WO2020158645A1 - 薬注制御方法 - Google Patents

薬注制御方法 Download PDF

Info

Publication number
WO2020158645A1
WO2020158645A1 PCT/JP2020/002698 JP2020002698W WO2020158645A1 WO 2020158645 A1 WO2020158645 A1 WO 2020158645A1 JP 2020002698 W JP2020002698 W JP 2020002698W WO 2020158645 A1 WO2020158645 A1 WO 2020158645A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
threshold value
change
rate
drug
Prior art date
Application number
PCT/JP2020/002698
Other languages
English (en)
French (fr)
Inventor
雄太 大塚
邦洋 早川
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to US17/421,734 priority Critical patent/US20220097007A1/en
Priority to CN202080008960.6A priority patent/CN113272045B/zh
Priority to JP2020569607A priority patent/JPWO2020158645A1/ja
Priority to SG11202107717RA priority patent/SG11202107717RA/en
Priority to EP20747983.3A priority patent/EP3919162A4/en
Priority to KR1020217023658A priority patent/KR20210118844A/ko
Publication of WO2020158645A1 publication Critical patent/WO2020158645A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/12Addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/24Quality control
    • B01D2311/246Concentration control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/167Use of scale inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/40Automatic control of cleaning processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling

Definitions

  • the present invention relates to a chemical injection control method for controlling the injection amount of a slime control agent into a water system, and preferably suppresses slime in a reverse osmosis membrane (RO membrane) system to prevent fouling of the reverse osmosis membrane. It relates to a drug injection control method.
  • RO membrane reverse osmosis membrane
  • RO membrane equipment that can efficiently remove electrolytes and organic components of low and medium molecules is widely used in seawater desalination plants and wastewater recovery plants.
  • a water treatment device including an RO membrane device usually, a pretreatment such as a pressure filtration device, a gravity filtration device, a coagulation sedimentation treatment device, a pressure flotation filtration device, a dipping membrane device, a membrane type pretreatment device is provided in the preceding stage of the RO membrane device.
  • a device is provided, and the water to be treated is pretreated by these pretreatment devices and then supplied to the RO membrane device for RO membrane separation treatment.
  • the microorganisms contained in the water to be treated grow in the equipment pipe or on the membrane surface to form slime, which causes odors due to microbial propagation in the system, and impairs the amount of permeated water in the RO membrane. May cause
  • a method is generally used in which a disinfectant is added to the water to be treated constantly or intermittently, and the water to be treated or the inside of the apparatus is treated while being sterilized.
  • a slime control agent containing a compound that suppresses microbial growth such as a combined chlorinated oxidant such as chloramine and sodium chlorosulfamate, a combined bromine-based oxidant, and an isothiazolone-based compound Is used to suppress the growth of microorganisms.
  • a compound that suppresses microbial growth such as a combined chlorinated oxidant such as chloramine and sodium chlorosulfamate, a combined bromine-based oxidant, and an isothiazolone-based compound Is used to suppress the growth of microorganisms.
  • Patent Document 1 As a method for controlling the addition amount of a slime control agent, in Patent Document 1, a differential pressure on the non-permeation side of an RO membrane unit is measured, and if the differential pressure is lower than a reference value and is higher than the reference value, the chemical injection amount is different. It is described that it can be done.
  • Patent Document 2 describes that the respiratory activity of a medicated aqueous slime and a microorganism is measured, and the medicinal dose is controlled according to the measured value.
  • Patent Document 3 discloses a method for reducing the amount of drug used (dosage amount) by so-called intermittent addition, in which a time for adding a slime control agent (addition period) and a time for no addition (non-addition period) are provided. Is listed.
  • the present invention speeds up the determination of the optimum addition amount of a slime control agent to an aqueous system, and can achieve stable slime suppression in response to fluctuations in slime load and fluctuations in the flow rate of treated water.
  • the purpose is to provide a method.
  • the gist of the present invention is as follows.
  • a drug injection control method comprising controlling the drug dose based on a rate of change of an index value related to fouling of the reverse osmosis membrane device.
  • the addition of the slime control agent to the water to be treated is an intermittent addition including an addition step and a rest step,
  • the rate of change of the index value has a positive correlation with the rate of progress of fouling
  • the drug injection control according to any one of [1] to [3], characterized in that when the average change speed of the index value in the set sampling period is less than or equal to the threshold value A, the drug injection amount is reduced by a specified amount.
  • a plurality of dosage levels with different dosages are set, dosage is performed at a predetermined dosage level, and each time the sampling period elapses, the average change rate in the sampling period and the
  • the step of continuing the operation at the same chemical injection level is repeatedly performed, and in the operation at the same chemical injection level, the average change.
  • the stable operation mode is characterized in that the chemical injection amount is decreased to a level smaller by one step or more from [1] to [4].
  • the average rate of change is compared with the threshold value A every time the sampling period elapses, and when the average rate of change is larger than the threshold value A, the dose is j steps.
  • a threshold value B that is larger than the threshold value A is set, Each time the sampling period elapses, the average change rate is compared with the threshold value B, When the average change rate is larger than the threshold value B, the drug injection amount is increased to a level m levels higher (m is an integer of 2 or more).
  • m is an integer of 2 or more.
  • the average rate of change of the index value has a negative correlation with the rate of progress of fouling, and when the average rate of change of the sampling period in which the index value is set is equal to or higher than the threshold value A, the drug
  • the dosage amount is automatically adjusted to the optimum amount at the start of addition of the slime control agent.
  • the dose when the differential pressure rise is observed after the dose is stabilized, the dose is automatically switched to an appropriate value.
  • the drug usage amount can be reduced by lowering the drug dosage amount by one step or more after the drug dosage amount is stabilized.
  • the dosage of the slime control agent added to the water to be treated supplied to the reverse osmosis membrane device the dosage amount based on the rate of change of the index value for fouling of the reverse osmosis membrane device.
