WO2020161990A1 - 電動工具 - Google Patents
電動工具 Download PDFInfo
- Publication number
- WO2020161990A1 WO2020161990A1 PCT/JP2019/045651 JP2019045651W WO2020161990A1 WO 2020161990 A1 WO2020161990 A1 WO 2020161990A1 JP 2019045651 W JP2019045651 W JP 2019045651W WO 2020161990 A1 WO2020161990 A1 WO 2020161990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor core
- rotor
- magnetic resistance
- high magnetic
- permanent magnets
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/146—Stator cores with salient poles consisting of a generally annular yoke with salient poles
- H02K1/148—Sectional cores
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/276—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
- H02K1/2766—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
- H02K1/2773—Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
- H02K21/16—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/46—Fastening of windings on the stator or rotor structure
- H02K3/52—Fastening salient pole windings or connections thereto
- H02K3/521—Fastening salient pole windings or connections thereto applicable to stators only
- H02K3/522—Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
- H02K7/145—Hand-held machine tool
Definitions
- the present disclosure relates to power tools, and more particularly to power tools with a motor.
- the power tool described in Patent Document 1 includes an electric motor.
- the electric motor has a stator and a rotor that rotates relative to the stator.
- the rotor has a shaft, four permanent magnets, and a rotor core.
- the rotor core is formed in a cylindrical shape.
- the rotor core is provided with four holes for accommodating the permanent magnets at equal intervals in the circumferential direction. The permanent magnet is pressed into this hole.
- the present disclosure aims to provide an electric power tool that can easily reduce the diameter of a rotor.
- An electric power tool includes a motor.
- the motor includes a stator core and a rotor.
- the rotor rotates with respect to the stator core.
- the rotor has a cylindrical rotor core, a plurality of permanent magnets, and an output shaft.
- the output shaft is held inside the rotor core.
- the plurality of permanent magnets are arranged in a spoke shape around the center of the rotor core.
- FIG. 1 is an exploded view of a main part of a motor according to an embodiment.
- FIG. 2 is a schematic view of an electric tool including the motor of the above.
- FIG. 3 is a plan view of the rotor of the above motor.
- FIG. 4 is a plan view of a rotor according to a comparative example with the rotor of the above motor.
- FIG. 5 is a cross-sectional view of the above motor.
- FIG. 6 is an exploded view of a central core and a coil winding frame of the above motor.
- FIG. 7: is a top view of the principal part of the central core of the motor same as the above.
- FIG. 8 is a top view of the principal part of the stator of a motor same as the above.
- FIG. 1 is an exploded view of a main part of a motor according to an embodiment.
- FIG. 2 is a schematic view of an electric tool including the motor of the above.
- FIG. 3 is a plan view of the rot
- FIG. 9 is a plan view showing another configuration example of the central core of the above motor.
- FIG. 10 is a plan view showing still another configuration example of the central core of the above motor.
- FIG. 11 is a top view which shows another structural example of the central core of the motor same as the above.
- FIG. 12 is a cross-sectional view showing still another configuration example of the central core of the above motor.
- FIG. 13 is sectional drawing which shows another structural example of the central core of the motor same as the above.
- FIG. 14 is a cross-sectional view of a rotor core of the above motor.
- FIG. 15 is sectional drawing which shows another structural example of the rotor core of the motor same as the above.
- the electric power tool 10 includes a motor 1. As shown in FIG. 2, the power tool 10 further includes a power supply 101, a drive transmission unit 102, an output unit 103, a chuck 104, a tip tool 105, a trigger volume 106, and a control circuit 107. ..
- the electric tool 10 is a tool that drives the tip tool 105 with the driving force of the motor 1.
- the motor 1 is a drive source that drives the tip tool 105.
- the motor 1 is, for example, a brushless motor.
- the power supply 101 is a DC power supply that supplies a current that drives the motor 1.
- the power supply 101 includes, for example, one or a plurality of secondary batteries.
- the drive transmission unit 102 adjusts the output (driving force) of the motor 1 and outputs it to the output unit 103.
- the output unit 103 is a portion that is driven (for example, rotated) by the driving force output from the drive transmission unit 102.
- the chuck 104 is fixed to the output unit 103 and is a portion to which the tip tool 105 is detachably attached.
- the tip tool 105 (also referred to as a bit) is, for example, a driver, a socket, a drill, or the like. Of the various tip tools 105, the tip tool 105 according to the application is attached to the chuck 104 and used.
- the trigger volume 106 is an operation unit that receives an operation for controlling the rotation of the motor 1.
- the motor 1 can be switched on and off by an operation of pulling the trigger volume 106. Further, the rotation speed of the output unit 103, that is, the rotation speed of the motor 1 can be adjusted by the operation amount of the operation of pulling the trigger volume 106.
- the control circuit 107 rotates or stops the motor 1 according to an operation input to the trigger volume 106, and controls the rotation speed of the motor 1. In this electric tool 10, the tip tool 105 is attached to the chuck 104. Then, the rotation speed of the tip tool 105 is controlled by controlling the rotation speed of the motor 1 by operating the trigger volume 106.
- the power tool 10 of the embodiment includes the chuck 104, so that the tip tool 105 can be replaced according to the application, but the tip tool 105 does not have to be replaceable.
- the power tool 10 may be a power tool that can use only the specific tip tool 105.
- the motor 1 includes a stator 2 and a rotor 5.
- the rotor 5 has an output shaft 51.
- the stator 2 includes a stator core 20 and a plurality of (nine in FIG. 1) coils 23.
- the rotor 5 rotates with respect to the stator 2. That is, the magnetic flux generated from the plurality of coils 23 wound around the stator core 20 generates an electromagnetic force that rotates the rotor 5.
- the motor 1 transmits the rotational force (driving force) of the rotor 5 from the output shaft 51 to the drive transmission unit 102 (see FIG. 2).
- the stator core 20 has a central core 21 and an outer cylinder portion 22.
- the outer cylinder portion 22 is attached to the central core 21.
- the central core 21 has a cylindrical inner cylinder portion 3 and a plurality of (nine in FIG. 1) teeth 4.
- a rotor 5 is arranged inside the inner tubular portion 3.
- Each of the plurality of teeth 4 includes a body portion 41 and two tip pieces 42.
- the body portion 41 projects outward from the inner tubular portion 3 in the radial direction of the inner tubular portion 3.
- the two tip pieces 42 extend from the tip end side portion of the body portion 41 in a direction intersecting with the protruding direction of the body portion 41.
- the coil 23 is wound around the body 41 via a coil winding frame 8 (see FIG. 6) described later.
- the two tip pieces 42 are provided as retainers that prevent the coil 23 from falling off the body 41. That is, when the coil 23 tries to move to the tip side of the body portion 41, the coil 23 is caught by the two tip pieces 42, so that the coil 23 can be prevented from falling off.
- the rotor 5 has a cylindrical rotor core 6, a plurality (six in FIG. 1) of permanent magnets 7, and an output shaft 51.
- the output shaft 51 is held inside the rotor core 6.
- the plurality of permanent magnets 7 are arranged in a spoke shape (radial shape) around the center C1 (see FIG. 3) of the rotor core 6.
- each permanent magnet 7 is a rectangular parallelepiped.
- each permanent magnet 7 has a rectangular shape.
- the plurality of permanent magnets 7 being arranged in a spoke shape around the center C1 of the rotor core 6 means that the longitudinal direction of each permanent magnet 7 is along the radial direction of the rotor core 6 as viewed from the axial direction of the rotor core 6, and That is, the plurality of permanent magnets 7 are arranged so as to be aligned in the circumferential direction of the rotor core 6.
- the plurality of permanent magnets 7 are arranged in a spoke shape around the center C1 of the rotor core 6, it is easy to reduce the diameter of the rotor 5. In particular, when the number of permanent magnets 7 is relatively large, it is easy to reduce the diameter of the rotor 5 while maintaining the longitudinal length L1 (see FIG. 3) of each permanent magnet 7.
- a plurality of (six in FIG. 4) permanent magnets 7 are arranged in a polygonal shape (hexagonal shape) around the center C2 of the rotor core 6P. Therefore, when the diameter of the rotor core 6P is constant, it is necessary to shorten the length L2 of the permanent magnet 7 in the longitudinal direction as the number of the permanent magnets 7 increases. Further, when the length L2 in the longitudinal direction of the permanent magnet 7 is constant, the diameter of the rotor core 6P needs to be increased as the number of the permanent magnets 7 increases.
- the longer the diameter of the rotor core 6P the larger the moment force required when the rotor core 6P starts rotating and when it stops rotating. Furthermore, as the diameter of the rotor core 6P is made longer and the distance between the plurality of permanent magnets 7 and the center C2 is made longer, the centrifugal force applied to the plurality of permanent magnets 7 becomes larger. There is a high possibility that the rotor core 6P will be deformed. Therefore, it may not be preferable to increase the diameter of the rotor core 6P.
- the rotor 5 of the embodiment when the number of permanent magnets 7 is relatively large, it is possible to suppress the diameter of the rotor core 6 from becoming longer than that of the rotor core 6P of the comparative example. That is, as the number of the permanent magnets 7 increases, the intervals between the plurality of permanent magnets 7 in the circumferential direction of the rotor core 6 can be reduced, so that the plurality of permanent magnets 7 can be arranged in a spoke shape with the center C1 of the rotor core 6 as the center. A plurality of permanent magnets 7 can be arranged while suppressing an increase in the diameter of 6.
- the central core 21 of the stator core 20 of the stator 2 includes a plurality of steel plates 210.
- the central core 21 is formed by stacking a plurality of steel plates 210 in the thickness direction.
- Each steel plate 210 is made of a magnetic material.
- Each steel plate 210 is, for example, a silicon steel plate.
- the inner tubular portion 3 has a cylindrical shape.
- the axial direction of the inner tubular portion 3 coincides with the thickness direction of the plurality of steel plates 210.
- the inner cylindrical portion 3 is continuous in the circumferential direction. In other words, the inner tubular portion 3 is connected without interruption in the circumferential direction.
- the body 41 of the plurality of teeth 4 has a rectangular parallelepiped shape as shown in FIG.
- the body portion 41 projects outward from the inner tubular portion 3 in the radial direction of the inner tubular portion 3.
- the body portions 41 of the plurality of teeth 4 are provided at equal intervals in the circumferential direction of the inner tubular portion 3.
- the two tip pieces 42 extend from a portion on the tip side of the body portion 41 in a direction intersecting with the protruding direction of the body portion 41. More specifically, the two tip pieces 42 are provided on both sides of the inner cylinder portion 3 in the circumferential direction at the tip end side portion of the body portion 41. The two tip pieces 42 extend in the circumferential direction of the inner tubular portion 3.
- each tip piece 42 in the radial direction of the inner tubular portion 3 includes a curved surface 421.
- the curved surface 421 When viewed in the axial direction of the inner cylinder part 3, the curved surface 421 has an arc shape along a circle concentric with the inner cylinder part 3.
- Each tip piece 42 has a curved portion 422 at a portion connected to the body portion 41.
- the curved portion 422 is curved such that the outer side in the radial direction of the inner tubular portion 3 is separated from the body portion 41 in the circumferential direction of the inner tubular portion 3. That is, the curved portion 422, which is the portion on the base end side (body portion 41 side) of each tip piece 42, is chamfered and has an R shape.
- the inner cylinder portion 3 has a plurality (9 in the present embodiment) of connecting portions 31 that are portions that connect the two teeth 4.
- the connecting portion 31 is formed in an arc shape when viewed from the axial direction of the inner cylindrical portion 3.
- the inner cylinder portion 3 may have a high magnetic resistance portion R1.
- the high magnetic resistance portion R1 has a higher magnetic resistance than a portion of the inner tubular portion 3 around the high magnetic resistance portion R1.
- the high magnetic resistance portion R1 is provided in one connecting portion 31.
- the high magnetic resistance portion R1 may be provided at a plurality of locations.
- the high magnetic resistance portion R1 may be provided in all the connecting portions 31.
- the high magnetic resistance portions R1 may be provided at regular intervals in the circumferential direction of the inner tubular portion 3.
- the high magnetic resistance portion R1 has a bypass portion 301.
- the basic shape of the inner cylinder part 3 is an annular shape, but the inner cylinder part 3 is curved in the detour part 301 so as to project in the radial direction with respect to this ring. It has a shape. Further, the inner cylindrical portion 3 is continuous in the circumferential direction.
- the magnetic path is longer and the magnetic resistance in the detour section 301 is higher than in the case where the detour section 301 is not provided.
- the high magnetic resistance part R1 has a penetrating part 302.
- the high magnetic resistance portion R1 has only one penetrating portion 302.
- the penetrating portion 302 penetrates the inner cylindrical portion 3 in the axial direction.
- the inner cylinder portion 3 divides the inner cylinder portion 3 into a plurality of pieces in the circumferential direction.
- the inner tubular portion 3 is divided into two with the penetrating portion 302 as a boundary. That is, in FIG. 10, the inner cylinder portion 3 is discontinuous in the circumferential direction.
