WO2020162053A1 - 排熱回収装置およびその制御方法 - Google Patents

排熱回収装置およびその制御方法 Download PDF

Info

Publication number
WO2020162053A1
WO2020162053A1 PCT/JP2019/049620 JP2019049620W WO2020162053A1 WO 2020162053 A1 WO2020162053 A1 WO 2020162053A1 JP 2019049620 W JP2019049620 W JP 2019049620W WO 2020162053 A1 WO2020162053 A1 WO 2020162053A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
cooling water
heat recovery
recovery device
exhaust heat
Prior art date
Application number
PCT/JP2019/049620
Other languages
English (en)
French (fr)
Inventor
聡司 藤井
晃 川波
智史 時津
Original Assignee
三菱重工マリンマシナリ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工マリンマシナリ株式会社 filed Critical 三菱重工マリンマシナリ株式会社
Priority to CN201980091274.7A priority Critical patent/CN113396276B/zh
Priority to KR1020217024719A priority patent/KR102476859B1/ko
Priority to ES19914622T priority patent/ES2939159T3/es
Priority to EP19914622.6A priority patent/EP3907395B1/en
Publication of WO2020162053A1 publication Critical patent/WO2020162053A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an exhaust heat recovery device and a control method thereof.
  • Patent Document 1 an exhaust heat recovery device that recovers the exhaust heat of a diesel engine of a ship to generate electricity.
  • the exhaust heat recovery device disclosed in Patent Document 1 guides the jacket cooling water discharged from the diesel engine to the evaporator, and guides the refrigerant evaporated by the evaporator by heat exchange with the jacket cooling water to the turbine. Then, the turbine is rotated by the evaporated refrigerant, and the rotational power of the turbine is transmitted to the generator accordingly. The refrigerant passing through the turbine is condensed by seawater in the condenser. On the other hand, the jacket cooling water that has exchanged heat with the refrigerant is supplied to the diesel engine and used to cool the diesel engine.
  • leakage of the refrigerant from the Rankine cycle is detected based on a change in the liquid level of the refrigerant stored in the liquid receiving chamber of the Rankine cycle. It is described to judge.
  • Patent Document 2 when determining the occurrence of leakage based on the liquid amount of the refrigerant filled in the Rankine cycle, there is a possibility that the occurrence of leakage cannot be detected early. This is because, in a refrigerant that repeats a phase change between gas and liquid, the liquid refrigerant has a smaller specific volume than the gas refrigerant, and it may take a considerable time to change the liquid amount.
  • the present disclosure has been made in view of such circumstances, and an exhaust heat recovery device and a control thereof that can relatively quickly detect the leakage of the refrigerant even when the refrigerant leaks from the refrigerant circuit.
  • the purpose is to provide a method.
  • the exhaust heat recovery apparatus and the control method thereof employ the following means. That is, the exhaust heat recovery device according to one aspect of the present disclosure includes a refrigerant circuit that includes a condenser that condenses the refrigerant that has passed through the turbine rotated by the refrigerant evaporated by the evaporator by heat exchange with cooling water. A cooling water pipe through which the cooling water that has passed through the condenser flows, and a leak detector that is provided in the cooling water pipe and that detects the refrigerant contained in the cooling water that flows through the cooling water pipe. ing.
  • the refrigerant contained in the cooling water (the cooling water that has been heat-exchanged with the refrigerant in the condenser) flowing through the cooling water pipe through the condenser is detected as a leak. It can be detected by the vessel. Therefore, even if the refrigerant leaks from the refrigerant circuit to the cooling water pipe due to a phenomenon such as damage to a plate inside the condenser, the leakage of the refrigerant can be detected.
  • the exhaust heat recovery device is controlled so as to be stopped, so that the loss of the refrigerant and the phenomenon that the cooling water enters the refrigerant circuit can be suppressed.
  • the leak detector detects the refrigerant (gas refrigerant) contained in the cooling water flowing through the cooling water pipe, for example, compared to the case where the leakage is detected based on the liquid amount of the liquid refrigerant filled in the refrigerant circuit.
  • the leakage of the refrigerant can be detected relatively quickly.
  • the leak detector includes a gas vent valve provided vertically above the cooling water pipe, and the refrigerant exhausted from the gas vent valve. And a refrigerant detector for detecting.
  • the refrigerant (gas refrigerant) contained in the cooling water flowing through the cooling water pipe can be automatically discharged by the gas vent valve. it can. Further, the refrigerant discharged from the gas vent valve can be detected by the refrigerant detector. This makes it possible to detect the leakage of the refrigerant from the refrigerant circuit.
  • the gas vent valve is provided vertically above the cooling water pipe, the refrigerant contained in the cooling water is easily collected by the gas vent valve.
  • the gas vent valve is provided, for example, in a pipe that is branched vertically upward from a portion where gas is likely to accumulate, such as the top of the cooling water pipe.
  • the gas vent valve may discharge not only the gas refrigerant but also the air contained in the cooling water, but in this case, it is not detected by the refrigerant detector.
  • the leakage detector includes an exhaust pipe connected to the gas vent valve and through which gas exhausted from the gas vent valve flows, the exhaust pipe The discharge port is opened downward in the vertical direction, and the refrigerant detector is provided below the discharge port in the vertical direction.
