WO2017209302A1 - ロータ - Google Patents

ロータ Download PDF

Info

Publication number
WO2017209302A1
WO2017209302A1 PCT/JP2017/020717 JP2017020717W WO2017209302A1 WO 2017209302 A1 WO2017209302 A1 WO 2017209302A1 JP 2017020717 W JP2017020717 W JP 2017020717W WO 2017209302 A1 WO2017209302 A1 WO 2017209302A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge portion
hardness
hole
inter
electromagnetic steel
Prior art date
Application number
PCT/JP2017/020717
Other languages
English (en)
French (fr)
Inventor
宮路剛
齋藤尚登
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN201780032092.3A priority Critical patent/CN109155557A/zh
Priority to JP2018521148A priority patent/JP6573031B2/ja
Priority to DE112017001847.1T priority patent/DE112017001847T5/de
Priority to US16/089,094 priority patent/US20190222088A1/en
Publication of WO2017209302A1 publication Critical patent/WO2017209302A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotor used in, for example, a rotating electrical machine.
  • a permanent magnet embedded rotor is often used from the viewpoint of miniaturization, high rotation, light weight, and the like.
  • the outer bridge portion [bridge portion 19] on the outer circumference side of the magnet insertion hole into which the permanent magnet is inserted is harder than other portions in order to increase the centrifugal strength and further reduce the size and increase the rotation speed.
  • Formation of a highly cured portion is disclosed in International Publication No. 2014/171133 (Patent Document 1).
  • Patent Document 1 discloses that the thickness of the electromagnetic steel sheet at the portion is made thinner than the thickness of other portions.
  • Patent Document 1 by reducing the thickness of the highly hardened portion of the electromagnetic steel sheet and forming the highly hardened portion, the magnetic resistance in the part is increased to reduce the leakage magnetic flux and to increase the torque. The effect that it is possible is obtained as a secondary effect.
  • a highly hardened portion with a reduced plate thickness is formed on the outer peripheral bridge portion located near the outer surface of the rotor, the hysteresis loss increases due to the residual stress in the portion, resulting in an increase in iron loss. There was a problem.
  • the rotor according to the present disclosure is: A rotor core having a plurality of electromagnetic steel plates laminated in an axial direction, a permanent magnet embedded in the rotor core, and a rotor disposed to face the stator,
  • the electromagnetic steel sheet has a plurality of hole portions including at least a magnet insertion hole into which the permanent magnet is inserted in each magnetic pole, and a stator that is a bridge portion between one of the hole portions and a stator facing surface of the rotor core.
  • a side bridge portion a bridge portion between holes that is a bridge portion between two circumferentially adjacent holes, and a non-bridge portion that is a portion other than these bridge portions,
  • the hardness of the stator side bridge portion is equal to the hardness of the non-bridge portion
  • the hardness of at least a portion of the plurality of inter-hole bridge portions is the hardness of the non-bridge portion Higher than.
  • the hardness of the stator side bridge portion is equal to the hardness of the non-bridge portion, in other words, the hardness of the stator side bridge portion is not higher than the hardness of the non-bridge portion. For this reason, residual stress does not remain in the stator side bridge portion located near the surface on the stator side of the rotor, and the hysteresis loss at the portion does not become larger than usual. Therefore, an increase in iron loss can be suppressed.
  • the hardness of at least a part of the plurality of inter-hole bridge portions is made higher than the hardness of the non-bridge portion, so that the magnetic resistance can be increased at the portion. Therefore, the effective magnetic flux can be increased by reducing the leakage magnetic flux, and the torque can be increased. From the above, it is possible to increase the torque by reducing the leakage magnetic flux while suppressing the increase in iron loss.
  • FIG. 1 The perspective view of the rotor which concerns on embodiment Plan view showing magnetic steel sheet for one magnetic pole
  • the rotor 1 of this embodiment is provided in a rotating electrical machine that is used as a driving force source for wheels in, for example, a hybrid vehicle or an electric vehicle.
  • This rotating electrical machine includes a stator fixed to a non-rotating member such as a case, and a rotor 1 that is rotatably supported on the radially inner side of the stator.
  • the stator includes a stator core and a coil wound around the stator core. And the rotor 1 as a field rotates by the magnetic field which generate
  • the rotor 1 disposed to face a stator includes a rotor core 3 and a permanent magnet 6 embedded in the rotor core 3. That is, the rotor 1 of this embodiment is configured as a permanent magnet embedded rotor.
  • a permanent magnet embedded rotor 1 can utilize reluctance torque in addition to magnet torque, and is therefore preferably used from the viewpoint of miniaturization, high rotation, light weight, and the like.
  • the rotor core 3 has a plurality of electromagnetic steel plates 30 stacked in the axial direction L.
  • the electromagnetic steel plate 30 is formed in an annular plate shape.
  • the electromagnetic steel sheet 30 has a plate thickness of a reference thickness T0 (see FIG. 7 and the like) for the most part.
  • the reference thickness T0 can be set to 0.1 mm to 0.5 mm, for example, and is generally about 0.35 mm.
  • the rotor core 3 of the present embodiment is divided into three axial regions, ie, a first end region Re1, a central region Rc, and a second end region Re2, from one side in the axial direction L.
  • the first end region Re1 and the second end region Re2 are each set as a region having an axial length of, for example, about 1/100 to 1/5 with respect to the entire rotor core 3.
  • the electromagnetic steel plate 30 belonging to the first end region Re1 and the electromagnetic steel plate 30 belonging to the second end region Re2 have the same three-dimensional shape, and the electromagnetic steel plate 30 belonging to the central region Rc is The three-dimensional shape is different from the electromagnetic steel sheet 30 belonging to each of the end regions Re1 and Re2. This point will be described later.
  • the permanent magnet 6 is embedded in the rotor core 3 so as to penetrate the rotor core 3 in the axial direction L.
  • the permanent magnet 6 of this embodiment has a rectangular cross-sectional shape (hereinafter simply referred to as “cross-sectional shape”) in a plane orthogonal to the axial direction L.
  • each magnetic pole P is comprised by each set of a pair of permanent magnet 6 which makes the V-shape which is arrange
  • the pair of permanent magnets 6 constituting each magnetic pole P is arranged with the magnetic pole surface 6a having the same polarity (N pole or S pole) facing radially outward.
  • Two magnetic poles P adjacent to each other in the circumferential direction C have opposite polarities, and the pair of permanent magnets 6 belonging to one magnetic pole P and the pair of permanent magnets 6 belonging to the other magnetic pole P have different polarities ( (N pole / S pole) is arranged with the magnetic pole surface 6a facing outward in the radial direction.
  • the magnetic pole surface 6a is an outer surface orthogonal to the magnetization direction (magnetization direction), and is a surface on which the magnetic flux of the permanent magnet 6 mainly enters and exits.
  • the permanent magnet 6 having a rectangular cross-sectional shape is magnetized in a direction parallel to the short side. Therefore, in the present embodiment, of the outer peripheral surface of the permanent magnet 6 (four surfaces forming the outer edges of the cross section orthogonal to the axial direction L), two surfaces forming the long side of the rectangle are the magnetic pole surfaces 6a. ing.
  • the remaining two surfaces (the two outer surfaces parallel to the magnetization direction and forming the rectangular short side in the present embodiment) of the outer peripheral surfaces of the permanent magnet 6 are non-magnetic pole surfaces 6b.
  • the pair of magnetic pole surfaces 6a are parallel to each other, and the pair of non-magnetic pole surfaces 6b are also parallel to each other.
  • Each magnetic pole surface 6a and each non-magnetic pole surface 6b intersect in a state of making a right angle in this example.
  • the electromagnetic steel sheet 30 has a plurality of holes 31 in each magnetic pole P.
  • the hole 31 includes at least a magnet insertion hole 32 into which the permanent magnet 6 is inserted.
  • each magnetic pole P is constituted by a set of two permanent magnets 6, so that the electromagnetic steel sheet 30 has a plurality of holes 31 including at least two magnet insertion holes 32 in each magnetic pole P.
  • the set of two magnet insertion holes 32 is arranged so as to form a V shape that protrudes radially inward.
  • the magnet insertion hole 32 of this embodiment includes a magnet housing portion 32A and an extended barrier portion 32B.
  • the magnet housing part 32 ⁇ / b> A is a part that houses and holds the permanent magnet 6.
  • the extended barrier part 32B is a part that functions as a magnetic resistance (flux barrier) against the magnetic flux flowing in the rotor core 3.
  • the extension barrier portion 32B is for filling the permanent magnet 6 in the magnet insertion hole 32 with, for example, a resin, an adhesive, or the like (hereinafter simply referred to as “resin”). Also functions as a site.
  • the extended barrier portion 32B is provided at both ends of the magnet housing portion 32A so as to continue from the magnet housing portion 32A in the longitudinal direction (generally, the circumferential direction C of the rotor 1).
  • the electromagnetic steel sheet 30 has positioning protrusions 34 for positioning the permanent magnet 6 in the magnet insertion holes 32 (here, in particular, the extended barrier portions 32B at both ends).
  • the positioning protrusion 34 protrudes along the non-magnetic pole surface 6 b of the permanent magnet 6.
  • the positioning protrusion 34 is formed to have a triangular cross-sectional shape.
  • the positioning protrusion 34 is located inside the magnet insertion hole 32 rather than the magnetic pole surface 6a of the permanent magnet 6 (or the opposed surface 32f facing the magnetic pole surface 6a of the permanent magnet 6 in the magnet insertion hole 32; see FIG. 3). It is formed so as to protrude toward the side.
  • the positioning protrusions 34 extend from the respective end portions of the pair of magnetic pole surfaces 6a in the tangential direction of the magnetic pole surfaces 6a. It is formed so as to protrude into a region sandwiched between virtual lines.
  • the positioning protrusion 34 protrudes between a pair of virtual lines along each of the magnetic pole surfaces 6a of the permanent magnet 6. It is formed.
  • the positioning protrusion 34 is disposed such that one surface (opposing surface 34f) faces the non-magnetic pole surface 6b of the permanent magnet 6 with a surface contact or a minute gap therebetween.
  • two pairs of positioning projections 34 are arranged with their opposing surfaces 34 f separated by a distance corresponding to the length of the permanent magnet 6.
  • the permanent magnet 6 is positioned in the magnet insertion hole 32 by the pair of positioning protrusions 34.
  • the magnet insertion hole 32 of the present embodiment further includes an escape hole 32C.
  • the escape holes 32C are provided at both ends of the magnet housing portion 32A so as to continue from the magnet housing portion 32A in the short direction (generally toward the radially inner side of the rotor 1).
  • the escape hole 32C is provided to prevent corner contact when the permanent magnet 6 is inserted into the magnet housing portion 32A, and to prevent stress concentration on the corner of the permanent magnet 6 after insertion.
  • the presence of the escape hole 32C also provides an advantage that the filling property of resin or the like into the magnet insertion hole 32 is improved.
  • the electromagnetic steel sheet 30 has an outer peripheral bridge portion 36 and an inter-hole bridge portion 37 in each magnetic pole P.
  • the outer peripheral bridge portion 36 is formed between one of the hole portions 31 and the outer peripheral surface 3 a of the rotor core 3.
  • the outer peripheral bridge portion 36 is formed between the magnet insertion hole 32 (here, in particular, the radially extending extension barrier portion 32 ⁇ / b> B) and the outer peripheral surface 3 a of the rotor core 3.
  • the outer peripheral side bridge portion 36 extends along the circumferential direction C and bridges the end portion in the circumferential direction C of the inner magnetic path forming portion 40 and the end portion in the circumferential direction C of the outer magnetic path forming portion 45. ing.
  • the outer peripheral surface 3a of the rotor core 3 corresponds to a “stator facing surface”
  • the outer peripheral bridge portion 36 corresponds to a “stator side bridge portion”.
  • the inter-hole bridge portion 37 is formed between two hole portions 31 adjacent in the circumferential direction C.
  • the inter-hole bridge portion 37 is formed between two magnet insertion holes 32 adjacent to each other in the circumferential direction C (particularly, the extended barrier portion 32B on the radially inner side).
  • the inter-hole bridge portion 37 extends along the radial direction R and bridges the central portion in the circumferential direction C of the inner magnetic path forming portion 40 and the central portion in the circumferential direction C of the outer magnetic path forming portion 45. ing.
  • the electromagnetic steel sheet 30 has an inner magnetic path forming portion 40 and an outer magnetic path forming portion 45 in each magnetic pole P.
  • the inner magnetic path forming portion 40 is formed so as to extend along the magnetic pole surface 6 a of the permanent magnet 6.
  • the inner magnetic path forming portion 40 is formed so as to extend along the magnetic pole surfaces 6 a of the pair of permanent magnets 6 arranged in a V shape on the radially inner side of the magnet insertion hole 32.
  • the inner magnetic path forming unit 40 corresponds to a “magnetic path forming unit”.
  • the inner magnetic path forming unit 40 mainly serves as a path for magnetic flux (so-called q-axis magnetic flux) flowing along the magnetic pole surface 6a of the permanent magnet 6.
  • the inner magnetic path forming unit 40 includes a main magnetic path area 41 and a sub magnetic path area 42.