- the penetrating portion 302 is formed, for example, by stacking a plurality of steel plates 210 (see FIG. 5) and then cutting off a part of the inner tubular portion 3.
- each of the plurality of steel plates 210 may be provided with a hole corresponding to the penetrating portion 302, and then the plurality of steel plates 210 may be stacked.
- the high magnetic resistance portion R1 has nine (only five are shown in FIG. 11) penetrating portions 302. That is, the high magnetic resistance portion R1 has the same number of penetrating portions 302 as the teeth 4.
- the nine penetrating portions 302 separate the plurality of teeth 4 from each other. That is, the plurality of teeth 4 are not connected to each other by the inner cylindrical portion 3 and are separated from each other. That is, in FIG. 10, the inner cylinder portion 3 is discontinuous in the circumferential direction.
- the plurality of teeth 4 are held by the coil winding frame 8 so that the intervals between the plurality of teeth 4 are maintained.
- the chain double-dashed line showing the inner tubular portion 3 including the portions corresponding to the plurality of penetrating portions 302 has no substance.
- FIG. 12 is a diagram in which a part of the cross section of the inner tubular portion 3 is extended and shown in a planar shape.
- the high magnetic resistance portion R1 is provided on each of two or more steel plates 210 among the plurality of steel plates 210.
- all the steel plates 210 are provided with high magnetic resistance portions R1. That is, the inner tubular portion 3 has a plurality of high magnetic resistance portions R1.
- Each high magnetic resistance part R1 has a plurality of cavities 303.
- Each of the plurality of cavities 303 penetrates the steel plate 210 in the axial direction.
- Each cavity 303 is formed by, for example, notching the steel plate 210.
- the plurality of cavities 303 are provided in a portion of the steel plate 210 that corresponds to the connecting portion 31 (see FIGS. 7 and 8) of the inner tubular portion 3.
- the plurality of cavities 303 are provided at equal intervals in the circumferential direction of the steel plate 210.
- the plurality of steel plates 210 are laminated so that the high magnetic resistance portions R1 (cavities 303) of the steel plates 210 adjacent to each other do not overlap in the thickness direction of the steel plates 210.
- the nine connecting portions 31 are referred to as a first connecting portion, a second connecting portion,..., And a ninth connecting portion, respectively, in the order arranged in the circumferential direction of the inner tubular portion 3.
- the plurality of steel plates 210 are referred to as a first steel plate, a second steel plate,... In the order arranged in the thickness direction of the steel plate 210.
- the hollow portions 303 are provided in the portions corresponding to the first connecting portion, the fourth connecting portion, and the seventh connecting portion, respectively.
- the hollow portions 303 are provided in the portions corresponding to the second connecting portion, the fifth connecting portion, and the eighth connecting portion, respectively.
- hollow portions 303 are provided in the portions corresponding to the third connecting portion, the sixth connecting portion, and the ninth connecting portion, respectively.
- the inner tubular portion 3 one or more (two in FIG. 12) are provided between the cavity 303 and another cavity 303 formed at a position overlapping the cavity 303 in the thickness direction of the steel plate 210. A portion of the steel plate 210 other than the cavity 303 is arranged.
- the cavity 303 is formed in each steel plate 210, for example, before a plurality of steel plates 210 are stacked.
- the plurality of steel plates 210 are formed in the same shape when viewed from the thickness direction, and are stacked such that the directions (angles) of the adjacent steel plates 210 are different. More specifically, the second steel sheet is stacked in a direction rotated by 40 degrees with respect to the first steel sheet, and the third steel sheet is stacked in a direction rotated by 40 degrees with respect to the second steel sheet. .. Similarly, the fourth and subsequent steel plates are stacked in a direction rotated by 40 degrees (predetermined angle) with respect to the adjacent steel plates. In addition, the thickness of a part of the steel plates 210 of the plurality of steel plates 210 may be different from the thickness of another part of the steel plates 210.
- FIG. 13 is a diagram in which a part of the cross section of the inner tubular portion 3 is extended and shown in a planar shape.
- the high magnetic resistance portion R1 of each steel plate 210 may include a thin portion 304 instead of the hollow portion 303.
- the thin portion 304 has a shorter length in the axial direction of the inner tubular portion 3 than a portion of the inner tubular portion 3 around the thin portion 304. That is, the thickness L5 of the thin portion 304 of the steel plate 210 is smaller than the thickness L6 of the portion of the steel plate 210 around the thin portion 304.
- the thin portion 304 is formed by pressing a part of the steel plate 210. Therefore, the strength of the steel plate 210 can be increased as compared with the case where a thin portion 304 is formed by scraping off a part of the steel plate 210.
- the examples of the high magnetic resistance part R1 are listed above, but two or more of these examples may be combined.
- each coil 23 is, for example, an enameled wire. This winding has a linear conductor and an insulating coating that covers the conductor.
- the motor 1 further includes a coil winding frame 8.
- the coil winding frame 8 is made of, for example, synthetic resin.
- the coil winding frame 8 has electrical insulation.
- the coil winding frame 8 covers at least a part of at least one of the plurality of teeth 4 (here, each tooth 4).
- the coil winding frame 8 includes two members 81.
- the two members 81 have the same shape as each other.
- the two members 81 are arranged in the axial direction of the inner tubular portion 3.
- the two members 81 are formed separately.
- Each member 81 is formed in a shape in which a plurality of teeth 4 can be fitted in the axial direction of the inner tubular portion 3. That is, one of the two members 81 is attached to the central core 21, and covers the plurality of teeth 4 from the first end in the axial direction of the inner tubular portion 3, and the other is the first in the axial direction of the inner tubular portion 3. It covers a plurality of teeth 4 from the two ends.
- Each member 81 has a tubular body 811 that overlaps the inner tubular portion 3, and a plurality (nine in FIG. 6) of tooth covering portions 812 that cover the plurality of teeth 4.
- the cylindrical body 811 is formed in a cylindrical shape concentric with the inner cylindrical portion 3.
- Each tooth covering portion 812 projects outward from the cylindrical body 811 in the radial direction of the cylindrical body 811. The tips of the teeth 4 on the side opposite to the inner cylinder portion 3 side are not covered by the coil winding frame 8 and are in contact with the outer cylinder portion 22.
- the coil 23 when the two members 81 are attached to the central core 21 and cover at least a part of the plurality of teeth, the coil 23 includes the two members 81 (coil winding frame 8). It is wound around the body portion 41 through.
- the coil 23 is wound around the body portion 41 so as to pass through the body portion 41 and a slot (cavity) between each of the two body portions 41 adjacent to the body portion 41.
- the two members 81 are separated from each other in the axial direction of the inner tubular portion 3. Therefore, in the portion of the central core 21 near the center in the thickness direction, each tooth 4 is exposed in the direction orthogonal to the thickness direction of the central core 21.
- the thickness of the central core 21 is changed. The distance between the two members 81 changes as the thickness of the central core 21 changes.
- the outer cylinder section 22 includes a plurality of steel plates 220.
- the outer cylinder portion 22 is formed by stacking a plurality of steel plates 220 in the thickness direction.
- Each steel plate 220 is made of a magnetic material.
- Each steel plate 220 is, for example, a silicon steel plate.
- the outer tubular portion 22 has a cylindrical shape.
- the outer cylinder portion 22 is attached to the plurality of teeth 4 and surrounds the plurality of teeth 4.
- the outer cylinder part 22 has a plurality of (nine) fitting parts 221. That is, the outer tubular portion 22 has the same number of fitting portions 221 as the teeth 4. Each of the plurality of fitting portions 221 is a recess provided on the inner peripheral surface of the outer tubular portion 22.
- the plurality of fitting portions 221 are in one-to-one correspondence with the plurality of teeth 4. At least one of the plurality of fitting portions 221 and the teeth 4 corresponding to the fitting portion 221 among the plurality of teeth 4 are fitted by moving at least one in the radial direction of the inner tubular portion 3. As a result, the outer cylinder portion 22 is attached to the plurality of teeth 4.
- each fitting portion 221 in the circumferential direction of the outer tubular portion 22 is determined by the protruding tip of one of the two tip pieces 42 protruding from the body portion 41 and the protrusion of the other tip piece 42. Equal to the length between the tip.
- “equal” is not limited to the case where a plurality of values completely match each other, and includes the case where they are different within an allowable error range. For example, it also includes a case where there is an error within 3%, within 5%, or within 10%.
- the outer cylinder portion 22 is attached to the plurality of teeth 4 by shrink fitting, for example. That is, the central core 21 is arranged inside the outer tubular portion 22 in a state where the outer tubular portion 22 is heated and radially expanded. As a result, the inner surface of the outer tubular portion 22 faces the tips of the plurality of teeth 4 in the radial direction of the inner tubular portion 3 with a slight gap between the inner surface of the outer tubular portion 22 and the plurality of teeth 4. After that, when the temperature of the outer tubular portion 22 decreases and the outer tubular portion 22 contracts, the inner surface of the outer tubular portion 22 contacts the tips of the plurality of teeth 4.
- the plurality of fitting portions 221 move inward in the radial direction of the outer tubular portion 22, so that the plurality of fitting portions 221 and the plurality of teeth 4 fit together.
- the outer cylinder portion 22 applies a contact pressure inward in the radial direction of the outer cylinder portion 22 to the plurality of teeth 4.
- the rotor core 6 of the rotor 5 includes a plurality of steel plates 600.
- the rotor core 6 is formed by stacking a plurality of steel plates 600 in the thickness direction.
- Each steel plate 600 is made of a magnetic material.
- Each steel plate 600 is, for example, a silicon steel plate.
- the rotor core 6 is formed in a cylindrical shape that is concentric with the inner cylindrical portion 3 of the stator core 20.
- the positions of both ends of the rotor core 6 in the axial direction of the rotor core 6 are aligned with the positions of both ends of the stator core 20. That is, the first end of the rotor core 6 (the end on the upper side in FIG. 5) and the first end of the stator core 20 (the end on the upper side in FIG. 5) in the axial direction of the rotor core 6 and the axial direction of the inner tubular portion 3 of the stator core 20. And are at positions overlapping in the direction orthogonal to the axial direction.
- a second end of the rotor core 6 (an end on the lower side of the paper in FIG. 5) and a second end of the stator core 20 (an end on the lower side of the paper in FIG. 5) are formed.
- the thickness of the rotor core 6 and the thickness of the stator core 20 are equal.
- the first end of the rotor core 6 and the first end of the stator core 20 do not have to exactly overlap with each other, and may deviate within an allowable error range.
- the second end of the rotor core 6 and the second end of the stator core 20 do not have to be exactly overlapped with each other, and may be displaced within an allowable error range.
- the deviation of the thickness of the rotor core 6 may be within 3%, within 5%, or within 10%.
- the output shaft 51 is held inside the rotor core 6.
- the rotor core 6 has a shaft holding portion 61 having a shaft hole 611 through which the output shaft 51 is passed, and a rotor main body 62 around the shaft holding portion 61.
- the shaft holding portion 61 has a cylindrical shape.
- a space inside the shaft holding portion 61 is a shaft hole 611.
- the rotor body 62 has a cylindrical shape that is concentric with the shaft holding portion 61.
- the rotor core 6 includes a plurality of (12 in FIG. 3) penetrating portions 63 between the shaft holding portion 61 and the rotor body 62, and a plurality of (in FIG. 3) connecting the shaft holding portion 61 and the rotor body 62. 6) bridge portions 64.
- the rotor body 62 includes a plurality (six in FIG. 3) of magnet housings 621.
- the plurality of magnet housing portions 621 house the plurality of permanent magnets 7 such that the plurality of permanent magnets 7 are arranged in a spoke shape (radial shape) with the center C1 of the rotor core 6 as the center.
- Each of the plurality of magnet housing portions 621 is a through hole that penetrates the rotor body 62 in the axial direction.
- Each of the plurality of permanent magnets 7 is held in the magnet housing portion 621 by being inserted into the magnet housing portion 621 with an adhesive attached. Note that each of the plurality of permanent magnets 7 may be held in the magnet housing portion 621 by a magnetic attraction force between the permanent magnets 7 and the rotor core 6 without using an adhesive.
- the plurality of magnet accommodating portions 621 are provided at equal intervals in the circumferential direction of the rotor core 6.
- the plurality of permanent magnets 7 are arranged at equal intervals in the circumferential direction of the rotor core 6.
- the longitudinal direction of each of the plurality of permanent magnets 7 is along the radial direction of the rotor core 6.
- Each permanent magnet 7 is, for example, a neodymium magnet.
- the two magnetic poles of each permanent magnet 7 are arranged in the circumferential direction of the rotor core 6.
- Two permanent magnets 7 that are adjacent to each other in the circumferential direction of the rotor core 6 have the same poles facing each other.
- a part of the magnetic flux generated by the two permanent magnets 7 adjacent to each other in the circumferential direction of the rotor core 6 is directed to the stator 2 (see FIG. 1) from the portion 622 of the rotor body 62 between the two permanent magnets 7 (see FIG. 1). (See arrow A1). That is, magnetic flux along the radial direction of the rotor core 6 is generated between the portion 622 and the stator 2.