  • an exhaust pipe through which the exhausted gas flows is connected to the gas vent valve. Further, the discharge port of this discharge pipe is opened downward in the vertical direction. Further, a refrigerant detector is provided vertically below the discharge port. Since the leaked gas refrigerant has a larger specific gravity than air, if the gas discharged from the degassing valve contains the gas refrigerant, it is provided vertically below the discharge port that opens downward in the vertical direction. It is easily detected by the refrigerant detector.
  • the exhaust heat recovery apparatus includes a control unit capable of acquiring a leakage state of the refrigerant from the leakage detector, and when the leakage detector detects the leakage of the refrigerant, the control is performed. The operation is stopped by the department.
  • the operation of the exhaust heat recovery device can be stopped by the control unit when the leakage of the refrigerant is detected by the leakage detector. If the operation of the exhaust heat recovery apparatus is not stopped even if the refrigerant leaks, the loss of the refrigerant from the refrigerant circuit and eventually the cooling water will enter the refrigerant circuit. The loss of the refrigerant can be prevented by stopping the operation of the exhaust heat recovery device by the control unit.
  • control method of the exhaust heat recovery device has a condenser that condenses the refrigerant that has passed through the turbine rotated by the refrigerant evaporated by the evaporator by heat exchange with cooling water.
  • a method for controlling an exhaust heat recovery device comprising a refrigerant circuit and a cooling water pipe in which the cooling water passing through the condenser flows, wherein the refrigerant contained in the cooling water flowing in the cooling water pipe And a stop step of stopping the exhaust heat recovery device when the refrigerant is detected by the leak detecting step.
  • the exhaust heat recovery device 1 transfers exhaust heat of jacket water, which cools a diesel engine (not shown), which is a main engine that generates propulsive force of a ship, to an organic fluid with which the refrigerant circuit 10 is filled by heat exchange. It is a device adopted in an ORC (Organic Rankine Cycle) that transmits and rotates the turbine 13 connected to a generator (not shown) by the refrigerant to generate electricity.
  • ORC Organic Rankine Cycle
  • the exhaust heat recovery apparatus 1 includes a refrigerant circuit 10 and a cooling water discharge pipe 52 (hereinafter, simply referred to as “cooling water pipe 52”) connected to a condenser 14 included in the refrigerant circuit 10. And a leak detector 30 provided in the cooling water pipe 52.
  • the refrigerant circuit 10 includes an evaporator 12, a turbine 13, a condenser 14, and a pump 15, and each device is connected by a refrigerant pipe 20, a refrigerant pipe 21, a refrigerant pipe 22, and a refrigerant pipe 23.
  • the circuit is configured by that.
  • the refrigerant circuit 10 is filled with an organic medium (for example, a refrigerant such as CFC substitute, which will be simply referred to as “refrigerant” hereinafter).
  • the evaporator 12 is a device that heat-exchanges the refrigerant filled in the refrigerant circuit 10 with jacket water that has been heated by cooling a diesel engine (not shown), and evaporates it. The heat exchange is performed by the heat exchanger inside the evaporator 12.
  • the turbine 13 is a device that is rotated by the refrigerant evaporated by the evaporator 12.
  • the turbine 13 is configured to be able to transmit rotational power to a generator (not shown). That is, the generator is driven by the turbine 13 to generate power.
  • the condenser 14 is a device for exchanging heat with the cooling water that has passed through the turbine 13 to condense it.
  • the cooling water is, for example, seawater, and is supplied to the condenser 14 via the cooling water supply pipe 50 connected to the cooling water inlet of the condenser 14.
  • the cooling water supplied to the condenser 14 exchanges heat with the refrigerant filled in the refrigerant circuit 10 while passing through the condenser 14.
  • the cooling water that has passed through the condenser 14 (cooling water that has undergone heat exchange with the refrigerant in the condenser 14) is discharged to the outside of the condenser 14 via a cooling water pipe 52 connected to the cooling water outlet of the condenser 14. To be done.
  • the pump 15 is a device that forms a flow of the refrigerant in the refrigerant circuit 10 by sending the refrigerant condensed and liquefied by the condenser 14 to the evaporator 12 side through the refrigerant pipe 23.
  • the above-described configuration configures the refrigerant circuit 10 in which the refrigerant flow is formed in the order of the evaporator 12, the refrigerant pipe 20, the turbine 13, the refrigerant pipe 21, the condenser 14, the refrigerant pipe 22, the pump 15, and the refrigerant pipe 23. ..
  • the leak detector 30 is provided in the cooling water pipe 52 through which the cooling water that has passed through the condenser 14 flows.
  • the leak detector 30 is a device that detects the refrigerant when the cooling water flowing through the cooling water pipe 52 contains the refrigerant. Since the pressure of the cooling water flowing through the cooling water pipe 52 connected to the cooling water outlet of the condenser 14 (downstream side of the condenser 14 in the cooling water flow direction) is about atmospheric pressure, a high-pressure refrigerant is generated. When leaking to the cooling water flowing through the cooling water pipe 52, the refrigerant is vaporized and becomes a gas refrigerant due to the decrease in pressure. Therefore, the leak detector 30 is a device that mainly detects the gas refrigerant contained in the cooling water flowing through the cooling water pipe 52.
  • the leak detector 30 includes a gas vent valve 32 and a refrigerant detector 34.