  • the main magnetic path region 41 is a region defined by a portion (minimum width portion 41n) where the magnetic path width in the inner magnetic path forming portion 40 (the width in the direction intersecting with the magnetic pole surface 6a in the orthogonal state) is minimum.
  • the main magnetic path region 41 is a strip-shaped region having the same width as the minimum width portion 41n and extending along the magnetic pole surface 6a.
  • the main magnetic path region 41 is formed so as to extend in a strip shape having a constant width along each magnetic pole surface 6a of the pair of permanent magnets 6 arranged in a V shape.
  • the minimum width portion 41n is typically between virtual planes in each of the pair of magnet insertion holes 32 that are parallel to the magnetic pole surface 6a of the corresponding permanent magnet 6 and are in contact with the bottom of the radially inner escape hole 32C. And the inner circumferential surface 3b of the rotor core 3 are formed.
  • the position of the minimum width portion 41n is the central portion in the circumferential direction C of each magnetic pole P.
  • the width of the minimum width portion 41 n is generally the radial width between the intersection line between the virtual planes and the inner peripheral surface 3 b of the rotor core 3.
  • the orthogonal state means a state that is exactly orthogonal or a state that is substantially orthogonal (for example, a state within a range of ⁇ 5 ° with respect to the orthogonal state).
  • the sub magnetic path region 42 is a region located closer to the magnet insertion hole 32 than the main magnetic path region 41 at a portion where the magnetic path width is larger than the minimum width portion 41n.
  • the main magnetic path region 41 is defined by the minimum width portion 41n, and the minimum width portion 41n is determined based on the escape hole 32C.
  • the secondary magnetic path region 42 is radially inward of the magnet insertion hole 32 and is parallel to the magnetic pole surface 6a of the permanent magnet 6 and has a diameter larger than a virtual plane that is in contact with the bottom of the escape hole 32C on the radially inner side. This is an area located outside in the direction.
  • the sub magnetic path region 42 is a deformed region corresponding to the shape of the escape hole 32C or the positioning projection 34 that extends along the magnetic pole surface 6a of the pair of permanent magnets 6 arranged in a V shape. .
  • the outer magnetic path forming portion 45 is formed so as to extend along the circumferential direction C between the pair of permanent magnets 6 and the outer peripheral surface 3 a of the rotor core 3.
  • the outer magnetic path forming portion 45 mainly serves as a path for magnetic flux (so-called d-axis magnetic flux) flowing along the magnetization direction of the permanent magnet 6.
  • the electromagnetic steel sheet 30 includes the positioning protrusion 34, the outer peripheral bridge portion 36, the inter-hole bridge portion 37, as the substantial portion excluding the hole portion 31 (magnet insertion hole 32) formed as an opening,
  • Each magnetic pole P has an inner magnetic path forming portion 40 and an outer magnetic path forming portion 45.
  • the portions other than the positioning protrusion 34, the outer peripheral bridge portion 36, and the inter-hole bridge portion 37 are designated as non-bridge portions.
  • the non-bridge portion N and a portion other than a part of the sub magnetic path region 42 in the inner magnetic path forming portion 40 is referred to as a general portion G.
  • the non-bridge portion N and the general portion G are concepts that can be regarded as being almost identical to each other with a slight difference depending on whether or not a part of the sub magnetic path region 42 is included.
  • the electromagnetic steel sheet 30 includes a plurality of positioning projections 34, a plurality of outer peripheral bridge portions 36, a plurality of inter-hole bridge portions 37, A plurality of inner magnetic path forming portions 40 and a plurality of outer magnetic path forming portions 45 are provided.
  • the plurality of inner magnetic path forming portions 40 are substantially integrated in the circumferential direction C and are annular as a whole.
  • the hardness of at least a part of the plurality of inter-hole bridge portions 37 is higher than the hardness of the non-bridge portion N (here, the general portion G in particular). It is high.
  • a region whose hardness is higher than that of the non-bridge portion N (general portion G) is indicated by hatching.
  • the hardness of at least some of the plurality of inter-hole bridge portions 37 is higher than the hardness of the general portion G.
  • the magnetic steel sheet 30 is provided with one inter-hole bridge portion 37 for each magnetic pole P.
  • the hardness of at least a part of the inter-hole bridge portion 37 is the general portion G.
  • the hardness is higher. That is, the hardness of all of the plurality of inter-hole bridge portions 37 provided in the electromagnetic steel sheet 30 is higher than the hardness of the general portion G.
  • each inter-hole bridge portion 37 has a higher hardness than the general portion G in its entirety. That is, in the entire region between the two hole portions 31 (magnet insertion holes 32) adjacent in the circumferential direction C (the entire region along both the radial direction R and the circumferential direction C), the hardness of the inter-hole bridge portion 37 is the general portion G. The hardness is higher.
  • the inter-hole bridge portion 37 of the electromagnetic steel sheet 30 belonging to the central region Rc is formed by forming a first recess 51 at a predetermined position on the first main surface 30a which is a surface on one side in the axial direction L of the electromagnetic steel sheet 30.
  • the plate thickness is made thinner than the general part G by the depth of the one recess 51 (see FIG. 4).
  • the first recess 51 can be formed by performing machining such as press working. That is, by compressing a predetermined position of the electromagnetic steel sheet 30 in the axial direction L, the first recess 51 is formed in the electromagnetic steel sheet 30 having the reference thickness T0, and the first recess 51 is formed at a position where the first recess 51 is formed than the reference thickness T0.
  • a first thin plate portion 56 having a thin first thickness T1 appears.
  • the first thin plate portion 56 is increased in hardness when the electromagnetic steel sheet 30 having the reference thickness T0 is compressed in the axial direction L.
  • the first thin plate portion 56 forms the inter-hole bridge portion 37 having a hardness higher than that of the general portion G and a smaller plate thickness.
  • the hardness of the inter-hole bridge portion 37 may be, for example, about 1.05 to 2.5 times the hardness of the general portion G, and the first thickness T1 is, for example, 40% to 95% of the reference thickness T0.
  • the thickness may be about%.
  • the hardness of the outer bridge portion 36 is equal to the hardness of the non-bridge portion N (in particular, the general portion G here). That is, unlike the inter-hole bridge portion 37, the hardness of the outer peripheral side bridge portion 36 is not higher than the hardness of the general portion G. Further, from the viewpoint of the plate thickness, the plate thickness of the outer peripheral side bridge portion 36 is made equal to the plate thickness of the non-bridge portion N (general portion G) and, unlike the inter-hole bridge portion 37, the plate thickness of the general portion G. No thinner than.
  • the outer peripheral bridge portion 36 is formed so as to have the plate thickness (reference thickness T0) of the electromagnetic steel plate 30 itself (see FIG. 4).
  • the hardness of the positioning projection 34 is higher than the hardness of the general portion G as shown in FIG.
  • the positioning projection 34 in the electromagnetic steel sheet 30 belonging to the central region Rc of the rotor core 3, the positioning projection 34 has a hardness higher than that of the general part G.
  • the hardness of all the positioning protrusions 34 is higher than the hardness of the general part G.
  • each positioning protrusion 34 has a higher hardness than the general part G in its entirety. From the standpoint of plate thickness, in the electromagnetic steel sheet 30 belonging to the central region Rc of the rotor core 3, the plate thicknesses of all the positioning projections 34 are made thinner than the plate thickness of the general part G as a whole.
  • the hardness of the portion continuing from the base 34b of the positioning projection 34 in the sub magnetic path region 42 is made higher than the hardness of the general portion G.
  • the region where the hardness is higher than that of the general portion G is not limited to the positioning projection 34 but exceeds the imaginary extension line of the magnetic pole surface 6a of the permanent magnet 6 or the opposing surface 32f facing it, radially inward. It is expanded to a part of the sub magnetic path region 42 located at the position. Note that the high hardness region does not reach the main magnetic path region 41.
  • the positioning protrusion 34 of the electromagnetic steel sheet 30 belonging to the central region Rc is generally formed by forming the second recess 52 at a predetermined position on the first main surface 30a of the electromagnetic steel sheet 30, for example, by the depth of the second recess 52.
  • the plate thickness is made thinner than the portion G (see FIG. 5).
  • the second recess 52 can be formed, for example, by performing machining such as press working.
  • the second recess 52 may be formed simultaneously with the first recess 51 or may be formed separately from the first recess 51.
  • the second recess 52 is formed in the electromagnetic steel sheet 30 having the reference thickness T0, and the second recess 52 is formed at a position thinner than the reference thickness T0.
  • a second thin plate portion 57 having a thickness T2 appears.
  • the second thin plate portion 57 is increased in hardness when the electromagnetic steel sheet 30 having the reference thickness T0 is compressed in the axial direction L.
  • the second thin plate portion 57 constitutes the positioning projection 34 having a hardness higher than that of the general portion G and a smaller plate thickness.
  • the hardness of the positioning protrusion 34 may be, for example, about 1.05 to 2.5 times the hardness of the general portion G
  • the second thickness T2 is, for example, 40% to 95% of the reference thickness T0.
  • the thickness may be about%.
  • the hardness of the positioning protrusion 34 may be the same as or different from the hardness of the inter-hole bridge portion 37.
  • the second thickness T2 of the second thin plate portion 57 may be the same as or different from the first thickness T1 of the first thin plate portion 56.
  • the first thickness T1 and the second thickness T2 are equal, and the positioning projection 34 and the inter-hole bridge portion 37 have the same hardness (and 50% of the reference thickness T0).
  • An example of a case of a thickness of about) is shown.
  • the punching of the magnet insertion hole 32 may be performed after the first concave portion 51 and the second concave portion 52 are formed, or may be performed before the first concave portion 51 and the second concave portion 52 are formed. Alternatively, the magnet insertion hole 32 may be punched out simultaneously with the formation of the first recess 51 and the second recess 52.
  • the electromagnetic steel sheets 30 belonging to the central region Rc are stacked such that the first recess 51 and the second recess 52 are in the same direction in the axial direction L.
  • the magnetic steel sheet 30 having the first concave portion 51 and the second concave portion 52 is continuously formed by, for example, machining, and the laminated body of the electromagnetic steel plates 30 can be easily formed simply by sequentially laminating it. be able to.
  • the hardness of the inter-hole bridge portion 37 and the positioning projection 34 is made higher than the hardness of the general portion G, while the outer peripheral bridge portion 36.
  • the hardness of is equal to the hardness of the general part G.
  • the outer bridge portion in the electromagnetic steel sheet 30 belonging to the central region Rc, while the plate thickness of the inter-hole bridge portion 37 and the positioning projection 34 is made thinner than the plate thickness of the general portion G, the outer bridge portion
  • the plate thickness 36 is equal to the plate thickness of the general part G.
  • the majority of the magnetic flux emitted from the permanent magnet 6 is concentrated at the center of the magnetic pole P (so-called d-axis direction) and flows to the stator, while some leakage magnetic flux flows through the inter-hole bridge portion 37.
  • the extended barrier portions 32B are provided on both sides of the permanent magnet 6.
  • the present inventors have provided the extended barrier portions 32B by projecting and forming the positioning protrusions 34B. It has been found that there can also be a leakage flux flowing through the portion 32B and the positioning projection 34.
  • the possibility of the presence of leakage magnetic flux due to the presence of the positioning protrusion 34 is a new finding obtained as a result of earnest research by the present inventors.
  • the hardness of the inter-hole bridge portion 37 and the positioning projection 34 is made higher than the hardness of the general portion G, and the plate of the inter-hole bridge portion 37 and the positioning projection 34.
  • the thickness is made thinner than the plate thickness of the general part G.
  • the inter-hole bridge portion 37 and the positioning projection 34 are formed by compressing the corresponding portion of the electromagnetic steel sheet 30 by, for example, press working or the like, residual stress remains in the hardened portion, and the residual stress causes magnetic characteristics. Decreases.
  • the plate thickness of the inter-hole bridge portion 37 and the positioning projection 34 is reduced, the magnetic path cross-sectional area can be reduced and the magnetic resistance can be increased at these portions, thereby reducing the leakage flux. can do. Therefore, the magnetic flux leakage can be greatly reduced by these synergistic effects. As a result, the effective magnetic flux toward the stator can be increased, and the torque can be increased.
  • the hardness of the outer peripheral bridge portion 36 is increased (thin plate thickness is reduced) similarly to the inter-hole bridge portion 37 and the positioning projection 34. Can be considered.