- the rotor core 6 has a high magnetic resistance portion R2.
- the high magnetic resistance portion R2 has a magnetic resistance higher than that of a portion of the rotor core 6 around the high magnetic resistance portion R2.
- the high magnetic resistance portion R2 is provided in the magnetic path of the magnetic flux generated by the plurality of permanent magnets 7.
- the magnetic paths of the magnetic fluxes generated by the plurality of permanent magnets 7 are, for example, a region facing any of the two magnetic poles of any of the permanent magnets 7 and a region adjacent to any of the permanent magnets 7. It includes a region on a curve connecting two magnetic poles of the permanent magnet 7.
- the high magnetic resistance part R2 includes, for example, the plurality of penetrating parts 63 described above. Each of the plurality of penetrating portions 63 penetrates the rotor core 6 in the axial direction. Further, the high magnetic resistance portion R2 includes a plurality of (12 in FIG. 3) penetrating portions 65 at positions different from the plurality of penetrating portions 63. Each penetrating portion 65 penetrates the rotor core 6 in the axial direction. Each of the plurality of penetrating portions 63 and the plurality of penetrating portions 65 is connected to the magnet housing portion 621.
- the rotor core 6 has a first portion 601 and a second portion 602.
- a plurality of (six) first portions 601 and second portions 602 are provided so as to correspond to the plurality of permanent magnets 7 in a one-to-one relationship.
- one permanent magnet 7 and the first portion 601 and the second portion 602 corresponding to this permanent magnet 7 will be focused and described.
- the first portion 601 and the second portion 602 are adjacent to the permanent magnet 7 in the radial direction of the rotor core 6.
- the first portion 601 includes a part of the shaft holding portion 61.
- the first portion 601 is a portion on the center C1 side of the rotor core 6 on both sides of the permanent magnet 7 in the radial direction of the rotor core 6. More specifically, the first portion 601 is a portion between the permanent magnet 7 and the shaft hole 611.
- the first portion 601 is provided with at least a part of each of the two penetrating portions 63.
- the two penetrating portions 63 are arranged side by side in the circumferential direction of the rotor core 6.
- Each of the two penetrating portions 63 includes a portion extending in the circumferential direction of rotor core 6 and a portion extending in the radial direction of rotor core 6.
- a protrusion 66 protruding from the shaft holding portion 61 is provided between the two penetrating portions 63. That is, the rotor core 6 has the protrusion 66.
- the protrusion 66 is in contact with the permanent magnet 7 in the radial direction of the rotor core 6.
- the second portion 602 includes a part of the rotor body 62.
- the second portion 602 is a portion on the outer peripheral side of the rotor core 6 on both sides of the permanent magnet 7 in the radial direction of the rotor core 6. More specifically, the second portion 602 is a portion between the permanent magnet 7 and the outer edge of the rotor core 6.
- the second portion 602 is provided with two penetrating portions 65.
- the two penetrating portions 65 are arranged side by side in the circumferential direction of the rotor core 6.
- the longitudinal direction of each of the two penetrating portions 65 is along the circumferential direction of the rotor core 6.
- a protrusion 67 that is in contact with the permanent magnet 7 in the radial direction of the rotor core 6 is provided between the two through portions 63. That is, the rotor core 6 has the protrusion 67.
- the high magnetic resistance portion R2 (penetration portions 63, 65) is provided in at least one of the first portion 601 and the second portion 602.
- the length L3 (the length in the radial direction of the rotor core 6) of the high magnetic resistance portion R2 in the first portion 601 is the length L4 (the length in the radial direction of the rotor core 6) of the high magnetic resistance portion R2 in the second portion 602. Is different from.
- the length L3 is longer than the length L4.
- the length L3 of the first portion 601 is the length of the penetrating portion 63 in the radial direction of the rotor core 6.
- the length L4 of the second portion 602 is the length of the penetrating portion 65 in the radial direction of the rotor core 6.
- a penetrating portion 63 provided adjacent to any one of the plurality of permanent magnets 7 and a penetrating portion 63 provided adjacent to the permanent magnet 7 adjacent to the permanent magnet 7. Is provided with a bridge portion 64.
- the plurality of (six) bridge portions 64 are provided at equal intervals in the circumferential direction of the rotor core 6.
- a penetrating portion 68 is provided in a region of the rotor body 62 that faces the bridge portion 64 in the radial direction of the rotor core 6.
- the penetrating portion 68 is included in the high magnetic resistance portion R2.
- the penetrating portion 68 penetrates the rotor core 6 in the axial direction.
- the penetrating portion 68 When viewed from the axial direction of the rotor core 6, the penetrating portion 68 has a circular shape.
- the plurality of penetrating portions 68 (six in FIG. 3) are provided so as to correspond one-to-one with the plurality of bridge portions 64.
- the rotor core 6 has a plurality of (six in FIG. 3) voids 69 (through holes). Each of the plurality of voids 69 penetrates the rotor core 6 in the axial direction.
- the plurality of voids 69 are provided, for example, in a portion different from the magnetic path of the magnetic flux generated by the plurality of permanent magnets 7.
- the plurality of voids 69 are provided along the inner edge of the shaft holding portion 61.
- the plurality of voids 69 are provided at equal intervals in the circumferential direction of the rotor core 6.
- the plurality of voids 69 are connected to the shaft hole 611. By providing the plurality of voids 69, the weight of the rotor core 6 can be reduced.
- each void 69 may be included in the high magnetic resistance portion R2. That is, each void 69 may be provided in the magnetic path of the magnetic flux generated by the plurality of permanent magnets 7.
- FIG. 14 is a diagram in which a cross section corresponding to the curve X1 in FIG.
- a high magnetic resistance portion R3 is provided on each of the plurality of steel plates 600 of the rotor core 6. That is, the rotor core 6 has a plurality of high magnetic resistance portions R3.
- Each high magnetic resistance part R3 has a plurality of cavities 603.
- Each of the plurality of cavities 603 penetrates the steel plate 600 in the axial direction.
- the plurality of cavities 603 are provided in a portion of the steel plate 600 that corresponds to the bridge portion 64. That is, each of the plurality of hollow portions 603 is formed so as to separate the portion corresponding to the bridge portion 64 into two portions.
- one cavity 603 is provided for each steel plate 600. Note that illustration of the plurality of cavity portions 603 is omitted in drawings other than FIG. 14.
- the plurality of steel plates 600 are laminated so that the high magnetic resistance portions R3 (cavities 603) of the steel plates 600 adjacent to each other do not overlap in the thickness direction of the steel plates 600.
- the six bridge portions 64 are referred to as a first bridge portion, a second bridge portion,..., A sixth bridge portion in the order in which they are arranged in the circumferential direction, and a plurality of steel plates 600 are arranged in the thickness direction.
- the first steel plate, the second steel plate,... As an example, in the first steel plate, the seventh steel plate, the thirteenth steel plate,...,
- the cavity portion 603 is provided in a portion corresponding to the first bridge portion.
- the hollow portion 603 is provided in a portion corresponding to the second bridge portion.
- the ninth steel plate, the fifteenth steel plate,..., The hollow portion 603 is provided in a portion corresponding to the third bridge portion.
- one or more (five in FIG. 14) steel plates are provided between the cavity 603 and another cavity 603 formed at a position overlapping the cavity 603 in the thickness direction of the steel plate 600. A portion of 600 other than the cavity portion 603 is arranged.
- the cavity 603 is formed in each steel plate 600, for example, before a plurality of steel plates 600 are stacked.
- the plurality of steel plates 600 are formed in the same shape when viewed from the thickness direction, and are stacked so that the directions (angles) of the adjacent steel plates 600 are different. More specifically, the second steel plate is stacked in a direction rotated by 60 degrees with respect to the first steel plate, and the third steel plate is stacked in a direction rotated by 60 degrees with respect to the second steel plate. .. Similarly, the fourth and subsequent steel plates are stacked in a direction rotated by 60 degrees (predetermined angle) with respect to the adjacent steel plates. Note that a plurality of hollow portions 603 may be provided in one steel plate 600.
- the plurality of cavities 603 may be provided at equal intervals in the circumferential direction of the steel plate 600. Further, the thickness of a part of the steel plates 600 of the plurality of steel plates 600 may be different from the thickness of another part of the steel plates 600.
- the high magnetic resistance portion R3 of each steel plate 600 may include a thin portion 604 instead of the hollow portion 603.
- the thin portion 604 has a shorter length in the axial direction of the rotor core 6 than a portion of the rotor core 6 around the thin portion 604 (for example, a portion corresponding to the shaft holding portion 61). That is, the thickness L7 of the thin portion 604 of the steel plate 600 is smaller than the thickness L8 of the portion of the steel plate 600 around the thin portion 604.
- the thin portion 604 is formed by pressing a part of the steel plate 600. Therefore, the strength of the steel plate 600 can be increased as compared with the case where a thin portion 604 is formed by scraping off a part of the steel plate 600.
- hollow portion 603 and the thin portion 604 are not limited to being provided in the portion corresponding to the bridge portion 64 of the rotor core 6.
- the hollow portion 603 and the thin portion 604 may be provided, for example, in at least one of a portion corresponding to the first portion 601 and a portion corresponding to the second portion 602 of the rotor core 6.
- the motor 1 further includes a base 9 and two bearings 52.
- a bottomed tubular cover is attached to the base 9.
- the stator 2 and the rotor 5 are housed in the space surrounded by the base 9 and the cover.
- One of the two bearings 52 is fixed to the cover, and the other is fixed to the base 9.
- the two bearings 52 rotatably hold the output shaft 51 of the rotor 5.
- the coil 23 is wound around the tooth 4 by using, for example, a device arranged on the tip side of each tooth 4. Since the plurality of teeth 4 project outward in the radial direction from the inner cylindrical portion 3, the space on the tip end side of each tooth 4 is made wider than in the case where the plurality of teeth 4 project inward. be able to. Therefore, the coil 23 can be easily wound around each tooth 4, and in some cases, the space factor of the coil 23 can be increased.
- each tooth 4 includes two tip pieces 42 that prevent the coil 23 from falling off the body portion 41, the coil 23 can be wound around each tooth 4 more easily. Further, since the stress applied to each tooth 4 can be dispersed to the two tip pieces 42, the possibility that the tooth 4 is deformed can be reduced. Further, the tip piece 42 includes a curved surface 421, and the curved surface 421 is in contact with the outer cylindrical portion 22. Therefore, as compared with the case where the surface of the tip piece 42 is formed in a planar shape, when the outer cylinder portion 22 is attached to the plurality of teeth 4, the stress applied from the outer cylinder portion 22 to each tooth 4 is a curved surface 421. Easily dispersed along the.
- each tip piece 42 has a curved portion 422 at a portion connected to the body portion 41. Therefore, a part of the magnetic flux passing through each tooth 4 passes through the body portion 41 and the bending portion 422, and further passes through the bending portion 422 and the body portion 41 of the adjacent teeth 4 (see arrow A2 in FIG. 7 ). In this way, a part of the magnetic flux is drawn out of the tooth 4 through the magnetic path that is curved along the curved portion 422 with respect to the radial direction of the inner tubular portion 3, so that the magnetic flux is the diameter of the inner tubular portion 3.
- the magnetic path becomes shorter than in the case where the magnetic path is drawn out of the tooth 4 through the magnetic path along the direction. That is, the magnetic resistance of this magnetic path becomes small.
- the plurality of teeth 4 are connected to each other by the inner tubular portion 3 on one end side and are in contact with the outer tubular portion 22 on the other end side. That is, the inner tubular portion 3 is provided at one end of the plurality of teeth 4, and the outer tubular portion 22 is provided at the other end.
- the strength of the stator core 20 can be improved as compared with the case where only one of the inner tubular portion 3 and the outer tubular portion 22 is provided.
- the robustness of the dimensional tolerance of the stator core 20 can be improved. Further, it is possible to suppress the cogging of the motor 1.
- the plurality of permanent magnets 7 are arranged in a spoke shape centering on the center C1 of the rotor core 6, it is easy to reduce the diameter of the rotor 5.
- the configuration of the stator 2 can be changed arbitrarily.
- the plurality of teeth 4 and the inner cylindrical portion 3 may be separated. Further, the plurality of teeth 4 may protrude from the outer tubular portion 22 inward in the radial direction of the outer tubular portion 22.
- the plurality of teeth 4 may not include the tip piece 42. Further, the inner cylindrical portion 3 may not have the high magnetic resistance portion R1.
- the rotor core 6 does not have to have the high magnetic resistance portions R2 and R3.
- the shape of the rotor core 6 when viewed from the axial direction of the rotor core 6 is not limited to a perfect circle, and may be, for example, a circular shape or an elliptical shape, and a shape in which protrusions and depressions are provided on the circumference. ..
- a spacer made of a non-magnetic material may be inserted in each of the penetrating portion 302 of the stator core 20 and the penetrating portions 63, 65, 68 of the rotor core 6. That is, the high magnetic resistance portion R2 may include not only the penetrating portions 63, 65, 68 but also a spacer.