  • the gas vent valve 32 is a valve that can automatically discharge gas to the outside when a certain amount of gas is accumulated inside, and is provided in the branch pipe 35.
  • a float type valve is used as the gas vent valve 32.
  • the float type valve closes or opens the valve as a float floating in the liquid in the valve moves up and down as the liquid level in the valve changes. Specifically, when the gas is collected in a valve in which the liquid is sealed while maintaining a predetermined liquid level and the liquid having a higher specific gravity than the gas is pushed down by the gas, the valve floating is opened by the float. When the valve is opened, the gas is exhausted and the liquid level pushed down by the gas rises and returns to the original liquid level. When the liquid level floats, the valve is closed.
  • the branch pipe 35 is a pipe whose upstream end is connected to the cooling water pipe 52 and which is branched and extended upward in the vertical direction.
  • the portion of the cooling water pipe 52 to which the base end of the branch pipe 35 is connected is preferably a portion such as the top of the cooling water pipe 52 where gas is likely to collect due to buoyancy.
  • the gas vent valve 32 be provided vertically above the branch pipe 35. Thereby, the gas in the branch pipe 35 is easily collected by the gas vent valve 32.
  • An exhaust pipe 36 through which the gas exhausted from the gas vent valve 32 flows is connected to the gas vent valve 32.
  • the discharge pipe 36 extends vertically upward from the gas vent valve 32, and then bends in an inverted U shape, so that the discharge port 36A opens vertically downward.
  • the discharge port 36A is an open end and the surroundings are in an air atmosphere.
  • the refrigerant detector 34 is provided vertically below the discharge port 36A.
  • the refrigerant detector 34 can detect the refrigerant.
  • the specific gravity is higher than that of air.
  • the heavy gas refrigerant can be separated from the air and directed to the refrigerant detector 34.
  • a resistance type sensor is used as the refrigerant detector 34.
  • Leak detector 30 operates as follows. That is, the gas contained in the cooling water flowing through the cooling water pipe 52 is collected by the gas vent valve 32 via the branch pipe 35.
  • the gas vent valve 32 automatically discharges the gas to the outside.
  • the discharged gas is discharged into the air from the discharge port 36A through the discharge pipe 36.
  • the discharged gas may contain a refrigerant.
  • the refrigerant leaks from the refrigerant circuit 10 to the cooling water side (cooling water pipe 52). Then, the leaked refrigerant mixes with the cooling water and circulates through the cooling water pipe 52, and as a result, is collected as gas in the gas vent valve 32.
  • the refrigerant detector 34 detects the refrigerant (leakage detecting step). Even if the refrigerant does not leak, gas may be discharged from the gas vent valve 32 when air is mixed in the cooling water. However, if only the air is discharged, the refrigerant detector 34 will not react.
  • the refrigerant detector 34 When the refrigerant detector 34 detects the refrigerant, the refrigerant detector 34 sends the information to the control unit (not shown).
  • the control unit is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
  • a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing/arithmetic processing.
  • the program is installed in a ROM or other storage medium in advance, provided in a state of being stored in a computer-readable storage medium, or delivered via wired or wireless communication means. Etc. may be applied.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • control unit When the control unit receives the refrigerant detection signal from the refrigerant detector 34, it determines that the refrigerant is leaking from the refrigerant circuit 10 to the cooling water side. When the control unit determines that the refrigerant is leaking, the operation of the exhaust heat recovery apparatus 1 is stopped by the control unit (stop process).
  • the leakage detector 30 detects the refrigerant leakage. can do.
  • the exhaust heat recovery apparatus 1 is controlled so as to be stopped, so that the loss of the refrigerant from the refrigerant circuit 10 and the phenomenon that the cooling water enters the refrigerant circuit 10 can be suppressed.
  • An exhaust heat recovery device other than the ORC for example, a heat exchanger that exchanges heat between pure water and seawater, if seawater leaks into a pipe through which the pure water flows, Leakage of seawater can be easily detected by detecting the change in conductivity.
  • the exhaust heat recovery device that employs the ORC it is difficult to detect the leakage because the refrigerant is non-conductive, and the detection method using the change in conductivity is not suitable. Even if the refrigerant could be detected by the detection method using the change in conductivity, it is considered that a considerable amount of the refrigerant has already leaked at the time of detection. For this reason, not only the refrigerant is lost, but also the external environment may be polluted.
  • the leak detector 30 detects the gas refrigerant contained in the cooling water flowing through the cooling water pipe 52, for example, compared with the case where the leak is detected based on the liquid amount of the liquid refrigerant filled in the refrigerant circuit 10. Thus, a slight leak of the refrigerant can be detected. This is clear from the fact that the gas refrigerant has a larger specific volume than the liquid refrigerant. Therefore, the leakage of the refrigerant can be detected relatively quickly.
  • the leaked gas refrigerant has a larger specific gravity than air
  • the vertical direction of the discharge port 36A opening downward in the vertical direction It is likely to be detected by the refrigerant detector 34 provided below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

