとともに各パルス内で複数の発振波長を掃引させる。

Description

分析装置、レーザ素子の駆動方法、及び、分析方法
 本発明は、分析装置、レーザ素子の駆動方法、及び、分析方法に関するものである。
 従来のガス分析装置としては、特許文献1に示すように、量子カスケードレーザ(QCL)を用いた分析計において、QCLにマルチモードで発振するファブリーペロー型素子を用いることが考えられている。この構成により、量子カスケードレーザの第1光出射面からシングルモードと比べてブロードな光が出射されるため、多様な流体を分析対象として分析することができる。
特開2019-15563号公報
 ところで、特許文献1に記載されている通り、マルチモードで発振するファブリーペロー型素子は、シングルモード発振する分布帰還(DFB)型素子に比べてブロードな光を射出するものである。しかしながら、特許文献1では、一定電流で連続動作させる駆動方法を採っており、発振スペクトルは、素子寸法に対応する飛び飛びの発振波長となっている。
 一方で、本願発明者は、複数の縦モードで発振するレーザ素子を用いてサンプルを分析する新規の分析装置の開発を進めている。複数の縦モードで発振するレーザ素子を用いることで、サンプルには複数の発振波長を有するレーザ光が照射されるため、サンプルに含まれる複数成分を分析することができる。ところが、複数成分の吸収波長と発振波長とが一致している場合は問題ないが、発振波長とずれた吸収波長を有する成分を精度良く測定することができない。
 そこで、本発明は上述した問題を解決すべくなされたものであり、複数の縦モードで発振するレーザ素子を利用しつつ高性能な分析装置を提供することをその主たる課題とするものである。
 すなわち、本発明に係る分析装置は、サンプルにレーザ光を照射するレーザ素子と、前記レーザ素子を駆動する駆動部と、前記サンプルを通過したレーザ光を検出する光検出器と、前記光検出器からの出力信号を取得して前記サンプルを分析する信号処理部とを備え、前記レーザ素子は、複数の縦モードで発振して、複数の発振波長を有するレーザ光を照射するものであり、前記駆動部は、前記レーザ素子をパルス駆動するとともに各パルス内で前記複数の発振波長を掃引させることを特徴とする。
 このような分析装置によれば、複数の縦モードで発振するレーザ素子をパルス駆動しているので、各パルスにおいてレーザ素子に駆動電流(駆動電圧)が供給されてレーザ素子が温度上昇し、それによってレーザ素子内部の屈折率が連続的に変化して複数の発振波長が連続的に変化することになる。したがって、各パルス内で複数の発振波長を掃引させることができ、時間平均でみた場合に例えばLEDのようなブロードなスペクトル(所定幅のスペクトル)を有するレーザ光をサンプルに照射することができる。その結果、広い波長範囲での吸収を利用することができ、サンプルに含まれる成分を精度良く測定することができる。
 時間平均でみた場合に所定幅において連続するスペクトルを生成するためには、前記駆動部は、前記複数の発振波長を、前記複数の縦モードの波長間隔分に基づいて掃引させることが望ましい。ここで、複数の縦モードの波長間隔分に基づいて掃引させることには、(1)前記複数の発振波長を、縦モードの波長間隔分掃引させること、(2)前記複数の発振波長を、縦モードの波長間隔分よりも狭い間隔で掃引させること、及び、(3)前記複数の発振波長を、縦モードの波長間隔分よりも広い間隔で掃引させることを含む。
 時間平均でみた場合に所定幅のスペクトルを生成するための具体的な実施の態様としては、前記駆動部は、前記複数の縦モードの波長間隔に基づいて定められたパルス幅を有する駆動パルスにより、前記レーザ素子をパルス駆動することが望ましい。