  • the hardness and plate thickness of the outer peripheral side bridge portion 36 are made equal to the hardness and plate thickness of the general portion G, respectively.
  • the outer peripheral bridge portion 36 is formed by compressing the corresponding portion of the electromagnetic steel sheet 30 by, for example, press working or the like, residual stress remains in the portion, and hysteresis loss increases due to the residual stress. As a result, iron loss increases. In particular, since the iron loss is dominant in the vicinity of the surface of the rotor 1, the increase in the hysteresis loss in the outer peripheral bridge portion 36 adjacent to the outer peripheral surface 3 a of the rotor core 3 greatly affects the increase in the iron loss. . In addition, cogging torque and torque ripple may increase, causing noise and vibration.
  • the hardness of the outer bridge portion 36 is made equal to the hardness of the general portion G without increasing the hardness of the general portion G, and the plate thickness of the outer bridge portion 36 is generally set.
  • the thickness of the general portion G is equal to the thickness of the general portion G without making it thinner than the thickness of the portion G. Therefore, an increase in iron loss and generation of noise and vibration can be suppressed.
  • the hardness and plate thickness of the inter-hole bridge portion 37 and the positioning projection 34 are also made equal to the hardness and plate thickness of the general portion G, respectively. Considering only reducing leakage magnetic flux in each electromagnetic steel sheet 30 as much as possible, in all the electromagnetic steel sheets 30 constituting the rotor core 3, the hardness of the inter-hole bridge portion 37 and the positioning projection 34 is increased, It is conceivable to reduce the thickness.
  • the inventors in the vicinity of both ends of the rotor core 3, the magnetic flux that has not leaked through the inter-hole bridge portion 37 or the like is not necessarily an effective magnetic flux on the stator side. It has been found that there is a case where leakage occurs in the axial direction L without flowing. The possibility of leakage of the magnetic flux that has lost its destination in the axial direction L is also a new finding obtained as a result of diligent research by the present inventors.
  • the electromagnetic steel sheet 30 has been described as an example of the configuration having only the magnet insertion hole 32 as the hole 31.
  • the electromagnetic steel plate 30 may have a magnetic barrier hole 33 in addition to the magnet insertion hole 32.
  • both the magnet insertion hole 32 and the magnetic barrier hole 33 are included in the hole 31.
  • the inter-hole bridge portion 37 is formed between the magnet insertion hole 32 (extension barrier portion 32 ⁇ / b> B on the radially inner side) and the magnetic barrier hole 33.
  • the inter-hole bridge portion 37 is provided between the magnet insertion hole 32 (the radially extending extension barrier portion 32B) and the magnetic barrier hole 33, and It is formed between the magnetic barrier holes 33.
  • the magnetic barrier hole 33 functions as a magnetic resistance (flux barrier) separately from the extended barrier portion 32B with respect to the magnetic flux flowing in the rotor core 3.
  • the permanent magnet 6 is not inserted into the magnetic barrier hole 33.
  • the inter-hole bridge portion 37 of the electromagnetic steel sheet 30 belonging to the central region Rc is hardened (and thinned) and belongs to the first end region Re1 or the second end region Re2.
  • the configuration in which the inter-hole bridge portion 37 of the electromagnetic steel sheet 30 is not hardened (and thinned) has been described as an example.
  • the inter-hole bridge portion 37 may be increased in hardness in all the electromagnetic steel sheets 30 regardless of the position in the axial direction L.
  • the positioning protrusions 34 and the positioning protrusions 34 may be made harder in all the electromagnetic steel sheets 30.
  • each electromagnetic steel sheet 30 belonging to the central region Rc has been described as an example of a configuration in which the first concave portion 51 and the second concave portion 52 are stacked in the same direction in the axial direction L. .
  • the two electromagnetic steel sheets 30 adjacent to each other in the axial direction L are configured such that the concave portions 51 and 52 are opposite to each other in the axial direction. You may laminate
  • the inter-hole bridge portions 37 and the positioning projections 34 come into contact with each other back to back, so that the mechanical strength of these portions can be increased. Therefore, for example, even when a resin or the like is filled at a high pressure, deformation at those portions can be suppressed.
  • the inter-hole bridge portion 37 has a configuration in which the first concave portion 51 is formed at a predetermined position on the first main surface 30a of the electromagnetic steel sheet 30 to increase the hardness and reduce the thickness.
  • the first concave portions 51 are formed at predetermined positions on both surfaces of the electromagnetic steel sheet 30 (both the first main surface 30 a and the second main surface 30 b).
  • the inter-hole bridge portion 37 may be thinned by forming each of them (for example, by pressing so that both surfaces are recessed).
  • second concave portions 52 are formed at predetermined positions on both surfaces of the electromagnetic steel sheet 30 (both the first main surface 30a and the second main surface 30b). By doing so, the positioning projection 34 may be thinned.
  • the inter-hole bridge portion 37 and the positioning protrusion 34 are described as an example of a configuration in which the magnetic steel sheet 30 is increased in hardness and thinned by performing mechanical processing such as press processing. did.
  • the inter-hole bridge portion 37 and the positioning projection 34 may be increased in hardness by, for example, performing chemical treatment on the electromagnetic steel sheet 30.
  • the plate thickness of the inter-hole bridge portion 37 and the positioning projection 34 may be equal to the plate thickness of the general portion G (the reference thickness T0 remains).
  • the configuration in which both the inter-hole bridge portion 37 and the positioning projection 34 are increased in hardness (and thinned) has been described as an example.
  • the positioning protrusion 34 may not be hardened, and only the inter-hole bridge portion 37 may be hardened.
  • the hardness of the inter-hole bridge portion 37 is higher than the hardness of “all” non-bridge portions N.
  • the configuration in which the permanent magnet 6 has a rectangular cross-sectional shape has been described as an example.
  • the configuration of the permanent magnet 6 is not limited to such a configuration, and may be any shape such as a U shape, a V shape, and a bowl shape.
  • the cross-sectional shape of the magnet insertion hole 32 is also determined according to the cross-sectional shape of the permanent magnet 6.
  • the rotor 1 may be an outer rotor disposed radially outward with respect to the stator.
  • the hardness of the inner peripheral bridge portion provided on the stator side (radially inner side) is equal to the hardness of the non-bridge portion N (general portion G), and the hardness of the inter-hole bridge portion 37 and the positioning projection 34. Is preferably higher than the hardness of the non-bridge portion N (general portion G).
  • the rotor according to the present disclosure preferably includes the following configurations.
  • a rotor comprising a rotor core (3) having a plurality of electromagnetic steel plates (30) laminated in the axial direction (L), and a permanent magnet (6) embedded in the rotor core (3), the rotor being disposed to face the stator (1)
  • the electromagnetic steel sheet (30) has a plurality of holes (31) including at least a magnet insertion hole (32) into which the permanent magnet (6) is inserted in each magnetic pole (P), and the hole (31).
  • the inter-hole bridge part (37) which is a bridge part of the non-bridge part (N) which is a part other than these bridge parts.
  • the hardness of the stator-side bridge portion (36) is equal to the hardness of the non-bridge portion (N), and the plurality of inter-hole bridge portions (37). At least a part of the hardness is higher than the hardness of the non-bridge portion (N).
  • the hardness of the stator side bridge portion (36) is equal to the hardness of the non-bridge portion (N), in other words, the hardness of the stator side bridge portion (36) is greater than the hardness of the non-bridge portion (N). Is not raised. For this reason, no residual stress remains in the stator-side bridge portion (36) located near the stator-side surface of the rotor (1), and the hysteresis loss at that portion does not become larger than usual. Therefore, an increase in iron loss can be suppressed.
  • the inter-hole bridge portion (37) the hardness of at least a part of the plurality of inter-hole bridge portions (37) is made higher than the hardness of the non-bridge portion (N). can do. Therefore, the effective magnetic flux can be increased by reducing the leakage magnetic flux, and the torque can be increased. From the above, it is possible to increase the torque by reducing the leakage magnetic flux while suppressing the increase in iron loss.
  • the hardness of all the plurality of inter-hole bridge portions (37) is higher than the hardness of the non-bridge portion (N).
  • the leakage magnetic flux can be further reduced and the torque can be further increased.
  • the non-bridge portion (N ) Is preferable.
  • the rotor core (3) is divided into three axial regions of a first end region (Re1), a central region (Rc), and a second end region (Re2) from one axial direction side,
  • the hardness of the stator side bridge portion (36) is equal to the hardness of the non-bridge portion (N), and a plurality of the inter-hole bridge portions (37).
  • At least part of the hardness is higher than the hardness of the non-bridge portion (N)
  • the hardness of both the stator side bridge portion (36) and the inter-hole bridge portion (37). Is preferably equal to the hardness of the non-bridge portion (N).
  • the hardness of the inter-hole bridge portion (37) is higher than the hardness of the non-bridge portion (N).
  • the leakage flux through the inter-hole bridge portion (37) is reduced, but the leakage flux in the axial direction (L) increases accordingly.
  • the stator side bridge portion (36) and the inter-hole bridge portion (37) By making both the hardnesses equal to the hardness of the non-bridge portion (N), the leakage magnetic flux in the axial direction (L) can be reduced. Therefore, the effective magnetic flux can be further increased as the entire rotor (1), and the torque can be further increased.
  • the inter-hole bridge portion (37) having a hardness higher than that of the non-bridge portion (N) is preferably thinner than the non-bridge portion (N).
  • the cross-sectional area of the magnetic path in the inter-hole bridge portion (37) is reduced by making the plate thickness of the inter-hole bridge portion (37) thinner than the plate thickness of the non-bridge portion (N).
  • the magnetic resistance can be increased. Therefore, also from this point, the effective magnetic flux can be increased by reducing the leakage magnetic flux. As a result, the torque can be further increased by a synergistic effect with the increased hardness of the inter-hole bridge portion (37).
  • the inter-hole bridge portion (37) having a hardness higher than that of the non-bridge portion (N) is formed by forming a recess (51) on one surface in the axial direction (L) of the electromagnetic steel sheet (30).
  • the plate thickness is made thinner than the non-bridge portion (N)
  • the two electromagnetic steel sheets (30) adjacent to each other in the axial direction (L) are preferably laminated so that the concave portions (51) are opposite to each other in the axial direction.
  • the non-bridge portion (N) in each corresponding electromagnetic steel sheet (30), the non-bridge portion (N) can be obtained by simply forming the recess (51) at a predetermined position on one surface in the axial direction (L) by, for example, pressing.
  • the hole-to-hole bridge portion (37) having a higher hardness and a smaller plate thickness can be easily provided.
  • the inter-hole bridge in which the plate thickness is reduced by laminating the two electromagnetic steel plates (30) adjacent in the axial direction (L) so that the concave portions (51) are opposite to each other in the axial direction.
  • the parts (37) come into contact with each other back to back.
  • the axial direction (L) compared to a configuration in which two electromagnetic steel plates (30) adjacent in the axial direction (L) are stacked so that the recesses (51) are in the same direction in the axial direction (L), the axial direction (L).
  • the continuous plate thickness of the inter-hole bridge portion (37) is increased. Therefore, it is possible to increase the mechanical strength of the inter-hole bridge portion (37) whose thickness is reduced to increase the torque.
  • Each magnetic pole (P) is composed of a pair of permanent magnets (6) arranged in a V shape, In each magnetic pole (P), the pair of permanent magnets (6) are arranged to form an obtuse angle, and the inter-hole bridge portion (37) is provided between the pair of permanent magnets (6). Preferably it is.
  • d-axis eddy current loss can be reduced by increasing the hardness of the inter-hole bridge portion (37) between the pair of permanent magnets (6) arranged in a V shape.
  • the increase in iron loss can be suppressed.
  • the rotor according to the present disclosure only needs to exhibit at least one of the effects described above.
  • Rotor 3 Rotor core 3a Outer peripheral surface (facing surface of stator) 6 permanent magnet 6a magnetic pole surface 6b non-magnetic pole surface 30 electromagnetic steel sheet 30a first principal surface (one surface in the axial direction) 31 hole portion 32 magnet insertion hole 34 positioning projection 34b base portion 36 outer peripheral side bridge portion (stator side bridge portion) 37 Inter-hole bridge section 40 Inner magnetic path forming section (magnetic path forming section) 41 main magnetic path region 41n minimum width portion 42 sub magnetic path region 51 first concave portion 52 second concave portion 56 first thin plate portion 57 second thin plate portion P magnetic pole N non-bridge portion G general portion Rc central region Re1 first end region Re2 Second end region L Axial direction R Radial direction C Circumferential direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

