WO2020158575A1 - プランジャーおよびコンタクトプローブ - Google Patents

プランジャーおよびコンタクトプローブ Download PDF

Info

Publication number
WO2020158575A1
WO2020158575A1 PCT/JP2020/002356 JP2020002356W WO2020158575A1 WO 2020158575 A1 WO2020158575 A1 WO 2020158575A1 JP 2020002356 W JP2020002356 W JP 2020002356W WO 2020158575 A1 WO2020158575 A1 WO 2020158575A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
test
plunger
layer
platinum group
Prior art date
Application number
PCT/JP2020/002356
Other languages
English (en)
French (fr)
Inventor
佐藤 賢一
Original Assignee
株式会社ヨコオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヨコオ filed Critical 株式会社ヨコオ
Priority to CN202080008922.0A priority Critical patent/CN113287024A/zh
Priority to KR1020217021462A priority patent/KR20210121010A/ko
Priority to JP2020569566A priority patent/JP7497303B2/ja
Priority to US17/421,731 priority patent/US20220082588A1/en
Publication of WO2020158575A1 publication Critical patent/WO2020158575A1/ja
Priority to JP2024059258A priority patent/JP2024071740A/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/06738Geometry aspects related to tip portion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • G01R1/06761Material aspects related to layers

Definitions

  • the present invention relates to a plunger and a contact probe including the plunger.
  • contact probes are used to electrically connect the inspection object and the inspection substrate.
  • the contact probe has a plunger movable along the longitudinal direction, and the tip of the plunger is elastically brought into contact with an electrode of an electronic component, which is an inspection object, to perform a current test (for example, , Patent Document 1).
  • One example of the purpose of the present invention is to make it less likely to cause wear or wear in the electrical inspection.
  • One aspect of the present invention is a plunger having a conductive base material layer and a platinum group layer containing a platinum group element as a main component and provided outside the base material layer.
  • Another aspect of the present invention is a contact probe including the above-mentioned plunger and a spring whose end contacts the plunger.
  • a plunger having a platinum group layer containing a platinum group element as a main component outside a conductive base material layer.
  • Platinum group elements such as ruthenium (Ru), iridium (Ir), rhodium (Rh), and osmium (Os) have a relatively high melting point of more than 2000 degrees and are unlikely to be melted by energization. Therefore, it is possible to prevent abrasion and damage from occurring in the energization inspection. Further, it is possible to obtain a plunger in which a solder component is less likely to adhere to the tip portion and is less likely to be worn or worn in an electric current inspection performed while the tip of the plunger is in contact with the solder material.
  • the figure which shows schematic structure of a contact probe The figure which shows the structure of the sample of the test object of a 1st test. The figure which shows the test conditions of a 1st test. An enlarged photograph of the sample of the first test. The figure which shows the measurement result of the amount of wear of the sample of a 1st test. The figure which shows an example of a definition of the amount of wear.
  • the electron micrograph of the sample of the 1st test The electron micrograph of the sample of the 1st test.
  • the electron micrograph of the sample of the 1st test The electron micrograph of the sample of the 1st test.
  • the figure which shows the qualitative-analysis result by EDX of the sample of the 2nd test The figure which shows the qualitative-analysis result by EDX of the sample of the 2nd test.
  • the figure which shows the qualitative-analysis result by EDX of the sample of the 2nd test The figure which shows the qualitative-analysis result by EDX of the sample of the 2nd test.
  • the figure which shows the qualitative-analysis result by EDX of the sample of the 2nd test The figure which shows the qualitative-analysis result by EDX of the sample of the 2nd test.
  • the figure which shows the structure of the sample of the test object of a 3rd test The figure which shows the test conditions of a 3rd test. An enlarged photograph of a sample of the third test.
  • the figure which shows the measurement result of the amount of wear of the sample of a 3rd test The figure which shows the measurement result of the contact resistance value of the sample of the 3rd test.
  • the figure which shows the measurement result of the contact resistance value of the sample of the 3rd test The figure which shows the measurement result of the contact resistance value of the sample of the 3rd test.
  • the figure which shows the structure of the sample of the test object of a 4th test The figure which shows the test conditions of a 4th test. An enlarged photograph of the sample of the fourth test.
  • the figure which shows the measurement result of the contact resistance value of the sample K of the 4th test The figure which shows the structure of the sample of the test object of a 5th test.
  • the figure which shows the test conditions of a 5th test An enlarged top view photograph of the sample of the fifth test.
  • the component image of palladium (Pd) by EDX in the 5th test The image of palladium (Pd) by EDX in the 5th test.
  • FIG. 1 is a diagram showing a schematic configuration of a contact probe 1 of the present embodiment, which is a schematic sectional view along the longitudinal direction.
  • the contact probe 1 has a first plunger 10, a second plunger 20, a spring 30, and a barrel 40.
  • the first plunger 10 comes into contact with the inspection target, and the second plunger 20 comes into contact with the inspection substrate.
  • the spring 30 urges the first plunger 10 and the second plunger 20 in a direction away from each other.
  • the barrel 40 holds the spring 30, the root of the first plunger 10 and the root of the second plunger 20 inside, and integrally supports the whole.
  • the direction for the contact probe 1 is determined as follows.
  • the longitudinal direction of contact probe 1 (vertical direction in FIG. 1) is referred to as “vertical direction”.
  • the up and down directions are “up” on the side of the first plunger 10 (direction from the second plunger 20 to the first plunger 10) and on the side of the second plunger 20 (from the first plunger 10 to the second plunger 10).
  • the direction toward the jar) is “down”.
  • the direction horizontal to the plane orthogonal to the vertical direction is referred to as "lateral direction”.
  • the first plunger 10 is formed of a conductive material.
  • the shape of the tip end portion that comes into contact with the inspection object is shown as a conical shape, but other shapes such as a pyramid shape, a spherical shape, a flat shape, and a crown shape may be used depending on the inspection object.
  • the first plunger 10 has a coating layer 12 formed on the outside of a plunger base material 11, and a platinum group layer 13 formed on the outside of the coating layer 12.
  • the plunger base material 11 is made of, for example, an alloy (palladium alloy) of palladium, silver, copper or the like, or a conductive material such as beryllium copper.
  • the coating layer 12 is a base plating layer containing gold (Au) or palladium (Pd) as a main component and formed to enhance the adhesion between the plunger base material 11 and the platinum group layer 13.
  • the platinum group layer 13 has a platinum group element such as ruthenium (Ru), iridium (Ir), rhodium (Rh), and osmium (Os) as a main component, and is a surface layer in the present embodiment.
  • the thickness of the platinum group layer 13 is preferably, for example, 0.02 ⁇ m or more, as shown by the test results described later.
  • the coating layer 12 and the platinum group layer 13 can be formed by surface treatment such as electroplating or hot dipping.
  • the coating layer 12 is formed on the entire outside of the plunger base material 11.
  • the platinum group layer 13 may be formed on the entire outside of the coating layer 12, but is formed only on the conical portion of FIG. 1 which is the tip end portion contacting the inspection object, or only on the conical tip portion. It may have been done.
  • the second plunger 20 has the same layered structure made of the same material as the first plunger 10.
  • the second plunger 20 may be made of a material different from that of the first plunger 10, or may have a layered configuration different from that of the first plunger 10.
  • the spring 30 is a coil spring made of piano wire or stainless wire.
  • the surface of the coil spring is often plated with gold (Au) on the outside of the base plating with nickel (Ni) in order to improve the adhesion.
  • the surface of the spring 30 is plated with gold (Au) while omitting the underlying plating with nickel (Ni).
  • the plating layer is formed thicker by the amount that the base plating with nickel (Ni) is omitted.
  • the spring 30 has an upper end abutting on the rear end (lower end in FIG. 1) of the first plunger 10 and a lower end abutting on the rear end (upper end in FIG. 1) of the second plunger 20. Held inside.
  • the spring 30 urges the first plunger 10 and the second plunger 20 in directions away from each other. Thereby, when the first plunger 10 contacts the inspection object and the second plunger 20 contacts the inspection substrate, both contacts can be elastically contacted while applying a predetermined contact force. ..
  • the barrel 40 is made of a conductive material such as copper or a copper alloy, and is formed into a hollow cylindrical shape that opens upward and downward.
  • the barrel 40 may be formed by electroforming (electrocasting) containing nickel (Ni) as a main component.
  • the opening diameters of the upper end and the lower end of the barrel 40 are formed to be slightly smaller than the inner diameter of the central portion of the barrel 40, and the first plunger 10 and the second plunger 20 are prevented from jumping apart from the barrel 40. doing.
  • a constriction is formed on the base side (rear end side, lower end in FIG. 1) of the first plunger 10, and an annular wedge portion provided inside the upper end of the barrel 40 is provided on the first plunger 10. It is fitted to the neck.
  • the second plunger 20 is formed with a stepped portion so that the root side (rear end side, upper end in FIG. 1) is thicker than the tip side. Thereby, the second plunger 20 is configured to be able to project to the barrel 40 up to a predetermined projecting limit.
  • the contact probe 1 is used, for example, by being attached to a resin socket.
  • the socket has a plurality of through holes, and the contact probe 1 is inserted into each of the through holes.
  • the tip side of the first plunger 10 of each contact probe 1 projects from one surface of the both sides of the socket, and the tip side of the second plunger 20 of each contact probe 1 projects from the other surface.
  • This socket is positioned and placed on the inspection board so that the tip of the second plunger 20 of each contact probe 1 contacts the electrode of the inspection board.
  • the socket is moved toward the object to be inspected or the object to be inspected is contacted with the tip of the first plunger 10 of each contact probe 1 so that the electrode of the electronic component, which is the object to be inspected, contacts. Move towards.
  • the inspection substrate and the inspection object are electrically connected via the second plunger 20, the barrel 40, and the first plunger 10 of the contact probe 1. After that, an electrical inspection of the inspection object is performed.
  • a sample of the first plunger 10 is prepared, and six kinds of tests (first to sixth tests) are performed on the prepared sample. went.
  • the sample is one in which a plating layer is formed on the outside of a plunger base material made of palladium alloy and beryllium copper.
  • the plating layer was formed by electroplating. In electroplating, the thickness of the plating layer can be adjusted by adjusting the plating time of immersion in the plating solution.
  • the plating layer containing a platinum group element as a main component corresponds to the platinum group layer 13 of the present embodiment.
  • the plunger base material is a thin cylindrical shape with a total length of 3.5 mm and an outer diameter of 0.58 mm, and the tip end portion that comes into contact with the inspection object is formed into a rounded conical shape with a tip angle of 60°. is there.
  • the conical length of the tip of the plunger base material is 0.452 mm.
  • the energization durability evaluation is to evaluate the sample by intermittently repeating ON/OFF of energization between the inspection object and the tip of the sample while keeping the tip of the sample in contact with the inspection object.
  • three types of samples Samples A, B, and C were prepared, and the current-carrying durability evaluation was performed on these.
  • FIG. 2 shows the configuration of the sample to be tested
  • FIG. 3 shows the test conditions of the first test.
  • sample A is for comparison, and a gold (Au) plating layer is formed on the plunger base material.
  • the platinum group layer 13 is not plated.
  • the thickness of the Au plating layer of Sample A is 1 ⁇ m.
  • Sample B is one in which a base layer of gold (strike plating) is applied to a plunger base material and then a plating layer of iridium (Ir) is formed.
  • the platinum group layer 13 of this embodiment is an iridium (Ir) layer.
  • the thickness of the Ir plating layer of Sample B is 0.5 ⁇ m.
  • Sample C is one in which a ruthenium (Ru) plating layer was formed after gold base plating (strike plating) was applied to the plunger base material.
  • the platinum group layer 13 of the present embodiment is a ruthenium (Ru) layer.
  • the thickness of the Ru plating layer of sample C is 1 ⁇ m.
  • energization conditions ⁇ and ⁇ are two kinds of energization conditions.
  • the energization condition ⁇ is a condition in which the applied current is 15 amperes (A) and the application time is 20 milliseconds (ms), and the energization is repeated 125,000 times.
  • the energization condition ⁇ is a condition in which the applied current is 15 amperes (A) and the application time is 20 milliseconds (ms), and the energization is repeated 25,000 times.