冷媒が冷媒回路から漏洩した場合であっても、比較的速やかに冷媒の漏洩を検知することができる排熱回収装置およびその制御方法を提供することを目的とする。排熱回収装置(1)は、蒸発器(12)によって蒸発させられた冷媒によって回転されるタービン(13)を通過した冷媒を冷却水との熱交換によって凝縮させる凝縮器(14)を有する冷媒回路(10)と、凝縮器(14)を通過した冷却水が流通する冷却水配管(52)と、冷却水配管(52)に設けられ、冷却水配管(52)を流通する冷却水に含まれる冷媒を検知する漏洩検知器(30)とを備えている。

Description

排熱回収装置およびその制御方法
 本開示は、排熱回収装置およびその制御方法に関する。
 従来、船舶のディーゼルエンジンの排熱を回収して発電を行う排熱回収装置が知られている(例えば、特許文献1)。
 特許文献1に開示されている排熱回収装置は、ディーゼルエンジンから排出されるジャケット冷却水を蒸発器に導き、ジャケット冷却水との熱交換によって蒸発器で蒸発させられた冷媒をタービンに導く。そして、蒸発させられた冷媒によってタービンが回転し、それに伴ってタービンの回転動力が発電機に伝達される。タービンを通過した冷媒は凝縮器で海水によって凝縮される。一方、冷媒と熱交換したジャケット冷却水はディーゼルエンジンに供給され、ディーゼルエンジンを冷却するために用いられる。
 凝縮器では、冷媒と冷却水(特許文献1においては海水)との間で熱交換が行われるが、凝縮器内部のプレートが破損した場合、冷媒が冷媒回路から冷却水側へ漏洩するおそれがある。冷媒の漏洩が継続すると冷媒回路から冷媒が損失してしまう。また、冷媒が損失した冷媒回路は内部の圧力が低下して、凝縮器を流通している冷却水の圧力よりも低くなると、冷却水が冷媒回路に侵入してしまい冷媒回路の腐食の原因となる可能性がある。
 しかし、前述のように凝縮器を流通している冷却水が冷媒回路へ侵入した場合であっても、冷媒に含まれる冷却水を検知することが困難な場合がある。
 これに対して、冷媒の漏洩を検知する方法として、例えば特許文献2には、ランキンサイクルからの冷媒の漏洩を、ランキンサイクルが有する受液室に貯留された冷媒の液位の変化に基づいて判断することが記載されている。
特開2012-215124号公報 特開2014-115008号公報
 特許文献2に開示されているように、ランキンサイクルに充填された冷媒の液量に基づいて漏洩の発生を判断する場合、漏洩の発生を早期に検知できない可能性がある。なぜなら、気液の間で相変化を繰り返す冷媒において、液冷媒はガス冷媒に比べて比体積が小さく、液量の変化には相当時間を要する可能性があるからである。
 本開示はこのような事情に鑑みてなされたものであって、冷媒が冷媒回路から漏洩した場合であっても、比較的速やかに冷媒の漏洩を検知することができる排熱回収装置およびその制御方法を提供することを目的とする。
 上記課題を解決するために、本開示の排熱回収装置およびその制御方法は以下の手段を採用する。
 すなわち、本開示の一態様に係る排熱回収装置は、蒸発器によって蒸発させられた冷媒によって回転されるタービンを通過した前記冷媒を冷却水との熱交換によって凝縮させる凝縮器を有する冷媒回路と、前記凝縮器を通過した前記冷却水が流通する冷却水配管と、該冷却水配管に設けられ、該冷却水配管を流通する前記冷却水に含まれる前記冷媒を検知する漏洩検知器とを備えている。
 本態様に係る排熱回収装置によれば、凝縮器を通過して冷却水配管を流通している冷却水(凝縮器にて冷媒と熱交換された冷却水)に含まれる冷媒を、漏洩検知器によって検知することができる。このため、例えば凝縮器内部のプレートが破損するなどの現象によって冷媒が冷媒回路から冷却水配管へ漏洩した場合であっても、冷媒の漏洩を検知することができる。これによって、例えば、冷媒の漏洩を検知した場合に排熱回収装置を停止させるように制御することで、冷媒の損失や、冷却水が冷媒回路へ侵入する現象を抑制できる。仮に、冷却水が冷媒回路へ侵入した場合、冷却水による冷媒回路の腐食が懸念される。
 また、漏洩検知器は冷却水配管を流通する冷却水に含まれる冷媒(ガス冷媒)を検知するので、例えば、冷媒回路に充填された液冷媒の液量に基づいて漏洩を検知する場合に比べて、わずかな冷媒の漏洩を検知することができる。これは、ガス冷媒の方が液冷媒に比べて比体積が大きいことから明らかである。このため、比較的速やかに冷媒の漏洩を検知することができる。
 また、本開示の一態様に係る排熱回収装置において、前記漏洩検知器は、前記冷却水配管に対して鉛直方向上方に設けられたガス抜き弁と、該ガス抜き弁から排出された前記冷媒を検知する冷媒検知器とを備えている。
 本態様に係る排熱回収装置によれば、冷媒の漏洩が発生している場合、ガス抜き弁によって冷却水配管を流通する冷却水に含まれる冷媒(ガス冷媒)を自動的に排出することができる。また、ガス抜き弁から排出された冷媒は、冷媒検知器によって検知することができる。これによって、冷媒回路からの冷媒の漏洩を検知することができる。このとき、ガス抜き弁は冷却水配管に対して鉛直方向上方に設けられているので、冷却水に含まれる冷媒は、ガス抜き弁に捕集されやすい。ガス抜き弁は、例えば、冷却水配管の頂部など気体が溜まりやすい部分から鉛直方向上方に分岐された配管に設けられる。
 なお、ガス抜き弁はガス冷媒に限らず冷却水に含まれる空気のみを排出する場合があるが、この場合は冷媒検知器によって検知されることはない。
 また、本開示の一態様に係る排熱回収装置において、前記漏洩検知器は、前記ガス抜き弁に接続されるとともに前記ガス抜き弁から排出された気体が流通する排出配管を備え、該排出配管の排出口は鉛直方向下方に向かって開口され、前記排出口の鉛直方向下方に前記冷媒検知器が設けられている。