  • the rate of change of the index value may have a positive correlation (eg, differential pressure) with the rate of progress of fouling, or may have a negative correlation.
  • the index value has a positive correlation with the fouling progress speed
  • the drug injection amount is reduced by a specified amount.
  • a plurality of drug injection levels having different drug injection amounts are set, and at the beginning of control, drug injection is started at a predetermined drug injection level set in advance, and each time the sampling period elapses. , Comparing the average rate of change of the index value in the sampling period with the threshold value A, and if the average rate of change is less than or equal to the threshold value A, the step of lowering the dosage amount to one level or more is repeated. If the average change rate exceeds the threshold value A, the drug injection level is maintained as it is or the drug injection amount is increased by one step or more, and this drug injection level is set to the optimum drug injection level. Perform the optimum drug level search mode.
  • a stable operation mode in which operation is continued at the optimum chemical injection level is performed.
  • the average change speed in the sampling period is compared with the threshold value A, and when the average change speed is equal to or less than the threshold value A, Repeats the step of continuing the operation at the same chemical injection level, and in the operation at the same chemical injection level, when the comparison between the average change rate and the threshold value A is continuously performed n times, Reduce the dosing volume by one or more steps.
  • the average rate of change is compared with the threshold value A every time the sampling period elapses, and when the average rate of change is larger than the threshold value A, the drug injection amount is j.
  • the number of levels is increased (j is an integer of 1 or more).
  • a threshold value B that is larger than the threshold value A is set, the average change rate is compared with the threshold value B every time the sampling period elapses, and when the average change rate is larger than the threshold value B, the drug Increase the injection volume to m levels higher (m is an integer of 2 or more).
  • FIG. 1 is a block diagram of an RO system. Treated water is supplied to an RO device 5 via a pipe 4, permeated water is taken out from a pipe 6, and concentrated water is taken out from a pipe 7.
  • a flow meter 1 is provided in the pipe 4, and the measured value is input to the control unit 10.
  • the slime control agent solution in the storage tank 2 is added to the pipe 4 via the chemical injection pump 3.
  • the chemical injection pump 3 is controlled by the control unit 10.
  • Pressure gauges 8 and 9 are provided in the pipes 4 and 7, respectively. The detection values of the pressure gauges 8 and 9 are input to the control unit 10, and the differential pressure ⁇ P on the non-permeable side of the RO device 5 is calculated from the difference between the two.
  • the chemical injection amount (addition amount) of the step is controlled on the basis of the average rising speed of the differential pressure (the rising value of the differential pressure per unit time).
  • a plurality of levels are provided from the side with a smaller dose to the one with a larger dose, but are not particularly limited to 2 to 100 stages, preferably 3 to 80 stages, and particularly preferably 4 to 50 stages. Particularly preferably, it is set in 5 to 10 steps, and when the rising speed of the differential pressure is within a predetermined range, the drug injection level is sequentially lowered. Then, when the rising speed of the differential pressure is within a predetermined range or less, the chemical injection is continued at the lowest level.
  • the number of the set stages (levels) may be represented as x.
  • the average rising speed of the differential pressure can be obtained by the least squares method of the slope in the differential pressure-time graph of the sampling period S.
  • the above sampling period S is preferably 0.5 to 720 h, particularly 24 to 336 h, and particularly preferably 72 to 168 h.
  • the measurement interval of the differential pressure is preferably 72 to 1008 min, particularly 216 to 504 min.
  • FIG. 1 An example of the drug injection control of the present invention is shown in FIG. 1
  • step 30 start drug injection at the level with the highest amount added (step 30).
  • step 30 After elapse of the set sampling period S, the average rising speed (d ⁇ P/dt) of the differential pressure during the period is calculated.
  • the chemical injection is continued with the maximum chemical injection amount (step 31). If the average ascent rate is A or less, the dosage level is changed by one step (step 31 ⁇ 32).
  • step 33 each time the set sampling period S elapses, it is determined whether or not the average differential pressure increase rate exceeds the threshold value A (step 33). Change to a level (step 33 ⁇ 32). When this operation is repeated and the average rising speed of the differential pressure exceeds the threshold value A, the chemical injection level is increased by one level (steps 33 ⁇ 34).
  • the drug injection level may be maintained as it is.
  • the drug injection amount set in step 34 is the minimum drug injection level (optimal drug injection level) at which the average rising speed of the differential pressure is equal to or lower than the threshold value A, out of the drug injection levels set in multiple levels. Therefore, the steps from the start to the step 34 are an example of the optimum medicine injection level search mode for searching the optimum medicine injection level.
  • the level is changed by one step in step 31 and step 34, but it is not particularly limited to this, and is set appropriately within a range smaller than the set number x of steps. can do.
  • y/x is preferably 0.05 or more, particularly 0.3 or more and 0.5 or less, particularly 0.4 or less. If this is expressed by an equation, y/x can be set within the following range.
  • x is preferably 2 to 100, more preferably 3 to 80, further preferably 4 to 50, and further preferably 5 to 10. (0.05 to 0.3) ⁇ y/x ⁇ (0.4 to 0.5)
  • the differential pressure average rising speed is compared with the threshold A (step 41). Then, the operation is continued at the same chemical injection level, and after the sampling period S has elapsed again, the differential pressure average rising speed is compared with the threshold value A (steps 41 ⁇ 42 ⁇ 41).
  • the chemical injection level is decreased by one step (steps 41 ⁇ 42 ⁇ 43), the operation is continued at the chemical injection level (step 43 ⁇ 41).
  • the n is a preset number of 2 or more (for example, 2 to 20, particularly 2 to 10).
  • the chemical injection level is increased to j steps (j is an integer of 1 or more), for example, one step higher (step 41 ⁇ 44), the operation is continued at this chemical injection level (steps 44 ⁇ 41).
  • Fig. 5 Another example of stable operation mode is shown in Fig. 5.
  • the differential pressure average rising speed is compared with the threshold value A (step 51), and if the average rising speed is A or less, the same again as in the stable operation mode (1) of FIG.