- the number of permanent magnets 7 is not limited to six and may be two or more.
- the motor 1 is not limited to being provided in the power tool 10.
- the motor 1 may be provided in, for example, an electric bicycle or an electric assist bicycle.
- the motor 1 may further have an adjusting unit attached to the rotor 5.
- the shape of the adjusting unit is, for example, a cylindrical weight, and the adjusting unit is attached to the output shaft 51 of the rotor 5.
- the weight balance of the rotor 5 can be adjusted by shaving a part of the adjusting portion and changing the weight and center of gravity of the adjusting portion. As a result, it is possible to correct the deviation of the weight balance of the rotor 5 due to the provision of the penetrating portions 63, 65, 68 and the hollow portion 603 in the rotor core 6.
- the weight balance of the rotor 5 may be adjusted by cutting a part of the rotor core 6.
- the weight balance of the rotor 5 may be adjusted by adjusting the position and amount of the adhesive agent attached to the rotor 5.
- the arrangement of the cavity portions 303 (or 603) in the plurality of steel plates 210 (or 600) can be changed.
- the cavities 303 (or 603) may be provided periodically in the thickness direction of the plurality of steel plates 210 (or 600). For example, a certain number of cavities 303 (or 603) and a certain number of cavities 303 (or 603) overlapping the cavities 303 (or 603) in the thickness direction of the plurality of steel plates 210 (or 600) are provided.
- the steel plate 210 (or 600) may be arranged.
- the distance between the arbitrary cavity 303 (or 603) and the cavity 303 (or 603) that overlaps the cavity 303 (or 603) in the thickness direction of the plurality of steel plates 210 (or 600) is constant. It may be a distance.
- the arrangement of the thin portions 304 (or 604) in the plurality of steel plates 210 (or 600) can be changed in the same manner as the cavity portion 303 (or 603). Further, the plurality of steel plates 210 (or 600) may be provided with both the hollow portion 303 (or 603) and the thin portion 304 (or 604).
- At least one of the hollow portion 303 and the thin portion 304 may be formed only on a part of the plurality of steel plates 210. Further, at least one of the hollow portion 603 and the thin portion 604 may be formed only on a part of the steel plates 600 of the plurality of steel plates 600.
- Each of the plurality of steel plates 210 and the plurality of steel plates 600 is preferably one member in which the respective parts are connected. As a result, the number of parts of the motor 1 can be reduced as compared with the case where each steel plate 210 (or 600) is composed of a plurality of members.
- the vacant space 69 may be provided in a part other than the shaft holding part 61. Further, the void 69 may be a hollow recessed in the axial direction of the rotor core 6.
- Each of the plurality of fitting portions 221 of the outer cylinder portion 22 may be a protrusion. Then, each of the plurality of teeth 4 may have a recess into which the fitting portion 221 is fitted.
- the power tool 10 includes a motor 1.
- the motor 1 includes a stator core 20 and a rotor 5.
- the rotor 5 rotates with respect to the stator core 20.
- the rotor 5 has a cylindrical rotor core 6, a plurality of permanent magnets 7, and an output shaft 51.
- the output shaft 51 is held inside the rotor core 6.
- the plurality of permanent magnets 7 are arranged in a spoke shape around the center C1 of the rotor core 6.
- the rotor 5 since the plurality of permanent magnets 7 are arranged in a spoke shape centering on the center C1 of the rotor core 6, it is easy to reduce the diameter of the rotor 5.
- the rotor 5 maintains the length L1 in the longitudinal direction of each permanent magnet 7. It is easy to shorten the diameter of.
- the rotor 5 has six or more permanent magnets 7 as the plurality of permanent magnets 7.
- the torque of the motor 1 can be increased as compared with the case where the number of permanent magnets 7 is less than 6.
- the rotor core 6 has high magnetic resistance portions R2 and R3.
- the high magnetic resistance portions R2 and R3 are provided in the magnetic path of the magnetic flux generated by the plurality of permanent magnets 7.
- the high magnetic resistance portions R2 and R3 have a higher magnetic resistance than the portion of the rotor core 6 around the high magnetic resistance portions R2 and R3.
- the leakage magnetic flux in the rotor core 6 can be reduced.
- At least a part of the high magnetic resistance portions R2 and R3 is provided in at least one of the plurality of permanent magnets 7 in the first portion 601 and the first portion 601. It is provided in at least one of the two parts 602.
- the first portion 601 and the second portion 602 are portions on both sides of the permanent magnet 7 in the radial direction of the rotor core 6.
- the leakage magnetic flux from at least one of the first portion 601 and the second portion 602 can be reduced.
- the high magnetic resistance portion R2 (or R3) is provided in both the first portion 601 and the second portion 602.
- the radial length L3 of the high magnetic resistance portion R2 in the first portion 601 is different from the radial length L4 of the high magnetic resistance portion R2 in the second portion 602.
- the magnetic resistance of at least one of the first portion 601 and the second portion 602 can be improved as compared with the case where the length L3 is the same as the length L4.
- the high magnetic resistance portions R2 and R3 include penetrating portions 63, 65 and 68.
- the penetrating portions 63, 65, 68 penetrate the rotor core 6 in the axial direction.
- the leakage magnetic flux in the rotor core 6 can be reduced.
- the high magnetic resistance portions R2 and R3 include a thin portion 604.
- the thin portion 604 has a shorter length in the axial direction of the rotor core 6 than a portion of the rotor core 6 around the thin portion 604.
- the leakage magnetic flux in the rotor core 6 can be reduced.
- the rotor core 6 is formed by laminating a plurality of steel plates 600 in the thickness direction.
- the high magnetic resistance portion R3 is provided on each of two or more steel plates 600 among the plurality of steel plates 600.
- the two or more steel plates 600 are stacked so that the high magnetic resistance portions R3 of the steel plates 600 adjacent to each other do not overlap in the thickness direction.
- the strength of the rotor core 6 can be improved as compared with the case where the high magnetic resistance portions R3 of the steel plates 600 adjacent to each other overlap in the thickness direction.
- the rotor core 6 has a void 69.
- the void 69 penetrates the rotor core 6 in the axial direction or is recessed in the axial direction of the rotor core 6.
- the weight of the rotor core 6 can be reduced.
- the positions of both ends of the rotor core 6 are aligned with the positions of both ends of the stator core 20 in the axial direction of the rotor core 6. There is.