 パルス駆動の具体的な実施の態様としては、前記駆動部は、オン時間に対してオフ時間を長く設定した駆動パルスにより、前記レーザ素子をパルス駆動することが考えられる。
 ここで、前記駆動パルスにおけるオフ時間は、前記駆動パルスにおけるオン時間直前の前記レーザ素子の温度に戻すために設定された時間であることが望ましい。この構成であれば、パルス毎に同じ発振波長のレーザ光を射出することができる。
 パルス駆動の具体的な実施の態様としては、前記駆動部は、パルス幅10μsec以下で、繰り返し周波数0.1~10MHzで、デューティ比5%以上50%未満で、前記レーザ素子をパルス駆動するものであることが考えられる。
 駆動部によるレーザ素子の駆動方法の具体的な実施の態様としては、前記駆動部は、前記レーザ素子をパルス駆動するパルス駆動期間と、前記レーザ素子のパルス駆動を停止する停止期間とを繰り返すことが考えられる。
 比較的短光路であっても自己相関式検出法であるため高感度なNDIR法と、波長又はデューティ制御が容易なレーザ素子を用いることより、シンプルな構成で高感度な分析装置、つまり、NDIR法の利点とレーザ分光法の利点とを併せ持つ分析装置を構成することができる。このため、本発明に係る分析装置は、前記サンプルであるガスを収容するサンプルセルと、リファレンスガスを収容するリファレンスセルとを有し、前記レーザ素子は、前記サンプルセル及び前記リファレンスセルにレーザ光を照射するものであり、前記光検出器は、前記サンプルセル及び前記リファレンスセルを通過したレーザ光を検出するニューマチック検出器であることが考えられる。
 また、本発明に係るレーザ素子の駆動方法は、サンプルにレーザ光を照射するレーザ素子の駆動方法であって、前記レーザ素子は、複数の縦モードで発振して、複数の発振波長を有するレーザ光を照射するものであり、前記レーザ素子をパルス駆動するとともに各パルス内で前記複数の発振波長を掃引させることを特徴とする。
 さらに、本発明に係る分析方法は、サンプルにレーザ光を照射するレーザ素子と、前記レーザ素子を駆動する駆動部と、前記サンプルを通過したレーザ光を検出する光検出器と、前記光検出器からの出力信号を取得して前記サンプルを分析する信号処理部とを備え、前記レーザ素子は、複数の縦モードで発振して、複数の発振波長を有するレーザ光を照射するものであり、前記駆動部は、前記レーザ素子をパルス駆動するとともに各パルス内で前記複数の発振波長を掃引させることを特徴とする。
 その上、本発明に係る分析用プログラムは、サンプルにレーザ光を照射するレーザ素子と、前記レーザ素子を駆動する駆動部と、前記サンプルを通過したレーザ光を検出する光検出器と、前記光検出器からの出力信号を取得して前記サンプルを分析する信号処理部とを備え、前記レーザ素子は、複数の縦モードで発振して、複数の発振波長を有するレーザ光を照射するものである分析装置に用いられる分析用プログラムであって、前記駆動部により前記レーザ素子をパルス駆動するとともに各パルス内で前記複数の発振波長を掃引させる機能を発揮させることを特徴とする。
 このように構成した本発明によれば、複数の縦モードで発振するレーザ素子を利用しつつ高性能な分析装置を提供することができる。
本発明の一実施形態に係る分析装置を示す模式図である。 同実施形態のレーザ素子の複数の縦モードの発振波長を示す模式図である。 同実施形態のレーザ素子の駆動態様および時間平均でみたスペクトルを示す模式図である。 同実施形態の各パルス内における発振波長の掃引の様子および時間平均でみたスペクトルを示す模式図である。 変形実施形態に係る分析装置を示す模式図である。