  • the operation is continued at the chemical injection level, and after the lapse of the sampling period S again, the differential pressure average increase rate and the threshold value A are compared (steps 51 ⁇ 52 ⁇ 51).
  • This operation is repeatedly executed, and when the differential pressure average increase rate is equal to or lower than the threshold value A consecutively n times at the same chemical injection level, the chemical injection level is decreased by one step (step 51 ⁇ 52 ⁇ 53), the operation is continued at the chemical injection level (step 53 ⁇ 51).
  • this safe driving mode (2) set a threshold value B that is larger than A. If the average differential pressure increase rate during the sampling period S exceeds the threshold value A during the process, then the average differential pressure increase rate and the threshold value B are compared. The level is increased by one step (steps 54 ⁇ 55), and operation is continued at this chemical injection level (steps 55 ⁇ 51). Then, in the comparison between the average differential pressure rising rate and the threshold value B, when the average differential pressure rising rate exceeds the threshold value B, the drug injection level is increased by m steps (m is an integer of 2 or more), for example, by two steps. (Step 54 ⁇ 56), and the operation is continued at this chemical injection level (Step 56 ⁇ 51). m is selected, for example, from 2 to 20, especially from 2 to 10.
  • the ratio B/A of the above threshold values B and A is preferably 10 or less, particularly about 2 to 5. Further, the above-mentioned n is preferably 20 or less, particularly about 2 to 10. n does not have to be an integer.
  • step 32 of FIG. 3, step 43 of FIG. 4 or step 53 of FIG. the dosage level is kept at the lowest level without lowering the dosage level, and the next step, step 33 in FIG. 3 or stable operation mode, step 41 in FIG. 4 and step 5 in FIG. Go to step 51.
  • the level is changed by one step in step 43, step 44, step 53 and step 55, but it is not particularly limited to this and may be appropriately set in a range smaller than the set step number x. Can be set.
  • z/x is preferably 0.05 or more, particularly 0.3 or more and 0.5 or less, particularly 0.4 or less.
  • the operation shifts to the stable operation mode following the optimum chemical injection level search mode, but another step (mode) is present between the optimum chemical injection level search mode and the stable operation mode.
  • the optimum chemical injection level search mode may be omitted and the operation may be performed from the stable operation mode.
  • FIG. 2 shows an example of the display screen of the control unit 10 when the slime control agent is added intermittently. Although illustration is omitted, the control unit 10 is provided with input means such as a touch panel and a keyboard for inputting various values.
  • the screen 60 is provided with a display unit 61 for displaying the differential pressure increase speed at the present time, a display unit 62 for the threshold value A, a display unit 63 for the threshold value B, a display unit 64 for the sampling period S, and the like.
  • the medication level is No. 1 to No. 6 levels are set, and a drug injection ratio display unit 65, an ON time display unit 66 and an OFF time display unit 67 of the drug injection pump at each level are provided.
  • a lighting unit 68 is provided for displaying the medicine injection level being executed by lighting.
  • the chemical injection ratio represents the chemical injection amount of each level when the one with the highest discharge amount of the chemical injection pump is 100%.
  • the chemical injection pump 3 is PWM-controlled, the ON time represents the pump ON time (duty), the OFF time represents the pump OFF time, and the chemical injection ratio is Different drug injection levels are set by setting the same value (for example, 100%) and making the pump ON time and/or the pump OFF time different from each other.
  • the chemical injection pump control is not limited to PWM control, and may be pulse control or analog control.
  • the screen 60 may be provided with a display unit that displays the elapsed time since the timer that measures the sampling time S once is started.
  • the rate of increase of the differential pressure ⁇ P on the non-permeate side of the RO device 5 is used as an index value, but the rate of increase of the RO membrane water supply pressure (detection value of the pressure gauge 8) may be used as an index value.
  • the RO membrane water supply pressure also has a positive correlation with the progressing rate of fouling.
  • the index value may have a negative correlation with the fouling progress rate.
  • the rate of change (decrease rate) of the permeation flux and permeation flow rate of the RO device 5 may be used as the index value.
  • the permeation flux and permeation flow rate vary depending not only on the fouling of the membrane but also on the temperature and the transmembrane pressure difference. Therefore, when the permeation flux and the permeation flow rate are used, it is preferable to use the corrected permeation flux and the corrected permeation flow rate converted under the standard transmembrane pressure difference and the standard temperature condition.
  • index value has a negative correlation with the fouling progressing speed
  • index value has a positive correlation with the fouling progressing speed
  • the average change speed of the index value for example, the change speed of the corrected permeation flux of the RO device 5
  • the drug injection amount is decreased by a specified amount.
  • the chemical injection amount is controlled by changing at least one of the pump ON (addition step) time and the pump OFF (pause step) time.
  • the amount of the slime control agent injected into the water to be treated is changed by changing the opening degree of an opening/closing valve (not shown) provided in the pipe connecting to the pipe 4 and changing the discharge amount of the chemical injection pump 3 itself. May be controlled.
  • the addition of the slime control agent is performed by intermittent addition having an addition step and a rest step, but continuous addition without a pause step may be performed.
  • the chemical injection amount can be controlled by changing the opening degree of the opening/closing valve and the discharge amount itself of the chemical injection pump 3 itself.
  • the slime control agent may be a combined chlorine-based, combined bromine-based slime control agent, an isothiazolone compound, or the like.
  • Examples of the bound chlorine-based slime control agent include those containing a sulfamic acid compound.
  • the control unit 6 may be equipped with a program for controlling in a control mode other than the above.
  • a program for example, the slime control agent concentration in the system is set as the slime control agent addition condition, and the slime control agent concentration according to the addition condition is maintained based on the measured value of the index having a correlation with the slime control agent concentration.
  • a program for controlling the injection amount of the slime control agent is exemplified.
  • the above index can be obtained by measurement by the DPD method.
  • the slime control agent concentration in the system or an index correlated with the slime control agent concentration can be used instead of the drug injection ratio in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