 本態様に係る排熱回収装置において、ガス抜き弁には排出された気体が流通する排出配管が接続されている。また、この排出配管の排出口は鉛直方向下方に向かって開口されている。さらに、この排出口の鉛直方向下方に冷媒検知器が設けられている。
 漏洩したガス冷媒は空気よりも比重が大きいため、ガス抜き弁から排出された気体にガス冷媒が含まれている場合、鉛直方向下方に向かって開口している排出口の鉛直方向下方に設けられた冷媒検知器によって検知されやすい。
 また、本開示の一態様に係る排熱回収装置は、前記漏洩検知器から前記冷媒の漏洩状態を取得可能な制御部を備え、前記漏洩検知器によって前記冷媒の漏洩を検知したとき、前記制御部によって運転が停止される。
 本態様に係る排熱回収装置によれば、漏洩検知器によって冷媒の漏洩が検知されたとき、排熱回収装置の運転を制御部によって停止させることができる。仮に冷媒の漏洩が発生しているにも関わらず排熱回収装置の運転を停止させない場合、冷媒回路からの冷媒の損失、ひいては冷却水が冷媒回路へ侵入してしまう。排熱回収装置の運転を制御部によって停止させることで、冷媒の損失を防止することができる。
 また、本開示の一態様に係る排熱回収装置の制御方法は、蒸発器によって蒸発させられた冷媒によって回転されるタービンを通過した前記冷媒を冷却水との熱交換によって凝縮させる凝縮器を有する冷媒回路と、前記凝縮器を通過した前記冷却水が流通する冷却水配管とを備えている排熱回収装置の制御方法であって、前記冷却水配管を流通する前記冷却水に含まれる前記冷媒を検知する漏洩検知工程と、前記漏洩検知工程によって前記冷媒を検知したとき前記排熱回収装置を停止する停止工程とを含む。
 本開示に係る排熱回収装置およびその制御方法によれば、冷媒が冷媒回路から漏洩した場合であっても、速やかに冷媒の漏洩を検知することができる。
本開示の一実施形態に係る排熱回収装置の構成を示した図である。
  以下、本開示の一実施形態に係る排熱回収装置1について、図面を参照して説明する。
 排熱回収装置1は、例えば、船舶の推進力を発生させる主機関であるディーゼルエンジン(図示せず)を冷却するジャケット水の排熱を、熱交換によって冷媒回路10に充填された有機流体に伝達し、その冷媒によって発電機(図示せず)に接続されたタービン13を回転させて発電を行うORC(Organic Rankine Cycle)に採用される装置である。
 図1に示すように、排熱回収装置1は、冷媒回路10と、冷媒回路10が有する凝縮器14に接続された冷却水排出配管52(以下、単に「冷却水配管52」という。)と、冷却水配管52に設けられた漏洩検知器30とを備える。
 冷媒回路10は、蒸発器12と、タービン13と、凝縮器14と、ポンプ15と、を備えており、各機器が冷媒配管20、冷媒配管21、冷媒配管22、冷媒配管23によって接続されることで回路が構成されている。冷媒回路10には、有機媒体(例えば、代替フロンなどの冷媒とされる。以下、単に「冷媒」と言う。)が充填されている。
 蒸発器12は、冷媒回路10に充填された冷媒をディーゼルエンジン(図示せず)の冷却によって高温化したジャケット水と熱交換させて蒸発させる装置である。熱交換は蒸発器12内部の熱交換器によって行われる。
 タービン13は、蒸発器12によって蒸発させられた冷媒によって回転させられる装置である。タービン13は、発電機(図示せず)に回転動力を伝達できるように構成されている。つまり、発電機はタービン13によって駆動されることで発電を行う。
 凝縮器14は、タービン13を通過した冷媒を冷却水と熱交換させて凝縮させる装置である。冷却水は例えば海水とされ、凝縮器14の冷却水入口に接続された冷却水供給配管50を介して凝縮器14に供給される。凝縮器14に供給された冷却水は、凝縮器14を通過しつつ冷媒回路10に充填された冷媒と熱交換する。凝縮器14を通過した冷却水(凝縮器14にて冷媒と熱交換された冷却水)は、凝縮器14の冷却水出口に接続された冷却水配管52を介して凝縮器14の外部に排出される。
 ポンプ15は、凝縮器14によって凝縮させられ液化した冷媒を、冷媒配管23を介して蒸発器12側に送液することで、冷媒回路10に冷媒の流れを形成させる装置である。
 前述の構成によって、蒸発器12、冷媒配管20、タービン13、冷媒配管21、凝縮器14、冷媒配管22、ポンプ15、冷媒配管23の順に冷媒の流れが形成された冷媒回路10が構成される。
 本実施形態に係る排熱回収装置1においては、凝縮器14を通過した冷却水が流通する冷却水配管52に漏洩検知器30が設けられている。
 漏洩検知器30は、冷却水配管52に流通する冷却水に冷媒が含まれている場合に、その冷媒を検出する装置である。
 なお、凝縮器14の冷却水出口(冷却水の流れ方向において凝縮器14の下流側)に接続された冷却水配管52を流通する冷却水の圧力はおよそ大気圧であるため、高圧の冷媒が冷却水配管52を流通する冷却水に漏洩した場合、圧力の低下に起因して冷媒は気化してガス冷媒となる。したがって、漏洩検知器30は、主として、冷却水配管52に流通する冷却水に含まれているガス冷媒を検出する装置である。
 以下、漏洩検知器30について詳細に説明する。
 図1に示すように、漏洩検知器30は、ガス抜き弁32と、冷媒検知器34とを備えている。
 ガス抜き弁32は、内部に一定量の気体が溜まると自動的に外部に気体を排出できる弁であり、分岐配管35に設けられている。