 以下に、本発明に係る分析装置の一実施形態について、図面を参照して説明する。なお、以下に示すいずれの図についても、わかりやすくするために、適宜省略し又は誇張して模式的に描かれている。同一の構成要素については、同一の符号を付して説明を適宜省略する。
 本実施形態に係る分析装置100は、サンプルであるガス(以下、サンプルガス)に含まれる測定成分の濃度を赤外線吸収法により測定するものである。
 具体的に分析装置100は、図1に示すように、サンプルガスを収容するサンプルセル21と、リファレンスガスを収容するリファレンスセル22と、サンプルセル51及びリファレンスセル52に赤外線のレーザ光L1を照射するレーザ素子31を有するレーザ光源3と、レーザ素子31を駆動する駆動部4と、サンプルセル51及びリファレンスセル52を通過したレーザ光L1を検出する光検出器5と、光検出器5からの光強度信号を取得して測定対象成分の濃度を算出する信号処理部6とを備えている。
 サンプルセル21は、サンプルガスを収容する収容空間を有するシングルパスセルであり、当該収容空間にサンプルガスを導入する導入ポートP1と、収容空間からサンプルガスを導出する導出ポートP2とを有している。また、サンプルセル21には、レーザ光L1がセル21内部に入射する入射窓W11と、セル21内のサンプルガスを通過したレーザ光L1をセル21外部に出射する出射窓W12とが設けられている。なお、入射窓W11及び出射窓W12は互いに対向して配置されており、赤外線に透過性を有する材質から構成されている。
 リファレンスセル22は、リファレンスガスを収容する収容空間を有するシングルパスセルであり、レーザ光L1がセル22内部に入射する入射窓W21と、セル22内のリファレンスガスを通過したレーザ光L1をセル22外部に出射する出射窓W22とが設けられている。なお、入射窓W21及び出射窓W22は互いに対向して配置されており、赤外線に透過性を有する材質から構成されている。このリファレンスセル22には、リファレンスガスが封入されている。ここで、リファレンスガスは、赤外線を吸収しない例えば窒素(N)等の不活性ガスである。
 本実施形態のレーザ光源3は、サンプルセル21及びリファレンスセル22それぞれに対応して設けられており、各レーザ光源3は、赤外線のレーザ光L1を出射するレーザ素子31と、当該レーザ素子31からのレーザ光L1を整形するレンズ又は凹面鏡等の整形用光学系32とを有している。なお、レーザ光源3は、整形用光学系32を有さない構成としても良い。
 レーザ素子31は、赤外線のレーザ光L1を出射する半導体レーザであり、本実施形態では量子カスケードレーザである。具体的にレーザ素子31は、両端へき開のファブリーペロー型の量子カスケードレーザである。このレーザ素子31は、駆動部4により駆動電流又は駆動電圧が供給されて、複数の縦モードで発振して複数の発振波長を有するレーザ光L1を射出する。図2では、9本の縦モードで発振して9つの発振波長を有する例を示しているが、駆動電流又は駆動電圧に応じて縦モードの本数は変更可能である。なお、駆動部4によるレーザ素子31の駆動方法は、後述する。
 光検出器5は、サンプルセル21及びリファレンスセル22を通過したレーザ光L1を検出する赤外線検出器である。本実施形態の光検出器5は、サンプルセル21を通過したレーザ光L1とリファレンスセル22を通過したレーザ光L1との強度差に応じた検出信号を出力するニューマチック検出器である。なお、光検出器5とサンプルセル21及びリファレンスセル22との間には、バンドバスフィルタ等の光学フィルタを設けても良い。