ロータコアを構成する電磁鋼板(30)は、磁石挿入孔(32)を少なくとも含む複数の孔部(31)を有するとともに、ステータ側ブリッジ部(36)と孔間ブリッジ部(37)とを有する。複数の電磁鋼板(30)の少なくとも一部において、ステータ側ブリッジ部(36)の硬度が非ブリッジ部(N)の硬度に等しく、且つ、複数の孔間ブリッジ部(37)の少なくとも一部の硬度が非ブリッジ部(N)の硬度よりも高い。

Description

ロータ
 本発明は、例えば回転電機に用いられるロータに関する。
 例えばハイブリッド車両や電気自動車等において車輪の駆動力源として用いられる回転電機では、小型化・高回転化・軽量化等の観点から、永久磁石埋込型のロータが用いられる場合が多い。かかるロータにおいて、遠心強度を高めてさらなる小型化・高回転化を図るため、永久磁石が挿入される磁石挿入孔の外周側の外周側ブリッジ部〔ブリッジ部19〕に、他の部位よりも硬い高硬化部を形成することが、国際公開第2014/171133号(特許文献1)に開示されている。また、その高硬化部を形成するにあたり、当該部位における電磁鋼板の板厚を他の部位の板厚よりも薄くすることが特許文献1に開示されている。
 特許文献1の技術では、電磁鋼板の高硬化部の板厚を薄くして高硬化部を形成することで、当該部位における磁気抵抗を大きくして漏れ磁束を低減し、高トルク化を図ることができるという効果が副次的に得られる。しかし、その反面、ロータの外表面付近に位置する外周側ブリッジ部に板厚を薄くした高硬化部を形成すると、当該部位における残留応力によってヒステリシス損が大きくなり、その結果、鉄損が増大するという問題があった。
国際公開第2014/171133号
 永久磁石埋込型のロータにおいて、鉄損の増大を抑制しつつ、漏れ磁束を低減して高トルク化を図ることが望まれている。
 本開示に係るロータは、
 軸方向に積層された複数の電磁鋼板を有するロータコアと、前記ロータコアに埋め込まれた永久磁石と、を備え、ステータに対向配置されるロータであって、
 前記電磁鋼板は、前記永久磁石が挿入される磁石挿入孔を少なくとも含む複数の孔部を各磁極に有するとともに、前記孔部の1つと前記ロータコアのステータ対向面との間のブリッジ部であるステータ側ブリッジ部と、周方向に隣接する2つの前記孔部の間のブリッジ部である孔間ブリッジ部と、これらのブリッジ部以外の部分である非ブリッジ部と、を有し、
 前記複数の電磁鋼板の少なくとも一部において、前記ステータ側ブリッジ部の硬度が前記非ブリッジ部の硬度に等しく、且つ、複数の前記孔間ブリッジ部の少なくとも一部の硬度が前記非ブリッジ部の硬度よりも高い。
 この構成によれば、ステータ側ブリッジ部の硬度と非ブリッジ部の硬度とが等しくされ、言い換えればステータ側ブリッジ部の硬度は非ブリッジ部の硬度よりも高くされない。このため、ロータのステータ側の表面付近に位置するステータ側ブリッジ部に残留応力が残ることはなく、当該部位におけるヒステリシス損が通常に比べて大きくなることもない。よって、鉄損の増大を抑制することができる。一方、孔間ブリッジ部に関しては、複数の孔間ブリッジ部の少なくとも一部の硬度が非ブリッジ部の硬度よりも高くされるので、当該部位において、磁気抵抗を大きくすることができる。よって、漏れ磁束を低減することによって有効磁束を増大させることができ、高トルク化を図ることができる。以上より、鉄損の増大を抑制しつつ、漏れ磁束を低減して高トルク化を図ることができる。
 本開示に係る技術のさらなる特徴と利点は、図面を参照して記述する以下の例示的かつ非限定的な実施形態の説明によってより明確になるであろう。
実施形態に係るロータの斜視図 1磁極分の電磁鋼板を示す平面図 中央領域の電磁鋼板における磁石挿入孔付近の模式図 図3におけるIV-IV断面図 図3におけるV-V断面図 端部領域の電磁鋼板における磁石挿入孔付近の模式図 図6におけるVII-VII断面図 図6におけるVIII-VIII断面図 別態様の電磁鋼板における磁石挿入孔付近の模式図 別態様の電磁鋼板における磁石挿入孔付近の模式図 別態様の電磁鋼板における磁石挿入孔付近の模式図 別態様のロータにおける電磁鋼板の積層状態を示す図 別態様のロータにおける電磁鋼板の積層状態を示す図 別態様の電磁鋼板における断面図 別態様の電磁鋼板における断面図
 ロータの実施形態について、図面を参照して説明する。本実施形態のロータ1は、例えばハイブリッド車両や電気自動車等において車輪の駆動力源として用いられる回転電機に備えられる。この回転電機は、ケース等の非回転部材に固定されたステータと、そのステータの径方向内側に回転可能に支持されたロータ1とを備えている。ステータは、ステータコアと、このステータコアに巻装されたコイルとを備えている。そして、ステータから発生する磁界により、界磁としてのロータ1が回転する。
 図1に示すように、ステータ(図示せず)に対向配置されるロータ1は、ロータコア3と、このロータコア3に埋め込まれた永久磁石6とを備えている。すなわち、本実施形態のロータ1は、永久磁石埋込型のロータとして構成されている。このような永久磁石埋込型のロータ1は、マグネットトルクに加えてリラクタンストルクをも利用することができるため、小型化・高回転化・軽量化等の観点から好ましく利用される。
 ロータコア3は、軸方向Lに積層された複数の電磁鋼板30を有する。電磁鋼板30は、円環板状に形成されている。また、電磁鋼板30は、その大部分において、基準厚さT0(図7等を参照)の板厚を有している。基準厚さT0は、例えば0.1mm~0.5mmとすることができ、0.35mm程度が一般的である。本実施形態のロータコア3は、軸方向Lの一方側から、第一端部領域Re1、中央領域Rc、及び第二端部領域Re2の3つの軸方向領域に区分されている。第一端部領域Re1及び第二端部領域Re2は、それぞれ、ロータコア3全体を基準として例えば1/100~1/5程度の軸方向長さの領域として設定される。本実施形態では、第一端部領域Re1に属する電磁鋼板30と第二端部領域Re2に属する電磁鋼板30とは同一の立体形状とされているとともに、中央領域Rcに属する電磁鋼板30は、各端部領域Re1,Re2に属する電磁鋼板30とは異なる立体形状とされている。この点に関しては、後述する。
 永久磁石6は、ロータコア3を軸方向Lに貫通する状態で、ロータコア3に埋め込まれている。図2に仮想線にて示すように、本実施形態の永久磁石6は、軸方向Lに直交する平面における断面形状(以下、単に「断面形状」と言う。)が長方形状をなしている。そして、周方向Cに並べて配置されて径方向内側に向かって凸となるV字状をなす一対の永久磁石6の各組により、各磁極Pが構成されている。
 各磁極Pを構成する一対の永久磁石6は、同じ極性(N極又はS極)の磁極面6aを径方向外側に向けて配置されている。周方向Cに隣り合う2つの磁極Pは互いに逆の極性を有しており、一方の磁極Pに属する一対の永久磁石6と他方の磁極Pに属する一対の永久磁石6とは、異なる極性(N極/S極)の磁極面6aを径方向外側に向けて配置されている。
 なお、磁極面6aは、磁化方向(着磁方向)に直交する外面であり、永久磁石6の磁束が主に出入りする面である。本実施形態では、長方形状の断面形状を有する永久磁石6は、それぞれ短辺に平行な方向に磁化されている。従って、本実施形態では、永久磁石6の外周面(軸方向Lに直交する断面の外縁を形成する4つの面)のうち、上記長方形の長辺を形成する2面が、磁極面6aとなっている。本実施形態では、永久磁石6の外周面のうちの残余の2面(磁化方向に平行な外面であって、本実施形態では上記長方形の短辺を形成する2面)を、非磁極面6bと言う。一対の磁極面6aどうしは互いに平行であり、一対の非磁極面6bどうしも互いに平行である。各磁極面6aと各非磁極面6bとは、本例では直角をなす状態で交差している。
 図1及び図2に示すように、電磁鋼板30は、複数の孔部31を各磁極Pに有する。ここで、孔部31は、永久磁石6が挿入される磁石挿入孔32を少なくとも含む。本実施形態では2つ一組の永久磁石6によって各磁極Pが構成されるため、電磁鋼板30は、少なくとも2つの磁石挿入孔32を含む複数の孔部31を各磁極Pに有する。各磁極Pにおいて、2つ一組の磁石挿入孔32は、径方向内側に向かって凸となるV字状をなすように配置されている。本実施形態の磁石挿入孔32は、磁石収容部32Aと延設バリア部32Bとを含む。磁石収容部32Aは、永久磁石6を収容して保持する部位である。
 延設バリア部32Bは、ロータコア3内を流れる磁束に対して磁気抵抗(フラックスバリア)として機能する部位である。延設バリア部32Bは、例えば樹脂や接着剤等(以下、単に「樹脂等」と言う。)を用いて磁石挿入孔32内に永久磁石6を固定するために、樹脂等を充填するための部位としても機能する。延設バリア部32Bは、磁石収容部32Aの両端部において、当該磁石収容部32Aからその長手方向(概ね、ロータ1の周方向C)に連続するように設けられている。
 電磁鋼板30は、磁石挿入孔32(ここでは特に、両端の延設バリア部32B)において永久磁石6を位置決めするための位置決め用突部34を有する。位置決め用突部34は、永久磁石6の非磁極面6bに沿って突出している。位置決め用突部34は、三角形状の断面形状を有するように形成されている。位置決め用突部34は、永久磁石6の磁極面6a(或いは、磁石挿入孔32における永久磁石6の磁極面6aに対向する対向面32f;図3を参照)よりも、磁石挿入孔32の内部側に向かって突出するように形成されている。別の言い方をすれば、位置決め用突部34は、電磁鋼板30を軸方向Lに沿って見た場合に、一対の磁極面6aのそれぞれの端部から各磁極面6aの接線方向に延ばした仮想線に挟まれた領域に突出するように形成されている。本実施形態のように永久磁石6が矩形状に形成される場合には、位置決め用突部34は、永久磁石6の磁極面6aのそれぞれに沿う一対の仮想線どうしの間に突出するように形成される。