 ガス抜き弁32としては、例えばフロート式の弁が用いられる。フロート式の弁は、弁内の液体に浮いているフロート(浮き)が弁内の液位の変化にともなって上下することで、弁を閉成したり開成したりするものである。詳細には、液体が所定の液位を保って封入されている弁内に気体が集まり気体よりも比重の重い液体が気体によって押し下げられると、液体に浮いているフロートによって弁が開成される。弁の開成によって気体が排出され気体によって押し下げられていた液位が上昇することで元の液位に戻ると、液体に浮いているフロートによって弁が閉成される。
 分岐配管35は、上流側となる基端部が冷却水配管52と接続されるとともに鉛直方向上方に分岐、延出した配管とされる。このとき、分岐配管35の基端部が接続されている冷却水配管52の部分は、冷却水配管52の頂部など気体が浮力によって集まりやすい部分であることが好ましい。これにより、冷却水配管52を流通する冷却水に含まれる気体がガス抜き弁32に捕集されやすくなる。また、ガス抜き弁32は、分岐配管35の鉛直方向上方に設けられることが好ましい。これにより、分岐配管35内の気体がガス抜き弁32に捕集されやすくなる。
 ガス抜き弁32には、ガス抜き弁32から排出された気体が流通する排出配管36が接続されている。
 排出配管36は、ガス抜き弁32から鉛直方向上向きに延出した後、逆U字状に屈曲することで排出口36Aが鉛直方向下方に向かって開口している。なお、排出口36Aは、開放端とされ、周囲は空気雰囲気とされる。
 冷媒検知器34は、排出口36Aの鉛直方向下方に設けられている。冷媒検知器34は、排出口36Aから排出された気体中に冷媒が含まれている場合、その冷媒を検知することができる。このとき、例えば、ガス抜き弁32から排出された気体が空気とガス冷媒との混合気体とされた場合、排出口36Aの下方に冷媒検知器34が設置されていれば、空気よりも比重が重いガス冷媒を空気から分離して冷媒検知器34に導くことができる。冷媒検知器34としては、例えば抵抗式のセンサが用いられる。
 漏洩検知器30は、次のように作動する。
 すなわち、冷却水配管52を流通する冷却水に含まれている気体は、分岐配管35を介してガス抜き弁32に捕集される。
 一定量の気体がガス抜き弁32内に溜まると、ガス抜き弁32は気体を外部に自動的に排出する。
 排出された気体は、排出配管36を介して排出口36Aから空気中に排出される。
 このとき、排出された気体中に冷媒が含まれている場合がある。例えば、凝縮器14の内部に設置された熱交換用のプレートが破損した場合、冷媒が冷媒回路10から冷却水側(冷却水配管52)へ漏洩する。そうすると、漏洩した冷媒は冷却水に混入して冷却水配管52を流通することになり、結果的に、気体としてガス抜き弁32に捕集される。
 前述のように、排出された気体中に冷媒が含まれている場合、冷媒検知器34が冷媒を検知する(漏洩検知工程)。なお、冷媒が漏洩していない場合であっても冷却水に空気が混入している場合はガス抜き弁32から気体が排出されることがある。ただし、空気のみが排出されたのであれば、当然ながら冷媒検知器34が反応することはない。
 冷媒検知器34が冷媒を検知した場合、冷媒検知器34はその情報を制御部(図示せず)に送信する。
 制御部は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、およびコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
 制御部は、冷媒検知器34から冷媒検知の信号を受信した場合、冷媒が冷媒回路10から冷却水側へ漏洩していると判断する。制御部によって冷媒が漏洩していると判断された場合、排熱回収装置1は制御部によって運転が停止される(停止工程)。
 本実施形態によれば、以下の効果を奏する。
 凝縮器14内部に設けられた熱交換用のプレートが破損するなどの現象によって、冷媒が冷媒回路10から冷却水配管52へ漏洩した場合であっても、漏洩検知器30によって冷媒の漏洩を検知することができる。冷媒の漏洩を検知した場合、排熱回収装置1を停止させるように制御することで、冷媒回路10からの冷媒の損失や、冷却水が冷媒回路10へ侵入する現象を抑制できる。
 なお、ORC以外の排熱回収装置であって、例えば、純水と海水との間で熱交換を行う熱交換器であれば、純水が流通する配管に海水が漏洩した場合、純水の導電率の変化を検知することで容易に海水の漏洩を検知できる。しかし、ORCが採用された排熱回収装置の場合、冷媒は非導電性であるため漏洩の検知が困難であり、導電率の変化を利用した検知方法は適さない。また、仮に導電率の変化を利用した検知方法によって冷媒を検知できたとしても、検知した時点で既に相当量の冷媒が漏洩しているものと考えられる。このため、冷媒の損失となるばかりか、外部環境を汚染する可能性もある。
 また、漏洩検知器30は冷却水配管52を流通する冷却水に含まれるガス冷媒を検知するので、例えば、冷媒回路10に充填された液冷媒の液量に基づいて漏洩を検知する場合に比べて、わずかな冷媒の漏洩を検知することができる。これは、ガス冷媒の方が液冷媒に比べて比体積が大きいことから明らかである。このため、比較的速やかに冷媒の漏洩を検知することができる。
 また、漏洩したガス冷媒は空気よりも比重が大きいため、ガス抜き弁32から排出された気体にガス冷媒が含まれている場合、鉛直方向下方に向かって開口している排出口36Aの鉛直方向下方に設けられた冷媒検知器34によって検知されやすい。
1  排熱回収装置
10 冷媒回路
12 蒸発器
13 タービン
14 凝縮器
15 ポンプ
20,21,22,23 冷媒配管
30 漏洩検知器
32 ガス抜き弁
34 冷媒検知器
35 分岐配管
36 排出配管
36A 排出口
50 冷却水供給配管
52 冷却水排出配管(冷却水配管)