 このニューマチック検出器5は、コンデンサマイクロフォンを用いたものであり、コンデンサマイクロフォンのダイアフラムで区切られた2つの部屋に、測定成分ガス又は測定成分ガスの光吸収特性と同一又は類似の成分ガスが封入されている。そして、一方の部屋にサンプルセル21を通過したレーザ光L1が入射し、他方の部屋にリファレンスセル22を通過したレーザ光L1が入射する。そして、このニューマチック検出器5は、各部屋においてレーザ光L1が入射すると、当該レーザ光L1を吸収して各部屋のガスが膨張して圧力差が生じ、ダイアフラムが変形して静電容量が変化する。ニューマチック検出器5は、この静電容量の変化に応じた検出信号を出力する。
 信号処理部6は、光検出器5から出力される光強度信号を用いて、サンプルガスに含まれる測定成分の濃度を算出するものである。この信号処理部6は、光検出器5の光強度信号を増幅する増幅器61と、増幅された光強度信号から濃度に換算する濃度換算部62とを有している。濃度換算部62で換算された濃度は、ディスプレイ等の表示部7に表示することができる。
<駆動部4によるレーザ素子31の駆動方法>
 駆動部4は、図3に示すように、レーザ素子31をパルス駆動するパルス駆動期間T1と、レーザ素子31のパルス駆動を停止する停止期間T2とを繰り返す。ここで、パルス駆動期間T1及び停止期間T2は、従来のNDIR法において用いられているメカニカルチョッパの機能をレーザ素子31に行わせるためのものである。また、停止期間T2は、ニューマチック検出器5の内部の圧力変化を生じさせて検出信号を取り出すために必要な期間である。なお、パルス駆動期間T1及び停止期間T2は、光検出器5の動作速度に基づいて決定され、各期間T1、T2は、例えば0.1~10秒程度である。本実施形態の駆動部4は、2つのレーザ素子31それぞれに設けられており、2つのレーザ素子31を互いに同期して駆動する。
 そして、駆動部4は、パルス駆動期間T1において、レーザ素子31をパルス駆動するとともに各パルス内で複数の発振波長を掃引させるものである。
 具体的に駆動部4は、複数の縦モードの波長間隔(Δλ)に基づいて定められたパルス幅を有する駆動パルスDPにより、レーザ素子31をパルス駆動する。ここで、駆動パルスDPにおけるオン時間をt、オフ時間をtとする。また、駆動部4は、オン時間tに対してオフ時間tを長く設定した駆動パルスDP(t<t)により、レーザ素子31をパルス駆動する。例えば、駆動部4は、パルス幅10μsec以下で、繰り返し周波数0.1~10MHzで、デューティ比5%以上50%未満で、レーザ素子31をパルス駆動する。
 ここで、駆動パルスDPのオン時間t(パルス幅)は、複数の発振波長を、複数の縦モードの波長間隔分(Δλ)掃引させるように設定されている。つまり、駆動部4における1回のパルスにおいて、複数の発振波長は、波長が大きくなる方向において1つ隣りの発振波長まで掃引される。
 駆動パルスDPにおけるオフ時間tは、駆動パルスDPにおけるオン時間t直前のレーザ素子31の温度に戻すために設定された時間である。つまり、このオフ時間tは、オン時間tで生じる温度変化を元に戻す時間である。
 例えば、互いに隣り合う発振波長であって、発振波長が短い方をλ、発振波長が長い方をλ(=λ+Δλ)とした場合、図4に示すように、駆動部4における1回目のパルス(1回目のオン時間t)において、発振波長λがΔλ分掃引されて、発振波長λに変化する(図4(a)→(b)→(c))。つまり、掃引前の発振波長λはΔλ分掃引されて発振波長λN+1に変化する。また、その直後のオフ時間tにおいて、レーザ素子31は冷却されて、オン時間t前の温度に戻る。そして、2回目のパルス(2回目のオン時間t1)において、再び、発振波長λがΔλ分掃引されて、発振波長λに変化する(図4(a)→(b)→(c))。つまり、掃引前の発振波長λは再びΔλ分掃引されて発振波長λN+1に変化する。このようにして、各パルスにおいて複数の発振波長が掃引され、時間平均でみた場合に、図3及び図4に示すように、波長範囲(波長幅)がλ~λ+Δλの連続したスペクトルを有するレーザ光が照射されることになる。