- the length of the motor 1 in the axial direction of the rotor core 6 can be reduced as compared with the case where the positions of both ends of the rotor core 6 in the axial direction of the rotor core 6 deviate from the positions of both ends of the stator core 20. Can be shortened.
- the configuration other than the first aspect is not an essential configuration for the electric power tool 10 and can be appropriately omitted.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
本開示は、ロータの直径を短くしやすい電動工具を提供することを目的とする。電動工具は、モータ(1)を備える。モータ(1)は、ステータコア(20)と、ロータ(5)と、を備える。ロータ(5)は、ステータコア(20)に対して回転する。ロータ(5)は、円筒状のロータコア(6)と、複数の永久磁石(7)と、出力軸(51)と、を有する。出力軸(51)は、ロータコア(6)の内側に保持されている。複数の永久磁石(7)は、ロータコア(6)の中心を中心としてスポーク状に配置されている。
Description
本開示は電動工具に関し、より詳細には、モータを備える電動工具に関する。
特許文献1記載の電動工具は、電動モータを備える。電動モータは、ステータと、ステータに対して相対回転するロータとを有する。ロータは、シャフトと、4つの永久磁石と、ロータコアとを有する。ロータコアは、円柱状に形成されている。ロータコアには、周方向に等間隔で永久磁石を収容する孔が4箇所に設けられている。永久磁石は、この孔に圧入される。
本開示は、ロータの直径を短くしやすい電動工具を提供することを目的とする。
本開示の一態様に係る電動工具は、モータを備える。前記モータは、ステータコアと、ロータと、を備える。前記ロータは、前記ステータコアに対して回転する。前記ロータは、円筒状のロータコアと、複数の永久磁石と、出力軸と、を有する。前記出力軸は、前記ロータコアの内側に保持されている。前記複数の永久磁石は、前記ロータコアの中心を中心としてスポーク状に配置されている。
以下、実施形態に係る電動工具と、この電動工具に備えられるモータとについて、図面を用いて説明する。ただし、下記の実施形態は、本開示の様々な実施形態の1つに過ぎない。下記の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、下記の実施形態において説明する各図は、模式的な図であり、図中の各構成要素の大きさ及び厚さそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。
(1)電動工具
図1、図2に示すように、電動工具10は、モータ1を備えている。図2に示すように、電動工具10は、電源101と、駆動伝達部102と、出力部103と、チャック104と、先端工具105と、トリガボリューム106と、制御回路107とを更に備えている。電動工具10は、先端工具105をモータ1の駆動力で駆動する工具である。
図1、図2に示すように、電動工具10は、モータ1を備えている。図2に示すように、電動工具10は、電源101と、駆動伝達部102と、出力部103と、チャック104と、先端工具105と、トリガボリューム106と、制御回路107とを更に備えている。電動工具10は、先端工具105をモータ1の駆動力で駆動する工具である。
モータ1は、先端工具105を駆動する駆動源である。モータ1は、例えばブラシレスモータである。電源101は、モータ1を駆動する電流を供給する直流電源である。電源101は、例えば、1又は複数の2次電池を含む。駆動伝達部102は、モータ1の出力(駆動力)を調整して出力部103に出力する。出力部103は、駆動伝達部102から出力された駆動力で駆動(例えば回転)される部分である。チャック104は、出力部103に固定されており、先端工具105が着脱自在に取り付けられる部分である。先端工具105(ビットとも言う)は、例えば、ドライバ、ソケット又はドリル等である。各種の先端工具105のうち用途に応じた先端工具105が、チャック104に取り付けられて用いられる。
トリガボリューム106は、モータ1の回転を制御するための操作を受け付ける操作部である。トリガボリューム106を引く操作により、モータ1のオンオフが切替可能である。また、トリガボリューム106を引き込む操作の操作量で、出力部103の回転速度、つまりモータ1の回転速度が調整可能である。制御回路107は、トリガボリューム106に入力された操作に応じて、モータ1を回転又は停止させ、また、モータ1の回転速度を制御する。この電動工具10では、先端工具105がチャック104に取り付けられる。そして、トリガボリューム106への操作によってモータ1の回転速度が制御されることで、先端工具105の回転速度が制御される。
なお、実施形態の電動工具10はチャック104を備えることで、先端工具105が、用途に応じて交換可能であるが、先端工具105が交換可能である必要は無い。例えば、電動工具10は、特定の先端工具105のみ用いることができる電動工具であってもよい。
(2)モータ
(2-1)概要
次に、図1等を参照して、モータ1の構成を説明する。モータ1は、ステータ2と、ロータ5とを備えている。ロータ5は、出力軸51を有している。ステータ2は、ステータコア20と、複数(図1では9つ)のコイル23とを有している。ロータ5は、ステータ2に対して回転する。すなわち、ステータコア20に巻かれた複数のコイル23から発生する磁束により、ロータ5を回転させる電磁気力が発生する。モータ1は、ロータ5の回転力(駆動力)を出力軸51から駆動伝達部102(図2参照)へ伝達する。
(2-1)概要
次に、図1等を参照して、モータ1の構成を説明する。モータ1は、ステータ2と、ロータ5とを備えている。ロータ5は、出力軸51を有している。ステータ2は、ステータコア20と、複数(図1では9つ)のコイル23とを有している。ロータ5は、ステータ2に対して回転する。すなわち、ステータコア20に巻かれた複数のコイル23から発生する磁束により、ロータ5を回転させる電磁気力が発生する。モータ1は、ロータ5の回転力(駆動力)を出力軸51から駆動伝達部102(図2参照)へ伝達する。
ステータコア20は、中央コア21と、外筒部22とを有している。外筒部22は、中央コア21に取り付けられる。中央コア21は、円筒状の内筒部3と、複数(図1では9つ)のティース4とを有している。内筒部3の内側には、ロータ5が配置されている。複数のティース4の各々は、胴部41と、2つの先端片42とを含む。胴部41は、内筒部3から内筒部3の径方向において外向きに突出している。2つの先端片42は、胴部41の先端側の部位から、胴部41の突出方向と交差する方向に延びている。胴部41には、後述するコイル巻枠8(図6参照)を介してコイル23が巻かれる。
2つの先端片42は、コイル23が胴部41から脱落することを抑制する抜止めとして設けられている。すなわち、胴部41の先端側にコイル23が移動しようとする場合に、コイル23が2つの先端片42に引っ掛かることで、コイル23の脱落を抑制できる。
ロータ5は、円筒状のロータコア6と、複数(図1では6つ)の永久磁石7と、出力軸51と、を有している。出力軸51は、ロータコア6の内側に保持されている。複数の永久磁石7は、ロータコア6の中心C1(図3参照)を中心としてスポーク状(放射状)に配置されている。
ここで、ロータコア6の形状は、ロータコア6の軸方向から見て円状であり、ロータコア6の中心C1とは、当該円の中心に相当する。各永久磁石7の形状は直方体状である。ロータコア6の軸方向から見て、各永久磁石7の形状は長方形状である。複数の永久磁石7がロータコア6の中心C1を中心としてスポーク状に配置されるとは、ロータコア6の軸方向から見て、各永久磁石7の長手方向がロータコア6の径方向に沿い、かつ、複数の永久磁石7がロータコア6の周方向に並ぶように配置されることである。
複数の永久磁石7がロータコア6の中心C1を中心としてスポーク状に配置されるので、ロータ5の直径を短くしやすい。特に、永久磁石7の個数が比較的多い場合に、各永久磁石7の長手方向の長さL1(図3参照)を維持しつつ、ロータ5の直径を短くしやすい。
例えば、図4に示す比較例のロータ5Pでは、ロータコア6Pの中心C2の周りに、複数(図4では6つ)の永久磁石7が多角形状(6角形状)に配置されている。そのため、ロータコア6Pの直径が一定の場合、永久磁石7の個数が多いほど、永久磁石7の長手方向の長さL2を短くする必要がある。また、永久磁石7の長手方向の長さL2を一定とする場合、永久磁石7の個数が多いほど、ロータコア6Pの直径を長くする必要がある。この場合、ロータコア6Pの直径が長いほど、ロータコア6Pが回転を開始するとき及び回転を停止するときに必要なモーメント力が大きくなる。さらに、ロータコア6Pの直径を長くし複数の永久磁石7と中心C2との間の距離を長くするほど、複数の永久磁石7に加わる遠心力が大きくなるので、複数の永久磁石7からの力によりロータコア6Pが変形する可能性が高くなる。そのため、ロータコア6Pの直径を長くすることが好ましくない場合がある。
一方で、実施形態のロータ5では、永久磁石7の個数が比較的多い場合に、比較例のロータコア6Pと比較してロータコア6の直径が長くなることを抑制できる。すなわち、永久磁石7の個数が多いほどロータコア6の周方向における複数の永久磁石7の間隔を狭くすれば、複数の永久磁石7をロータコア6の中心C1を中心としてスポーク状に配置できるので、ロータコア6の直径を長くすることを抑制しつつ複数の永久磁石7を配置できる。
すなわち、実施形態のロータ5は、永久磁石7の個数を比較的多い個数(例えば、6つ以上)にすることでモータ1のトルクを大きくする場合に、ロータコア6の直径が長くなることを抑制することができる。
(2-2)中央コア
次に、ステータ2の構成の詳細について説明する。図5に示すように、ステータ2のステータコア20の中央コア21は、複数の鋼板210を含む。中央コア21は、複数の鋼板210を厚さ方向に積層して形成されている。各鋼板210は、磁性材料により形成されている。各鋼板210は、例えば、ケイ素鋼板である。
次に、ステータ2の構成の詳細について説明する。図5に示すように、ステータ2のステータコア20の中央コア21は、複数の鋼板210を含む。中央コア21は、複数の鋼板210を厚さ方向に積層して形成されている。各鋼板210は、磁性材料により形成されている。各鋼板210は、例えば、ケイ素鋼板である。
図6に示すように、内筒部3の形状は、円筒状である。内筒部3の軸方向は、複数の鋼板210の厚さ方向と一致している。内筒部3は、周方向において連続している。言い換えると、内筒部3は、周方向において途切れることなくつながっている。
複数のティース4の胴部41の形状は、図6に示すように直方体状である。胴部41は、内筒部3から内筒部3の径方向において外向きに突出している。複数のティース4の胴部41は、内筒部3の周方向において等間隔に設けられている。
2つの先端片42は、胴部41の先端側の部位から、胴部41の突出方向と交差する方向に延びている。より詳細には、2つの先端片42は、胴部41の先端側の部位において、内筒部3の周方向の両側に設けられている。そして、2つの先端片42は、内筒部3の周方向に延びている。
図6、図7に示すように、各先端片42のうち、内筒部3の径方向において外側の面は、曲面421を含む。内筒部3の軸方向から見て、曲面421の形状は、内筒部3と同心の円に沿った円弧状である。
各先端片42は、胴部41とつながった部位に、湾曲部422を有している。湾曲部422は、内筒部3の径方向において外側ほど、内筒部3の周方向において胴部41から離れるように湾曲している。つまり、各先端片42のうち基端側(胴部41側)の部分である湾曲部422は、面取りされていてR状になっている。
図7、図8に示すように、内筒部3は、2つのティース4を連結している部位である連結部31を複数(本実施形態では9つ)有している。連結部31は、内筒部3の軸方向から見て円弧状に形成されている。
別の一例として、図9に示すように、内筒部3は、高磁気抵抗部R1を有していてもよい。高磁気抵抗部R1は、内筒部3のうち高磁気抵抗部R1の周囲の部位よりも磁気抵抗が高い。図9に示す一例では、高磁気抵抗部R1は、1つの連結部31に設けられている。高磁気抵抗部R1を設けたことにより、コイル23で発生する磁束に関して、連結部31への漏れ磁束を低減できる。これにより、内筒部3が高磁気抵抗部R1を有していない場合と比較して、モータ1のトルクを大きくできる。なお、高磁気抵抗部R1は複数個所に設けられていてもよい。例えば、高磁気抵抗部R1は、全ての連結部31に設けられていてもよい。あるいは、高磁気抵抗部R1は、内筒部3の周方向において一定間隔で設けられていてもよい。
図9に示す一例では、高磁気抵抗部R1は、迂回部301を有している。内筒部3の軸方向から見て、内筒部3の基本形状は円環形であるが、内筒部3は、迂回部301においてこの円環に対して径方向に突出するように湾曲した形状を有している。また、内筒部3は、周方向において連続している。
内筒部3に迂回部301が設けられていることにより、迂回部301が無い場合と比較して磁路が長く、迂回部301における磁気抵抗が高い。
別の一例として、図10に示すように、高磁気抵抗部R1は、貫通部302を有している。ここでは、高磁気抵抗部R1は、貫通部302を1つのみ有している。貫通部302は、内筒部3を軸方向に貫通している。これにより、内筒部3は、内筒部3を周方向において複数個に分割している。例えば、図10のように貫通部302が1つ設けられている場合は、内筒部3は貫通部302を境界として2つに分割されている。すなわち、図10において内筒部3は、周方向において不連続である。貫通部302は例えば、複数の鋼板210(図5参照)が積層されてから内筒部3の一部を切り離すことで形成される。あるいは、複数の鋼板210の各々に、貫通部302に相当する孔を設けてから、複数の鋼板210を積層してもよい。
更に別の一例として、図11に示すように、高磁気抵抗部R1は、9つ(図11では5つのみを図示)の貫通部302を有している。つまり、高磁気抵抗部R1は、ティース4と同数の貫通部302を有している。9つの貫通部302は、複数のティース4を互いに分離している。つまり、複数のティース4は、内筒部3によりつながっておらず、互いに分離している。すなわち、図10において内筒部3は、周方向において不連続である。この態様では、複数のティース4がコイル巻枠8に保持されることで、複数のティース4間の間隔が保たれる。図11において、複数の貫通部302に相当する部位を含む内筒部3を図示する2点鎖線は、実体を伴わない。
更に別の一例について、図12を参照して説明する。図12は、内筒部3の断面の一部を平面状に引き延ばして示した図である。高磁気抵抗部R1は、複数の鋼板210のうち2つ以上の鋼板210の各々に設けられている。図12では、全ての鋼板210にそれぞれ高磁気抵抗部R1が設けられている。すなわち、内筒部3は、複数の高磁気抵抗部R1を有している。
各高磁気抵抗部R1は、複数の空洞部303を有している。複数の空洞部303の各々は、鋼板210を軸方向に貫通している。各空洞部303は、例えば、鋼板210が切欠かれることで形成されている。複数の空洞部303は、鋼板210のうち、内筒部3の連結部31(図7、図8参照)に相当する部位に設けられている。複数の空洞部303は、鋼板210の周方向において等間隔に設けられている。