Claims (5)

  1.  蒸発器によって蒸発させられた冷媒によって回転されるタービンを通過した前記冷媒を冷却水との熱交換によって凝縮させる凝縮器を有する冷媒回路と、
     前記凝縮器を通過した前記冷却水が流通する冷却水配管と、
     該冷却水配管に設けられ、該冷却水配管を流通する前記冷却水に含まれる前記冷媒を検知する漏洩検知器と、
    を備えている排熱回収装置。
  2.  前記漏洩検知器は、前記冷却水配管に対して鉛直方向上方に設けられたガス抜き弁と、該ガス抜き弁から排出された前記冷媒を検知する冷媒検知器と、を備えている請求項1に記載の排熱回収装置。
  3.  前記漏洩検知器は、前記ガス抜き弁に接続されるとともに前記ガス抜き弁から排出された気体が流通する排出配管を備え、
     該排出配管の排出口は鉛直方向下方に向かって開口され、前記排出口の鉛直方向下方に前記冷媒検知器が設けられている請求項2に記載の排熱回収装置。
  4.  前記漏洩検知器から前記冷媒の漏洩状態を取得可能な制御部を備え、
     前記漏洩検知器によって前記冷媒の漏洩を検知したとき、前記制御部によって運転が停止される請求項1から3のいずれかに記載の排熱回収装置。
  5.  蒸発器によって蒸発させられた冷媒によって回転されるタービンを通過した前記冷媒を冷却水との熱交換によって凝縮させる凝縮器を有する冷媒回路と、
     前記凝縮器を通過した前記冷却水が流通する冷却水配管と、
    を備えている排熱回収装置の制御方法であって、
     前記冷却水配管を流通する前記冷却水に含まれる前記冷媒を検知する漏洩検知工程と、
     前記漏洩検知工程によって前記冷媒を検知したとき前記排熱回収装置を停止する停止工程と、
    を含む排熱回収装置の制御方法。
PCT/JP2019/049620 2019-02-07 2019-12-18 排熱回収装置およびその制御方法 WO2020162053A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980091274.7A CN113396276B (zh) 2019-02-07 2019-12-18 废热回收装置及其控制方法
KR1020217024719A KR102476859B1 (ko) 2019-02-07 2019-12-18 배기열 회수 장치 및 그 제어 방법
ES19914622T ES2939159T3 (es) 2019-02-07 2019-12-18 Dispositivo de recuperación de calor residual, y método para controlar el mismo
EP19914622.6A EP3907395B1 (en) 2019-02-07 2019-12-18 Waste heat recovery device, and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019020752A JP7150630B2 (ja) 2019-02-07 2019-02-07 排熱回収装置およびその制御方法
JP2019-020752 2019-02-07

Publications (1)

Publication Number Publication Date
WO2020162053A1 true WO2020162053A1 (ja) 2020-08-13

Family

ID=71947616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049620 WO2020162053A1 (ja) 2019-02-07 2019-12-18 排熱回収装置およびその制御方法

Country Status (6)

Country Link
EP (1) EP3907395B1 (ja)
JP (1) JP7150630B2 (ja)
KR (1) KR102476859B1 (ja)
CN (1) CN113396276B (ja)
ES (1) ES2939159T3 (ja)
WO (1) WO2020162053A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139415A1 (en) * 2022-01-24 2023-07-27 Caleffi S.P.A. Safety apparatus for managing gas in conditioning plants