  • the energization conditions ⁇ and ⁇ are conditions in which the applied current and the application time are the same, but the number of times of energization is different.
  • test procedure is as follows.
  • a test of energization condition ⁇ was performed by continuously energizing for 12,500 times while keeping (20 ms) the same.
  • the inspection object to be brought into contact with the tip of the sample was a PPF (Pre Plated Frame) lead frame used as internal wiring of a semiconductor package.
  • FIG. 4 is an enlarged photograph of the tip portion of the sample viewed from the lateral direction.
  • nine photographs are shown as (1) to (9).
  • (1) to (3) are photographs of Sample A (Au plating).
  • (4) to (6) are photographs of Sample B (Ir plating).
  • (7) to (9) are photographs of Sample C (Ru plating).
  • (1), (4), and (7) are photographs of the initial state before the test.
  • (2), (5), and (8) are photographs of the state after the test under the energization condition ⁇ (the number of energizations is 12,500).
  • (3), (6), and (9) are photographs of the state after the test under the energization condition ⁇ (the number of energizations is 25,000).
  • sample A Al plating
  • sample B Ir plating
  • sample C Ru plating
  • FIG. 5 shows the measurement results of the amount of wear at the tip of each sample after the test under the energization condition ⁇ .
  • the amount of wear of the sample after the test under the energization condition ⁇ As shown in FIG. 5, the amount of wear of the sample A (Au plating) was 6 ⁇ m. On the other hand, the wear of the sample B (Ir plating) and the sample C (Ru plating) could not be confirmed in the dimension measurement, and the wear amount was 0 ⁇ m or almost 0 ⁇ m. Therefore, it was further confirmed whether or not the tip parts of the samples B and C were actually worn. An electron micrograph of the tip portion was taken in order to observe the state of the plating layer formed on the tip portion in detail.
  • FIG. 7 to 10 are electron micrographs of the tip of the sample with a magnification of 2000 times.
  • FIG. 7 is an electron micrograph of Sample B (Ir plating) after the test under the energization condition ⁇ (the number of energizations of 25,000), which is a top view of the tip portion viewed from above.
  • FIG. 8 is an electron micrograph of Sample B (Ir plating) after the test under the energization condition ⁇ (the number of energizations of 25,000 times), which is a photograph of the tip portion looking down obliquely from above.
  • FIG. 7 is an electron micrograph of Sample B (Ir plating) after the test under the energization condition ⁇ (the number of energizations of 25,000 times), which is a photograph of the tip portion looking down obliquely from above.
  • the number of energizations of 25,000
  • FIG. 9 is an electron micrograph of Sample C (Ru plating) after the test under the energization condition ⁇ (the number of energizations of 25,000), which is a top view of the tip portion viewed from above.
  • FIG. 10 is an electron micrograph of Sample C (Ru plating) after the test under the energization condition ⁇ (the number of energizations of 25,000 times), which is a photograph of the tip portion looking down obliquely from above.
  • FIGS. 7 and 8 it can be seen that in sample B (Ir plating), the Ir plating layer at the tip has cracks centered on the contact portion, but the thickness of the Ir plating layer is not reduced. ..
  • FIGS. 9 and 10 it can be seen that in sample C (Ru plating), the Ru plating layer at the tip portion is not cracked and the thickness of the Ru plating layer is not reduced. It can be seen that some kind of deposit (a whitish portion in the images of FIGS. 9 and 10) exists around the contact portion. This deposit looks thickest in the contact area.
  • FIG. 11 is a cross-sectional photograph of the tip portion of Sample C (Ru plating), which is an electron micrograph of a cross section along the up-and-down direction including the deposits formed on the surface of the Ru-plated layer.
  • This cross-sectional photograph is a photograph obtained by performing a cross-sectional analysis by FIB (Focused Ion Beam). Since the cross section of the tip portion was photographed with the left and right divided into three, the number of photographs in FIG. 11 is three. The three photographs are shown as the left image to the right image in FIG. Three photographs are arranged side by side with the photograph including the cross-section portion having the thickest thickness of the attached matter as the central image.
  • FIB Flucused Ion Beam
  • FIG. 11 it can be seen that a plurality of layers made of different materials are laminated. It is inferred that the outermost layer shown as the top layer is the layer corresponding to the deposit.
  • FIGS. 12B to 12F are the results of component analysis of the tip portion of sample C (Ru plating), which are component images corresponding to the central image of FIG. 11 for the cross-section portion with the thickest deposit.
  • This component image is an image obtained by performing component analysis by EDX.
  • the six images are shown as FIGS. 12A-12F.
  • FIG. 12A is an image of a cross-sectional portion obtained by a scanning electron microscope (SEM).
  • FIG. 12B is a component image of copper (Cu).
  • FIG. 12C is a component image of ruthenium (Ru).
  • FIG. 12D is a component image of palladium (Pd).
  • FIG. 12E is a component image of silver (Ag).
  • FIG. 12F is a component image of gold (Au).
  • the white or gray portion is the portion including the corresponding component, and the higher the lightness, the higher the density of the included component.
  • FIGS. 11 and 12A to 12F as the constituent elements of the sample C (Au plating) in the cross-sectional photograph of FIG. 11, a plunger base material made of a Pd alloy and an Au undercoat layer are formed in this order from the bottom. It can be seen that the plating layer and the Ru plating layer that is the platinum group layer 13 are sequentially stacked. Then, it can be seen that the deposit is deposited on the Ru plated layer. Voids (cavities) are seen in the Ru plating layer, but no remarkable cracking or melting is seen.
  • the deposit has gold (Au) as a main component and contains palladium (Pd) and silver (Ag).
  • Gold (Au) is a component contained in the base plating layer (Au plating layer), but gold (Au) is distributed in the portion corresponding to the Ru plating layer between the deposit and the base plating layer (Au plating layer). From this, it can be determined that the gold (Au) contained in the deposit is not exposed from the base plating layer (Au plating layer).
  • Palladium (Pd) and silver (Ag) are components contained in the plunger base material, but are not distributed in the portion corresponding to the base plating layer and the Ru plating layer between the deposit and the plunger base material.
  • palladium (Pd) and silver (Ag) contained in the deposit are not exposed from the plunger base material.
  • Copper (Cu) is distributed only in the portion of the plunger base material and is not distributed in other layers.
  • Ruthenium (Ru) is distributed only in the part of the Ru plated layer and is not distributed in other layers.
  • the deposits are the deposits of the platinum group layer 13, which is the Ru plating layer, without melting. It is presumed that the component of the PPF lead frame which was brought into contact with the tip portion of the sample as an inspection target was transferred and deposited on the tip portion of the sample by melting due to energization.
  • spark evaluation is to start energization in a state where the tip of the sample is in contact with the inspection object, and the tip of the sample is separated from the inspection object in the energized state to generate a spark at the tip of the sample, It is to evaluate the molten state at the location.
  • three types of samples (samples D, E, F) were prepared, and spark evaluation was performed on these samples.
  • FIG. 13 shows the configuration of the sample to be tested
  • FIG. 14 shows the test conditions for the second test.
  • sample D is for comparison, and the plunger base material is plated with gold (Au) or the platinum group layer 13. The layer is not formed.
  • the plunger base material was subjected to gold (Au) undercoating (strike plating), and then an iridium (Ir) plating layer was formed.
  • the thickness of the Ir plating layer of Sample E is 0.5 ⁇ m.
  • the sample E has the same structure as the sample B used in the first test, and the platinum group layer 13 of the present embodiment is an iridium (Ir) layer.
  • sample F a ruthenium (Ru) plated layer was formed after gold (Au) undercoating (strike plating) was applied to the plunger base material.
  • the thickness of the Ru plating layer of sample F is 1 ⁇ m.
  • the sample F has the same structure as the sample C used in the first test, and the platinum group layer 13 of the present embodiment is a ruthenium (Ru) layer.
  • the energization condition ⁇ is a condition for generating a spark with an applied current of 2 amperes (A).
  • the energization condition ⁇ is a condition for generating a spark with an applied current of 5 amperes (A).
  • the energization condition ⁇ is a condition for generating a spark with an applied current of 15 amperes (A).
  • the test object to be brought into contact with the tip of the sample was a gold alloy containing gold (Au) as a main component.
  • FIG. 15 to 22 show the results of the second test.
  • FIG. 15 is an electron micrograph of the tip of the sample, and each is a top view of the tip looking down from above.
  • ten photographs are shown as (1) to (10) in FIG.
  • (1) and (2) are photographs of sample D (without plating).
  • (3) to (6) are photographs of Sample E (Ir plating).
  • (7) to (10) are photographs of Sample F (Ru plating).
  • (3) and (7) are photographs of the initial state before the test.
  • (1), (4) and (8) are photographs of the state after the test under the energization condition ⁇ (applied current 2A).
  • (2), (5), and (9) are photographs of the state after the test under the energization condition ⁇ (applied current 5A).
  • FIG. 15 it can be seen that the contact portion is melted in any of the samples after the test.
  • the diameter of the melting mark generated at the contact portion was measured as the melting size.
  • FIG. 16 shows the measurement results of the melt size at the tip of the sample. As shown in FIG. 16, in the state after the test under the energization condition ⁇ (applied current 2A), the melt size of the sample D (without plating) is about 100 ⁇ m, and the melt size of the sample E (Ir plating) is about 15 ⁇ m. And the melt size of Sample F (Ru plating) was about 12 ⁇ m.
  • the melt size of sample D (without plating) is about 110 ⁇ m
  • the melt size of sample E (Ir plating) is about 23 ⁇ m
  • the melt size of sample F (Ru plating).
  • the energization condition ⁇ is an extremely severe condition as compared with the energization conditions ⁇ and ⁇ , and is the condition in which it was judged that the sample D without the platinum group layer 13 could not be tested and even the test was not performed. It can be seen from FIG. 15 that the states of Samples E and F after the test under the energization condition ⁇ have a smaller melting range than the state of Sample D after the test under the energization conditions ⁇ and ⁇ . The effect of the presence or absence of the platinum group layer 13 is remarkable.
  • FIG. 17 shows the results of component analysis of the melt generated at the tip of the sample after the test.
  • the horizontal axis is the energy value [keV] of the characteristic X-ray and the vertical axis is the count number, and the elements corresponding to the specific energy values are also shown in the graphs. It is shown that the higher the number of counts, the higher the amount contained in the melt.
  • FIG. 17 shows the results of component analysis of Sample E (Ir plating) after the test under the energization condition ⁇ (applied current 2A).
  • FIG. 18 shows the result of component analysis of Sample E (Ir plating) after the test under the energization condition ⁇ (applied current 5A).
  • FIG. 19 shows the result of component analysis of Sample E (Ir plating) after the test under the energization condition ⁇ (applied current 15 A).
  • FIG. 20 is a qualitative analysis result of Sample F (Ru plating) after the test under energization condition ⁇ (applied current 2A).
  • FIG. 21 is a qualitative analysis result of Sample F (Ru plating) after the test of energization condition ⁇ (applied current 5A).
  • FIG. 22 is a qualitative analysis result of the sample F (Ru plating) after the test under the energization condition ⁇ (applied current 15 A).
  • palladium Pd was added to the melt generated at the tip portion after the test under the energization condition ⁇ (applied current 2A) and the energization condition ⁇ (applied current 5A). Not included.
  • palladium Pd is contained in the molten material generated at the tip portion after the test of the energization condition ⁇ (applied current 15A).
  • Palladium Pd is the material of the sample plunger matrix.
  • the melt generated at the tips of the samples E and F after the test under the energization conditions ⁇ and ⁇ is a melt of the platinum group layer 13 (Ru plating layer or Ir plating layer). is there. It can be seen from the sparks that the platinum group layer 13 formed at the tip of the sample is melted, but not so melted that the plunger base material is exposed.
  • the samples E and F after the test of the energization condition ⁇ applied current 15 A
  • melting occurred in a wide range in the tip portion, and in addition to the melting of the platinum group layer 13 (Ru plating layer, Ir plating layer). It can be seen that the plunger base material is molten.
  • (C) Third test In the third test, current durability evaluation was performed.
  • the third test is different from the first test in that the test object to be brought into contact with the tip of the sample is a solder bar.
  • three types of samples (samples G, H, and I) were prepared, and the current-carrying durability evaluation was performed on these samples in the same manner as in the first test.