複数の鋼板210は、互いに隣り合う鋼板210の高磁気抵抗部R1(空洞部303)が鋼板210の厚さ方向に重ならないように積層されている。ここで、9つの連結部31を、内筒部3の周方向において並んでいる順にそれぞれ第1の連結部、第2の連結部、……、第9の連結部と称する。また、複数の鋼板210を、鋼板210の厚さ方向において並んでいる順に第1の鋼板、第2の鋼板、……、と称する。例えば、第1の鋼板では、第1の連結部、第4の連結部及び第7の連結部に相当する部位にそれぞれ空洞部303が設けられている。第2の鋼板では、第2の連結部、第5の連結部及び第8の連結部に相当する部位にそれぞれ空洞部303が設けられている。第3の鋼板では、第3の連結部、第6の連結部及び第9の連結部に相当する部位にそれぞれ空洞部303が設けられている。内筒部3において、空洞部303と、鋼板210の厚さ方向においてこの空洞部303と重なる位置に形成された別の空洞部303との間には、1つ以上(図12では2つ)の鋼板210の、空洞部303以外の部分が配置されている。
空洞部303は、例えば、複数の鋼板210が積層される前に、各鋼板210に形成される。複数の鋼板210は、厚さ方向から見て同じ形に形成されて、隣り合う鋼板210間で向き(角度)が異なるように積層されている。より詳細には、第1の鋼板に対して40度回転した向きで第2の鋼板が重ねられており、第2の鋼板に対して40度回転した向きで第3の鋼板が重ねられている。第4の鋼板以降も同様に、隣り合う鋼板に対して40度(所定角度)回転した向きで重ねられている。なお、複数の鋼板210のうち一部の鋼板210の厚さと、別の一部の鋼板210の厚さとが、異なっていてもよい。
更に別の一例について、図13を参照して説明する。図13は、内筒部3の断面の一部を平面状に引き延ばして示した図である。図13に示すように、各鋼板210の高磁気抵抗部R1は、空洞部303に代えて、肉薄部304を含んでいてもよい。肉薄部304は、内筒部3のうち肉薄部304の周囲の部位よりも、内筒部3の軸方向における長さが短い。すなわち、鋼板210のうち肉薄部304の厚さL5は、鋼板210のうち肉薄部304の周囲の部位の厚さL6よりも小さい。肉薄部304は、鋼板210の一部をプレス加工することにより形成されている。そのため、鋼板210の一部を削り取って肉薄部304を形成する場合と比較して、鋼板210の強度を大きくすることができる。
以上、高磁気抵抗部R1の一例を列挙したが、これらの一例のうち2つ以上を組み合わせてもよい。
(2-3)コイル及びコイル巻枠
図1に示すように、コイル23は、9つのティース4に対応して9つ備えられている。9つのコイル23は、互いに電気的に接続されている。各コイル23を構成する巻線は、例えば、エナメル線である。この巻線は、線状の導体と、導体を覆う絶縁被覆と、を有している。
図1に示すように、コイル23は、9つのティース4に対応して9つ備えられている。9つのコイル23は、互いに電気的に接続されている。各コイル23を構成する巻線は、例えば、エナメル線である。この巻線は、線状の導体と、導体を覆う絶縁被覆と、を有している。
モータ1は、コイル巻枠8を更に備えている。コイル巻枠8は、例えば、合成樹脂を材料として形成されている。コイル巻枠8は、電気絶縁性を有している。コイル巻枠8は、複数のティース4の少なくとも1つ(ここでは、各々のティース4)の、少なくとも一部を覆っている。
図6に示すように、コイル巻枠8は、2つの部材81を含む。2つの部材81は、互いに同じ形状である。2つの部材81は、内筒部3の軸方向に並んでいる。2つの部材81は、別体に形成されている。各部材81は、内筒部3の軸方向から複数のティース4を嵌め込み可能な形状に形成されている。すなわち、2つの部材81のうち一方は、中央コア21に取り付けられて、内筒部3の軸方向の第1端から複数のティース4を覆い、他方は、内筒部3の軸方向の第2端から複数のティース4を覆っている。各部材81は、内筒部3と重なる筒体811と、複数のティース4を覆う複数(図6では9つ)のティース被覆部812とを有している。筒体811は、内筒部3と同心の円筒状に形成されている。各ティース被覆部812は、筒体811から筒体811の径方向において外向きに突出している。各ティース4のうち、内筒部3側とは反対側の先端は、コイル巻枠8に覆われておらず、外筒部22に接している。
図5、図8に示すように、2つの部材81が中央コア21に取り付けられて複数のティースの少なくとも一部を覆った状態で、コイル23は、2つの部材81(コイル巻枠8)を介して胴部41に巻かれている。ここで、コイル23は、胴部41と、この胴部41と隣り合う2つの胴部41それぞれとの間のスロット(空洞)を通るように胴部41に巻かれている。
2つの部材81は、内筒部3の軸方向において互いに離れている。そのため、中央コア21のうち厚さ方向における中心付近の部位では、各ティース4は中央コア21の厚さ方向と直交する方向に露出している。モータ1の設計変更等により中央コア21を構成する鋼板210の個数が変更された場合等には、中央コア21の厚さが変わる。そして、中央コア21の厚さの変更に伴って2つの部材81間の距離が変わる。
(2-4)外筒部
図5に示すように、外筒部22は、複数の鋼板220を含む。外筒部22は、複数の鋼板220を厚さ方向に積層して形成されている。各鋼板220は、磁性材料により形成されている。各鋼板220は、例えば、ケイ素鋼板である。
図5に示すように、外筒部22は、複数の鋼板220を含む。外筒部22は、複数の鋼板220を厚さ方向に積層して形成されている。各鋼板220は、磁性材料により形成されている。各鋼板220は、例えば、ケイ素鋼板である。
図1、図8に示すように、外筒部22の形状は、円筒状である。外筒部22は、複数のティース4に取り付けられ複数のティース4を囲んでいる。
外筒部22は、複数(9つ)の嵌合部221を有している。つまり、外筒部22は、ティース4と同数の嵌合部221を有している。複数の嵌合部221の各々は、外筒部22の内周面に設けられた窪みである。複数の嵌合部221は、複数のティース4と一対一で対応している。複数の嵌合部221の各々と、複数のティース4のうちこの嵌合部221に対応するティース4とは、少なくとも一方が内筒部3の径方向に移動することで嵌まり合う。これにより、外筒部22が複数のティース4に取り付けられる。
各嵌合部221には、ティース4のうち2つの先端片42を含む部位が嵌め込まれる。そのため、外筒部22の周方向における各嵌合部221の長さは、胴部41から突出した2つの先端片42のうち一方の先端片42の突出先端と、他方の先端片42の突出先端との間の長さと等しい。なお、本明細書において「等しい」とは、複数の値が互いに完全に一致する場合に限定されず、許容される誤差の範囲内で異なっている場合をも含む。例えば、3%以内、5%以内、又は10%以内の誤差がある場合をも含む。
中央コア21にコイル巻枠8が装着されコイル23が巻かれた状態で、外筒部22は、例えば、焼嵌めにより複数のティース4に取り付けられる。すなわち、外筒部22を加熱して径方向に膨張させた状態で、外筒部22の内側に中央コア21を配置する。これにより、外筒部22の内面は、複数のティース4との間に僅かに隙間を空けて内筒部3の径方向における複数のティース4の先端に対向する。その後、外筒部22の温度が低下して外筒部22が収縮すると、外筒部22の内面が複数のティース4の先端に接する。つまり、外筒部22の収縮に伴って複数の嵌合部221が外筒部22の径方向内向きに移動することにより、複数の嵌合部221と複数のティース4とが嵌まり合う。外筒部22は、複数のティース4に対して外筒部22の径方向内向きの接圧を加えている。
(2-5)ロータ
次に、ロータ5の構成の詳細について説明する。図5に示すように、ロータ5のロータコア6は、複数の鋼板600を含む。ロータコア6は、複数の鋼板600を厚さ方向に積層して形成されている。各鋼板600は、磁性材料により形成されている。各鋼板600は、例えば、ケイ素鋼板である。
次に、ロータ5の構成の詳細について説明する。図5に示すように、ロータ5のロータコア6は、複数の鋼板600を含む。ロータコア6は、複数の鋼板600を厚さ方向に積層して形成されている。各鋼板600は、磁性材料により形成されている。各鋼板600は、例えば、ケイ素鋼板である。
ロータコア6は、ステータコア20の内筒部3と同心の円筒状に形成されている。ロータコア6の軸方向において、ロータコア6の両端の位置は、ステータコア20の両端の位置と揃っている。すなわち、ロータコア6の軸方向及びステータコア20の内筒部3の軸方向におけるロータコア6の第1端(図5では紙面上側の端)とステータコア20の第1端(図5では紙面上側の端)とは、軸方向と直交する方向に重なる位置にある。さらに、ロータコア6の軸方向及び内筒部3の軸方向におけるロータコア6の第2端(図5では紙面下側の端)とステータコア20の第2端(図5では紙面下側の端)とは、軸方向と直交する方向に重なる位置にある。ロータコア6の厚さとステータコア20の厚さとは等しい。ここで、ロータコア6の第1端とステータコア20の第1端とがちょうど重なっていなくてもよく、許容される誤差の範囲内でずれていてもよい。また、ロータコア6の第2端とステータコア20の第2端とがちょうど重なっていなくてもよく、許容される誤差の範囲内でずれていてもよい。例えば、ロータコア6の厚さの3%以内、5%以内又は10%以内のずれがあってもよい。
ロータコア6の内側には、出力軸51が保持されている。図3に示すように、ロータコア6は、出力軸51が通される軸孔611を有する軸保持部61と、軸保持部61の周囲のロータ本体62とを有している。軸保持部61の形状は、円筒状である。軸保持部61の内側の空間が、軸孔611である。ロータ本体62の形状は、軸保持部61と同心の円筒状である。ロータコア6は、軸保持部61とロータ本体62との間に、複数(図3では12個)の貫通部63と、軸保持部61とロータ本体62とを連結している複数(図3では6つ)のブリッジ部64とを有している。
ロータ本体62は、複数(図3では6つ)の磁石収容部621を含んでいる。複数の磁石収容部621は、複数の永久磁石7がロータコア6の中心C1を中心としてスポーク状(放射状)に配置されるように複数の永久磁石7を収容する。複数の磁石収容部621の各々は、ロータ本体62を軸方向に貫通する貫通孔である。複数の永久磁石7の各々は、接着剤を付着させた状態で磁石収容部621に挿入されることで、磁石収容部621に保持されている。なお、複数の永久磁石7の各々は、接着剤を用いることなく、ロータコア6との間の磁気吸着力により磁石収容部621に保持されていてもよい。
複数の磁石収容部621は、ロータコア6の周方向において等間隔に設けられている。これにより、複数の永久磁石7がロータコア6の周方向において等間隔に配置されている。また、複数の永久磁石7の各々の長手方向は、ロータコア6の径方向に沿っている。
各永久磁石7は、例えば、ネオジム磁石である。各永久磁石7の2つの磁極は、ロータコア6の周方向に並んでいる。ロータコア6の周方向において隣り合う2つの永久磁石7は、それぞれ同極を対向させている。ロータコア6の周方向において隣り合う2つの永久磁石7で発生する磁束の一部は、ロータ本体62のうち、これら2つの永久磁石7の間の部位622からステータ2(図1参照)に向かう(矢印A1参照)。つまり、ロータコア6の径方向に沿った磁束が部位622とステータ2との間に生じる。
ロータコア6は、高磁気抵抗部R2を有している。高磁気抵抗部R2は、ロータコア6のうち高磁気抵抗部R2の周囲の部位よりも磁気抵抗が高い。高磁気抵抗部R2は、複数の永久磁石7で発生する磁束の磁路に設けられている。複数の永久磁石7で発生する磁束の磁路は、例えば、いずれかの永久磁石7の2つの磁極のいずれかに対向する領域、及び、いずれかの永久磁石7に隣接する領域であってこの永久磁石7の2つの磁極の間を結ぶ曲線上の領域を含む。高磁気抵抗部R2を設けたことにより、複数の永久磁石7で発生する磁束に関して、漏れ磁束を低減できる。すなわち、ロータコア6の周方向において隣り合う2つの永久磁石7間の部位622から、ステータ2(図1参照)に向かう磁束を増加させることができる。これにより、モータ1のトルクを大きくできる。
高磁気抵抗部R2は、例えば、上述の複数の貫通部63を含む。複数の貫通部63の各々は、ロータコア6を軸方向に貫通している。また、高磁気抵抗部R2は、複数の貫通部63とは別の位置に、複数(図3では12個)の貫通部65を含む。各貫通部65は、ロータコア6を軸方向に貫通している。複数の貫通部63及び複数の貫通部65の各々は、磁石収容部621につながっている。
ここで、ロータコア6は、第1部位601と第2部位602とを有している。第1部位601及び第2部位602はそれぞれ、複数の永久磁石7と一対一で対応するように複数(6つ)設けられている。以下では、1つの永久磁石7と、この永久磁石7に対応する第1部位601及び第2部位602に着目して説明する。
第1部位601及び第2部位602はそれぞれ、ロータコア6の径方向において永久磁石7に隣接している。第1部位601は、軸保持部61の一部を含む。第1部位601は、ロータコア6の径方向における永久磁石7の両側のうちロータコア6の中心C1側の部位である。より詳細には、第1部位601は、永久磁石7と軸孔611との間の部位である。
第1部位601には、2つの貫通部63の各々の少なくとも一部が設けられている。2つの貫通部63は、ロータコア6の周方向に並んでいる。2つの貫通部63の各々は、ロータコア6の周方向に延びる部位と、ロータコア6の径方向に延びる部位とを含む。また、2つの貫通部63の間には、軸保持部61から突出した突起部66が設けられている。すなわち、ロータコア6は突起部66を有している。突起部66は、ロータコア6の径方向において永久磁石7に接している。
第2部位602は、ロータ本体62の一部を含む。第2部位602は、ロータコア6の径方向における永久磁石7の両側のうちロータコア6の外周側の部位である。より詳細には、第2部位602は、永久磁石7とロータコア6の外縁との間の部位である。
第2部位602には、2つの貫通部65が設けられている。2つの貫通部65は、ロータコア6の周方向に並んでいる。2つの貫通部65の各々の長手方向は、ロータコア6の周方向に沿っている。2つの貫通部63の間には、ロータコア6の径方向において永久磁石7に接している突起部67が設けられている。すなわち、ロータコア6は突起部67を有している。突起部66と突起部67との間に永久磁石7が挟まれることで、永久磁石7がロータコア6の径方向に移動することが規制されている。
すなわち、高磁気抵抗部R2の少なくとも一部(貫通部63、65)は、第1部位601及び第2部位602のうち少なくとも一方に設けられている。
第1部位601における高磁気抵抗部R2の長さL3(ロータコア6の径方向における長さ)は、第2部位602における高磁気抵抗部R2の長さL4(ロータコア6の径方向における長さ)とは異なる。長さL3は長さL4よりも長い。第1部位601における長さL3は、ロータコア6の径方向における貫通部63の長さである。第2部位602における長さL4は、ロータコア6の径方向における貫通部65の長さである。
複数の永久磁石7のうち任意の1つの永久磁石7に隣接して設けられた貫通部63と、当該永久磁石7に隣り合う永久磁石7に隣接して設けられた貫通部63との間には、ブリッジ部64が設けられている。このようにして、複数(6つ)のブリッジ部64が、ロータコア6の周方向において等間隔に設けられている。また、ロータ本体62のうちロータコア6の径方向においてブリッジ部64と対向する領域には、貫通部68が設けられている。貫通部68は、高磁気抵抗部R2に含まれている。貫通部68は、ロータコア6を軸方向に貫通している。ロータコア6の軸方向から見て、貫通部68の形状は円状である。貫通部68は、複数のブリッジ部64と一対一で対応するように複数(図3では6つ)設けられている。
ロータコア6は、複数(図3では6つ)の空所69(貫通孔)を有している。複数の空所69の各々は、ロータコア6を軸方向に貫通している。複数の空所69は、例えば、複数の永久磁石7で発生する磁束の磁路とは異なる部位に設けられている。複数の空所69は、軸保持部61の内縁に沿って設けられている。複数の空所69は、ロータコア6の周方向において等間隔に設けられている。複数の空所69は、軸孔611につながっている。複数の空所69を設けたことにより、ロータコア6の軽量化を図ることができる。