薬注量が異なる薬注レベルが複数レベル設定されており、制御開始当初は最も薬注量が多いレベルで薬注を開始し、前記サンプリング期間Sが経過する度に、RO装置5の差圧上昇速度と閾値Aとを比較し、前記上昇速度が前記閾値A以下である場合には、薬注量を1段階少ないレベルに低下させ、前記上昇速度が前記閾値Aよりも大きい場合には、薬注量を1段階多いレベルに増加させる。

Description

薬注制御方法
 本発明は水系へのスライムコントロール剤の注入量を制御する薬注制御方法に関するものであり、好適には逆浸透膜(RO膜)システムにおけるスライムを抑制して逆浸透膜のファウリングを防止する薬注制御方法に関する。
 海水淡水化プラントや排水回収プラントでは、電解質や中低分子の有機成分を効率的に除去することができるRO膜装置が広く用いられている。RO膜装置を含む水処理装置では、通常、RO膜装置の前段に圧力濾過装置、重力濾過装置、凝集沈澱処理装置、加圧浮上濾過装置、浸漬膜装置、膜式前処理装置などの前処理装置が設けられ、被処理水はこれらの前処理装置により前処理された後、RO膜装置に供給されてRO膜分離処理される。
 このような水処理装置においては、被処理水中に含まれる微生物が、装置配管内や膜面で増殖してスライムを形成し、系内の微生物繁殖による臭気発生、RO膜の透過水量低下といった障害を引き起こすことがある。微生物による汚染を防止するためには、被処理水に殺菌剤を常時又は間欠的に添加し、被処理水又は装置内を殺菌しながら処理する方法が一般的である。
 特にRO膜でのトラブルを解決するために、クロラミンやクロロスルファミン酸ナトリウムといった結合塩素系酸化剤のほか、結合臭素系酸化剤、イソチアゾロン系化合物などの微生物増殖を抑制する化合物を含有するスライムコントロール剤を添加して微生物増殖を抑制する方法が採られている。
 スライムコントロール剤の添加量制御方法として、特許文献1には、RO膜ユニットの非透過側の差圧を測定し、この差圧が基準値よりも低いときと高いときとで薬注量を異ならせることが記載されている。
 特許文献2には、薬注された水系のスライムと微生物の呼吸活性を測定し、この測定値に応じて薬注量を制御することが記載されている。
 特許文献3には、スライムコントロール剤を添加する時間(添加期間)と添加しない時間(無添加期間)とを設ける、所謂、間欠添加することで、薬剤使用量(薬注量)を低減する方法が記載されている。
特開2011-224543号公報 特開2012-210612号公報 国際公開WO2013/005787号公報
 本発明は、水系へのスライムコントロール剤の最適添加量の決定を迅速化し、またスライム負荷の変動や被処理水の流量の変動に対応して安定したスライム抑制を達成することができる薬注制御方法を提供することを目的とする。
 本発明の要旨は次の通りである。
[1] 逆浸透膜装置に供給される被処理水に添加されるスライムコントロール剤の薬注量を制御する方法において、
 該逆浸透膜装置のファウリングに関する指標値の変化速度に基づいて前記薬注量を制御することを特徴とする薬注制御方法。
[2] 前記逆浸透膜装置に供給される被処理水に存在するスライムコントロール剤の濃度を変更するよう、前記薬注量の制御を行うことを特徴とする[1]に記載の薬注制御方法。
[3] 前記スライムコントロール剤の被処理水への添加が添加工程と休止工程とを有する間欠添加であって、
 該間欠工程と休止工程の少なくとも一方の時間を変更することで、前記薬注量の制御を行うことを特徴とする[1]に記載の薬注制御方法。
[4] 前記指標値の変化速度は、ファウリングの進行速度と正の相関を有するものであって、
 設定されたサンプリング期間における前記指標値の平均変化速度が閾値A以下である場合、薬注量を規定量低下させることを特徴とする[1]~[3]のいずれかに記載の薬注制御方法。
[5] 薬注量が異なる薬注レベルが複数レベル設定されており、制御開始当初は、予め設定した所定の薬注レベルで薬注を開始し、前記サンプリング期間が経過する度に、該サンプリング期間における指標値の平均変化速度と前記閾値Aとを比較し、
 該平均変化速度が前記閾値A以下である場合には、薬注量を1段階以上少ないレベルに低下させる工程を繰り返し実施し、
 前記平均変化速度が前記閾値Aを超えた場合には、その薬注レベルをそのまま維持するか、または薬注量を1段階以上多いレベルとし、この薬注レベルを最適薬注レベルとする最適薬注レベル探索モードを有することを特徴とする[4]に記載の薬注制御方法。
[6] 前記最適薬注レベル探索モードで最適薬注レベルを決定した後、前記最適薬注レベルで運転を継続する安定運転モードを有することを特徴とする[5]の薬注制御方法。
[7] 前記安定運転モードでは、
 前記設定されたサンプリング期間が経過する度に、前記サンプリング期間における前記平均変化速度と前記閾値Aとを比較し、前記平均変化速度が前記閾値A以下である場合には、同じ薬注レベルでの運転を継続する工程を繰り返し実施し、同じ薬注レベルでの運転において、前記平均変化速度と前記閾値Aとの比較を連続してn回実施した場合には、薬注量を1段階以上少ないレベルに低下させることを特徴とする[6]の薬注制御方法。
[8] 薬注量が異なる薬注レベルが複数レベル設定されており、所定の薬注レベルで薬注を実施し、前記サンプリング期間が経過する度に、前記サンプリング期間における前記平均変化速度と前記閾値Aとを比較し、前記平均変化速度が前記閾値A以下である場合には、同じ薬注レベルでの運転を継続する工程を繰り返し実施し、同じ薬注レベルでの運転において、前記平均変化速度と前記閾値Aとの比較を連続してn回実施した場合には、薬注量を1段階以上少ないレベルに低下させることを特徴とする安定運転モードを有する[1]から[4]に記載の薬注制御方法。
[9] 前記安定運転モードでは、前記サンプリング期間が経過する毎に、前記平均変化速度と閾値Aとを比較し、前記平均変化速度が閾値Aよりも大きい場合には、薬注量をj段階多いレベル(jは1以上の整数)に増加させることを特徴とする[6]から[8]に記載の薬注制御方法。
[10] 前記安定運転モードでは、閾値を前記閾値Aよりも大きい閾値Bを設定し、
 前記サンプリング期間が経過する毎に前記平均変化速度と閾値Bとを対比し、
 前記平均変化速度が前記閾値Bよりも大きい場合には、薬注量をm段階多いレベル(mは2以上の整数)に増加させることを特徴とする[9]に記載の薬注制御方法。
[11] 前記指標値は、前記逆浸透膜装置の非透過側の差圧又は給水圧であることを特徴とする[1]~[10]のいずれかに記載の薬注制御方法。
[12] 前記指標値の平均変化速度は、ファウリングの進行速度と負の相関を有するものであって、前記指標値の設定されたサンプリング期間の平均変化速度が閾値A以上である場合、薬注量を規定量低下させることを特徴とする[1]~[3]のいずれかに記載の薬注制御方法。
 本発明によると、スライムコントロール剤の添加開始時に薬注量が自動的に最適量に調整される。
 本発明の一態様によると、薬注量が安定した後に差圧上昇が認められた場合は、自動的に薬注量が適正値に切り替えられる。
 また、本発明の一態様によると、薬注量が安定した後に、薬注量を1段階以上下げることにより、薬品使用量を削減できる。
ROシステムの構成図である。 制御ユニットの表示画面の説明図である。 本発明の一例を説明するフローチャートである。 本発明の一例を説明するフローチャートである。 本発明の一例を説明するフローチャートである。