  • FIG. 23 shows the configuration of the sample to be tested
  • FIG. 24 shows the test conditions of the third test.
  • sample G is for comparison, and the plunger base material is plated with gold (Au) or the platinum group layer 13. The layer is not formed.
  • a plunger base material was subjected to gold (Au) undercoating (strike plating), and then an iridium (Ir) plating layer was formed. The thickness of the Ir plating layer is 0.5 ⁇ m.
  • the sample H has the same structure as the sample B used in the first test, and the platinum group layer 13 of the present embodiment is an iridium (Ir) layer.
  • a ruthenium (Ru) plating layer was formed after gold (Au) base plating (strike plating) was applied to the plunger base material.
  • the thickness of the Ru plated layer is 1 ⁇ m.
  • the sample I has the same structure as the sample C used in the first test, and the platinum group layer 13 of the present embodiment is a ruthenium (Ru) layer.
  • the energization conditions ⁇ , ⁇ , and ⁇ are conditions in which the application time and the number of times of energization are the same, but the applied current is different.
  • the energization condition ⁇ is a condition in which the applied current is 5 amperes (A) and the application time is 20 milliseconds (ms), and the energization is repeated 125,000 times.
  • the energization condition ⁇ is a condition in which the energization is repeated 125,000 times with an applied current of 8 amperes (A) and an application time of 20 milliseconds (ms).
  • the energization condition ⁇ is a condition in which the applied current is 12 amperes (A) and the application time is 20 milliseconds (ms), and the energization is repeated 125,000 times.
  • FIG. 25 to 27 show the results of the third test.
  • FIG. 25 is an enlarged photograph of the tip of the sample as seen from the lateral direction.
  • 12 photographs are shown as (1) to (12).
  • (1) to (4) are photographs of Sample G (without plating).
  • (5) to (8) are photographs of Sample H (Ir plating).
  • (9) to (12) are photographs of Sample I (Ru plating).
  • (1), (5), and (9) are photographs of the initial state before the test.
  • (2), (6) and (10) are photographs of the state after the test under the energization condition ⁇ (applied current 5A).
  • (3), (7), and (11) are photographs of the state after the test under the energization condition ⁇ (applied current 8A).
  • (4), (8), and (12) are photographs of the state after the test under the energization condition ⁇ (applied current 12A).
  • FIG. 26 shows the measurement results of the amount of wear at the tip of each sample.
  • FIG. 26 is a graph in which the horizontal axis represents the applied current corresponding to the energization condition and the vertical axis represents the amount of wear.
  • the amount of wear of the tip portion measured in the initial state (applied current corresponds to 0 ampere (A)) and the state after each test of energization conditions ⁇ , ⁇ , and ⁇ is plotted. Is shown.
  • a fitting curve for each plot is tentatively shown.
  • FIG. 27A to 27C are measurement results of the contact resistance value at the tip of each sample.
  • Three graph sets are shown in FIG. 27A to FIG. 27C with one set of three graphs.
  • FIG. 27A is a set of graphs for a test of energization condition ⁇ .
  • FIG. 27B is a set of graphs regarding the test of the energization condition ⁇ .
  • FIG. 27C is a set of graphs for the test under the energization condition ⁇ .
  • the three graphs in each graph set are graphs for samples G, H, and I in order from the left.
  • Each graph is a graph in which the horizontal axis represents the number of energizations and the vertical axis represents the contact resistance value, and the contact resistance value measured at each energization is shown as one plot.
  • the contact resistance value in any of the graphs, the contact resistance value hardly changes with the increase in the number of times of energization.
  • the contact resistance value does not increase (deteriorate) due to repeated energization.
  • the contact resistance values of Samples H and I are compared with the contact resistance value of Sample G (without plating) under any of the energization conditions ⁇ , ⁇ , and ⁇ , they are substantially the same or slightly smaller. Therefore, by forming the platinum group layer 13, which is the Ru plating layer or the Ir plating layer, at the tip portion that comes into contact with the inspection object, the contact resistance value does not increase (deteriorate), and it is basically a plunger. There is no problem in performance. As shown in FIG. 26, the tip end portion of the sample wears due to repeated energization, but this wear does not increase (deteriorate) the contact resistance value.
  • Example D Fourth test
  • the current-carrying durability evaluation was performed.
  • the difference between the fourth test and the first test is that a sample having a thinner Ru plating layer was used.
  • samples J and K two types of samples (samples J and K) were prepared, and the current-carrying durability evaluation was performed on them in the same manner as in the first test.
  • FIG. 28 shows the configuration of the sample to be tested
  • FIG. 29 shows the test conditions of the fourth test.
  • a ruthenium (Ru) plating layer was formed after gold (Au) undercoating (strike plating) was applied to the tip of the plunger base material.
  • the thickness of the Ru plated layer is 20.8 nm (0.0208 ⁇ m).
  • a ruthenium (Ru) plating layer was formed after gold (Au) undercoating (strike plating) was applied to the tip of the plunger base material.
  • the thickness of the Ru plating layer is 185 nm (0.185 ⁇ m). It can be said that any of the samples has the platinum group layer 13 of the present embodiment as a ruthenium (Ru) layer.
  • the energization condition ⁇ is a condition in which energization is repeated 25,000 times with an applied current of 15 amperes (A) and an application time of 20 milliseconds (ms).
  • This energization condition ⁇ is the same as the energization condition ⁇ of the first test.
  • the inspection target is the PPF lead frame as in the first test.
  • FIG. 30 and 31A to 31C are the results of the fourth test.
  • FIG. 30 is an enlarged photograph of the tip of the sample viewed from the lateral direction.
  • four photographs are shown as (1) to (4).
  • (1) and (2) are photographs of Sample J.
  • (3) and (4) are photographs of Sample K.
  • (1) and (3) are photographs of the initial state before the test.
  • (2) and (4) are photographs of the state after the test under the energization condition ⁇ (the number of energizations is 25,000). Comparing the state after the test under the current-carrying condition ⁇ with the initial state, no particular wear was observed at the tip of each of Samples J and K.
  • FIG. 31A to 31C show the measurement results of the contact resistance value of each sample.
  • FIG. 31A is a graph of the contact resistance value of sample C used in the first test.
  • FIG. 31B is a graph of the contact resistance value of sample J of the fourth test.
  • FIG. 31C is a graph of the contact resistance value of sample K.
  • the graph of Sample C in FIG. 31A is for comparison, and is a sample in which the thickness of the Ru plating layer is 1 ⁇ m.
  • the horizontal axis represents the number of times of energization and the vertical axis represents the contact resistance value, and the contact resistance value measured for each energization is shown as one plot.
  • the contact resistance value in any of Samples C, J, and K, the contact resistance value hardly changed due to the increase in the number of times of energization. That is, the contact resistance value hardly increases (deteriorates) due to repeated energization.
  • the difference is about several m ⁇ , which is almost the same. Therefore, even if the thickness of the Ru plated layer is reduced to 20 nm, the contact resistance value does not increase (deteriorate).
  • the fifth test is different from the above-described first to fourth tests and is a test using a sample in which a plunger base material is a beryllium copper (BeCu) alloy.
  • a plunger base material is a beryllium copper (BeCu) alloy.
  • Sample L one type of sample was prepared, and the current-carrying durability evaluation for these was performed in the same manner as in the first test.
  • FIG. 32 shows the configuration of the sample to be tested
  • FIG. 33 shows the test conditions of the fifth test.
  • ruthenium (Ru) was added after the base plating (strike plating) of palladium (Pd) was applied to the tip of the plunger base material made of beryllium copper (BeCu) alloy. A plated layer is formed. The thickness of the Ru plated layer is 1.0 ⁇ m.
  • the energization condition ⁇ is a condition that the energization is repeated 25,000 times with an applied current of 15 amperes (A) and an application time of 20 milliseconds (ms).
  • This energization condition ⁇ is the same as the energization condition ⁇ of the first test.
  • the inspection object is the PPF lead frame as in the first test.
  • FIGS. 34A to 39 show the results of the fifth test.
  • 34A and 34B are enlarged photographs of the tip portion of sample L in the initial state.
  • FIG. 34A is a top view photograph of the tip portion viewed from above.
  • FIG. 34B is a side view of the tip portion viewed from the lateral direction.
  • 35A and 35B are enlarged photographs of the tip portion of sample L after the test under the energization condition ⁇ .
  • FIG. 35A is a top view photograph of the tip portion viewed from above.
  • FIG. 35B is a side view of the tip portion viewed from the lateral direction.
  • FIG. 36 is a further electron micrograph of the tip portion of the sample L after the test under the energization condition ⁇ , which is a scanning electron microscope (SEM) photographed image. According to FIG. 36, it is found that the Ru plated layer formed at the tip of the sample L is not cracked or melted, and that some kind of deposit is deposited on the surface of this Ru plated layer.
  • FIG. 37A to FIG. 37F are component images obtained by EDX of the deposit. The six images are shown as FIGS. 37A-37F.
  • FIG. 37A is an image by a scanning electron microscope (SEM).
  • FIG. 37B is a component image of gold (Au).
  • FIG. 37C is a component image of palladium (Pd).
  • FIG. 37D is a ruthenium (Ru) component image.
  • FIG. 37E is a component image of nickel (Ni).
  • FIG. 37F is a component image of copper (Cu).
  • the white or gray portion is the portion including the corresponding component, and the higher the lightness, the higher the density of the included component.
  • FIG. 38 is a graph showing the result of qualitative analysis by EDX of deposits.
  • the horizontal axis represents the energy value [keV] of the characteristic X-ray and the vertical axis represents the number of counts, and the elements corresponding to the specific energy value are also shown in the graph.
  • the deposit has palladium (Pd) and gold (Au) as main components, and does not contain ruthenium (Ru). Therefore, it is presumed that the adhered matter was not the one in which the Ru plating layer was melted, but the one in which the component of the PPF lead frame brought into contact with the tip of the sample as the inspection object was transferred and deposited.
  • Pd palladium
  • Au gold
  • Ru ruthenium
  • FIG. 39 shows the measurement result of the contact resistance value of the tip portion of the sample L.
  • the horizontal axis represents the number of times of energization and the vertical axis represents the contact resistance value, which is a graph showing the contact resistance value measured for each energization as one plot.
  • the contact resistance value increased slightly immediately after the start of energization (up to about 2,000 times), but after that, the contact resistance value hardly changed even if the number of energizations increased. That is, the contact resistance value does not increase (deteriorate) due to repeated energization, and there is no problem in the basic performance of the plunger.
  • (F) Sixth test In the sixth test, the current-carrying durability evaluation was performed.
  • the sixth test is different from the third test in that the sample is energized for a long time with the tip of the sample being in contact with the solder material.
  • six types of samples (samples P, Q, R, S, T, and U) were prepared, and the current-carrying durability evaluation was performed on them.
  • FIG. 40 shows the configuration of the sample to be tested
  • FIG. 41 shows the test conditions of the sixth test.
  • the samples P, Q, R, S, T and the sample U have different plunger base materials.
  • the plunger base material of the samples P, Q, R, S and T is a palladium (Pd) alloy.
  • the plunger base material of sample U is a beryllium copper (BeCu) alloy.
  • the sample P is for comparison in which the tip portion is not surface-treated and is not plated.
  • Sample Q is a plunger base material with a DLC (Diamond-Like Carbon) coating (also called a DLC film coating) applied to the tip.
  • Sample R is one in which a plated layer of rhodium (Rh) is formed on the tip of the plunger base material. The thickness of the Rh plating layer is 1.0 ⁇ m.
  • Sample S is one in which a ruthenium (Ru) plating layer is formed on the tip of the plunger base material. The thickness of the Ru plated layer is 1.0 ⁇ m.
  • Sample T is one in which a gold (Au) plating layer is formed on the tip of the plunger base material. The thickness of the Au plating layer is 1.0 ⁇ m.
  • Sample U has three plating layers of nickel/palladium/ruthenium (Ni/Pd/Ru) formed on the tip of the plunger base material.
  • the thickness of the Ni/Pd/Ru plating layer is 1.0 ⁇ m.
  • the energization condition ⁇ is set such that the applied current is 1 ampere (A), the application time is 72 hours (h), and the ambient temperature is 120 degrees Celsius, and the tip of the sample is continuously brought into contact with the inspection object to energize. It is a condition.