 位置決め用突部34は、その1面(対向面34f)が永久磁石6の非磁極面6bに対して面接触又は微小隙間を隔てて対向するように配置されている。そして、1つの磁石挿入孔32において、2つ一組の位置決め用突部34が、それぞれの対向面34fが永久磁石6の長さ分の距離を隔てて配置されている。こうして、2つ一組の位置決め用突部34により、磁石挿入孔32内で永久磁石6が位置決めされる。
 本実施形態の磁石挿入孔32は、逃がし孔32Cをさらに含む。逃がし孔32Cは、磁石収容部32Aの両端部において、当該磁石収容部32Aからその短手方向に(概ね、ロータ1の径方向内側に向かって)連続するように設けられている。この逃がし孔32Cは、磁石収容部32Aへの永久磁石6の挿入時における角当たりを防止するとともに、挿入後においては永久磁石6の角部への応力集中を防止するために設けられている。この逃がし孔32Cの存在により、磁石挿入孔32内への樹脂等の充填性が向上するという利点も得られる。
 電磁鋼板30は、外周側ブリッジ部36と孔間ブリッジ部37とを各磁極Pに有する。外周側ブリッジ部36は、孔部31の1つとロータコア3の外周面3aとの間に形成されている。本実施形態では、外周側ブリッジ部36は、磁石挿入孔32(ここでは特に、径方向外側の延設バリア部32B)とロータコア3の外周面3aとの間に形成されている。外周側ブリッジ部36は、周方向Cに沿って延在して、内側磁路形成部40の周方向Cの端部と外側磁路形成部45の周方向Cの端部とを橋絡している。本実施形態では、ロータコア3の外周面3aが「ステータ対向面」に相当し、外周側ブリッジ部36が「ステータ側ブリッジ部」に相当する。
 孔間ブリッジ部37は、周方向Cに隣接する2つの孔部31の間に形成されている。本実施形態では、孔間ブリッジ部37は、周方向Cに隣接する2つの磁石挿入孔32(ここでは特に、径方向内側の延設バリア部32B)どうしの間に形成されている。孔間ブリッジ部37は、径方向Rに沿って延在して、内側磁路形成部40の周方向Cの中央部と外側磁路形成部45の周方向Cの中央部とを橋絡している。
 電磁鋼板30は、内側磁路形成部40と外側磁路形成部45とを各磁極Pに有する。内側磁路形成部40は、永久磁石6の磁極面6aに沿って延びるように形成されている。内側磁路形成部40は、磁石挿入孔32よりも径方向内側において、V字状に配置された一対の永久磁石6のそれぞれの磁極面6aに沿って延びるように形成されている。本実施形態では、内側磁路形成部40が「磁路形成部」に相当する。内側磁路形成部40は、主に、永久磁石6の磁極面6aに沿って流れる磁束(いわゆるq軸磁束)の通り道となる。
 内側磁路形成部40は、主磁路領域41と副磁路領域42とを含む。主磁路領域41は、内側磁路形成部40における磁路幅(磁極面6aに直交状態で交差する方向の幅)が最小となる部位(最小幅部41n)によって規定される領域である。具体的には、主磁路領域41は、最小幅部41nと同じ幅で、磁極面6aに沿って延びる帯状領域である。主磁路領域41は、V字状に配置された一対の永久磁石6のそれぞれの磁極面6aに沿って一定幅の帯状に延びるように形成されている。
 なお、最小幅部41nは、典型的には、一対の磁石挿入孔32のそれぞれにおける、対応する永久磁石6の磁極面6aに平行で且つ径方向内側の逃がし孔32Cの底部に接する仮想平面どうしの交線と、ロータコア3の内周面3bとの間に形成される。通常、最小幅部41nの位置は、各磁極Pにおける周方向Cの中央部となる。この場合、最小幅部41nの幅は、概ね、上記仮想平面どうしの交線とロータコア3の内周面3bとの間の径方向幅である。また、直交状態は、まさに直交している状態又は実質的に直交している状態(例えば直交している状態に対して±5°の範囲内の状態)を意味する。
 副磁路領域42は、磁路幅が最小幅部41nよりも大きい部位において主磁路領域41よりも磁石挿入孔32側に位置する領域である。上述したように、主磁路領域41は最小幅部41nによって規定され、最小幅部41nは逃がし孔32Cに基づいて定まる。このため、副磁路領域42は、磁石挿入孔32よりも径方向内側であって、永久磁石6の磁極面6aに平行で且つ径方向内側の逃がし孔32Cの底部に接する仮想平面よりも径方向外側に位置する領域となる。副磁路領域42は、V字状に配置された一対の永久磁石6のそれぞれの磁極面6aに沿って延びる、逃がし孔32Cや位置決め用突部34の形状に応じた異形領域となっている。
 外側磁路形成部45は、一対の永久磁石6とロータコア3の外周面3aとの間において、周方向Cに沿って延びるように形成されている。外側磁路形成部45は、主に、永久磁石6の磁化方向に沿って流れる磁束(いわゆるd軸磁束)の通り道となる。
 このように、電磁鋼板30は、開口として形成される孔部31(磁石挿入孔32)を除く実体部分として、位置決め用突部34と、外周側ブリッジ部36と、孔間ブリッジ部37と、内側磁路形成部40と、外側磁路形成部45とを、各磁極Pに有する。本実施形態では、これらのうち、位置決め用突部34、外周側ブリッジ部36、及び孔間ブリッジ部37以外の部分(内側磁路形成部40及び外側磁路形成部45)を、非ブリッジ部Nと言う。また、非ブリッジ部Nであって、さらに内側磁路形成部40のうちの副磁路領域42の一部以外の部分を、一般部Gと言う。非ブリッジ部Nと一般部Gとは、副磁路領域42の一部を含むか否かで若干の違いこそあれ、互いにほぼ同一視し得る概念である。
 なお、ロータコア3は複数の磁極Pを有して構成されるため、電磁鋼板30は、複数の位置決め用突部34と、複数の外周側ブリッジ部36と、複数の孔間ブリッジ部37と、複数の内側磁路形成部40と、複数の外側磁路形成部45とを有する。複数の内側磁路形成部40は、実体的には周方向Cに一体化されて、全体として環状となっている。
 本実施形態において、一部の電磁鋼板30では、図3に示すように、複数の孔間ブリッジ部37の少なくとも一部の硬度が非ブリッジ部N(ここでは特に一般部G)の硬度よりも高くされている。なお、図3では、非ブリッジ部N(一般部G)よりも硬度を高くする領域をハッチングで示している。本実施形態では、ロータコア3の中央領域Rc(図1を参照)に属する電磁鋼板30において、複数の孔間ブリッジ部37の少なくとも一部の硬度が一般部Gの硬度よりも高くされている。また、本実施形態では、電磁鋼板30には磁極P毎に1つの孔間ブリッジ部37が設けられているところ、全ての磁極Pにおいて孔間ブリッジ部37の少なくとも一部の硬度が一般部Gの硬度よりも高くされている。すなわち、電磁鋼板30に設けられる複数の孔間ブリッジ部37の全ての硬度が、一般部Gの硬度よりも高くされている。
 さらに、各孔間ブリッジ部37は、その全体において、一般部Gよりも硬度が高くされている。すなわち、周方向Cに隣接する2つの孔部31(磁石挿入孔32)の間の全域(径方向R及び周方向Cの両方向に沿う全域)において、孔間ブリッジ部37の硬度が一般部Gの硬度よりも高くされている。
 中央領域Rcに属する電磁鋼板30の孔間ブリッジ部37は、電磁鋼板30の軸方向Lにおける一方側の面である第一主面30aの所定位置に第一凹部51を形成することによって、第一凹部51の深さ分、一般部Gよりも板厚が薄くされる(図4を参照)。第一凹部51は、例えばプレス加工等の機械加工を施すことによって形成することができる。すなわち、電磁鋼板30の所定位置を軸方向Lに圧縮することによって基準厚さT0の電磁鋼板30に第一凹部51が形成され、当該第一凹部51の形成位置に、基準厚さT0よりも薄い第一厚さT1の第一薄板部56が現出する。第一薄板部56は、基準厚さT0の電磁鋼板30が軸方向Lに圧縮される際に高硬度化している。こうして、この第一薄板部56によって、一般部Gよりも硬度が高くて板厚が薄い孔間ブリッジ部37が構成される。なお、孔間ブリッジ部37の硬度は、一般部Gの硬度の例えば1.05倍~2.5倍程度であって良く、第一厚さT1は、基準厚さT0の例えば40%~95%程度の厚さであって良い。
 一方、外周側ブリッジ部36の硬度は、非ブリッジ部N(ここでは特に一般部G)の硬度に等しくされている。すなわち、外周側ブリッジ部36の硬度は、孔間ブリッジ部37とは異なり、一般部Gの硬度よりも高くされない。また、板厚の観点からは、外周側ブリッジ部36の板厚は、非ブリッジ部N(一般部G)の板厚に等しくされ、孔間ブリッジ部37とは異なり、一般部Gの板厚よりも薄くされない。外周側ブリッジ部36は、電磁鋼板30そのものの板厚(基準厚さT0)を有するように形成される(図4を参照)。
 また、一部の電磁鋼板30では、図3に示すように、位置決め用突部34の硬度が一般部Gの硬度よりも高くされている。本実施形態では、ロータコア3の中央領域Rcに属する電磁鋼板30において、位置決め用突部34の硬度が一般部Gの硬度よりも高くされている。また、本実施形態では、全ての位置決め用突部34の硬度が一般部Gの硬度よりも高くされている。さらに、各位置決め用突部34は、その全体において、一般部Gよりも硬度が高くされている。板厚の観点からは、ロータコア3の中央領域Rcに属する電磁鋼板30において、全ての位置決め用突部34の板厚が、その全体において、一般部Gの板厚よりも薄くされている。
 さらに本実施形態では、位置決め用突部34に加え、副磁路領域42のうち位置決め用突部34の基部34bから連続する部分の硬度が一般部Gの硬度よりも高くされている。言い換えれば、一般部Gよりも硬度を高くする領域が、位置決め用突部34だけに留まらず、永久磁石6の磁極面6a又はそれに対向する対向面32fの仮想延長線を超えて、径方向内側に位置する副磁路領域42の一部にまで拡大されている。なお、当該高硬度化領域は、主磁路領域41にまでは達していない。
 中央領域Rcに属する電磁鋼板30の位置決め用突部34は、例えば電磁鋼板30の第一主面30aの所定位置に第二凹部52を形成することによって、第二凹部52の深さ分、一般部Gよりも板厚が薄くされる(図5を参照)。第二凹部52は、第一凹部51と同様に、例えばプレス加工等の機械加工を施すことによって形成することができる。第二凹部52は、第一凹部51と同時に形成しても良いし、第一凹部51とは別々に形成しても良い。電磁鋼板30の所定位置を軸方向Lに圧縮することによって基準厚さT0の電磁鋼板30に第二凹部52が形成され、当該第二凹部52の形成位置に、基準厚さT0よりも薄い第二厚さT2の第二薄板部57が現出する。第二薄板部57は、基準厚さT0の電磁鋼板30が軸方向Lに圧縮される際に高硬度化している。こうして、この第二薄板部57によって、一般部Gよりも硬度が高くて板厚が薄い位置決め用突部34が構成される。なお、位置決め用突部34の硬度は、一般部Gの硬度の例えば1.05倍~2.5倍程度であって良く、第二厚さT2は、基準厚さT0の例えば40%~95%程度の厚さであって良い。