なお、各空所69は、高磁気抵抗部R2に含まれていてもよい。つまり、各空所69は、複数の永久磁石7で発生する磁束の磁路に設けられていてもよい。
図14は、図3の曲線X1に対応する断面を平面状に引き延ばして示した図である。ロータコア6の複数の鋼板600の各々には、高磁気抵抗部R3が設けられている。すなわち、ロータコア6は、複数の高磁気抵抗部R3を有している。
各高磁気抵抗部R3は、複数の空洞部603を有している。複数の空洞部603の各々は、鋼板600を軸方向に貫通している。複数の空洞部603は、鋼板600のうち、ブリッジ部64に相当する部位に設けられている。すなわち、複数の空洞部603の各々は、ブリッジ部64に相当する部位を2つの部分に切り離すように形成されている。ここでは、1つの鋼板600につき空洞部603は1つ設けられている。なお、図14以外の図では、複数の空洞部603の図示を省略している。
複数の鋼板600は、互いに隣り合う鋼板600の高磁気抵抗部R3(空洞部603)が鋼板600の厚さ方向に重ならないように積層されている。ここで、6つのブリッジ部64を周方向において並んでいる順にそれぞれ第1のブリッジ部、第2のブリッジ部、……、第6のブリッジ部と称し、複数の鋼板600を厚さ方向において並んでいる順に第1の鋼板、第2の鋼板、……、と称する。一例として、第1の鋼板、第7の鋼板、第13の鋼板、……、では、第1のブリッジ部に相当する部位に空洞部603が設けられている。第2の鋼板、第8の鋼板、第14の鋼板、……、では、第2のブリッジ部に相当する部位に空洞部603が設けられている。第3の鋼板、第9の鋼板、第15の鋼板、……、では、第3のブリッジ部に相当する部位に空洞部603が設けられている。ロータコア6において、空洞部603と、鋼板600の厚さ方向においてこの空洞部603と重なる位置に形成された別の空洞部603との間には、1つ以上(図14では5つ)の鋼板600の、空洞部603以外の部分が配置されている。
空洞部603は、例えば、複数の鋼板600が積層される前に、各鋼板600に形成される。複数の鋼板600は、厚さ方向から見て同じ形に形成されて、隣り合う鋼板600間で向き(角度)が異なるように積層されている。より詳細には、第1の鋼板に対して60度回転した向きで第2の鋼板が重ねられており、第2の鋼板に対して60度回転した向きで第3の鋼板が重ねられている。第4の鋼板以降も同様に、隣り合う鋼板に対して60度(所定角度)回転した向きで重ねられている。なお、空洞部603は、1つの鋼板600に複数設けられていてもよい。例えば、複数の空洞部603は、鋼板600の周方向において等間隔に設けられていてもよい。また、複数の鋼板600のうち一部の鋼板600の厚さと、別の一部の鋼板600の厚さとが、異なっていてもよい。
別の一例として、図15に示すように、各鋼板600の高磁気抵抗部R3は、空洞部603に代えて、肉薄部604を含んでいてもよい。肉薄部604は、ロータコア6のうち肉薄部604の周囲の部位(例えば、軸保持部61に相当する部位)よりも、ロータコア6の軸方向における長さが短い。すなわち、鋼板600のうち肉薄部604の厚さL7は、鋼板600のうち肉薄部604の周囲の部位の厚さL8よりも小さい。肉薄部604は、鋼板600の一部をプレス加工することにより形成されている。そのため、鋼板600の一部を削り取って肉薄部604を形成する場合と比較して、鋼板600の強度を大きくすることができる。
なお、空洞部603及び肉薄部604は、ロータコア6のブリッジ部64に相当する部位に設けられることに限定されない。空洞部603及び肉薄部604は、例えば、ロータコア6の第1部位601に相当する部位及び第2部位602に相当する部位のうち少なくとも一方に設けられていてもよい。
(2-6)ベース及びベアリング
図1、図5に示すように、モータ1は、ベース9と、2つのベアリング52とを更に備えている。ベース9には、有底筒状のカバーが取り付けられている。ステータ2及びロータ5は、ベース9とカバーとに囲まれた空間に収容されている。2つのベアリング52のうち一方は、カバーに固定されており、他方は、ベース9に固定されている。2つのベアリング52は、ロータ5の出力軸51を回転可能に保持している。
図1、図5に示すように、モータ1は、ベース9と、2つのベアリング52とを更に備えている。ベース9には、有底筒状のカバーが取り付けられている。ステータ2及びロータ5は、ベース9とカバーとに囲まれた空間に収容されている。2つのベアリング52のうち一方は、カバーに固定されており、他方は、ベース9に固定されている。2つのベアリング52は、ロータ5の出力軸51を回転可能に保持している。
(2-7)利点
モータ1の製造工程では、ステータ2の中央コア21と外筒部22とが分離された状態で、中央コア21の複数のティース4の胴部41に、コイル巻枠8を介してコイル23が巻かれる。その後、複数のティース4に外筒部22が取り付けられる。
モータ1の製造工程では、ステータ2の中央コア21と外筒部22とが分離された状態で、中央コア21の複数のティース4の胴部41に、コイル巻枠8を介してコイル23が巻かれる。その後、複数のティース4に外筒部22が取り付けられる。
コイル23は、例えば、各ティース4の先端側に配置した器具を用いてティース4に巻かれる。複数のティース4は、内筒部3から径方向において外向きに突出しているので、複数のティース4が内向きに突出している場合と比較して、各ティース4の先端側のスペースを広くすることができる。そのため、各ティース4にコイル23を容易に巻くことができ、場合によっては、コイル23の占積率を増加させることが可能である。
また、各ティース4はコイル23が胴部41から脱落することを抑制する2つの先端片42を含むので、各ティース4にコイル23をより容易に巻くことができる。さらに、各ティース4に加わる応力を、2つの先端片42に分散させることができるので、ティース4が変形する可能性を低減できる。さらに、先端片42は曲面421を含み、曲面421は外筒部22に接する。そのため、先端片42の表面が平面状に形成されている場合と比較して、複数のティース4に外筒部22が取り付けられる場合に、外筒部22から各ティース4に加わる応力が曲面421に沿って分散されやすい。
また、各先端片42は、胴部41とつながった部位に、湾曲部422を有している。そのため、各ティース4を通る磁束の一部は、胴部41と湾曲部422とを通り、さらに、隣接するティース4の湾曲部422と胴部41とを通る(図7の矢印A2参照)。このように、磁束の一部は、内筒部3の径方向に対して湾曲部422に沿って曲がった磁路を通ってティース4の外へ引き出されるので、磁束が内筒部3の径方向に沿った磁路を通ってティース4の外へ引き出される場合と比較して、磁路が短くなる。すなわち、この磁路の磁気抵抗が小さくなる。
また、複数のティース4は、一端側において内筒部3により互いにつながっており、他端側が外筒部22に接している。すなわち、複数のティース4の一端には内筒部3が設けられており、他端には外筒部22が設けられている。これにより、内筒部3と外筒部22とのうちいずれか一方のみが設けられている場合と比較して、ステータコア20の強度の向上を図ることができる。また、ステータコア20の寸法公差のロバスト性を高くすることができる。また、モータ1のコギングの抑制を図ることができる。
また、複数の永久磁石7がロータコア6の中心C1を中心としてスポーク状に配置されているので、ロータ5の直径を短くしやすい。
(実施形態の変形例)
次に、実施形態の変形例を列挙する。以下の変形例は、適宜組み合わせて実現されてもよい。
次に、実施形態の変形例を列挙する。以下の変形例は、適宜組み合わせて実現されてもよい。
ステータ2の構成は、任意に変更が可能である。例えば、複数のティース4と内筒部3とが分離されていてもよい。さらに、複数のティース4は、外筒部22から外筒部22の径方向において内向きに突出していてもよい。また、複数のティース4は、先端片42を含んでいなくてもよい。また、内筒部3は、高磁気抵抗部R1を有していなくてもよい。
ロータコア6は、高磁気抵抗部R2、R3を有していなくてもよい。
ロータコア6の軸方向から見たロータコア6の形状は、完全な円形に限定されず、例えば、円状又は楕円状であって、円周上に突起及び窪みが設けられた形状であってもよい。
ステータコア20の貫通部302及びロータコア6の貫通部63、65、68にはそれぞれ、非磁性材料により形成されたスペーサが挿入されていてもよい。つまり、高磁気抵抗部R2は、貫通部63、65、68のみならず、スペーサを含んでいてもよい。
永久磁石7の個数は、6つに限定されず、2つ以上であればよい。
モータ1は、電動工具10に備えられることに限定されない。モータ1は、例えば、電動自転車又は電動アシスト自転車に備えられてもよい。
モータ1は、ロータ5に取り付けられた調整部を更に有していてもよい。調整部の形状は、例えば、円筒状の重りであって、調整部は、ロータ5の出力軸51に取り付けられる。調整部の一部を削り調整部の重さ及び重心を変えることで、ロータ5の重量バランスを調整することができる。これにより、ロータコア6に貫通部63、65、68及び空洞部603等を設けたことによるロータ5の重量バランスのずれを補正できる。あるいは、ロータコア6の一部を削ることで、ロータ5の重量バランスを調整してもよい。あるいは、ロータ5に付着させる接着剤の位置と量とを調整することで、ロータ5の重量バランスを調整してもよい。
複数の鋼板210(又は600)において、空洞部303(又は603)の配置については変更が可能である。複数の鋼板210(又は600)の強度を確保するために、2つ以上の空洞部303(又は603)が、複数の鋼板210(又は600)の厚さ方向に互いに隣り合わないことが好ましい。
空洞部303(又は603)は、複数の鋼板210(又は600)の厚さ方向において周期的に設けられていてもよい。例えば、任意の空洞部303(又は603)と、複数の鋼板210(又は600)の厚さ方向においてこの空洞部303(又は603)と重なる空洞部303(又は603)との間に、一定数の鋼板210(又は600)が配置されていてもよい。あるいは、任意の空洞部303(又は603)と、複数の鋼板210(又は600)の厚さ方向においてこの空洞部303(又は603)と重なる空洞部303(又は603)との間の距離が一定距離であってもよい。
複数の鋼板210(又は600)において、肉薄部304(又は604)の配置についても、空洞部303(又は603)と同様の変更が可能である。また、複数の鋼板210(又は600)には、空洞部303(又は603)と肉薄部304(又は604)との両方が設けられていてもよい。
また、複数の鋼板210のうち一部の鋼板210にのみ、空洞部303及び肉薄部304のうち少なくとも一方が形成されていてもよい。また、複数の鋼板600のうち一部の鋼板600にのみ、空洞部603及び肉薄部604のうち少なくとも一方が形成されていてもよい。
複数の鋼板210及び複数の鋼板600の各々は、各部分がつながった1つの部材であることが好ましい。これにより、各鋼板210(又は600)が複数の部材からなる場合と比較して、モータ1の部品点数を削減できる。
また、空所69は、軸保持部61以外の部位に設けられていてもよい。また、空所69は、ロータコア6の軸方向に窪んだ窪みであってもよい。
外筒部22の複数の嵌合部221の各々は、突起であってもよい。そして、複数のティース4の各々は、嵌合部221が嵌められる窪みを有していてもよい。
(まとめ)
以上説明した実施形態等から、以下の態様が開示されている。
以上説明した実施形態等から、以下の態様が開示されている。
第1の態様に係る電動工具10は、モータ1を備える。モータ1は、ステータコア20と、ロータ5と、を備える。ロータ5は、ステータコア20に対して回転する。ロータ5は、円筒状のロータコア6と、複数の永久磁石7と、出力軸51と、を有する。出力軸51は、ロータコア6の内側に保持されている。複数の永久磁石7は、ロータコア6の中心C1を中心としてスポーク状に配置されている。
上記の構成によれば、複数の永久磁石7がロータコア6の中心C1を中心としてスポーク状に配置されるので、ロータ5の直径を短くしやすい。特に、永久磁石7の個数が比較的多い場合に、複数の永久磁石7が多角形状に配置される場合と比較して、各永久磁石7の長手方向の長さL1を維持しつつ、ロータ5の直径を短くしやすい。
また、第2の態様に係る電動工具10では、第1の態様において、ロータ5は、複数の永久磁石7として、6つ以上の永久磁石7を有する。
上記の構成によれば、永久磁石7の個数が6つ未満の場合と比較して、モータ1のトルクを大きくできる。
また、第3の態様に係る電動工具10では、第1又は2の態様において、ロータコア6は、高磁気抵抗部R2、R3を有する。高磁気抵抗部R2、R3は、複数の永久磁石7で発生する磁束の磁路に設けられる。高磁気抵抗部R2、R3は、ロータコア6のうち高磁気抵抗部R2、R3の周囲の部位よりも磁気抵抗が高い。
上記の構成によれば、ロータコア6における漏れ磁束を低減できる。
また、第4の態様に係る電動工具10では、第3の態様において、複数の永久磁石7のうち少なくとも1つに関して、高磁気抵抗部R2、R3の少なくとも一部は、第1部位601及び第2部位602のうち少なくとも一方に設けられている。第1部位601及び第2部位602は、ロータコア6の径方向における永久磁石7の両側の部位である。
上記の構成によれば、第1部位601及び第2部位602のうち少なくとも一方からの漏れ磁束を低減できる。
また、第5の態様に係る電動工具10では、第4の態様において、高磁気抵抗部R2(又はR3)は、第1部位601及び第2部位602のいずれにも設けられている。第1部位601における高磁気抵抗部R2の径方向の長さL3は、第2部位602における高磁気抵抗部R2の径方向の長さL4とは異なる。
上記の構成によれば、長さL3が長さL4と同じ場合と比較して、第1部位601及び第2部位602のうち少なくとも一方の磁気抵抗の向上を図ることができる。
また、第6の態様に係る電動工具10では、第3~5の態様のいずれか1つにおいて、高磁気抵抗部R2、R3は、貫通部63、65、68を含む。貫通部63、65、68は、ロータコア6を軸方向に貫通している。
上記の構成によれば、ロータコア6における漏れ磁束を低減できる。
また、第7の態様に係る電動工具10では、第3~6の態様のいずれか1つにおいて、高磁気抵抗部R2、R3は、肉薄部604を含む。肉薄部604は、ロータコア6のうち肉薄部604の周囲の部位よりも、ロータコア6の軸方向における長さが短い。
上記の構成によれば、ロータコア6における漏れ磁束を低減できる。
また、第8の態様に係る電動工具10では、第3~7の態様のいずれか1つにおいて、ロータコア6は、複数の鋼板600を厚さ方向に積層して形成されている。高磁気抵抗部R3は、複数の鋼板600のうち2つ以上の鋼板600の各々に設けられている。2つ以上の鋼板600は、互いに隣り合う鋼板600の高磁気抵抗部R3が厚さ方向に重ならないように積層されている。
上記の構成によれば、互いに隣り合う鋼板600の高磁気抵抗部R3が厚さ方向に重なる場合と比較して、ロータコア6の強度の向上を図ることができる。
また、第9の態様に係る電動工具10では、第1~8の態様のいずれか1つにおいて、ロータコア6は、空所69を有する。空所69は、ロータコア6を軸方向に貫通する又はロータコア6の軸方向に窪んでいる。
上記の構成によれば、ロータコア6の軽量化を図ることができる。
また、第10の態様に係る電動工具10では、第1~9の態様のいずれか1つにおいて、ロータコア6の軸方向において、ロータコア6の両端の位置は、ステータコア20の両端の位置と揃っている。
上記の構成によれば、ロータコア6の軸方向においてロータコア6の両端の位置がステータコア20の両端の位置に対してずれている場合と比較して、ロータコア6の軸方向におけるモータ1の長さを短くすることができる。