 本発明方法では、逆浸透膜装置に供給される被処理水に添加されるスライムコントロール剤の薬注量を、該逆浸透膜装置のファウリングに関する指標値の変化速度に基づいて前記薬注量を制御する。
 前記指標値の変化速度は、ファウリングの進行速度と正の相関を有するもの(例えば差圧)であってもよく、負の相関を有するものであってもよい。
 以下に、指標値がファウリングの進行速度と正の相関を有する場合を説明する。この場合の一態様では、設定されたサンプリング期間における前記指標値の平均変化速度が閾値A以下である場合、薬注量を規定量低下させる。
 この態様の一例では、薬注量が異なる薬注レベルが複数レベル設定されており、制御開始当初は、予め設定した所定の薬注レベルで薬注を開始し、前記サンプリング期間が経過する度に、該サンプリング期間における指標値の平均変化速度と前記閾値Aとを比較し、該平均変化速度が前記閾値A以下である場合には、薬注量を1段階以上少ないレベルに低下させる工程を繰り返し実施し、前記平均変化速度が前記閾値Aを超えた場合には、その薬注レベルをそのまま維持するか、または、薬注量を1段階以上多いレベルとし、この薬注レベルを最適薬注レベルとする最適薬注レベル探索モードを行う。
 本発明の一例では、前記最適薬注レベル探索モードで最適薬注レベルを決定した後、前記最適薬注レベルで運転を継続する安定運転モードを行う。
 前記安定運転モードの一例では、前記設定されたサンプリング期間が経過する度に、前記サンプリング期間における前記平均変化速度と前記閾値Aとを比較し、前記平均変化速度が前記閾値A以下である場合には、同じ薬注レベルでの運転を継続する工程を繰り返し実施し、同じ薬注レベルでの運転において、前記平均変化速度と前記閾値Aとの比較を連続してn回実施した場合には、薬注量を1段階以上少ないレベルに低下させる。
 前記安定運転モードの別の一例では、前記サンプリング期間が経過する毎に、前記平均変化速度と閾値Aとを比較し、前記平均変化速度が閾値Aよりも大きい場合には、薬注量をj段階多いレベル(jは1以上の整数)に増加させる。また、前記閾値Aよりも大きい閾値Bを設定し、前記サンプリング期間が経過する毎に前記平均変化速度と閾値Bとを対比し、前記平均変化速度が前記閾値Bよりも大きい場合には、薬注量をm段階多いレベル(mは2以上の整数)に増加させる。
 以下、図面を参照して実施の形態について詳細に説明する。
 図1はROシステムの構成図であり、被処理水が配管4を介してRO装置5に供給され、透過水が配管6から取り出され、濃縮水が配管7から取り出される。
 配管4には流量計1が設けられており、その測定値が制御ユニット10に入力される。配管4に対し、貯留槽2内のスライムコントロール剤溶液が薬注ポンプ3を介して添加される。薬注ポンプ3は制御ユニット10によって制御される。配管4,7にそれぞれ圧力計8,9が設けられている。該圧力計8,9の検出値が制御ユニット10に入力され、両者の差からRO装置5の非透過側の差圧ΔPが演算される。
 本発明では、差圧の平均上昇速度(単位時間当りの差圧の上昇値)に基づいてステップの薬注量(添加量)が制御される。
 本発明の一実施の形態では、薬注量が少ない側から多い方へ複数段階(レベル)、特に限定するものではないが2~100段階、好ましくは3~80段階特に好ましくは4~50段階、とりわけ好ましくは5~10段階設定されており、差圧の上昇速度が所定の範囲以下の場合には、薬注レベルを順次に引き下げる。そして、差圧の上昇速度が所定の範囲以下の場合で最も少ないレベルにて薬注を継続する。なお、この設定された段階(レベル)の数をxと表わすことがある。
 なお、差圧の平均上昇速度は、サンプリング期間Sの差圧-時間グラフにおける傾きを最小二乗法によって求めることができる。
 上記のサンプリング期間Sは0.5~720h特に24~336hとりわけ72~168hが好ましい。差圧の測定間隔は72~1008min特に216~504min程度が好ましい。
 本発明の薬注制御の一例を図3に示す。
 はじめに最も添加量の多いレベルで薬注を開始する(ステップ30)。設定したサンプリング期間S経過後に該期間中の差圧の平均上昇速度(dΔP/dt)を算出する。差圧の平均上昇速度が閾値Aを超えているときには、最も多い薬注量にて薬注を継続する(ステップ31)。平均上昇速度がA以下であれば、1段階下の薬注レベルに変更する(ステップ31→32)。次いで、同様に、設定したサンプリング期間Sを経過する毎に、差圧平均上昇速度が閾値Aを超えていないかを判定し(ステップ33)、Aを超えていなければさらに1段階下の薬注レベルに変更する(ステップ33→32)。この操作を繰り返し、差圧の平均上昇速度が閾値Aを超えた場合には、薬注レベルを1段階上のレベルとする(ステップ33→34)。なお、差圧の平均上昇速度が閾値Aを超えた場合には、その薬注レベルをそのまま維持してもよい。
 その後は、図3の破線で示すように、ステップ31に戻って同様の制御を行うか、又は、ステップ34で設定された薬注量を基準とした、図4又は図5に示す安定運転モードにて薬注を行う。
 ステップ34で設定された薬注量は、複数レベル設定した薬注レベルのうち、差圧の平均上昇速度が閾値A以下となる最少の薬注レベル(最適薬注レベル)である。したがって、スタートからステップ34までのステップは、最適薬注レベルを探索するための最適薬注レベル探索モードの一例となる。
上記の最適薬注レベル探索モードでは、ステップ31、ステップ34ではレベルを1段階変化させているが、特にこれに限定されるものではなく、設定した段階の数xよりも小さい範囲で、適宜設定することができる。例えば、予め設定した段数をx、変化させる段数をyとした場合、y/xは0.05以上、特に0.3以上で且つ0.5以下、特に0.4以下であることが好ましい。これを式で表わすと、y/xは以下のような範囲となるよう設定することができる。なお、xは、前述の通り、好ましくは2~100、さらに好ましくは3~80、さらに好ましくは4~50、さらに好ましくは5~10である。
  (0.05~0.3)≦y/x≦(0.4~0.5)
 図4の安定運転モード(1)を次に説明する。
 上記のステップ34で設定された薬注レベルで、設定したサンプリング期間S経過後に、差圧平均上昇速度と閾値Aとを比較し(ステップ41)、平均上昇速度が閾値A以下であれば、再度、同じ薬注レベルで運転を継続し、再びサンプリング期間S経過後に、差圧平均上昇速度と閾値Aとを比較する(ステップ41→42→41)。この操作を繰り返し実行し、同じ薬注レベルで、連続してn回、差圧平均上昇速度が閾値A以下の場合には、薬注レベルを1段少ないレベルに低下させ(ステップ41→42→43)、その薬注レベルで運転を継続する(ステップ43→41)。なお、上記nはあらかじめ設定した2以上(例えば2~20、特に2~10)の数である。
 途中で、サンプリング期間Sでの差圧の平均上昇速度が閾値Aを超えた場合には、薬注レベルをj段(jは1以上の整数)、例えば1段多いレベルにあげ(ステップ41→44)、この薬注レベルで運転を継続する(ステップ44→41)。