 位置決め用突部34の硬度は、孔間ブリッジ部37の硬度と同じであっても良いし、異なっていても良い。また、第二薄板部57の第二厚さT2は、第一薄板部56の第一厚さT1と同じであっても良いし、異なっていても良い。本実施形態では、一例として、第一厚さT1と第二厚さT2とが等しく、位置決め用突部34と孔間ブリッジ部37とで硬度が等しい場合(さらに、基準厚さT0の50%程度の厚さの場合)の例を図示している。
 なお、磁石挿入孔32の打ち抜きは、第一凹部51及び第二凹部52の形成後に行っても良いし、第一凹部51及び第二凹部52の形成前に行っても良い。或いは、第一凹部51及び第二凹部52の形成と同時に磁石挿入孔32を打ち抜いても良い。
 図4及び図5に示すように、中央領域Rcに属する各電磁鋼板30は、第一凹部51及び第二凹部52が軸方向Lに同じ向きとなるように積層されている。かかる積層態様であれば、第一凹部51及び第二凹部52を有する電磁鋼板30を例えば機械加工によって連続的に形成するとともにそのまま順次積層させるだけで、容易に電磁鋼板30の積層体を形成することができる。
 このように、本実施形態では、中央領域Rcに属する電磁鋼板30において、孔間ブリッジ部37及び位置決め用突部34の硬度が一般部Gの硬度よりも高くされる一方で、外周側ブリッジ部36の硬度は一般部Gの硬度に等しくされている。板厚の観点からは、中央領域Rcに属する電磁鋼板30において、孔間ブリッジ部37及び位置決め用突部34の板厚が一般部Gの板厚よりも薄くされる一方で、外周側ブリッジ部36の板厚は一般部Gの板厚に等しくされている。
 永久磁石6から出た磁束は、その大部分が磁極Pの中心(いわゆるd軸方向)に集中してステータへと流れる一方、孔間ブリッジ部37を通って流れる漏れ磁束も一部存在する。また、永久磁石6の両側には延設バリア部32Bが設けられているが、本発明者らは、当該延設バリア部32Bに位置決め用突部34が突出形成されることで、延設バリア部32B及び位置決め用突部34を通って流れる漏れ磁束も存在し得ることを見出した。この位置決め用突部34の存在に起因する漏れ磁束の存在の可能性は、本発明者らによる鋭意研究の結果として得られた新知見である。これらの点を考慮し、本実施形態では、孔間ブリッジ部37及び位置決め用突部34の硬度を一般部Gの硬度よりも高くするとともに、孔間ブリッジ部37及び位置決め用突部34の板厚を一般部Gの板厚よりも薄くしている。
 孔間ブリッジ部37及び位置決め用突部34を、例えばプレス加工等によって電磁鋼板30の対応部分を圧縮して形成すれば、高硬度化した当該部位に残留応力が残り、その残留応力によって磁気特性が低下する。その際、同時に、孔間ブリッジ部37及び位置決め用突部34の板厚が薄くなるので、これらの部位において、磁路断面積を小さくして磁気抵抗を大きくすることができ、漏れ磁束を低減することができる。よって、これらの相乗効果により、漏れ磁束を大幅に低減することができる。その結果、ステータへと向かう有効磁束を増大させることができ、高トルク化を図ることができる。
 ところで、永久磁石6から出た磁束のうち、外周側ブリッジ部36を通って流れる漏れ磁束も一部存在することが、従来から良く知られている。このため、漏れ磁束をさらに低減することだけを考慮すれば、孔間ブリッジ部37及び位置決め用突部34と同様に、外周側ブリッジ部36の硬度をも高くする(板厚を薄くする)ことが考えられる。これに対して、本実施形態では、外周側ブリッジ部36の硬度及び板厚は一般部Gの硬度及び板厚にそれぞれ等しくされている。
 外周側ブリッジ部36を、例えばプレス加工等によって電磁鋼板30の対応部分を圧縮して形成すれば、当該部位に残留応力が残り、その残留応力によってヒステリシス損が大きくなる。その結果、鉄損が増大してしまう。特に、鉄損はロータ1の表面付近での損失が支配的であるため、ロータコア3の外周面3aに隣接する外周側ブリッジ部36におけるヒステリシス損の増大は、鉄損の増大に大きな影響を与える。さらに、コギングトルクやトルクリップルが増大して、騒音や振動が生じる場合もある。これらの点を考慮し、本実施形態では、外周側ブリッジ部36の硬度を一般部Gの硬度よりも高くすることなく一般部Gの硬度に等しくし、外周側ブリッジ部36の板厚を一般部Gの板厚よりも薄くすることなく一般部Gの板厚に等しくしているのである。これにより、鉄損の増大や、騒音や振動の発生を抑制することができる。
 一方、ロータコア3の第一端部領域Re1又は第二端部領域Re2(図1を参照)に属する電磁鋼板30では、図6~図8に示すように、外周側ブリッジ部36だけでなく、孔間ブリッジ部37及び位置決め用突部34の硬度及び板厚も、一般部Gの硬度及び板厚にそれぞれ等しくされている。各電磁鋼板30内での漏れ磁束を極力低減することだけを考慮すれば、ロータコア3を構成する全ての電磁鋼板30において、孔間ブリッジ部37及び位置決め用突部34の硬度を高くし、板厚を薄くすることが考えられる。しかし、発明者らは、そのように構成した場合であっても、ロータコア3の両端部付近では、孔間ブリッジ部37等を通っては漏洩しなくなった磁束が必ずしも有効磁束としてステータ側には流れずに、軸方向Lに漏洩してしまう場合があることを見出した。この行き場を失った磁束の軸方向Lへの漏洩の可能性も、本発明者らによる鋭意研究の結果として得られた新知見である。
 この点を考慮し、本実施形態では、ロータコア3の第一端部領域Re1又は第二端部領域Re2に属する電磁鋼板30では、孔間ブリッジ部37及び位置決め用突部34を含むすべての部位において、硬度及び板厚をそれぞれ等しくしているのである。これにより、軸方向Lへの漏れ磁束を低減することができ、ロータ1全体としての有効磁束を増大させることができ、さらなる高トルク化を図ることができる。
〔その他の実施形態〕
(1)上記の実施形態では、各孔間ブリッジ部37の全体が高硬度化(かつ薄板化)されている構成を例として説明した。しかし、そのような構成に限定されることなく、例えば図9に示すように、各孔間ブリッジ部37の一部のみが高硬度化されても良い。位置決め用突部34に関しても同様であり、各位置決め用突部34の一部のみが高硬度化されても良い。
(2)上記の実施形態では、電磁鋼板30が、孔部31として磁石挿入孔32だけを有する構成を例として説明した。しかし、そのような構成に限定されることなく、例えば図10に示すように、電磁鋼板30が、磁石挿入孔32とは別に磁気バリア孔33を有しても良い。この場合、磁石挿入孔32と磁気バリア孔33との両方が孔部31に含まれる。孔間ブリッジ部37は、磁石挿入孔32(径方向内側の延設バリア部32B)と磁気バリア孔33との間に形成される。また、例えば磁気バリア孔33が2つ設けられる図11の例では、孔間ブリッジ部37は、磁石挿入孔32(径方向内側の延設バリア部32B)と磁気バリア孔33との間、及び磁気バリア孔33どうしの間に形成される。なお、磁気バリア孔33は、ロータコア3内を流れる磁束に対して、延設バリア部32Bとは別に磁気抵抗(フラックスバリア)として機能する。磁気バリア孔33には、永久磁石6は挿入されない。
(3)上記の実施形態では、全ての孔間ブリッジ部37が高硬度化(かつ薄板化)されている構成を例として説明した。しかし、そのような構成に限定されることなく、例えば図11に示すように、各磁極Pに複数の孔間ブリッジ部37が存在する場合において、一部の孔間ブリッジ部37のみが高硬度化されても良い。位置決め用突部34に関しても同様であり、一部の位置決め用突部34のみが高硬度化されても良い。なお、上記の実施形態のように各磁極Pに1つの孔間ブリッジ部37だけが存在する場合において、一部の磁極Pに含まれる孔間ブリッジ部37のみが高硬度化されても良い。
(4)上記の実施形態では、中央領域Rcに属する電磁鋼板30の孔間ブリッジ部37だけが高硬度化(かつ薄板化)され、第一端部領域Re1又は第二端部領域Re2に属する電磁鋼板30の孔間ブリッジ部37が高硬度化(かつ薄板化)されない構成を例として説明した。しかし、そのような構成に限定されることなく、例えば軸方向Lの位置によらずに全ての電磁鋼板30で、孔間ブリッジ部37が高硬度化されても良い。位置決め用突部34に関しても同様であり、全ての電磁鋼板30で、位置決め用突部34が高硬度化されても良い。
(5)上記の実施形態では、中央領域Rcに属する各電磁鋼板30が、第一凹部51及び第二凹部52が軸方向Lに同じ向きとなるように積層されている構成を例として説明した。しかし、そのような構成に限定されることなく、例えば図12及び図13に示すように、軸方向Lに隣り合う2枚の電磁鋼板30は、各凹部51,52が互いに軸方向反対向きとなるように積層されても良い。このような構成であれば、孔間ブリッジ部37どうし及び位置決め用突部34どうしがそれぞれ背中合わせに当接することになるので、それらの部位の機械的強度を高めることができる。よって、例えば高圧で樹脂等を充填する際にも、それらの部位における変形を抑制することができる。
(6)上記の実施形態では、孔間ブリッジ部37が、電磁鋼板30の第一主面30aの所定位置に第一凹部51を形成することによって高硬度化かつ薄板化されている構成を例として説明した。しかし、そのような構成に限定されることなく、例えば図14に示すように、電磁鋼板30の両面(第一主面30a及び第二主面30bの両方)の所定位置に第一凹部51をそれぞれ形成する(例えば両面が窪むようにプレス加工を施す)ことによって、孔間ブリッジ部37が薄板化されても良い。位置決め用突部34に関しても同様であり、例えば図15に示すように、電磁鋼板30の両面(第一主面30a及び第二主面30bの両方)の所定位置に第二凹部52をそれぞれ形成することによって、位置決め用突部34が薄板化されても良い。