<本実施形態の効果>
 このように構成した本実施形態の分析装置100によれば、複数の縦モードで発振するレーザ素子31をパルス駆動しているので、各パルスにおいてレーザ素子31に駆動電流(駆動電圧)が供給されてレーザ素子31が温度上昇し、それによってレーザ素子31内部の屈折率が連続的に変化して複数の発振波長が連続的に変化することになる。したがって、各パルス内で複数の発振波長を掃引させることができ、時間平均でみた場合に例えばLEDのようなブロードなスペクトル(所定幅のスペクトル)を有するレーザ光L1をサンプルに照射することができる。その結果、広い波長範囲での吸収を利用することができ、サンプルに含まれる成分を精度良く測定することができる。
<その他の実施形態>
 例えば、前記実施形態では、サンプルセル21及びリファレンスセル22を有する構成であったが、リファレンスセル22を有さない構成であっても良い。この場合、サンプルセル21にサンプルガスとリファレンスガスとを交互に供給して分析を行うクロスフロー方式としても良い。
 また、サンプルが収容されるサンプルセル21は、シングルパスセルの他に、マルチパスセル(ホワイト型又はヘリオット型の多重反射セル)であっても良い。
 前記実施形態ではサンプルセル21及びリファレンスセル22それぞれにレーザ光源3を設けているが、図5に示すように、レーザ光源3をサンプルセル21及びリファレンスセル22に共通としても良い。この場合、共通のレーザ光源3から射出されるレーザ光を分岐用光学系33を用いて分岐させて、分岐したレーザ光をサンプルセル21及びリファレンスセル22に照射するようにしても良い。
 また、光検出器5は、ニューマチック検出器に限られず、例えば、比較的安価なサーモパイルなどの熱型のものを用いても良いし、応答性がよいHgCdTe、InGaAs、InAsSb、又はPbSeなどの量子型光電素子を用いても良い。
 さらに、信号処理部6は、光検出器5によってスペクトルを取得できる場合には、そのスペクトルを多変量解析することによって、測定成分の濃度を演算するものであっても良い。
 その上、前記実施形態では、サンプルが収容されるサンプルセル21にレーザ光を照射する構成であったが、サンプルセルに収容されていないサンプルにレーザ光を照射する構成としても良い。
 加えて、レーザ素子は、両端へき開のファブリーペロー型の量子カスケードレーザに限られず、複数の縦モードで発振して、複数の発振波長を有するレーザ光を照射するものであれば、その他のレーザ素子であっても良い。
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や組み合わせを行っても構わない。
 本発明によれば、複数の縦モードで発振するレーザ素子を利用しつつ高性能な分析装置を提供することができる。
100・・・分析装置
21 ・・・測定セル
P1 ・・・導入ポート
P2 ・・・導出ポート
W11・・・入射窓
W12・・・出射窓
22 ・・・参照セル
W21・・・入射窓
W22・・・出射窓
L1 ・・・レーザ光
3  ・・・レーザ光源
31 ・・・レーザ素子
32 ・・・整形用光学系
4  ・・・駆動部
T1 ・・・パルス駆動期間
T2 ・・・停止期間
DP ・・・駆動パルス
 ・・・駆動パルスのオン時間
 ・・・駆動パルスのオフ時間
5  ・・・光検出器
6  ・・・信号処理部
7  ・・・表示部