 安定運転モードの別例を図5に示す。設定したサンプリング期間S経過後に、差圧平均上昇速度と閾値Aとを比較し(ステップ51)、平均上昇速度がA以下であれば、図4の安定運転モード(1)と同様、再度、同じ薬注レベルで運転を継続し、再びサンプリング期間S経過後に、差圧平均上昇速度と閾値Aとを比較する(ステップ51→52→51)。この操作を繰り返し実行し、同じ薬注レベルで、連続してn回、差圧平均上昇速度が閾値A以下の場合には、薬注レベルを1段少ないレベルに低下させ(ステップ51→52→53)、その薬注レベルで運転を継続する(ステップ53→51)。
 この安全運転モード(2)では、Aよりも大きい閾値Bを設定する。途中で、サンプリング期間Sでの差圧平均上昇速度が閾値Aを超えた場合には、次に、差圧平均上昇速度と閾値Bとを比較し、閾値B以下であれば、薬注レベルを1段多いレベルにあげ(ステッ54→55)、この薬注レベルで運転を継続する(ステップ55→51)。そして、差圧平均上昇速度と閾値Bとの比較において、差圧平均上昇速度が閾値Bを超えた場合には、薬注レベルをm段(mは2以上の整数)、例えば2段多いレベルに上げ(ステップ54→56)、この薬注レベルで運転を継続する(ステップ56→51)。mは例えば2~20、特に2~10の間から選択される。
 上記閾値BとAの比B/Aは10以下特に2~5程度が好ましい。また、上記、nは20以下特に2~10程度が好ましい。nは整数でなくても良い。
 最も薬注量が少ないレベルで運転している場合には、図3のステップ32、図4のステップ43あるいは図5のステップ53などにおいて、薬注レベルを下げることができない。このような場合には、薬注レベルを下げることなく、最も薬注量が少ないレベルのままで、次のステップ、図3ではステップ33又は安定運転モードに、図4ではステップ41、図5ではステップ51に移行する。
 最も薬注量が多いレベルで運転している場合には、図4のステップ44、図5のステップ55,56などで、薬注レベルを上げることができない。場合には、薬注レベルを上げることなく、最も薬注量が多いレベルのままで、次のステップ、図4ではステップ41に、図5ではステップ51に移行する。
 上記の安定運転モードでは、ステップ43、ステップ44、ステップ53およびステップ55ではレベルを1段階変化させているが、特にこれに限定されるものではなく、設定した段数xよりも小さい範囲で、適宜設定することができる。例えば予め設定した段数をx、変化させる段数をzとした場合、z/xは0.05以上、特に0.3以上で且つ0.5以下、特に0.4以下であることが好ましい。
 また、上記の態様では、最適薬注レベル探索モードに引き続き、安定運転モードに移行しているが、最適薬注レベル探索モードと安定運転モードとの間に別の工程(モード)を存在させても良いし、最適薬注レベル探索モードを省略して安定運転モードから運転を実施しても良い。
 上記の制御は制御ユニット10によって行われる。スライムコントロール剤を間欠的に添加する場合の制御ユニット10の表示画面の一例を図2に示す。なお、図示は省略するが、制御ユニット10には、各種の値を入力するために、タッチパネル、キーボード等の入力手段が設けられている。
 この画面60では、現時点における差圧上昇速度を表示する表示部61、閾値Aの表示部62、閾値Bの表示部63、サンプリング期間Sの表示部64等が設けられている。この例では、薬注レベルはNo.1~No.6の6段階設定されており、各レベルにおける薬注比の表示部65、薬注ポンプのONタイムの表示部66及びOFFタイムの表示部67が設けられている。さらに、実行されている薬注レベルを点灯により表示する点灯部68が設けられている。
 なお、薬注比は、最も薬注ポンプの吐出量が多いレベルのものを100%とした場合の各レベルの薬注量を表わしている。
 また、この実施の形態(間欠添加)では、薬注ポンプ3はPWM制御されており、ONタイムはポンプONの時間(デューティ)を表わし、OFFタイムにポンプOFFの時間を表わし、薬注比は全て同一の値(例えば100%)とし、ポンプONの時間及び/又はポンプOFFの時間をそれぞれ異なる時間とすることで、異なる薬注レベルを設定する。ただし、薬注ポンプ制御はPWM制御に限定されず、パルス制御でもアナログ制御であってもよい。
 画面60には、1回のサンプリング時間Sを計測するタイマーをスタートさせてからの経過時間を表示する表示部を設けてもよい。
 上記実施の形態では、RO装置5の非透過側の差圧ΔPの上昇速度を指標値としているが、RO膜給水圧(圧力計8検出値)の上昇速度を指標値としてもよい。RO膜給水圧も、ファウリングの進行速度と正の相関関係を有する。
 前述の通り、指標値は、ファウリングの進行速度と負の相関関係を有するものであってもよい。例えば、RO装置5の透過流束や透過流量等の変化速度(低下速度)を指標値としてもよい。
 透過流束や透過流量は、膜のファウリングのみならず、温度や膜間差圧によっても異なる。したがって、透過流束や透過流量を用いる場合、標準膜間差圧及び標準温度条件下に換算した、補正透過流束、補正透過流量を用いることが好ましい。
 指標値がファウリングの進行速度と負の相関関係を有するものである場合、上記のファウリングの進行速度と正の相関関係を有する場合における「A以下」等を「A以上」等と逆にすればよい。例えば、設定されたサンプリング期間における前記指標値の平均変化速度(例えば、RO装置5の補正透過流束の変化速度)が閾値A以上である場合、薬注量を規定量低下させるようにする。
 上記実施の形態では、ポンプON(添加工程)の時間とポンプOFF(休止工程)の時間の少なくとも一方を変更することで薬注量の制御を行っているが、薬注ポンプ3の吐出側と配管4とを接続する配管に設けた開閉バルブ(図示せず)の開度の変更や、薬注ポンプ3自体の吐出量の変更によって、被処理水中に注入されるスライムコントロール剤の薬注量を制御しても良い。
 また、上記実施の形態では、スライムコントロール剤の添加は添加工程と休止工程とを有する間欠添加で行っているが、休止工程を設けない連続添加であっても良い。連続添加の場合には、上述の開閉バルブの開度や薬注ポンプ3自体の吐出量自体を変更することで薬注量を制御することができる。
 スライムコントロール剤としては、結合塩素系、結合臭素系スライムコントロール剤、イソチアゾロン化合物などのいずれでもよい。結合塩素系スライムコントロール剤としてはスルファミン酸化合物を含有するものが例示される。
 本発明では、制御ユニット6に、上記以外の制御モードでの制御を行うプログラムを搭載してもよい。このようなプログラムとしては例えばスライムコントロール剤添加条件として系内でのスライムコントロール剤濃度を設定し、スライムコントロール剤濃度に相関を有する指標の測定値に基づいて添加条件通りのスライムコントロール剤濃度を維持するようスライムコントロール剤注入量制御を行うプログラムが例示される。スライムコントロール剤として結合塩素系あるいは結合臭素系スライムコントロール剤を用いる場合には、DPD法の測定により前記指標を得ることができる。
 系内のスライムコントロール剤濃度を設定する場合には、図2の薬注比に変えて、系内のスライムコントロール剤濃度あるいはスライムコントロール剤濃度に相関する指標を用いることができる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2019年1月28日付で出願された日本特許出願2019-012435に基づいており、その全体が引用により援用される。
 3 薬注ポンプ
 5 RO装置
 8,9 圧力計
 10 制御ユニット