(7)上記の実施形態では、孔間ブリッジ部37及び位置決め用突部34が電磁鋼板30に対してプレス加工等の機械加工を施すことによって高硬度化かつ薄板化される構成を例として説明した。しかし、そのような構成に限定されることなく、電磁鋼板30に対して例えば化学的処理を施すことによって孔間ブリッジ部37及び位置決め用突部34を高硬度化しても良い。この場合、孔間ブリッジ部37及び位置決め用突部34の板厚は、一般部Gの板厚と等しいまま(基準厚さT0のまま)であっても良い。
(8)上記の実施形態では、孔間ブリッジ部37及び位置決め用突部34の両方が高硬度化(かつ薄板化)されている構成を例として説明した。しかし、そのような構成に限定されることなく、例えば位置決め用突部34は高硬度化されずに孔間ブリッジ部37だけが高硬度化されても良い。この場合、孔間ブリッジ部37の硬度は、“全ての”非ブリッジ部Nの硬度よりも高くされることになる。
(9)上記の実施形態では、永久磁石6が長方形状の断面形状を有する構成を例として説明した。しかし、そのような構成に限定されることなく、永久磁石6の断面形状は、例えばU字状、V字状、及び蒲鉾状等、任意の形状であって良い。磁石挿入孔32の断面形状も、永久磁石6の断面形状に応じて決定される。
(10)上記の実施形態では、ロータ1が、ステータに対して径方向内側に配置されるインナーロータである構成を主に想定して説明した。しかし、そのような構成に限定されることなく、ロータ1は、ステータに対して径方向外側に配置されるアウターロータであっても良い。この場合、ステータ側(径方向内側)に設けられる内周側ブリッジ部の硬度が非ブリッジ部N(一般部G)の硬度に等しく、且つ、孔間ブリッジ部37及び位置決め用突部34の硬度が非ブリッジ部N(一般部G)の硬度よりも高くされると良い。
(11)上記の実施形態では、本開示に係る技術を、車両用の駆動力源として用いられる回転電機に備えられるロータ1に適用した例について説明した。しかし、そのような構成に限定されることなく、例えばエレベータの駆動用やコンプレッサの駆動用等、あらゆる用途で用いられる回転電機に備えられるロータに対しても、同様に、本開示に係る技術を適用することが可能である。
(12)上述した各実施形態(上記の実施形態及びその他の実施形態を含む;以下同様)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本開示の趣旨を逸脱しない範囲内で適宜改変することが可能である。
〔実施形態の概要〕
 以上をまとめると、本開示に係るロータは、好適には、以下の各構成を備える。
 軸方向(L)に積層された複数の電磁鋼板(30)を有するロータコア(3)と、前記ロータコア(3)に埋め込まれた永久磁石(6)と、を備え、ステータに対向配置されるロータ(1)であって、
 前記電磁鋼板(30)は、前記永久磁石(6)が挿入される磁石挿入孔(32)を少なくとも含む複数の孔部(31)を各磁極(P)に有するとともに、前記孔部(31)の1つと前記ロータコア(3)のステータ対向面(3a)との間のブリッジ部であるステータ側ブリッジ部(36)と、周方向(C)に隣接する2つの前記孔部(31)の間のブリッジ部である孔間ブリッジ部(37)と、これらのブリッジ部以外の部分である非ブリッジ部(N)と、を有し、
 前記複数の電磁鋼板(30)の少なくとも一部において、前記ステータ側ブリッジ部(36)の硬度が前記非ブリッジ部(N)の硬度に等しく、且つ、複数の前記孔間ブリッジ部(37)の少なくとも一部の硬度が前記非ブリッジ部(N)の硬度よりも高い。
 この構成によれば、ステータ側ブリッジ部(36)の硬度と非ブリッジ部(N)の硬度とが等しくされ、言い換えればステータ側ブリッジ部(36)の硬度は非ブリッジ部(N)の硬度よりも高くされない。このため、ロータ(1)のステータ側の表面付近に位置するステータ側ブリッジ部(36)に残留応力が残ることはなく、当該部位におけるヒステリシス損が通常に比べて大きくなることもない。よって、鉄損の増大を抑制することができる。一方、孔間ブリッジ部(37)に関しては、複数の孔間ブリッジ部(37)の少なくとも一部の硬度が非ブリッジ部(N)の硬度よりも高くされるので、当該部位において、磁気抵抗を大きくすることができる。よって、漏れ磁束を低減することによって有効磁束を増大させることができ、高トルク化を図ることができる。以上より、鉄損の増大を抑制しつつ、漏れ磁束を低減して高トルク化を図ることができる。
 一態様として、
 複数の前記孔間ブリッジ部(37)の全ての硬度が前記非ブリッジ部(N)の硬度よりも高いことが好ましい。
 この構成によれば、最大個数の孔間ブリッジ部(37)の硬度を高くすることで、漏れ磁束をより一層低減することができ、さらなる高トルク化を図ることができる。
 一態様として、
 前記非ブリッジ部(N)よりも硬度が高い前記孔間ブリッジ部(37)では、周方向(C)に隣接する2つの前記孔部(31)の間の全域において、前記非ブリッジ部(N)よりも硬度が高いことが好ましい。
 この構成によれば、より広い範囲で孔間ブリッジ部(37)の硬度を高くすることで、漏れ磁束をより一層低減することができ、さらなる高トルク化を図ることができる。
 一態様として、
 前記ロータコア(3)が、軸方向一方側から、第一端部領域(Re1)、中央領域(Rc)、第二端部領域(Re2)の3つの軸方向領域に区分され、
 前記中央領域(Rc)に属する前記電磁鋼板(30)では、前記ステータ側ブリッジ部(36)の硬度が前記非ブリッジ部(N)の硬度に等しく、且つ、複数の前記孔間ブリッジ部(37)の少なくとも一部の硬度が前記非ブリッジ部(N)の硬度よりも高く、
 前記第一端部領域(Re1)又は前記第二端部領域(Re2)に属する前記電磁鋼板(30)では、前記ステータ側ブリッジ部(36)及び前記孔間ブリッジ部(37)の両方の硬度が前記非ブリッジ部(N)の硬度に等しいことが好ましい。
 ロータコア(3)の軸方向両端部に位置する第一端部領域(Re1)及び第二端部領域(Re2)では、孔間ブリッジ部(37)の硬度が非ブリッジ部(N)の硬度よりも高くされると、当該孔間ブリッジ部(37)を通じた漏れ磁束が低減される反面、その分だけ軸方向(L)への漏れ磁束が増大してしまう。この点に鑑み、上記のように第一端部領域(Re1)又は第二端部領域(Re2)に属する電磁鋼板(30)においてステータ側ブリッジ部(36)及び孔間ブリッジ部(37)の両方の硬度を非ブリッジ部(N)の硬度に等しくすることで、軸方向(L)への漏れ磁束を低減することができる。よって、ロータ(1)全体として、有効磁束をより一層増大させることができ、さらなる高トルク化を図ることができる。
 一態様として、
 前記非ブリッジ部(N)よりも硬度が高い前記孔間ブリッジ部(37)は、前記非ブリッジ部(N)よりも板厚が薄いことが好ましい。
 この構成によれば、孔間ブリッジ部(37)の板厚を非ブリッジ部(N)の板厚よりも薄くすることで、孔間ブリッジ部(37)の部分における磁路断面積を小さくして磁気抵抗を大きくすることができる。よって、この点からも漏れ磁束を低減することによって有効磁束を増大させることができる。その結果、孔間ブリッジ部(37)の高硬度化との相乗効果により、さらなる高トルク化を図ることができる。
 一態様として、
 前記非ブリッジ部(N)よりも硬度が高い前記孔間ブリッジ部(37)は、前記電磁鋼板(30)の軸方向(L)における一方側の面に凹部(51)が形成されることにより前記非ブリッジ部(N)よりも板厚が薄くされており、
 軸方向(L)に隣り合う2枚の前記電磁鋼板(30)は、前記凹部(51)が互いに軸方向反対向きとなるように積層されていることが好ましい。
 この構成によれば、該当する各電磁鋼板(30)において、軸方向(L)における一方側の面の所定位置に例えばプレス加工等によって凹部(51)を形成するだけで、非ブリッジ部(N)よりも硬度が高く板厚が薄い孔間ブリッジ部(37)を簡単に設けることができる。この場合において、軸方向(L)に隣り合う2枚の電磁鋼板(30)を、凹部(51)が互いに軸方向反対向きとなるように積層することで、板厚が薄くされた孔間ブリッジ部(37)どうしが背中合わせに当接することになる。このため、例えば軸方向(L)に隣り合う2枚の電磁鋼板(30)を凹部(51)が軸方向(L)に同じ向きとなるように積層する構成に比べて、軸方向(L)に隣り合う2枚の電磁鋼板(30)内における、孔間ブリッジ部(37)の連続する板厚が厚くなる。よって、高トルク化のために板厚が薄くされる孔間ブリッジ部(37)の機械的強度を高めることができる。
 一態様として、
 V字状に配置された一対の前記永久磁石(6)によって各磁極(P)が構成され、
 各磁極(P)において、一対の前記永久磁石(6)が鈍角をなすように配置されているとともに、一対の前記永久磁石(6)の間に前記孔間ブリッジ部(37)が設けられていることが好ましい。
 この構成によれば、V字状に配置された一対の永久磁石(6)の間の孔間ブリッジ部(37)を高硬度化することで、d軸の渦電流損を低減することができ、鉄損の増大を抑制することができる。
 本開示に係るロータは、上述した各効果のうち、少なくとも1つを奏することができれば良い。
1    ロータ
3    ロータコア
3a   外周面(ステータ対向面)
6    永久磁石
6a   磁極面
6b   非磁極面
30   電磁鋼板
30a  第一主面(軸方向における一方側の面)
31   孔部
32   磁石挿入孔
34   位置決め用突部
34b  基部
36   外周側ブリッジ部(ステータ側ブリッジ部)
37   孔間ブリッジ部
40   内側磁路形成部(磁路形成部)
41   主磁路領域
41n  最小幅部
42   副磁路領域
51   第一凹部
52   第二凹部
56   第一薄板部
57   第二薄板部
P    磁極
N    非ブリッジ部
G    一般部
Rc   中央領域
Re1  第一端部領域
Re2  第二端部領域
L    軸方向
R    径方向
C    周方向