Claims (11)

  1.  サンプルにレーザ光を照射するレーザ素子と、
     前記レーザ素子を駆動する駆動部と、
     前記サンプルを通過したレーザ光を検出する光検出器と、
     前記光検出器からの出力信号を取得して前記サンプルを分析する信号処理部とを備え、
     前記レーザ素子は、複数の縦モードで発振して、複数の発振波長を有するレーザ光を照射するものであり、
     前記駆動部は、前記レーザ素子をパルス駆動するとともに各パルス内で前記複数の発振波長を掃引させる、分析装置。
  2.  前記駆動部は、前記複数の発振波長を、前記複数の縦モードの波長間隔分に基づいて掃引させる、請求項1に記載の分析装置。
  3.  前記駆動部は、前記複数の縦モードの波長間隔に基づいて定められたパルス幅を有する駆動パルスにより、前記レーザ素子をパルス駆動する、請求項1又は2に記載の分析装置。
  4.  前記駆動部は、オン時間に対してオフ時間を長く設定した駆動パルスにより、前記レーザ素子をパルス駆動する、請求項1乃至3の何れか一項に記載の分析装置。
  5.  前記駆動パルスにおけるオフ時間は、前記駆動パルスにおけるオン時間直前の前記レーザ素子の温度に戻すために設定された時間である、請求項4に記載の分析装置。
  6.  前記駆動部は、パルス幅10μsec以下で、繰り返し周波数0.1~10MHzで、デューティ比5%以上50%未満で、前記レーザ素子をパルス駆動するものである、請求項1乃至5の何れか一項に記載の分析装置。
  7.  前記駆動部は、前記レーザ素子をパルス駆動するパルス駆動期間と、前記レーザ素子のパルス駆動を停止する停止期間とを繰り返す、請求項1乃至6の何れか一項に記載の分析装置。
  8.  前記サンプルであるガスを収容するサンプルセルと、
     リファレンスガスを収容するリファレンスセルとを有し、
     前記レーザ素子は、前記サンプルセル及び前記リファレンスセルにレーザ光を照射するものであり、
     前記光検出器は、前記サンプルセル及び前記リファレンスセルを通過したレーザ光を検出するニューマチック検出器である、請求項1乃至7の何れか一項に記載の分析装置。
  9.  サンプルにレーザ光を照射するレーザ素子の駆動方法であって、
     前記レーザ素子は、複数の縦モードで発振して、複数の発振波長を有するレーザ光を照射するものであり、
     前記レーザ素子をパルス駆動するとともに各パルス内で前記複数の発振波長を掃引させる、レーザ素子の駆動方法。
  10.  サンプルにレーザ光を照射するレーザ素子と、
     前記レーザ素子を駆動する駆動部と、
     前記サンプルを通過したレーザ光を検出する光検出器と、
     前記光検出器からの出力信号を取得して前記サンプルを分析する信号処理部とを備え、
     前記レーザ素子は、複数の縦モードで発振して、複数の発振波長を有するレーザ光を照射するものであり、
     前記駆動部は、前記レーザ素子をパルス駆動するとともに各パルス内で前記複数の発振波長を掃引させる、分析方法。
  11.  サンプルにレーザ光を照射するレーザ素子と、前記レーザ素子を駆動する駆動部と、前記サンプルを通過したレーザ光を検出する光検出器と、前記光検出器からの出力信号を取得して前記サンプルを分析する信号処理部とを備え、前記レーザ素子は、複数の縦モードで発振して、複数の発振波長を有するレーザ光を照射するものである分析装置に用いられる分析用プログラムであって、
     前記駆動部により前記レーザ素子をパルス駆動するとともに各パルス内で前記複数の発振波長を掃引させる機能を発揮させる分析用プログラム。
PCT/JP2023/032392 2022-10-26 2023-09-05 分析装置、レーザ素子の駆動方法、及び、分析方法 WO2024090042A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022171446 2022-10-26
JP2022-171446 2022-10-26