Claims (12)

  1.  逆浸透膜装置に供給される被処理水に添加されるスライムコントロール剤の薬注量を制御する方法において、
     該逆浸透膜装置のファウリングに関する指標値の変化速度に基づいて前記薬注量を制御することを特徴とする薬注制御方法。
  2.  前記逆浸透膜装置に供給される被処理水に存在するスライムコントロール剤の濃度を変更するよう、前記薬注量の制御を行うことを特徴とする請求項1に記載の薬注制御方法。
  3.  前記スライムコントロール剤の被処理水への添加が添加工程と休止工程とを有する間欠添加であって、
     該間欠工程と休止工程の少なくとも一方の時間を変更することで、前記薬注量の制御を行うことを特徴とする請求項1に記載の薬注制御方法。
  4.  前記指標値の変化速度は、ファウリングの進行速度と正の相関を有するものであって、
     設定されたサンプリング期間における前記指標値の平均変化速度が閾値A以下である場合、薬注量を規定量低下させることを特徴とする請求項1~3のいずれかに記載の薬注制御方法。
  5.  薬注量が異なる薬注レベルが複数レベル設定されており、制御開始当初は、予め設定した所定の薬注レベルで薬注を開始し、前記サンプリング期間が経過する度に、該サンプリング期間における指標値の平均変化速度と前記閾値Aとを比較し、
     該平均変化速度が前記閾値A以下である場合には、薬注量を1段階以上少ないレベルに低下させる工程を繰り返し実施し、
     前記平均変化速度が前記閾値Aを超えた場合には、その薬注レベルをそのまま維持するか、または薬注量を1段階以上多いレベルとし、この薬注レベルを最適薬注レベルとする最適薬注レベル探索モードを有することを特徴とする請求項4に記載の薬注制御方法。
  6.  前記最適薬注レベル探索モードで最適薬注レベルを決定した後、前記最適薬注レベルで運転を継続する安定運転モードを有することを特徴とする請求項5に記載の薬注制御方法。
  7. 前記安定運転モードでは、
     前記設定されたサンプリング期間が経過する度に、前記サンプリング期間における前記平均変化速度と前記閾値Aとを比較し、前記平均変化速度が前記閾値A以下である場合には、同じ薬注レベルでの運転を継続する工程を繰り返し実施し、同じ薬注レベルでの運転において、前記平均変化速度と前記閾値Aとの比較を連続してn回実施した場合には、薬注量を1段階以上少ないレベルに低下させることを特徴とする請求項6に記載の薬注制御方法。
  8.  薬注量が異なる薬注レベルが複数レベル設定されており、所定の薬注レベルで薬注を実施し、前記サンプリング期間が経過する度に、前記サンプリング期間における前記平均変化速度と前記閾値Aとを比較し、前記平均変化速度が前記閾値A以下である場合には、同じ薬注レベルでの運転を継続する工程を繰り返し実施し、同じ薬注レベルでの運転において、前記平均変化速度と前記閾値Aとの比較を連続してn回実施した場合には、薬注量を1段階以上少ないレベルに低下させることを特徴とする安定運転モードを有することを特徴とする請求項1~4のいずれかに記載の薬注制御方法。
  9.  前記安定運転モードでは、前記サンプリング期間が経過する毎に、前記平均変化速度と閾値Aとを比較し、前記平均変化速度が閾値Aよりも大きい場合には、薬注量をj段階多いレベル(jは1以上の整数)に増加させることを特徴とする請求項6~8のいずれかに記載の薬注制御方法。
  10.  前記安定運転モードでは、閾値を前記閾値Aよりも大きい閾値Bを設定し、
     前記サンプリング期間が経過する毎に前記平均変化速度と閾値Bとを対比し、
     前記平均変化速度が前記閾値Bよりも大きい場合には、薬注量をm段階多いレベル(mは2以上の整数)に増加させることを特徴とする請求項9に記載の薬注制御方法。
  11.  前記指標値は、前記逆浸透膜装置の非透過側の差圧又は給水圧であることを特徴とする請求項1~10のいずれかに記載の薬注制御方法。
  12.  前記指標値の平均変化速度は、ファウリングの進行速度と負の相関を有するものであって、前記指標値の設定されたサンプリング期間の平均変化速度が閾値A以上である場合、薬注量を規定量低下させることを特徴とする請求項1~3のいずれかに記載の薬注制御方法。
PCT/JP2020/002698 2019-01-28 2020-01-27 薬注制御方法 WO2020158645A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/421,734 US20220097007A1 (en) 2019-01-28 2020-01-27 Chemical dosing control method
CN202080008960.6A CN113272045B (zh) 2019-01-28 2020-01-27 药液注入控制方法
JP2020569607A JPWO2020158645A1 (ja) 2019-01-28 2020-01-27 薬注制御方法
SG11202107717RA SG11202107717RA (en) 2019-01-28 2020-01-27 Chemical dosing control method
EP20747983.3A EP3919162A4 (en) 2019-01-28 2020-01-27 METHOD OF CONTROLLING A CHEMICAL INFUSION
KR1020217023658A KR20210118844A (ko) 2019-01-28 2020-01-27 약주입 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-012435 2019-01-28
JP2019012435 2019-01-28

Publications (1)

Publication Number Publication Date
WO2020158645A1 true WO2020158645A1 (ja) 2020-08-06

Family

ID=71840034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002698 WO2020158645A1 (ja) 2019-01-28 2020-01-27 薬注制御方法