Claims (7)

  1.  軸方向に積層された複数の電磁鋼板を有するロータコアと、前記ロータコアに埋め込まれた永久磁石と、を備え、ステータに対向配置されるロータであって、
     前記電磁鋼板は、前記永久磁石が挿入される磁石挿入孔を少なくとも含む複数の孔部を各磁極に有するとともに、前記孔部の1つと前記ロータコアのステータ対向面との間のブリッジ部であるステータ側ブリッジ部と、周方向に隣接する2つの前記孔部の間のブリッジ部である孔間ブリッジ部と、これらのブリッジ部以外の部分である非ブリッジ部と、を有し、
     前記複数の電磁鋼板の少なくとも一部において、前記ステータ側ブリッジ部の硬度が前記非ブリッジ部の硬度に等しく、且つ、複数の前記孔間ブリッジ部の少なくとも一部の硬度が前記非ブリッジ部の硬度よりも高いロータ。
  2.  複数の前記孔間ブリッジ部の全ての硬度が前記非ブリッジ部の硬度よりも高い請求項1に記載のロータ。
  3.  前記非ブリッジ部よりも硬度が高い前記孔間ブリッジ部では、周方向に隣接する2つの前記孔部の間の全域において、前記非ブリッジ部よりも硬度が高い請求項1又は2に記載のロータ。
  4.  前記ロータコアが、軸方向一方側から、第一端部領域、中央領域、第二端部領域の3つの軸方向領域に区分され、
     前記中央領域に属する前記電磁鋼板では、前記ステータ側ブリッジ部の硬度が前記非ブリッジ部の硬度に等しく、且つ、複数の前記孔間ブリッジ部の少なくとも一部の硬度が前記非ブリッジ部の硬度よりも高く、
     前記第一端部領域又は前記第二端部領域に属する前記電磁鋼板では、前記ステータ側ブリッジ部及び前記孔間ブリッジ部の両方の硬度が前記非ブリッジ部の硬度に等しい請求項1から3のいずれか一項に記載のロータ。
  5.  前記非ブリッジ部よりも硬度が高い前記孔間ブリッジ部は、前記非ブリッジ部よりも板厚が薄い請求項1から4のいずれか一項に記載のロータ。
  6.  前記非ブリッジ部よりも硬度が高い前記孔間ブリッジ部は、前記電磁鋼板の軸方向における一方側の面に凹部が形成されることにより前記非ブリッジ部よりも板厚が薄くされており、
     軸方向に隣り合う2枚の前記電磁鋼板は、前記凹部が互いに軸方向反対向きとなるように積層されている請求項5に記載のロータ。
  7.  V字状に配置された一対の前記永久磁石によって各磁極が構成され、
     各磁極において、一対の前記永久磁石が鈍角をなすように配置されているとともに、一対の前記永久磁石の間に前記孔間ブリッジ部が設けられている請求項1から6のいずれか一項に記載のロータ。
PCT/JP2017/020717 2016-06-03 2017-06-02 ロータ WO2017209302A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780032092.3A CN109155557A (zh) 2016-06-03 2017-06-02 转子
JP2018521148A JP6573031B2 (ja) 2016-06-03 2017-06-02 ロータ
DE112017001847.1T DE112017001847T5 (de) 2016-06-03 2017-06-02 Rotor
US16/089,094 US20190222088A1 (en) 2016-06-03 2017-06-02 Rotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016111999 2016-06-03
JP2016-111999 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017209302A1 true WO2017209302A1 (ja) 2017-12-07

Family

ID=60478755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020717 WO2017209302A1 (ja) 2016-06-03 2017-06-02 ロータ

Country Status (5)

Country Link
US (1) US20190222088A1 (ja)
JP (1) JP6573031B2 (ja)
CN (1) CN109155557A (ja)
DE (1) DE112017001847T5 (ja)
WO (1) WO2017209302A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020161990A1 (ja) * 2019-02-07 2020-08-13 パナソニックIpマネジメント株式会社 電動工具
JP2021035116A (ja) * 2019-08-21 2021-03-01 日本製鉄株式会社 モータ
WO2021060209A1 (ja) * 2019-09-24 2021-04-01 株式会社 東芝 回転電機の回転子
CN113206564A (zh) * 2020-01-31 2021-08-03 日立金属株式会社 旋转电机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10879775B2 (en) * 2018-05-23 2020-12-29 Ford Global Technologies, Llc Surface treatments of electrical steel core devices
JP7112340B2 (ja) * 2019-01-21 2022-08-03 本田技研工業株式会社 回転電機のロータおよび回転電機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185081A (ja) * 2003-03-05 2005-07-07 Nissan Motor Co Ltd 回転機用回転子鋼板、回転機用回転子、回転機、およびこれを搭載した車両、ならびに回転機用回転子鋼板の製造装置および製造方法
US20130147302A1 (en) * 2011-12-09 2013-06-13 GM Global Technology Operations LLC Rotor barrier shaping for demagnetization mitigation in an internal permanent magnet machine
US20150137629A1 (en) * 2013-11-18 2015-05-21 Steering Solutions Ip Holding Corporation Low cost permanent magnet motor for an electric power steering system
JP2016073056A (ja) * 2014-09-29 2016-05-09 トヨタ自動車株式会社 ロータの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050820A (ja) * 2004-08-05 2006-02-16 Asmo Co Ltd 回転電機
EP2372885B1 (en) * 2008-12-15 2017-07-05 Kabushiki Kaisha Toshiba Permanent magnet type rotary electrical machine
US8541919B2 (en) * 2010-02-26 2013-09-24 General Electric Company Rotor structure for interior permanent magnet electromotive machine including laminations profiled along a segment of a bridge to define a concave and curved bridge profile
DE102012013879A1 (de) * 2011-07-22 2013-01-24 Ebm-Papst St. Georgen Gmbh & Co. Kg Innenläufermotor
JP5855792B2 (ja) * 2013-04-16 2016-02-09 日本発條株式会社 モータのロータ・コアに用いる磁性板及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185081A (ja) * 2003-03-05 2005-07-07 Nissan Motor Co Ltd 回転機用回転子鋼板、回転機用回転子、回転機、およびこれを搭載した車両、ならびに回転機用回転子鋼板の製造装置および製造方法
US20130147302A1 (en) * 2011-12-09 2013-06-13 GM Global Technology Operations LLC Rotor barrier shaping for demagnetization mitigation in an internal permanent magnet machine
US20150137629A1 (en) * 2013-11-18 2015-05-21 Steering Solutions Ip Holding Corporation Low cost permanent magnet motor for an electric power steering system
JP2016073056A (ja) * 2014-09-29 2016-05-09 トヨタ自動車株式会社 ロータの製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020161990A1 (ja) * 2019-02-07 2020-08-13 パナソニックIpマネジメント株式会社 電動工具
JP2020129877A (ja) * 2019-02-07 2020-08-27 パナソニックIpマネジメント株式会社 電動工具
JP7308441B2 (ja) 2019-02-07 2023-07-14 パナソニックIpマネジメント株式会社 電動工具
US11876408B2 (en) 2019-02-07 2024-01-16 Panasonic Intellectual Property Management Co., Ltd. Electric tool
JP2021035116A (ja) * 2019-08-21 2021-03-01 日本製鉄株式会社 モータ
JP7266495B2 (ja) 2019-08-21 2023-04-28 日本製鉄株式会社 モータ
WO2021060209A1 (ja) * 2019-09-24 2021-04-01 株式会社 東芝 回転電機の回転子
JPWO2021060209A1 (ja) * 2019-09-24 2021-04-01
JP7293371B2 (ja) 2019-09-24 2023-06-19 株式会社東芝 回転電機の回転子
CN113206564A (zh) * 2020-01-31 2021-08-03 日立金属株式会社 旋转电机

Also Published As

Publication number Publication date
JPWO2017209302A1 (ja) 2019-01-24
DE112017001847T5 (de) 2018-12-27
CN109155557A (zh) 2019-01-04
JP6573031B2 (ja) 2019-09-11
US20190222088A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6573031B2 (ja) ロータ
US8957561B2 (en) Rotor for rotary electric machine
JP5722301B2 (ja) 埋込磁石型同期電動機の回転子および埋込磁石型同期電動機
US9923436B2 (en) Rotor for a rotary electric machine
JP6331506B2 (ja) 回転電機のロータ構造
JP5259927B2 (ja) 永久磁石式回転電機
JP6573032B2 (ja) ロータ
JP5565170B2 (ja) 永久磁石式回転機
JP6933299B2 (ja) 回転電機の回転子構造
JP2009131070A (ja) 磁石式同期機
JP2012213268A (ja) 回転電気機械
WO2017061305A1 (ja) 回転子および回転電機
US9570947B2 (en) Electric rotating machine
WO2017195498A1 (ja) 回転子および回転電機
JP7112340B2 (ja) 回転電機のロータおよび回転電機
JPWO2014162804A1 (ja) 永久磁石埋め込み式回転電機
JP2014147254A (ja) 永久磁石式回転電機の回転子、及び永久磁石式回転電機
JP6315086B2 (ja) 永久磁石埋め込み式回転電機
JP2013236418A (ja) 回転電気機械
JP2017055560A (ja) 永久磁石式回転電機
JP6116108B2 (ja) 永久磁石同期機
JP5904188B2 (ja) マルチギャップ型回転電機
JP5901436B2 (ja) 永久磁石同期機
JP5481806B2 (ja) 永久磁石式同期電動機
JP2015216786A (ja) 永久磁石埋め込み式回転電機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018521148

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806852

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806852

Country of ref document: EP

Kind code of ref document: A1