  • the inspection object is a solder material (solder block), which is a so-called low melting point solder.
  • 42A to 42F are the results of the sixth test. It is an electron micrograph of the state of each sample after the test, and is a photograph looking down the tip end from diagonally above.
  • 42A is a photograph of sample P
  • FIG. 42B is a photograph of sample Q
  • FIG. 42C is a photograph of sample R.
  • 42D is a photograph of sample S
  • FIG. 42E is a photograph of sample T
  • FIG. 42F is a photograph of sample U.
  • FIGS. 42B to 42F it can be seen that the samples Q, R, S, T, and U have no wear on the tip.
  • Sn (tin) is attached to the tip portion of the sample T, but the solder is not eaten and the tip portion is not worn.
  • Sample B is a plunger in which a plating layer (Ir plating layer) made of iridium (Ir) having a thickness of 0.5 ⁇ m is formed.
  • Sample C is a plunger having a plated layer (Ru plated layer) made of ruthenium (Ru) with a thickness of 1.0 ⁇ m.
  • a plating layer made of iridium (Ir) having a thickness of 0.5 ⁇ m (Ir plating layer) or a plating layer made of Ru ruthenium (Ru) having a thickness of 1.0 ⁇ m ( Ru plating layer) has resistance to repeated energization of high current.
  • Sample C having a Ru plating layer with a thickness of 1.0 ⁇ m formed on it has neither resistance to melting nor cracking at its tip, and thus has better resistance to repeated energization.
  • a plating layer made of iridium (Ir) having a thickness of 0.5 ⁇ m or a plating layer (Ru) made of ruthenium (Ru) having a thickness of 1.0 ⁇ m.
  • Plating layer has sufficient spark resistance.
  • the sample F having the Ru plated layer has a smaller melt size than the sample E having the Ir plated layer, and thus has better resistance to sparks.
  • each of samples H and I which are the same samples as the samples B and C of the first test, is 125,000 at a high current of 12A.
  • the amount of wear of the tip portion after repeating the flow of the same times was the same or decreased as compared with the sample G in which the plating layer was not formed.
  • Ir plating layer a plating layer of iridium (Ir) having a thickness of 0.5 ⁇ m
  • Ru ruthenium
  • both Sample J having a Ru plating layer having a thickness of 20.8 nm and Sample K having a Ru plating layer having a thickness of 185 nm formed 25,000 times at a high current of 15 A. After repeated flow of the above, no particular wear was observed at the tip. It was also confirmed that the contact resistance value between the tip of the sample and the inspection object does not increase (deteriorate) due to repeated energization.
  • the platinum group layer 13 of the first plunger 10 may have a thickness of 0.02 ⁇ m or more.
  • the platinum group layer 13 made of a Ru plating layer or an Ir plating layer may be formed at the tip end of the plunger base material 11. It was confirmed that the material is not limited.
  • tin (Sn) does not adhere to the tip end portion that comes into contact with the solder material even in a high-temperature and long-time energization inspection of the solder material. It was confirmed that it was not easily worn or damaged.
  • the plungers (the first plunger 10 and the second plunger 20) of the contact probe 1 of the present embodiment have a configuration in which abrasion and wear are less likely to occur in the energization inspection.
  • the platinum group layer 13 is preferably formed of a platinum group element as a main component, and more preferably formed of ruthenium (Ru) as a main component. Since the contact probe 1 is less likely to be worn or worn during the energization inspection, it is possible to reduce the time and cost for replacement work when used for the energization inspection.
  • tin (Sn) is attached to the tip portion in the current inspection when the tip portion of the plunger is in contact with the solder material. It was confirmed that the structure is resistant to abrasion and wear.
  • the platinum group layer 13 is preferably formed of a platinum group element as a main component, and more preferably formed of ruthenium (Ru) or rhodium (Rh) as a main component.
  • the contact probe 1 is a contact probe 1 in which no tin (Sn) adheres to the tip portion and wear or damage does not easily occur in the electricity inspection performed with the tip portion of the plunger in contact with the solder material. The labor and cost of replacement work can be reduced.
  • the example of the platinum group element forming the platinum group layer 13 is ruthenium (Ru), iridium (Ir), or rhodium (Rh).
  • the platinum group layer 13 may be made of osmium (Os).
  • the platinum group layer 13 may be formed outside the plunger base material 11 without forming the coating layer 12.
  • One aspect of the present disclosure is a plunger having a conductive base material layer and a platinum group layer containing a platinum group element as a main component, which is provided outside the base material layer.
  • a plunger having a platinum group layer containing a platinum group element as a main component outside a conductive base material layer.
  • Platinum group elements such as ruthenium (Ru), iridium (Ir), rhodium (Rh), and osmium (Os) have a relatively high melting point of more than 2000 degrees and are unlikely to be melted by energization. Therefore, it is possible to prevent abrasion and damage from occurring in the energization inspection. Further, it is possible to obtain a plunger in which a solder component is less likely to adhere to the tip portion and is less likely to be worn or worn in an electric current inspection performed while the tip of the plunger is in contact with the solder material.
  • the base material may be the base material layer, and the platinum group layer may be provided outside the base material layer at the tip portion that comes into contact with the inspection object.
  • the coating layer containing gold (Au) or palladium (Pd) as a main component may be provided outside the base material layer, and the platinum group layer may be provided outside the coating layer at the tip portion.
  • the adhesion between the base material layer and the platinum group layer can be enhanced by the coating layer having gold or palladium as a main component, which is provided between the base material layer and the platinum group layer.
  • the platinum group layer may be a surface layer.