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771845A (ja) * 1993-01-22 1995-03-17 Sentech Corp 流体中のガスを検知する方法とそれに使用する装置
JP2000104940A (ja) * 1998-09-28 2000-04-11 Kyushu Electric Power Co Inc ヒートポンプ式給湯システム
JP2012215124A (ja) 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd 排熱回収発電装置
JP2013100807A (ja) * 2011-10-19 2013-05-23 Toyota Industries Corp ランキンサイクル
JP2014115008A (ja) 2012-12-07 2014-06-26 Toyota Industries Corp 廃熱利用装置
JP2014126344A (ja) * 2012-12-27 2014-07-07 Nissan Motor Co Ltd 熱交換システム
JP2014190216A (ja) * 2013-03-27 2014-10-06 Toyota Industries Corp 廃熱回生システム
JP2017067392A (ja) * 2015-09-30 2017-04-06 ダイキン工業株式会社 冷凍装置
WO2017187504A1 (ja) * 2016-04-26 2017-11-02 三菱電機株式会社 空気調和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255923A (ja) 2007-04-06 2008-10-23 Sanden Corp 内燃機関の廃熱利用装置
JP2010156314A (ja) * 2009-01-05 2010-07-15 Toyota Motor Corp 廃熱回収装置、及びエンジン
JP5249821B2 (ja) * 2009-03-06 2013-07-31 三菱重工業株式会社 冷凍装置及び冷凍装置の冷媒漏洩検知方法
JP2011231636A (ja) * 2010-04-26 2011-11-17 Mitsubishi Heavy Ind Ltd 排熱回収発電装置およびこれを備えた船舶
JP5916360B2 (ja) * 2011-11-30 2016-05-11 三菱重工業株式会社 ターボ冷凍機
CN102589811A (zh) * 2012-02-15 2012-07-18 西安泰德实业有限公司 一种换热器内部泄露检测方法及其检测系统
JP5999499B2 (ja) * 2012-11-09 2016-09-28 パナソニックIpマネジメント株式会社 冷凍装置
JP2014152613A (ja) 2013-02-05 2014-08-25 Toyota Industries Corp 熱利用装置
EP2933442B1 (de) 2014-04-16 2016-11-02 Orcan Energy AG Vorrichtung und Verfahren zur Erkennung von Leckagen in geschlossenen Kreisprozessen
JP6297151B2 (ja) * 2014-06-27 2018-03-20 三菱電機株式会社 冷凍サイクル装置、冷媒漏洩検知装置及び冷媒漏洩検知方法
JP6333668B2 (ja) * 2014-08-26 2018-05-30 株式会社日立製作所 電力自立システム
JP6223324B2 (ja) * 2014-12-17 2017-11-01 三菱電機株式会社 冷媒漏洩検知装置及び冷凍サイクル装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771845A (ja) * 1993-01-22 1995-03-17 Sentech Corp 流体中のガスを検知する方法とそれに使用する装置
JP2000104940A (ja) * 1998-09-28 2000-04-11 Kyushu Electric Power Co Inc ヒートポンプ式給湯システム
JP2012215124A (ja) 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd 排熱回収発電装置
JP2013100807A (ja) * 2011-10-19 2013-05-23 Toyota Industries Corp ランキンサイクル
JP2014115008A (ja) 2012-12-07 2014-06-26 Toyota Industries Corp 廃熱利用装置
JP2014126344A (ja) * 2012-12-27 2014-07-07 Nissan Motor Co Ltd 熱交換システム
JP2014190216A (ja) * 2013-03-27 2014-10-06 Toyota Industries Corp 廃熱回生システム
JP2017067392A (ja) * 2015-09-30 2017-04-06 ダイキン工業株式会社 冷凍装置
WO2017187504A1 (ja) * 2016-04-26 2017-11-02 三菱電機株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3907395A4

Also Published As

Publication number Publication date
EP3907395A4 (en) 2022-03-02
KR102476859B1 (ko) 2022-12-12
JP2020128707A (ja) 2020-08-27
EP3907395A1 (en) 2021-11-10
JP7150630B2 (ja) 2022-10-11
KR20210109622A (ko) 2021-09-06
ES2939159T3 (es) 2023-04-19
CN113396276A (zh) 2021-09-14
EP3907395B1 (en) 2023-01-18
CN113396276B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
KR101747601B1 (ko) 열 에너지 회수 장치
US6748762B2 (en) Absorption-refrigerator
WO2020162053A1 (ja) 排熱回収装置およびその制御方法
JP2010156314A (ja) 廃熱回収装置、及びエンジン
WO2017170627A1 (ja) 抽気装置およびこれを備えた冷凍機ならびに抽気装置の制御方法
KR101836729B1 (ko) 윤활유 재생장치 및 윤활유 재생방법
JP6235687B1 (ja) 漏洩検出装置
JP2019209249A (ja) 発電設備用の蒸発濃縮装置及び方法ならびに発電設備
JP4066843B2 (ja) 給湯装置
KR102214133B1 (ko) 작동 매체 누설 검지 장치 및 열 에너지 회수 장치
JP2022162184A (ja) 熱媒体循環システム
TWI575208B (zh) 用於冷凍劑系統之壓力控制技術
KR102059861B1 (ko) 열 에너지 회수 시스템 및 검지 유닛
JP2020186691A (ja) 熱回収装置及び熱回収装置の作動媒体の収集方法
JP2020128707A5 (ja)
JP2001041614A (ja) 吸収冷凍機
JP2002276367A (ja) 循環熱媒液の蒸発抑制装置
CN108868924B (zh) 热能回收系统及检测单元
JP2014190216A (ja) 廃熱回生システム
JP3731132B2 (ja) 吸収冷凍機の晶析防止方法
JP2940838B2 (ja) 冷暖房装置
KR101780721B1 (ko) 유증기 응축회수시스템
JP2021055567A (ja) 検査方法及び検査装置
JP2005155975A (ja) 吸収冷凍機
KR200273632Y1 (ko) 응축수 탱크

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217024719

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019914622

Country of ref document: EP

Effective date: 20210806