第1の態様以外の構成については、電動工具10に必須の構成ではなく、適宜省略可能である。
1 モータ
10 電動工具
20 ステータコア
5 ロータ
51 出力軸
6 ロータコア
63、65、68 貫通部
69 空所
600 鋼板
601 第1部位
602 第2部位
604 肉薄部
7 永久磁石
C1 中心
L3 長さ
L4 長さ
R2、R3 高磁気抵抗部
10 電動工具
20 ステータコア
5 ロータ
51 出力軸
6 ロータコア
63、65、68 貫通部
69 空所
600 鋼板
601 第1部位
602 第2部位
604 肉薄部
7 永久磁石
C1 中心
L3 長さ
L4 長さ
R2、R3 高磁気抵抗部
Claims (10)
- ステータコアと、
前記ステータコアに対して回転するロータと、を備えるモータを備え、
前記ロータは、
円筒状のロータコアと、
複数の永久磁石と、
前記ロータコアの内側に保持された出力軸と、を有し、
前記複数の永久磁石は、前記ロータコアの中心を中心としてスポーク状に配置されている、
電動工具。 - 前記ロータは、前記複数の永久磁石として、6つ以上の永久磁石を有する、
請求項1に記載の電動工具。 - 前記ロータコアは、前記複数の永久磁石で発生する磁束の磁路に設けられた高磁気抵抗部を有し、
前記高磁気抵抗部は、前記ロータコアのうち前記高磁気抵抗部の周囲の部位よりも磁気抵抗が高い、
請求項1又は2に記載の電動工具。 - 前記複数の永久磁石のうち少なくとも1つに関して、
前記高磁気抵抗部の少なくとも一部は、前記ロータコアの径方向における前記永久磁石の両側の第1部位及び第2部位のうち少なくとも一方に設けられている、
請求項3に記載の電動工具。 - 前記高磁気抵抗部は、前記第1部位及び前記第2部位のいずれにも設けられており、
前記第1部位における前記高磁気抵抗部の前記径方向の長さは、前記第2部位における前記高磁気抵抗部の前記径方向の長さとは異なる、
請求項4に記載の電動工具。 - 前記高磁気抵抗部は、前記ロータコアを軸方向に貫通している貫通部を含む、
請求項3~5のいずれか一項に記載の電動工具。 - 前記高磁気抵抗部は、肉薄部を含み、
前記肉薄部は、前記ロータコアのうち前記肉薄部の周囲の部位よりも、前記ロータコアの軸方向における長さが短い、
請求項3~6のいずれか一項に記載の電動工具。 - 前記ロータコアは、複数の鋼板を厚さ方向に積層して形成され、
前記高磁気抵抗部は、前記複数の鋼板のうち2つ以上の鋼板の各々に設けられ、
前記2つ以上の鋼板は、互いに隣り合う鋼板の前記高磁気抵抗部が前記厚さ方向に重ならないように積層されている、
請求項3~7のいずれか一項に記載の電動工具。 - 前記ロータコアは、前記ロータコアを軸方向に貫通する又は前記軸方向に窪んだ空所を有する、
請求項1~8のいずれか一項に記載の電動工具。 - 前記ロータコアの軸方向において、前記ロータコアの両端の位置は、前記ステータコアの両端の位置と揃っている、
請求項1~9のいずれか一項に記載の電動工具。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/428,922 US11876408B2 (en) | 2019-02-07 | 2019-11-21 | Electric tool |
EP19914272.0A EP3923447A4 (en) | 2019-02-07 | 2019-11-21 | POWER TOOL |
CN201980091395.1A CN113424396B (zh) | 2019-02-07 | 2019-11-21 | 电动工具 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019021028A JP7308441B2 (ja) | 2019-02-07 | 2019-02-07 | 電動工具 |
JP2019-021028 | 2019-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020161990A1 true WO2020161990A1 (ja) | 2020-08-13 |
Family
ID=71947475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/045651 WO2020161990A1 (ja) | 2019-02-07 | 2019-11-21 | 電動工具 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11876408B2 (ja) |
EP (1) | EP3923447A4 (ja) |
JP (1) | JP7308441B2 (ja) |
CN (1) | CN113424396B (ja) |
WO (1) | WO2020161990A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7575966B2 (ja) | 2021-02-26 | 2024-10-30 | パナソニックホールディングス株式会社 | モータ及び電動工具 |
KR102666841B1 (ko) * | 2022-06-15 | 2024-05-16 | 엘지전자 주식회사 | 모터의 회전자 |
CN117996996A (zh) * | 2022-10-27 | 2024-05-07 | 南京泉峰科技有限公司 | 一种电动工具 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003319583A (ja) * | 2002-04-17 | 2003-11-07 | Yaskawa Electric Corp | 同期モータ |
JP2004173491A (ja) * | 2002-11-15 | 2004-06-17 | Minebea Co Ltd | 電気機械用のロータ装置及び永久磁石モータ |
JP2009033927A (ja) * | 2007-07-30 | 2009-02-12 | Jtekt Corp | ブラシレスモータ |
JP2011217602A (ja) * | 2010-03-31 | 2011-10-27 | Valeo Equipments Electriques Moteur | 永久磁石を備える、磁束収束タイプの同期回転電気機械 |
JP2012105410A (ja) * | 2010-11-09 | 2012-05-31 | Mitsubishi Electric Corp | 電動機及び圧縮機 |
JP2013013295A (ja) * | 2011-06-30 | 2013-01-17 | Mitsubishi Electric Corp | 回転電機 |
JP2015095974A (ja) | 2013-11-13 | 2015-05-18 | パナソニックIpマネジメント株式会社 | 電動モータ及びその電動モータを備える電動工具 |
JP2015116025A (ja) * | 2013-12-11 | 2015-06-22 | 株式会社安川電機 | 回転電機 |
JP2016103898A (ja) * | 2014-11-28 | 2016-06-02 | 日立オートモティブシステムズ株式会社 | 回転電機の回転子及びそれを用いた回転電機 |
WO2017209302A1 (ja) * | 2016-06-03 | 2017-12-07 | アイシン・エィ・ダブリュ株式会社 | ロータ |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4101552B2 (ja) * | 2002-04-30 | 2008-06-18 | 本田技研工業株式会社 | 電動パワーステアリング装置 |
JP5259241B2 (ja) | 2008-04-23 | 2013-08-07 | 株式会社東芝 | モータ制御装置,モータ駆動システム,洗濯機,空調機,永久磁石モータの着磁量変更方法 |
CN103107665A (zh) * | 2011-11-11 | 2013-05-15 | 德昌电机(深圳)有限公司 | 永磁电机及应用该永磁电机的电动工具和割草机 |
KR101880097B1 (ko) * | 2012-01-19 | 2018-07-23 | 삼성전자주식회사 | 모터와 그 로터 |
JP2012105543A (ja) * | 2012-01-23 | 2012-05-31 | Oriental Motor Co Ltd | 電動機の固定子 |
US9246364B2 (en) * | 2012-10-15 | 2016-01-26 | Regal Beloit America, Inc. | Radially embedded permanent magnet rotor and methods thereof |
DE102014216555A1 (de) * | 2014-08-20 | 2016-02-25 | BSH Hausgeräte GmbH | Rotor für eine elektrische Maschine eines Haushaltsgeräts, Haushaltsgerät und Verfahren zum Herstellen eines Rotors für eine elektrische Maschine eines Haushaltsgeräts |
CN107210632B (zh) * | 2015-02-25 | 2019-07-16 | 三菱电机株式会社 | 电枢以及旋转电机 |
JP6640621B2 (ja) | 2016-03-17 | 2020-02-05 | 株式会社ミツバ | 電動機用ロータ、およびブラシレスモータ |
CN205829435U (zh) * | 2016-07-13 | 2016-12-21 | 深圳拓邦股份有限公司 | 手持型电动工具及三相无刷电机 |
-
2019
- 2019-02-07 JP JP2019021028A patent/JP7308441B2/ja active Active
- 2019-11-21 US US17/428,922 patent/US11876408B2/en active Active
- 2019-11-21 CN CN201980091395.1A patent/CN113424396B/zh active Active
- 2019-11-21 WO PCT/JP2019/045651 patent/WO2020161990A1/ja unknown
- 2019-11-21 EP EP19914272.0A patent/EP3923447A4/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003319583A (ja) * | 2002-04-17 | 2003-11-07 | Yaskawa Electric Corp | 同期モータ |
JP2004173491A (ja) * | 2002-11-15 | 2004-06-17 | Minebea Co Ltd | 電気機械用のロータ装置及び永久磁石モータ |
JP2009033927A (ja) * | 2007-07-30 | 2009-02-12 | Jtekt Corp | ブラシレスモータ |
JP2011217602A (ja) * | 2010-03-31 | 2011-10-27 | Valeo Equipments Electriques Moteur | 永久磁石を備える、磁束収束タイプの同期回転電気機械 |
JP2012105410A (ja) * | 2010-11-09 | 2012-05-31 | Mitsubishi Electric Corp | 電動機及び圧縮機 |
JP2013013295A (ja) * | 2011-06-30 | 2013-01-17 | Mitsubishi Electric Corp | 回転電機 |
JP2015095974A (ja) | 2013-11-13 | 2015-05-18 | パナソニックIpマネジメント株式会社 | 電動モータ及びその電動モータを備える電動工具 |
JP2015116025A (ja) * | 2013-12-11 | 2015-06-22 | 株式会社安川電機 | 回転電機 |
JP2016103898A (ja) * | 2014-11-28 | 2016-06-02 | 日立オートモティブシステムズ株式会社 | 回転電機の回転子及びそれを用いた回転電機 |
WO2017209302A1 (ja) * | 2016-06-03 | 2017-12-07 | アイシン・エィ・ダブリュ株式会社 | ロータ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3923447A4 |
Also Published As
Publication number | Publication date |
---|---|
US11876408B2 (en) | 2024-01-16 |
CN113424396B (zh) | 2024-10-18 |
EP3923447A1 (en) | 2021-12-15 |
EP3923447A4 (en) | 2022-04-20 |
CN113424396A (zh) | 2021-09-21 |
JP2020129877A (ja) | 2020-08-27 |
JP7308441B2 (ja) | 2023-07-14 |
US20220131434A1 (en) | 2022-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020161990A1 (ja) | 電動工具 | |
US20240243623A1 (en) | Electric tool and motor | |
JP2008131682A (ja) | アキシャルエアギャップ型電動機 | |
JP7174658B2 (ja) | アキシャルギャップ型回転電機 | |
US20240079928A1 (en) | Electric tool and motor | |
WO2022181167A1 (ja) | モータ及び電動工具 | |
WO2021006079A1 (ja) | モータ、電動工具用モータ及び電動工具 | |
JPH1042497A (ja) | 電気モータの固定子 | |
JP7281674B2 (ja) | モータ及び電動工具 | |
JP2021069161A (ja) | 電動工具及びモータ | |
JP2018107999A (ja) | リラクタンス回転電機の組立方法およびリラクタンス回転電機 | |
WO2021065148A1 (ja) | 電動工具及びブラシレスモータ | |
JP7357201B2 (ja) | モータ、電動工具用モータ及び電動工具 | |
JP7403059B2 (ja) | 電動工具 | |
JP7336662B2 (ja) | モータ、電動工具用モータ及び電動工具 | |
JP7575966B2 (ja) | モータ及び電動工具 | |
JP2024143806A (ja) | ブラシレスモータ、及び電動工具 | |
JP2024021436A (ja) | モータ、及び電動工具 | |
JP2022057464A (ja) | モータ装置、及び電動工具 | |
JP2023124686A (ja) | モータ装置及び電動工具 | |
JP2022131728A (ja) | モータ及び電動工具 | |
JP2023115817A (ja) | ブラシレスモータ及び電動工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19914272 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019914272 Country of ref document: EP Effective date: 20210907 |