  • the formation of the platinum group layer can be the final step of manufacturing the plunger, so that, for example, only one step needs to be added to the end of the conventional manufacturing step of the plunger. Further, by using the platinum group layer as the surface layer, it is possible to provide a plunger that is less likely to wear or wear as compared with the case where the platinum group layer is not used as the surface layer.
  • the platinum group layer may have a thickness of 0.02 ⁇ m or more.
  • the thickness of the platinum group layer is 0.02 ⁇ m or more, it is possible to realize a plunger that is less likely to wear or wear even when used for current inspection.
  • the platinum group layer may contain iridium (Ir) as a main component.
  • the platinum group layer can be formed with iridium (Ir) as the main component.
  • the platinum group layer may contain ruthenium (Ru) as a main component.
  • the platinum group layer can be formed with ruthenium (Ru) as the main component.
  • Ru ruthenium
  • Ir iridium
  • the platinum group layer may contain rhodium (Rh) as a main component.
  • the platinum group layer can be formed with rhodium (Rh) as the main component. Further, it is possible to obtain a plunger in which a solder component is less likely to adhere to the tip portion and is less likely to be worn or worn in an electric current inspection performed while the tip of the plunger is in contact with the solder material.
  • Rh rhodium
  • the platinum group layer may contain osmium (Os) as a main component.
  • the platinum group layer can be formed with osmium (Os) as the main component.
  • a contact probe including any of the above-mentioned plungers and a spring whose end contacts the plunger may be configured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

プランジャー(10)は、導電性の基材層(11)と、前記基材層の外側に設けられた白金族元素を主成分とする白金族層(13)と、を有する。プランジャーは、母材が前記基材層であり、検査対象物に接触する先端部において、前記基材層の外側に前記白金族層を有する。コンタクトプローブ(1)は、前記プランジャーと、端部が前記プランジャーに当接するスプリング(40)と、を備える。

Description

プランジャーおよびコンタクトプローブ
 本発明は、プランジャーおよびプランジャーを備えるコンタクトプローブに関する。
 半導体素子を用いた集積回路や大規模集積回路といった電子部品の電気的特性の検査では、検査対象物と検査用基板とを電気的に接続するためにコンタクトプローブが用いられている。コンタクトプローブは、長手方向に沿って移動可能なプランジャーを有しており、このプランジャーの先端部を、検査対象物である電子部品の電極に弾性的に接触させて通電検査を行う(例えば、特許文献1参照)。
特開2015-215223号公報
 通電検査において、検査対象物に接触させるプランジャーの先端部で摩耗や損耗が発生するという問題が発生している。プランジャーの先端部が摩耗や損耗すると、プランジャーの先端部と検査対象物との間の接触抵抗値が不安定となり、通電検査を正確に行うことが困難となる。近年では、半導体部品の高電流化に伴う検査電流の高電流化によって、この問題がより顕著になっている。
 本発明の目的の一例は、通電検査において摩耗や損耗を発生しにくくすること、である。
 本発明の1つの態様は、導電性の基材層と、前記基材層の外側に設けられた白金族元素を主成分とする白金族層と、を有したプランジャーである。
 本発明の別の態様は、上述のプランジャーと、端部が前記プランジャーに当接するスプリングと、を備えたコンタクトプローブである。
 本態様によれば、導電性の基材層の外側に、白金族元素を主成分とする白金族層を有するプランジャーを実現することができる。ルテニウム(Ru)やイリジウム(Ir)、ロジウム(Rh)、オスミウム(Os)といった白金族元素は、融点が凡そ2000度超と比較的高く、通電による溶融が発生しにくい。そのため、通電検査において摩耗や損耗を発生しにくくできる。さらに、プランジャーの先端を半田材料に接触させた状態で行う通電検査において、先端部に半田成分が付着しにくく摩耗や損耗も生じにくいプランジャーとすることができる。
コンタクトプローブの概略構成を示す図。 第1試験の試験対象のサンプルの構成を示す図。 第1試験の試験条件を示す図。 第1試験のサンプルの拡大写真。 第1試験のサンプルの損耗量の測定結果を示す図。 損耗量の定義の一例を示す図。 第1試験のサンプルの電子顕微鏡写真。 第1試験のサンプルの電子顕微鏡写真。 第1試験のサンプルの電子顕微鏡写真。 第1試験のサンプルの電子顕微鏡写真。 第1試験のサンプルのFIBによる断面解析写真。 第1試験のサンプルのSEMによる断面画像。 第1試験のサンプルのEDXによる銅(Cu)の成分画像。 第1試験のサンプルのEDXによるルテニウム(Ru)の成分画像。 第1試験のサンプルのEDXによるパラジウム(Pd)の成分画像。 第1試験のサンプルのEDXによる銀(Ag)の成分画像。 第1試験のサンプルのEDXによる金(Au)の成分画像。 第2試験の試験対象のサンプルの構成を示す図。 第2試験の試験条件を示す図。 第2試験のサンプルの電子顕微鏡写真。 第2試験のサンプルの溶融サイズを示す図。 第2試験のサンプルのEDXによる定性分析結果を示す図。 第2試験のサンプルのEDXによる定性分析結果を示す図。 第2試験のサンプルのEDXによる定性分析結果を示す図。 第2試験のサンプルのEDXによる定性分析結果を示す図。 第2試験のサンプルのEDXによる定性分析結果を示す図。 第2試験のサンプルのEDXによる定性分析結果を示す図。 第3試験の試験対象のサンプルの構成を示す図。 第3試験の試験条件を示す図。 第3試験のサンプルの拡大写真。 第3試験のサンプルの損耗量の測定結果を示す図。 第3試験のサンプルの接触抵抗値の測定結果を示す図。 第3試験のサンプルの接触抵抗値の測定結果を示す図。 第3試験のサンプルの接触抵抗値の測定結果を示す図。 第4試験の試験対象のサンプルの構成を示す図。 第4試験の試験条件を示す図。 第4試験のサンプルの拡大写真。 第4試験における比較用サンプルの接触抵抗値の測定結果を示す図。 第4試験のサンプルJの接触抵抗値の測定結果を示す図。 第4試験のサンプルKの接触抵抗値の測定結果を示す図。 第5試験の試験対象のサンプルの構成を示す図。 第5試験の試験条件を示す図。 第5試験のサンプルの拡大上面写真。 第5試験のサンプルの拡大側面写真。 第5試験のサンプルの拡大上面写真。 第5試験のサンプルの拡大側面写真。 第5試験のサンプルの電子顕微鏡写真。 第5試験におけるSEMによる画像。 第5試験におけるEDXによる金(Au)の成分画像。 第5試験におけるEDXによるパラジウム(Pd)の成分画像。 第5試験におけるEDXによるルテニウム(Ru)の成分画像。 第5試験におけるEDXによるニッケル(Ni)の成分画像。 第5試験におけるEDXによる銅(Cu)の成分画像。 第5試験におけるEDXによる定性分析結果を示す図。 第5試験における接触抵抗値の測定結果を示す図。 第6試験の試験対象のサンプルの構成を示す図。 第6試験の試験条件を示す図。 第6試験のサンプルPの電子顕微鏡写真。 第6試験のサンプルQの電子顕微鏡写真。 第6試験のサンプルRの電子顕微鏡写真。 第6試験のサンプルSの電子顕微鏡写真。 第6試験のサンプルTの電子顕微鏡写真。 第6試験のサンプルUの電子顕微鏡写真。
 実施形態の一例について説明する。なお、以下に説明する実施形態によって本発明が限定されるものではなく、本発明を適用可能な形態が以下の実施形態に限定されるものでもない。
[構成]
 図1は、本実施形態のコンタクトプローブ1の概略構成を示す図であり、長手方向に沿った概略断面図を示している。図1によれば、コンタクトプローブ1は、第1プランジャー10と、第2プランジャー20と、スプリング30と、バレル40とを有する。第1プランジャー10は、検査対象物に接触するものであり、第2プランジャー20は、検査用基板に接触するものである。スプリング30は、第1プランジャー10と第2プランジャー20とを互いに離れる方向へ付勢する。バレル40は、スプリング30と、第1プランジャー10の根元および第2プランジャー20の根元と、を内部に保持して全体を一体として支持する。
 ここで、コンタクトプローブ1に対する方向を次のように定める。コンタクトプローブ1の長手方向(図1中における上下方向)を“上下方向”とする。上下の向きは、第1プランジャー10の側(第2プランジャー20から第1プランジャー10に向かう方向)を“上”、第2プランジャー20の側(第1プランジャー10から第2プランジャーに向かう方向)を“下”とする。また、上下方向に直交する面と水平な方向を“横方向”とする。
 第1プランジャー10は、導電性の材料で形成される。図1では、検査対象物に接触する先端部の形状を円錐形状として示しているが、例えば、角錐形状や球面形状、フラット形状、クラウン形状といった検査対象物に応じた他の形状としてもよい。
 図1の右側の部分拡大図に示すように、第1プランジャー10は、プランジャー母材11の外側に被覆層12が形成され、この被覆層12の外側に白金族層13が形成されている。プランジャー母材11は、例えば、パラジウム,銀,銅等の合金(パラジウム合金)や、ベリリウム銅といった導電性の材料から形成されている。被覆層12は金(Au)又はパラジウム(Pd)を主成分とし、プランジャー母材11と白金族層13との密着性を高めるために形成される下地めっき層である。白金族層13はルテニウム(Ru)やイリジウム(Ir)、ロジウム(Rh)、オスミウム(Os)等の白金族元素を主成分とし、本実施形態では表面層である。白金族層13の厚みは、後述する試験結果が示すように、例えば0.02μm以上であると好適である。被覆層12および白金族層13の形成には、例えば、電気めっきや溶融めっき等の表面処理で実現できる。
 本実施形態では、被覆層12は、プランジャー母材11の外側全体に形成されている。白金族層13は、被覆層12の外側全体に形成されていてもよいが、検査対象物に接触する先端部である図1の錐状部分のみ、或いは、錐状のさらに突端部分にのみ形成されていてもよい。
 第2プランジャー20は、第1プランジャー10と同じ材料による同じ層状構成を有する。第2プランジャー20は、第1プランジャー10と異なる材料で構成されていても良いし、第1プランジャー10と異なる層状構成であっても良い。
 スプリング30は、ピアノ線やステンレス線により形成されたコイルスプリングである。コイルスプリングの表面では、密着性を高めるために、ニッケル(Ni)による下地めっきの外側に金(Au)によるめっき処理が施されていることが多い。しかし、スプリング30の表面では、ニッケル(Ni)による下地めっきを省略して、金(Au)によるめっき処理が施されている。この金(Au)によるめっき処理は、ニッケル(Ni)による下地めっきを省略した分、めっき層を厚く形成している。スプリング30は、上端が第1プランジャー10の後端部(図1では下端)に当接し、下端が第2プランジャー20の後端部(図1では上端)に当接するように、バレル40の内部に保持されている。スプリング30は、第1プランジャー10および第2プランジャー20を互いに離れる方向に付勢する。これにより、第1プランジャー10が検査対象物に接触し、且つ、第2プランジャー20が検査用基板に接触する際に、両方の接触に所定の接触力を与えながら弾性接触させることができる。
 バレル40は、銅や銅合金などの導電性の材料により、上方および下方に開口した中空の筒形状に形成されている。バレル40は、ニッケル(Ni)を主成分とする電鋳(電気鋳造)により形成しても良い。バレル40の上端および下端の開口径は、バレル40の中央部の内径よりも若干小さく形成されており、第1プランジャー10および第2プランジャー20がバレル40から離れて飛び出てしまうことを規制している。第1プランジャー10の根元側(後端部側、図1では下端部)にはくびれ部が形成されており、バレル40の上端内側に設けられた環状のくさび部が第1プランジャー10のくびれ部に嵌合されている。これにより、バレル40に対して、第1プランジャー10は突出できないように制限されている。第2プランジャー20は、先端側に比較して根元側(後端部側、図1では上端部)が太くなるように段差部を設けて形成されている。これにより、バレル40に対して、第2プランジャー20は所定の突出制限まで突出が可能に構成されている。