Publications (1)

Publication Number Publication Date
WO2024090042A1 true WO2024090042A1 (ja) 2024-05-02

Family

ID=90830432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032392 WO2024090042A1 (ja) 2022-10-26 2023-09-05 分析装置、レーザ素子の駆動方法、及び、分析方法

Country Status (1)

Country Link
WO (1) WO2024090042A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522694A (ja) * 2002-04-09 2005-07-28 カスケイド テクノロジーズ リミテッド 半導体ダイオードを使用したレーザ分光装置およびレーザ分光法
US20170201328A1 (en) * 2014-06-16 2017-07-13 ETH Zürich Method for Optical and Electrical Signal Processing of a Multi-Heterodyne Signal Generated by a Multi-Mode Semi-Conductor Laser and Detection Device Utilizing that Method
US20170256909A1 (en) * 2014-09-05 2017-09-07 Pilot Photonics Limited Spectroscopic detection using a tunable frequency comb
JP2019015563A (ja) * 2017-07-05 2019-01-31 浜松ホトニクス株式会社 流体分析装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522694A (ja) * 2002-04-09 2005-07-28 カスケイド テクノロジーズ リミテッド 半導体ダイオードを使用したレーザ分光装置およびレーザ分光法
US20170201328A1 (en) * 2014-06-16 2017-07-13 ETH Zürich Method for Optical and Electrical Signal Processing of a Multi-Heterodyne Signal Generated by a Multi-Mode Semi-Conductor Laser and Detection Device Utilizing that Method
US20170256909A1 (en) * 2014-09-05 2017-09-07 Pilot Photonics Limited Spectroscopic detection using a tunable frequency comb
JP2019015563A (ja) * 2017-07-05 2019-01-31 浜松ホトニクス株式会社 流体分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NORMAND, E. DUXBURY, G. LANGFORD, N.: "Characterisation of the spectral behaviour of pulsed quantum cascade lasers using a high resolution Fourier transform infrared spectrometer", OPTICS COMMUNICATIONS, ELSEVIER, AMSTERDAM, NL, vol. 197, no. 1-3, 15 September 2001 (2001-09-15), AMSTERDAM, NL , pages 115 - 120, XP004330384, ISSN: 0030-4018, DOI: 10.1016/S0030-4018(01)01402-X *

Similar Documents

Publication Publication Date Title
CN110672554B (zh) 一种随机振动驱动衰荡腔免标定气体浓度测量系统
EP3485254B1 (en) Photothermal interferometry apparatus and method
US9759654B2 (en) Cavity enhanced laser based isotopic gas analyzer
US7679059B2 (en) Measuring water vapor in hydrocarbons
US6091504A (en) Method and apparatus for measuring gas concentration using a semiconductor laser
CN109596538B (zh) 分析装置和分析方法
US6775001B2 (en) Laser-based spectrometer for use with pulsed and unstable wavelength laser sources
Nadezhdinskii et al. High sensitivity methane analyzer based on tuned near infrared diode laser
CN108226064B (zh) 分析装置、计算机可读存储介质和分析方法
US7570349B2 (en) Cars/absorption dual mode electro-optic sensor
US8645081B2 (en) Device and method of examining absorption of infrared radiation
JP7135608B2 (ja) ガス吸収分光装置、及びガス吸収分光方法
US20070259440A1 (en) Measuring low levels of methane in carbon dioxide
US9851248B2 (en) Spectroscopy system using waveguide and employing a laser medium as its own emissions detector
US20050062972A1 (en) System and method for cavity ring-down spectroscopy using continuously varying continuous wave excitation
WO2007121593A1 (en) Method for measurement and determination of concentration within a mixed medium
US20060072117A1 (en) Resonator-amplified absorption spectrometer
CN111413295A (zh) 分析装置、存储介质和分析方法
US4968887A (en) Gaseous nitrogen detection using excited-state laser spectroscopy
WO2024090042A1 (ja) 分析装置、レーザ素子の駆動方法、及び、分析方法
EP3739310B1 (en) Spectrometry device and spectrometry method
JP2014142299A (ja) ガス濃度測定装置
GB1564641A (en) Spectroscopic apparatus and method
Herbst et al. Acetylene measurement using quantum cascade lasers at 14μm
US10345225B2 (en) Analyzer, absorption characteristic calculation circuit, and analysis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882255

Country of ref document: EP

Kind code of ref document: A1