Country Status (7)

Country Link
US (1) US20220097007A1 (ja)
EP (1) EP3919162A4 (ja)
JP (1) JPWO2020158645A1 (ja)
KR (1) KR20210118844A (ja)
CN (1) CN113272045B (ja)
SG (1) SG11202107717RA (ja)
WO (1) WO2020158645A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149310A1 (ja) * 2022-02-01 2023-08-10 オルガノ株式会社 水処理方法および水処理装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224543A (ja) 2010-03-30 2011-11-10 Kobelco Eco-Solutions Co Ltd 水処理方法
JP2012210612A (ja) 2011-03-31 2012-11-01 Kurita Water Ind Ltd 薬注制御方法
WO2013005787A1 (ja) 2011-07-06 2013-01-10 栗田工業株式会社 膜分離方法
JP2014211327A (ja) * 2013-04-17 2014-11-13 栗田工業株式会社 水系のスライム付着状況のモニタリング方法及びモニタリング装置
JP2015042385A (ja) * 2013-08-26 2015-03-05 株式会社日立製作所 淡水化システム
WO2016158633A1 (ja) * 2015-03-31 2016-10-06 栗田工業株式会社 逆浸透膜処理システムの運転方法及び逆浸透膜処理システム
JP2016221449A (ja) * 2015-05-29 2016-12-28 株式会社日立製作所 水処理システム
JP2019012435A (ja) 2017-06-30 2019-01-24 キヤノンマーケティングジャパン株式会社 情報処理装置、情報処理システム、その制御方法及びプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2774307A1 (en) * 2009-10-22 2011-04-28 Asahi Kasei Chemicals Corporation Cleaning process for immersion-type separating membrane device, and cleaning system for immersion-type separating membrane device
JP5888365B2 (ja) * 2014-05-19 2016-03-22 栗田工業株式会社 循環冷却水系における冷却水処理薬剤の濃度調整方法、冷却排出水の回収方法及び水処理設備
KR20160074738A (ko) * 2014-12-17 2016-06-29 재단법인 포항산업과학연구원 역삼투 분리막 공정에서 사용하는 스케일 방지제 자동조절장치 및 방법
CN204360110U (zh) * 2015-01-27 2015-05-27 西安绿信环保实业科技有限公司 反渗透系统阻垢剂智能投加控制装置
SG10202009606PA (en) * 2016-04-08 2020-10-29 Toray Industries Water treatment method and water treatment device
JP2018114473A (ja) * 2017-01-19 2018-07-26 三浦工業株式会社 水処理システム
CN207619072U (zh) * 2017-10-31 2018-07-17 山东鲁东环保科技有限公司 一种中水反渗透在线诊断式自动化清洗装置
JP6389948B1 (ja) * 2017-12-13 2018-09-12 株式会社クボタ 水処理施設の管理装置、水処理施設の洗浄薬液発注システム、水処理施設の薬液発注方法及び水処理施設の薬液洗浄計画策定方法
EP3685908A1 (en) * 2019-01-22 2020-07-29 NOV Process & Flow Technologies AS Fouling type detection

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224543A (ja) 2010-03-30 2011-11-10 Kobelco Eco-Solutions Co Ltd 水処理方法
JP2012210612A (ja) 2011-03-31 2012-11-01 Kurita Water Ind Ltd 薬注制御方法
WO2013005787A1 (ja) 2011-07-06 2013-01-10 栗田工業株式会社 膜分離方法
JP2014211327A (ja) * 2013-04-17 2014-11-13 栗田工業株式会社 水系のスライム付着状況のモニタリング方法及びモニタリング装置
JP2015042385A (ja) * 2013-08-26 2015-03-05 株式会社日立製作所 淡水化システム
WO2016158633A1 (ja) * 2015-03-31 2016-10-06 栗田工業株式会社 逆浸透膜処理システムの運転方法及び逆浸透膜処理システム
JP2016221449A (ja) * 2015-05-29 2016-12-28 株式会社日立製作所 水処理システム
JP2019012435A (ja) 2017-06-30 2019-01-24 キヤノンマーケティングジャパン株式会社 情報処理装置、情報処理システム、その制御方法及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149310A1 (ja) * 2022-02-01 2023-08-10 オルガノ株式会社 水処理方法および水処理装置

Also Published As

Publication number Publication date
SG11202107717RA (en) 2021-08-30
CN113272045A (zh) 2021-08-17
US20220097007A1 (en) 2022-03-31
TW202041272A (zh) 2020-11-16
KR20210118844A (ko) 2021-10-01
JPWO2020158645A1 (ja) 2021-12-02
EP3919162A4 (en) 2022-09-14
EP3919162A1 (en) 2021-12-08
CN113272045B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
JP2015042385A (ja) 淡水化システム
US20170216777A1 (en) Method and apparatus for cleaning filter membrane, and water treatment system
US7803272B2 (en) Water treatment system
JP5998929B2 (ja) 膜分離方法
JP5822264B2 (ja) 膜分離活性汚泥処理装置の運転方法
KR20130140370A (ko) 압력조절 정삼투 방법 및 장치
JP2009183825A (ja) 水処理装置
CN105050697B (zh) 中空丝膜组件的清洗方法
KR20100023383A (ko) 초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리장치및 처리방법
WO2020158645A1 (ja) 薬注制御方法
JP4770726B2 (ja) 膜ろ過装置の運転条件の決定方法、それを用いた膜ろ過装置
JP2006015236A (ja) 再生水の製造装置および方法
JP5163760B2 (ja) 再生水の製造装置および方法
JP4984460B2 (ja) 分離膜の洗浄方法、ならびに有機性汚水処理装置
WO2019239515A1 (ja) 酸化装置、水処理装置、水処理方法、オゾン水生成方法、および、洗浄方法
JP5763844B2 (ja) 流体処理装置および流体処理方法
JP2009297611A (ja) 過酸化水素含有有機性水の処理方法および処理装置
JP2013043107A (ja) バラスト水処理装置およびバラスト水処理方法
TWI835982B (zh) 藥液注入控制方法
JP2024079811A (ja) 薬注制御方法
JP6611230B2 (ja) 膜洗浄制御方法、膜洗浄制御装置、及び水処理システム
KR101499539B1 (ko) 하이브리드형 분리막 세정시스템
JP2014240050A (ja) 生物接触濾過装置
JP5058383B2 (ja) 液体処理装置および液体処理方法
JPH09891A (ja) 膜モジュールによる原水の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569607

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020747983

Country of ref document: EP

Effective date: 20210830