 コンタクトプローブ1は、例えば樹脂製のソケットに装着されて使用される。ソケットは、複数の貫通孔を備えており、各貫通孔にコンタクトプローブ1が挿入される。ソケットの両面のうち、一方の面には各コンタクトプローブ1の第1プランジャー10の先端側が突出し、他方の面には各コンタクトプローブ1の第2プランジャー20の先端側が突出する。このソケットは、各コンタクトプローブ1の第2プランジャー20の先端部が検査用基板の電極に接触するように、検査用基板の上に位置決めして載置される。各コンタクトプローブ1の第1プランジャー10の先端部に対して、検査対象物である電子部品の電極が接触するように、ソケットを検査対象物に向けて移動させる、或いは、検査対象物をソケットに向けて移動させる。これにより、検査用基板と検査対象物との間が、コンタクトプローブ1の第2プランジャー20、バレル40、第1プランジャー10を介して電気的に接続される。その後、検査対象物の電気的な検査が実施される。
[試験]
 本実施形態のプランジャー(第1プランジャー10および第2プランジャー20)の白金族層13について、作用効果を確認するための様々な比較試験を行った。以下では、これらの試験結果の説明を通じて、白金族層13の構成や、本実施形態のプランジャーの作用効果について説明する。
 第1プランジャー10が検査対象物と接触する際の摩耗や損耗を評価するため、第1プランジャー10のサンプルを作成し、作成したサンプルに対する6種類の試験(第1~第6試験)を行った。サンプルは、パラジウム合金およびベリリウム銅を材料としたプランジャー母材の外側に、めっき層を形成したものである。めっき層は、電気めっきによって形成した。電気めっきでは、めっき液に浸漬させるめっき時間を調整することで、めっき層の厚みを調整することができる。白金族元素を主成分とするめっき層が、本実施形態の白金族層13に該当することとなる。プランジャー母材は、全長3.5mm、外径0.58mmの細い円柱形状であって、検査対象物と接触する先端部を、先端角度60°の丸みを帯びた円錐形状に形成したものである。プランジャー母材の先端部の円錐形状の長さは0.452mmである。以下、各試験について説明する。
(A)第1試験
 第1試験では通電耐久評価を行った。通電耐久評価とは、サンプルの先端部を検査対象物に接触させながら、検査対象物とサンプルの先端部との間の通電のオン・オフを断続的に繰り返し、サンプルを評価することである。第1試験では、3種類のサンプル(サンプルA,B,C)を用意し、これらに対する通電耐久評価を行った。図2に試験対象のサンプルの構成を示し、図3に第1試験の試験条件を示す。
 図2に示すように、第1試験で用いた3種類のサンプルA,B,Cのうち、サンプルAは、比較用であり、プランジャー母材に金(Au)のめっき層を形成し、白金族層13のめっきは施していないものである。サンプルAのAuめっき層の厚みは1μmである。サンプルBは、プランジャー母材に金の下地めっき(ストライクめっき)を施した後に、イリジウム(Ir)のめっき層を形成したものである。サンプルBは、本実施形態の白金族層13をイリジウム(Ir)の層としたものである。サンプルBのIrめっき層の厚みは0.5μmである。サンプルCは、プランジャー母材に金の下地めっき(ストライクめっき)を施した後に、ルテニウム(Ru)のめっき層を形成したものである。サンプルCは、本実施形態の白金族層13をルテニウム(Ru)の層としたものである。サンプルCのRuめっき層の厚みは1μmである。
 図3に示すように、第1試験では、2種類の通電条件(通電条件α,β)による試験を行った。通電条件αは、印加電流を15アンペア(A)、印加時間を20ミリ秒(ms)として、1万2千5百回の繰り返しの通電を行う、条件である。通電条件βは、印加電流を15アンペア(A)、印加時間を20ミリ秒(ms)として、2万5千回の繰り返しの通電を行う、条件である。通電条件α,βは、印加電流および印加時間は同じであるが通電回数が異なる条件であるので、試験の手順としては、先ず、通電条件αの試験を行い、印加電流(15A)および印加時間(20ms)を同じとしたまま、続けて1万2千5百回の繰り返しの通電を行うことで、通電条件βの試験を行った。サンプルの先端部に接触させる検査対象物は、半導体パッケージの内部配線として用いられるPPF(Pre Plated Frame)リードフレームとした。
 図4~図12Fは、第1試験の結果である。図4は、サンプルの先端部を横方向から見た拡大写真である。図4においては9枚の写真を、(1)~(9)として示している。(1)~(3)は、サンプルA(Auめっき)についての写真である。(4)~(6)は、サンプルB(Irめっき)についての写真である。(7)~(9)は、サンプルC(Ruめっき)についての写真である。また、(1),(4),(7)は、試験を行う前の初期状態の写真である。(2),(5),(8)は、通電条件α(通電回数1万2千5百回)の試験後の状態の写真である。(3),(6),(9)は、通電条件β(通電回数2万5千回)の試験後の状態の写真である。
 図4によれば、通電条件α,βの試験後の状態を初期状態と比較すると、サンプルA(Auめっき)は先端部の損耗が見られるが、サンプルB(Irめっき)およびサンプルC(Ruめっき)は、先端部の顕著な損耗は見られない。
 図5は、通電条件βの試験後の状態における各サンプルの先端部の損耗量の測定結果である。図6に示すように、サンプルの初期状態における先端部の円錐形状の長さL、および、通電条件β(通電回数2万5千回)の試験後の状態における先端部の円錐形状の長さL´を測定し、両者の長さの差(=L-L´)を損耗量とした。
 通電条件βの試験後の状態におけるサンプルの損耗量は、図5に示すように、サンプルA(Auめっき)の損耗量は6μmであった。これに対して、サンプルB(Irめっき)およびサンプルC(Ruめっき)の損耗は寸法測定上は確認できず、損耗量は0μm、或いはほぼ0μmと言える結果であった。そこで、サンプルB,Cについて、先端部の損耗が実際に生じていないのかどうかを更に確認した。先端部に形成されためっき層の様子を詳細に観察するために、先端部の電子顕微鏡写真を撮影した。
 図7~図10は、倍率を2000倍としたサンプルの先端部の電子顕微鏡写真である。図7は、サンプルB(Irめっき)について、通電条件β(通電回数2万5千回)の試験後の状態の電子顕微鏡写真であり、先端部を上方から見下ろした上面写真である。図8は、サンプルB(Irめっき)について、通電条件β(通電回数2万5千回)の試験後の状態の電子顕微鏡写真であり、先端部を斜め上方から見下ろした写真である。図9は、サンプルC(Ruめっき)について、通電条件β(通電回数2万5千回)の試験後の状態の電子顕微鏡写真であり、先端部を上方から見下ろした上面写真である。図10は、サンプルC(Ruめっき)について、通電条件β(通電回数2万5千回)の試験後の状態の電子顕微鏡写真であり、先端部を斜め上方から見下ろした写真である。
 図7,図8によれば、サンプルB(Irめっき)は、先端部のIrめっき層において、接触部分を中心にひび割れが生じているが、Irめっき層の厚みが減少していないことがわかる。図9,図10によれば、サンプルC(Ruめっき)は、先端部のRuめっき層においてひび割れが生じておらず、Ruめっき層の厚みが減少していないことが分かる。接触部分を中心に何らかの付着物(図9,図10の画像中の白っぽい部分)が存在していることがわかる。この付着物は、接触部分において厚みが最も厚くなっているように見える。
 続いて、この付着物の分析を行った。付着物の分析として、FIB(Focused Ion Beam:集束イオンビーム)による断面解析を行った。
 図11は、サンプルC(Ruめっき)の先端部の断面写真であり、Ruめっき層の表面に生じた付着物を含む、上下方向に沿った断面の電子顕微鏡写真である。この断面写真は、FIB(Focused Ion Beam:集束イオンビーム)による断面解析を行って得られた写真である。先端部の断面を左右に3分割して撮影したため、図11における写真は3枚となっている。3枚の写真を、図11において左画像~右画像として示している。付着物の厚みが最も厚い断面部分を含む写真を中央画像として、3枚の写真を並べている。
 図11によれば、異なる材料からなる複数の層が積層していることがわかる。一番上の層として写っている最も外側の層が、付着物に相当する層であると推察される。
 また、付着物の分析として、EDX(Energy Dispersive X-ray Spectroscopy:エネルギー分散型X線分光法)による成分分析を行った。図12B~図12Fは、サンプルC(Ruめっき)の先端部の成分分析結果であり、図11の中央画像に相当する、付着物の厚みが最も厚い断面部分についての成分画像である。この成分画像は、EDXによる成分分析を行うことで得られた画像である。6枚の画像を、図12A~図12Fとして示している。図12Aは、走査電子顕微鏡(SEM:Scanning Electron Microscope)による断面部分の画像である。図12Bは、銅(Cu)の成分画像である。図12Cは、ルテニウム(Ru)の成分画像である。図12Dは、パラジウム(Pd)の成分画像である。図12Eは、銀(Ag)の成分画像である。図12Fは、金(Au)の成分画像である。成分画像において、白色或いは灰色の部分が該当する成分を含む部分であり、明度が高いほど含まれる成分の濃度が高いことを示している。
 図11,図12A~図12Fによれば、図11の断面写真におけるサンプルC(Auめっき)の構成要素として、下から順に、Pd合金で構成されたプランジャー母材、下地めっき層であるAuめっき層、白金族層13であるRuめっき層、が順に積層されていることがわかる。そして、Ruめっき層の上に付着物が堆積していることがわかる。Ruめっき層にボイド(空洞)が見られるが、顕著なひび割れや溶融は見られない。
 図12A~図12Fによれば、付着物は、金(Au)が主な成分であり、パラジウム(Pd)および銀(Ag)を含んでいることがわかる。金(Au)は下地めっき層(Auめっき層)に含まれる成分であるが、付着物と下地めっき層(Auめっき層)との間のRuめっき層に相当する部分に金(Au)は分布していないことから、付着物に含まれる金(Au)は、下地めっき層(Auめっき層)から露出したものでないと判断できる。パラジウム(Pd)および銀(Ag)はプランジャー母材に含まれる成分であるが、付着物とプランジャー母材との間の下地めっき層およびRuめっき層に相当する部分には分布していないことから、付着物に含まれるパラジウム(Pd)および銀(Ag)は、プランジャー母材から露出したものではないと判断できる。銅(Cu)は、プランジャー母材の部分のみに分布しており、他の層に分布していない。ルテニウム(Ru)は、Ruめっき層の部分にのみ分布しており、他の層には分布していない。
 これらのことから、付着物は、Ruめっき層である白金族層13が溶融することなく付着したものであると考えられる。検査対象物としてサンプルの先端部に接触させたPPFリードフレームの成分が、通電により溶融などしてサンプルの先端部に転移・堆積したものと推察される。
(B)第2試験
 第2試験ではスパーク評価を行った。スパーク評価は、サンプルの先端部を検査対象物に接触させた状態で通電を開始し、通電状態のままサンプルの先端部を検査対象物から離すことで、サンプルの先端部にスパークを発生させ、当該箇所の溶融状態を評価することである。第2試験では、3種類のサンプル(サンプルD,E,F)を用意し、これらのサンプルに対するスパーク評価を行った。図13に試験対象のサンプルの構成を示し、図14に第2試験の試験条件を示す。
 図13に示すように、第2試験で用いた3種類のサンプルD,E,Fのうち、サンプルDは、比較用であり、プランジャー母材に金(Au)や白金族層13のめっき層を形成していないものである。サンプルEは、プランジャー母材に金(Au)の下地めっき(ストライクめっき)を施した後に、イリジウム(Ir)のめっき層を形成したものである。サンプルEのIrめっき層の厚みは0.5μmである。このサンプルEは、第1試験で用いたサンプルBと同じ構成であり、本実施形態の白金族層13をイリジウム(Ir)の層としたものである。サンプルFは、プランジャー母材に金(Au)の下地めっき(ストライクめっき)を施した後に、ルテニウム(Ru)のめっき層を形成したものである。サンプルFのRuめっき層の厚みは1μmである。このサンプルFは、第1試験で用いたサンプルCと同じ構成であり、本実施形態の白金族層13をルテニウム(Ru)の層としたものである。
 図14に示すように、第2試験では、3種類の通電条件(通電条件γ,δ,ε)による試験を行った。通電条件γは、印加電流を2アンペア(A)としてスパークを発生させる、条件である。通電条件δは、印加電流を5アンペア(A)としてスパークを発生させる、条件である。通電条件εは、印加電流を15アンペア(A)としてスパークを発生させる、条件である。サンプルの先端部に接触させる検査対象物は、金(Au)を主成分とする金合金とした。
 図15~図22は、第2試験の結果である。図15は、サンプルの先端部の電子顕微鏡写真であり、何れも、先端部を上方から見下ろした上面写真である。図15においては10枚の写真を、図15において、(1)~(10)として示している。図15において、(1)と(2)は、サンプルD(めっき無し)の写真である。(3)~(6)は、サンプルE(Irめっき)の写真である。(7)~(10)は、サンプルF(Ruめっき)の写真である。また、(3)と(7)は、試験を行う前の初期状態の写真である。(1),(4),(8)は、通電条件γ(印加電流2A)の試験後の状態の写真である。(2),(5),(9)は、通電条件δ(印加電流5A)の試験後の状態の写真である。(6)と(10)は、通電条件ε(印加電流15A)の試験後の状態の写真である。サンプルDについては、通電条件δ(印加電流5A)でスパークによる溶融が非常に広い範囲にわたって生じたため、通電条件ε(印加電流15A)の試験を行っていない。
 図15によれば、試験後の何れのサンプルについても、接触部分の溶融が生じていることがわかる。試験後の各サンプルについて、接触部分に生じた溶融痕の直径を溶融サイズとして測定した。図16は、サンプルの先端部の溶融サイズの測定結果である。図16に示すように、通電条件γ(印加電流2A)の試験後の状態については、サンプルD(めっき無し)の溶融サイズは約100μmであり、サンプルE(Irめっき)の溶融サイズは約15μmであり、サンプルF(Ruめっき)の溶融サイズは約12μmであった。通電条件δ(印加電流5A)については、サンプルD(めっき無し)の溶融サイズは約110μmであり、サンプルE(Irめっき)の溶融サイズは約23μmであり、サンプルF(Ruめっき)の溶融サイズは約18μmであった。
 通電条件γ,δの試験後の状態に着目すると、サンプルD(めっき無し)では、広い範囲にわたる溶融が生じているが、サンプルE,Fでは、サンプルDに比較して1/4以下の小さな範囲の溶融となっている。このことから、先端部にRuめっき層或いはIrめっき層である白金族層13を形成することで、スパークによる溶融が生じにくくなることがわかる。通電条件ε(印加電流15A)では、サンプルE,Fともに、通電条件γ,δの試験後の状態に比較して広い範囲での溶融が生じている。サンプルE(Irめっき)については、溶融に加えてひび割れが生じていることがわかる。しかし、通電条件εは、通電条件γやδに比べて極めて厳しい条件であり、白金族層13の無いサンプルDでは試験不可能と判断して試験さえも実施しなかった条件である。この通電条件εの試験後のサンプルE,Fの状態が、通電条件γやδの試験後のサンプルDの状態よりも溶融範囲が少ないことは図15から分かる。白金族層13の有無による作用効果が顕著に表れている。
 試験後のサンプルの先端部に生じた溶融物に対する成分分析として、EDXによる定性分析を行った。図17~図22は、各サンプルの先端部に生じた溶融物の成分分析結果である。何れも、横軸を特性X線のエネルギー値[keV]、縦軸をカウント数、としており、グラフ中において、固有エネルギー値に相当する元素を併せて表記している。カウント数が多い元素ほど、溶融物に多く含まれていることを示している。図17は、サンプルE(Irめっき)について、通電条件γ(印加電流2A)の試験後の成分分析結果である。図18は、サンプルE(Irめっき)について、通電条件δ(印加電流5A)の試験後の成分分析結果である。図19は、サンプルE(Irめっき)について、通電条件ε(印加電流15A)の試験後の成分分析結果である。図20は、サンプルF(Ruめっき)について、通電条件γ(印加電流2A)の試験後の定性分析結果である。図21は、サンプルF(Ruめっき)について、通電条件δ(印加電流5A)の試験後の定性分析結果である。図22は、サンプルF(Ruめっき)について、通電条件ε(印加電流15A)の試験後の定性分析結果である。
 図17~図22によれば、サンプルE,Fの何れについても、通電条件γ(印加電流2A)および通電条件δ(印加電流5A)の試験後に先端部分に生じた溶融物に、パラジウムPdは含まれていない。一方、通電条件ε(印加電流15A)の試験後に先端部に生じた溶融物には、パラジウムPdが含まれている。パラジウムPdは、サンプルのプランジャー母材の材料である。
 図15の写真に示したように、通電条件γ,δの試験後にサンプルE,Fの先端部に生じた溶融物は、白金族層13(Ruめっき層或いはIrめっき層)が溶融したものである。スパークにより、サンプルの先端部に形成した白金族層13は溶融しているが、プランジャー母材が露出するほどの溶融ではないことがわかる。一方、通電条件ε(印加電流15A)の試験後のサンプルE,Fには、先端部に広い範囲にわたって溶融が生じており、白金族層13(Ruめっき層、Irめっき層)の溶融に加えて、プランジャー母材が溶融していることがわかる。
(C)第3試験
 第3試験では通電耐久評価を行った。第3試験が第1試験と異なる点は、サンプルの先端部に接触させる検査対象物を半田バーとしたことである。第3試験では、3種類のサンプル(サンプルG,H,I)を用意し、第1試験と同様に、これらに対する通電耐久評価を行った。図23に、試験対象のサンプルの構成を示し、図24に、第3試験の試験条件を示す。
 図23に示すように、第3試験で用いた3種類のサンプルG,H,Iのうち、サンプルGは、比較用であり、プランジャー母材に金(Au)や白金族層13のめっき層を形成していないものである。サンプルHは、プランジャー母材に金(Au)の下地めっき(ストライクめっき)を施した後に、イリジウム(Ir)のめっき層を形成したものである。Irめっき層の厚みは0.5μmである。このサンプルHは、第1試験で用いたサンプルBと同じ構成であり、本実施形態の白金族層13をイリジウム(Ir)の層としたものである。サンプルIは、プランジャー母材に金(Au)の下地めっき(ストライクめっき)を施した後に、ルテニウム(Ru)のめっき層を形成したものである。Ruめっき層の厚みは1μmである。このサンプルIは、第1試験で用いたサンプルCと同じ構成であり、本実施形態の白金族層13をルテニウム(Ru)の層としたものである。
 図24に示すように、第3試験では、3種類の通電条件(通電条件η,θ,λ)による試験を行った。通電条件η,θ,λは、印加時間および通電回数は同じであるが、印加電流が異なる条件である。通電条件ηは、印加電流を5アンペア(A)、印加時間を20ミリ秒(ms)として1万2千5百回の繰り返しの通電を行う、条件である。通電条件θは、印加電流を8アンペア(A)、印加時間を20ミリ秒(ms)として1万2千5百回の繰り返しの通電を行う、条件である。通電条件λは、印加電流を12アンペア(A)、印加時間を20ミリ秒(ms)として1万2千5百回の繰り返しの通電を行う、条件である。
 図25~図27は、第3試験の結果である。図25は、サンプルの先端部を横方向から見た拡大写真である。図25においては12枚の写真を、(1)~(12)として示している。(1)~(4)は、サンプルG(めっき無し)の写真である。(5)~(8)は、サンプルH(Irめっき)の写真である。(9)~(12)は、サンプルI(Ruめっき)の写真である。また、(1),(5),(9)は、試験を行う前の初期状態の写真である。(2),(6),(10)は、通電条件η(印加電流5A)の試験後の状態の写真である。(3),(7),(11)は、通電条件θ(印加電流8A)の試験後の状態の写真である。(4),(8),(12)は、通電条件λ(印加電流12A)の試験後の状態の写真である。
 図25によれば、サンプルG,H,Iの何れについても、通電条件η,θ,λの試験後の状態を初期状態と比較すると、先端部が損耗していることがわかる。第1試験におけるサンプルの先端部(図4参照)と比較してみても、損耗の程度が大きいことがわかる。サンプルH,Iは、それぞれ第1試験のサンプルB,Cと同じ構成である。通電条件η,θ,λは、何れも、第1試験の通電条件α,βと比較して印加電流が低い条件である。従って、検査対象物が半田バーである場合には、第1試験で検査対象物としたPPFリードフレームの場合と比較して、サンプルの先端部が損耗し易い。
 図26は、各サンプルの先端部の損耗量の測定結果である。図26では、横軸を通電条件に相当する印加電流、縦軸を損耗量としたグラフである。サンプルG,H,Iそれぞれについて、初期状態(印加電流が0アンペア(A)に相当)、および、通電条件η,θ,λの各試験後の状態、において測定した先端部の損耗量をプロットして示している。また、各プロットに対するフィッティング曲線を暫定的に示した。
 図26によれば、サンプルG,H,Iの何れについても、印加電流が大きいほど、先端部の損耗量が大きくなることがわかる。また、サンプルH,Iの損耗量をサンプルGの損耗量と比較すると、その差は数~十数nm程度であるが、サンプルIの損耗量のほうが、サンプルHの損耗量よりも小さい。
 第3試験では、1回の通電毎にサンプルの先端部と検査対象物との間の接触抵抗値を測定した。図27A~図27Cは、各サンプルの先端部の接触抵抗値の測定結果である。3つのグラフを1組として3つのグラフ組を、図27A~図27Cに示している。図27Aは、通電条件ηの試験についてのグラフ組である。図27Bは、通電条件θの試験についてのグラフ組である。図27Cは、通電条件λの試験についてのグラフ組である。また、各グラフ組の3つのグラフは、左から順に、サンプルG,H,Iのそれぞれについてのグラフである。各グラフは、横軸を通電回数、縦軸を接触抵抗値として、1回の通電毎に測定した接触抵抗値を1つのプロットとして示したグラフである。
 図27A~図27Cによれば、何れのグラフについても、通電回数の増加によって接触抵抗値は殆ど変化していない。通電の繰り返しによって接触抵抗値が増加する(悪化する)ことはない。通電条件η,θ,λの何れについても、サンプルH,Iの接触抵抗値を、サンプルG(めっき無し)の接触抵抗値と比較すると、ほぼ同じか僅かに小さい程度である。従って、検査対象物と接触する先端部にRuめっき層或いはIrめっき層である白金族層13を形成することで、接触抵抗値が増加する(悪化する)ことはなく、プランジャーとしての基本的な性能に問題はない。図26に示したように、通電の繰り返しによってサンプルの先端部が損耗するが、この損耗によって接触抵抗値が増加する(悪化する)ことはない。
(D)第4試験
 第4試験では通電耐久評価を行った。第4試験が第1試験と異なる点は、Ruめっき層の厚みを更に薄くしたサンプルを用いたことである。第4試験では、2種類のサンプル(サンプルJ,K)を用意し、第1試験と同様に、これらに対する通電耐久評価を行った。図28に、試験対象のサンプルの構成を示し、図29に、第4試験の試験条件を示す。
 図28に示すように、サンプルJは、プランジャー母材の先端部に金(Au)の下地めっき(ストライクめっき)を施した後に、ルテニウム(Ru)のめっき層を形成したものである。Ruめっき層の厚みは20.8nm(0.0208μm)である。サンプルKは、プランジャー母材の先端部に金(Au)の下地めっき(ストライクめっき)を施した後に、ルテニウム(Ru)のめっき層を形成したものである。Ruめっき層の厚みは185nm(0.185μm)である。何れのサンプルも、本実施形態の白金族層13をルテニウム(Ru)の層としたものと言える。
 図29に示すように、第4試験では、1種類の通電条件μによる試験を行った。通電条件μは、印加電流を15アンペア(A)、印加時間を20ミリ秒(ms)として2万5千回繰り返しの通電を行う、条件である。この通電条件μは、第1試験の通電条件βと同じである。また、検査対象物は、第1試験と同じくPPFリードフレームである。
 図30,図31A~図31Cは、第4試験の結果である。図30は、サンプルの先端部を横方向から見た拡大写真である。図30においては4枚の写真を、(1)~(4)として示している。(1)と(2)は、サンプルJについての写真である。(3)と(4)は、サンプルKについての写真である。また、(1)と(3)は、試験を行う前の初期状態の写真である。(2)と(4)は、通電条件μ(通電回数2万5千回)の試験後の状態の写真である。通電条件μの試験後の状態を初期状態と比較すると、サンプルJ,Kの何れについても、先端部に特段の損耗は見られない。
 図31A~図31Cは、各サンプルの接触抵抗値の測定結果である。図31Aは、第1試験で用いたサンプルCの接触抵抗値のグラフである。図31Bは、第4試験のサンプルJの接触抵抗値のグラフである。図31Cは、サンプルKの接触抵抗値のグラフである。図31AのサンプルCのグラフは比較用であり、Ruめっき層の厚みが1μmに形成されたサンプルである。何れのグラフも、横軸を通電回数、縦軸を接触抵抗値として、1回の通電毎に測定した接触抵抗値を1つのプロットとして示したグラフである。
 図31A~図31Cによれば、サンプルC,J,Kの何れについても、通電回数の増加によって接触抵抗値が殆ど変化していない。つまり、通電の繰り返しによって接触抵抗値が増加する(悪化する)ことは殆どない。サンプルJ,Kの接触抵抗値を、サンプルCの接触抵抗値と比較すると、その差は数mΩ程度であり、ほぼ同じである。従って、Ruめっき層の厚みを20nmにまで薄くしても、接触抵抗値が増加する(悪化する)ことはない。Irめっき層やRhめっき層、Osめっき層といった白金族元素によるめっき層であっても、Ruめっき層と同様である。
(E)第5試験
 第5試験では通電耐久評価を行った。第5試験は、上述の第1~第4試験と異なり、プランジャー母材をベリリウム銅(BeCu)合金としたサンプルを用いた試験である。第5試験では、1種類のサンプル(サンプルL)を用意し、第1試験と同様に、これらに対する通電耐久評価を行った。図32に、試験対象のサンプルの構成を示し、図33に、第5試験の試験条件を示す。
 図32に示すように、サンプルLは、ベリリウム銅(BeCu)合金を材料としたプランジャー母材の先端部にパラジウム(Pd)の下地めっき(ストライクめっき)を施した後に、ルテニウム(Ru)のめっき層を形成したものである。Ruめっき層の厚みは1.0μmである。
 図33に示すように、第5試験では通電条件νによる試験を行った。通電条件νは、印加電流を15アンペア(A)、印加時間を20ミリ秒(ms)として2万5千回の繰り返しの通電を行う、条件である。この通電条件νは、第1試験の通電条件βと同じである。検査対象物は、第1試験と同じくPPFリードフレームである。
 図34A~図39は、第5試験の結果である。図34A~図34Bは、初期状態におけるサンプルLの先端部の拡大写真である。図34Aは、先端部を上方向から見下ろした上面写真である。図34Bは、先端部を横方向から見た側面写真である。図35A~図35Bは、通電条件νの試験後の状態におけるサンプルLの先端部の拡大写真である。図35Aは、先端部を上方向から見下ろした上面写真である。図35Bは、先端部を横方向から見た側面写真である。図34A~図34B,図35A~図35Bによれば、通電条件νの試験後の状態を初期状態と比較すると、サンプルLの先端部に損耗は見られないが、何らかの付着物が存在していることがわかる。
 図36は、通電条件νの試験後の状態におけるサンプルLの先端部の更なる電子顕微鏡写真であり、走査電子顕微鏡(SEM)による撮影画像である。図36によれば、サンプルLの先端部に形成したRuめっき層にひび割れや溶融は生じておらず、このRuめっき層の表面に何らかの付着物が堆積していることがわかる。
 続いて、この付着物に対してEDXによる成分分析を行った。図37A~図37Fは、付着物のEDXによる成分画像である。6枚の画像を、図37A~図37Fとして示している。図37Aは、走査電子顕微鏡(SEM)による画像である。図37Bは、金(Au)の成分画像である。図37Cは、パラジウム(Pd)の成分画像である。図37Dは、ルテニウム(Ru)の成分画像である。図37Eは、ニッケル(Ni)の成分画像である。図37Fは、銅(Cu)の成分画像である。成分画像において、白色或いは灰色の部分が該当する成分を含む部分であり、明度が高いほど含まれる成分の濃度が高いことを示している。
 図38は、付着物のEDXによる定性分析結果のグラフである。図38では、横軸を特性X線のエネルギー値[keV]、縦軸をカウント数、としており、グラフ中において、固有エネルギー値に相当する元素を併せて表記している。
 図37A~図37F,図38によれば、付着物は、パラジウム(Pd)および金(Au)が主な成分であり、ルテニウム(Ru)は含まれていない。従って、付着物は、Ruめっき層が溶融したものではなく、検査対象物としてサンプルの先端部に接触させたPPFリードフレームの成分が転移して堆積したものと推察される。
 図39は、サンプルLの先端部の接触抵抗値の測定結果である。図39では、横軸を通電回数、縦軸を接触抵抗値として、1回の通電毎に測定した接触抵抗値を1つのプロットとして示したグラフである。図39によれば、通電の開始直後(2千回程度まで)は接触抵抗値が若干増加したが、それ以降は、通電回数が増加しても接触抵抗値は殆ど変化していない。つまり、通電の繰り返しによって接触抵抗値が増加する(悪化する)ことはなく、プランジャーとしての基本的な性能に問題はない。
(F)第6試験
 第6試験では通電耐久評価を行った。第6試験が第3試験と異なる点は、サンプルの先端部を半田材料にコンタクトした状態で長時間通電させたことである。第6試験では、6種類のサンプル(サンプルP,Q,R,S,T,U)を用意し、これらに対する通電耐久評価を行った。図40に、試験対象のサンプルの構成を示し、図41に、第6試験の試験条件を示す。
 図40に示すように、サンプルP,Q,R,S,TとサンプルUとは、プランジャー母材の材料が異なる。サンプルP,Q,R,S,Tのプランジャー母材はパラジウム(Pd)合金である。サンプルUのプランジャー母材はベリリウム銅(BeCu)合金である。6種類のサンプルP,Q,R,S,T,Uのうち、サンプルPは、先端部に表面処理を施さず、めっきをしていない比較用である。
 サンプルQは、プランジャー母材の先端部にDLC(Diamond-Like Carbon)コーティング(或いはDLC膜コーティングとも呼ばれる)を施したものである。サンプルRは、プランジャー母材の先端部にロジウム(Rh)のめっき層を形成したものである。Rhめっき層の厚みは1.0μmである。サンプルSは、プランジャー母材の先端部にルテニウム(Ru)のめっき層を形成したものである。Ruめっき層の厚みは1.0μmである。サンプルTは、プランジャー母材の先端部に金(Au)のめっき層を形成したものである。Auめっき層の厚みは1.0μmである。
 サンプルUは、プランジャー母材の先端部にニッケル/パラジウム/ルテニウム(Ni/Pd/Ru)の三つのめっき層を形成したものである。Ni/Pd/Ruめっき層の厚みは1.0μmである。
 図41に示すように、第6試験では、1種類の通電条件ξによる試験を行った。通電条件ξは、印加電流を1アンペア(A)、印加時間を72時間(h)、雰囲気温度を摂氏120度として、サンプルの先端部を検査対象物に継続的に接触させて通電を行う、条件である。デバイスの検査が高温で長時間にわたる試験となった場合の過酷な条件を想定した。検査対象物は、半田材料(半田ブロック)であり、いわゆる低融点半田である。
 図42A~図42Fは、第6試験の結果である。各サンプルの試験後の状態の電子顕微鏡写真であり、先端部を斜め上方から見下ろした写真である。図42AはサンプルPの写真であり、図42BはサンプルQの写真であり、図42CはサンプルRの写真である。図42DはサンプルSの写真であり、図42EはサンプルTの写真であり、図42FはサンプルUの写真である。
 図42Aによれば、Pd合金のプランジャー母材にめっきを施さなかったサンプルPは、Pd合金内成分と半田成分のSn(すず)とが反応し、PdとSnとの合金が先端部に生成されていることが分かる。サンプルPの先端部は、損耗している。
 図42B~図42Fによれば、サンプルQ,R,S,T,Uには先端部に損耗が生じていないことが分かる。図42Eによれば、サンプルTの先端部にSn(すず)が付着しているが、半田による喰われが生じておらず、先端部に損耗は生じていない。
[考察]
 コンタクトプローブ1が有する第1プランジャー10および第2プランジャー20の先端部を評価するため、第1プランジャー10を模擬したサンプルに対する6種類の試験(第1~第6試験)を行った。これらの試験結果から、プランジャーの先端部に、ルテニウム(Ru)やイリジウム(Ir)、ロジウム(Rh)などの白金族元素を主成分とする白金族層13を、厚みが0.02μm以上のめっき層として形成することで、高電流の通電検査においても、検査対象物と接触させる先端部が摩耗や損耗しにくい、ことが確認された。
 第1試験では、サンプルBおよびサンプルCの何れについても、15Aの高電流による2万5千回の繰り返しの通流を行った後に、その先端部に顕著な損耗は見られなかった。サンプルBは、厚みが0.5μmのイリジウム(Ir)によるめっき層(Irめっき層)を形成したプランジャーである。サンプルCは、厚みが1.0μmのルテニウム(Ru)によるめっき層(Ruめっき層)を形成したプランジャーである。
 従って、第1プランジャー10の白金族層13として、厚みが0.5μmのイリジウム(Ir)によるめっき層(Irめっき層)、或いは、厚みが1.0μmのRuルテニウム(Ru)によるめっき層(Ruめっき層)、を形成することで、高電流の繰り返しの通電に対する耐性を有する。特に、厚みが1.0μmのRuめっき層を形成したサンプルCについては、先端部に溶融もひび割れも生じていないことから、より良好な繰り返しの通電に対する耐性を有する。
 第2試験では、第1試験のサンプルB,Cそれぞれと同じサンプルであるサンプルE,Fの何れについても、2Aおよび5Aの印加電流によるスパークを発生させた後に、その先端部に若干の溶融が生じているが、ひび割れや破壊などは生じていない。高電流である15Aの印加電流によるスパークを発生させた後は、その先端部のRuめっき層或いはIrめっき層の溶融が生じたが、内側のプランジャー母体は溶融していない。
 従って、第1プランジャー10の白金族層13として、厚みが0.5μmのイリジウム(Ir)によるめっき層(Irめっき層)、或いは、厚みが1.0μmのルテニウム(Ru)によるめっき層(Ruめっき層)、を形成することで、十分なスパーク耐性を有する。特に、Ruめっき層を形成したサンプルFのほうが、Irめっき層を形成したサンプルEよりも溶融サイズが小さいことから、より良好なスパークに対する耐性を有する。
 第3試験では、検査対象物を半田バーとした場合に、第1試験のサンプルB,Cそれぞれと同じサンプルであるサンプルH,Iの何れについても、12Aの高電流による1万2千5百回の繰り返しの通流を行った後の先端部の損耗量は、めっき層を形成しないサンプルGに比較して同じ程度或いは減少した。
 従って、第1プランジャー10の白金族層13として、厚みが0.5μmのイリジウム(Ir)によるめっき層(Irめっき層)、或いは、厚みが1.0μmのルテニウム(Ru)によるめっき層(Ruめっき層)、を形成することで、第1プランジャー10の先端部が接触する検査対象物の電極が半田バンプ或いは半田ボールである場合に生じる摩耗や損耗を軽減することができる。特に、Ruめっき層を形成したサンプルIのほうが、Irめっき層を形成したサンプルHよりも損耗量が小さいことから、摩耗や損耗の軽減にはより好適である。
 第4試験では、厚みが20.8nmのRuめっき層を形成したサンプルJ、および、厚みが185nmのRuめっき層を形成したサンプルK、の何れについても、15Aの高電流による2万5千回の繰り返しの通流を行った後に、その先端部に特段の損耗は見られなかった。繰り返しの通電によって、サンプルの先端と検査対象物との間の接触抵抗値が増加する(悪化する)ことはない、ことも確認された。
 従って、第1~第3試験で特に良好な耐性が得られたRuめっき層については、更に厚みを薄くした20.8nm(≒0.02μm)であっても、同様に高電流の繰り返しの通電に対する耐性を有する。第1プランジャー10の白金族層13の厚みは0.02μm以上あればよい。
 第5試験では、プランジャー母材を、第1~第4試験で用いたパラジウム(Pd)合金とは別の材料であるベリリウム銅(BeCu)を用いたサンプルLについて、15Aの高電流による2万5千回の繰り返しの通流を行った。しかし、その先端部に特段の損耗は見られなかった。このサンプルLについて、繰り返しの通電による接触抵抗値の増加は見られなかった。
 従って、高電流の通電検査において摩耗や損耗が生じにくい良好な耐性を有するには、先端部に、Ruめっき層やIrめっき層による白金族層13を形成すればよく、プランジャー母材11の材料は限定されない、ことが確認された。
 第6試験では、様々なサンプルについて、雰囲気温度摂氏120度の中、先端部を半田材料に接触させた状態で、1A電流を72時間の間通電し続ける通電耐久評価を行った。使用したサンプルは、プランジャー母材をパラジウム(Pd)合金とし、めっき層の材料を異ならせたサンプルP,Q,R,S,Tと、プランジャー母材をベリリウム銅(BeCu)合金とし、めっき層をニッケル/パラジウム/ルテニウム(Ni/Pd/Ru)の三層としたサンプルUと、である。
 この結果、先端部にロジウム(Rh)のめっき層を形成したサンプルRや、先端部にルテニウム(Ru)のめっき層を形成したサンプルS、先端部にニッケル/パラジウム/ルテニウム(Ni/Pd/Ru)の三つのめっき層を形成したサンプルU、を含むサンプルQ,R,S,T,Uには、先端部に損耗が生じないことが確認された。サンプルQ,R,S,Uには、先端部に半田成分であるすず(Sn)が付着していないことが確認された。白金族元素を主成分とする白金族層13をめっき層として形成することで、半田材料に対する高温且つ長時間の通電検査においても、半田材料と接触する先端部はすず(Sn)が付着せず摩耗や損耗しにくいことが確認された。
[作用効果]
 以上の試験結果から、本実施形態のコンタクトプローブ1のプランジャー(第1プランジャー10および第2プランジャー20)は、通電検査において摩耗や損耗が生じにくい構成であることが確認された。白金族層13は、白金族元素を主成分として形成すると好適であるが、特に、ルテニウム(Ru)を主成分として形成するとより好適である。通電検査において摩耗や損耗が生じにくいコンタクトプローブ1であるため、通電検査に用いた場合に、交換作業の手間やコストが削減できる。さらに、第6試験の試験結果から、本実施形態のコンタクトプローブ1のプランジャーは、プランジャーの先端部を半田材料に接触させた状態では、通電検査において先端部にすず(Sn)が付着せず摩耗や損耗が生じにくい構成であることが確認された。白金族層13は、白金族元素を主成分として形成すると好適であるが、特に、ルテニウム(Ru)やロジウム(Rh)を主成分として形成するとより好適である。プランジャーの先端部を半田材料に接触させた状態で行う通電検査において、先端部にすず(Sn)が付着せず摩耗や損耗が生じにくいコンタクトプローブ1であるため、通電検査に用いた場合に、交換作業の手間やコストが削減できる。
[変形例]
 なお、本発明の適用可能な実施形態は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能なのは勿論である。
 上記実施形態では、白金族層13を構成する白金族元素の例として、ルテニウム(Ru)、イリジウム(Ir)或いはロジウム(Rh)の例を詳細に説明した。しかし、これらに代えて、オスミウム(Os)で白金族層13を構成するとしてもよい。
 第1プランジャー10や第2プランジャー20の先端部において、白金族層13の外側に、更に、金(Au)や金(Au)合金、パラジウム(Pd)、パラジウム(Pd)合金によるめっき層を形成しても良い。
 被覆層12を形成することなくプランジャー母材11の外側に、白金族層13を形成することとしても良い。
[概括(generalization)]
 幾つかの実施形態およびその変形例について説明した。これらの開示は、次のように概括することができる。
 本開示の一態様は、導電性の基材層と、前記基材層の外側に設けられた白金族元素を主成分とする白金族層と、を有したプランジャーである。
 本態様によれば、導電性の基材層の外側に、白金族元素を主成分とする白金族層を有するプランジャーを実現することができる。ルテニウム(Ru)やイリジウム(Ir)、ロジウム(Rh)、オスミウム(Os)といった白金族元素は、融点が2000度超と比較的高く、通電による溶融が発生しにくい。そのため、通電検査において摩耗や損耗を発生しにくくできる。さらに、プランジャーの先端を半田材料に接触させた状態で行う通電検査において、先端部に半田成分が付着しにくく摩耗や損耗も生じにくいプランジャーとすることができる。
 母材が前記基材層であり、検査対象物に接触する先端部において、前記基材層の外側に前記白金族層を有する、としても良い。
 これにより、検査対象物に接触する先端部が摩耗しにくいプランジャーを実現できる。
 前記基材層の外側に金(Au)又はパラジウム(Pd)を主成分とする被覆層を有し、前記先端部において、前記被覆層の外側に前記白金族層を有する、としてもよい。
 これにより、基材層と白金族層の間に有する、金又はパラジウムを主成分とする被膜層によって、基材層と白金族層との密着性を高めることができる。
 前記白金族層は表面層である、としてもよい。
 これにより、白金族層の形成を、プランジャーを製造する最後の工程とすることができるため、例えば従来のプランジャーの製造工程の最後に1つの工程を追加するだけで済む。また、白金族層を表面層とすることで、白金族層を表面層としない場合に比較して、摩耗や損耗が発生しにくいプランジャーとすることができる。
 前記白金族層は、厚みが0.02μm以上である、としてもよい。
 これにより、白金族層の厚みを0.02μm以上とすることで、通電検査に用いても摩耗や損耗が発生しにくいプランジャーを実現できる。
 前記白金族層は、イリジウム(Ir)を主成分とする、としてもよい。
 これにより、白金族層を、イリジウム(Ir)を主成分として形成することができる。
 前記白金族層は、ルテニウム(Ru)を主成分とする、としてもよい。
 これにより、白金族層を、ルテニウム(Ru)を主成分として形成することができる。ルテニウム(Ru)を主成分として白金族層を形成した場合には、イリジウム(Ir)を主成分として白金族層を形成した場合に比較して、摩耗や損耗が生じにくいプランジャーとすることができる。さらに、プランジャーの先端を半田材料に接触させた状態で行う通電検査において、先端部に半田成分が付着しにくく摩耗や損耗も生じにくいプランジャーとすることができる。
 前記白金族層は、ロジウム(Rh)を主成分とする、としてもよい。
 これにより、白金族層を、ロジウム(Rh)を主成分として形成することができる。さらに、プランジャーの先端を半田材料に接触させた状態で行う通電検査において、先端部に半田成分が付着しにくく摩耗や損耗も生じにくいプランジャーとすることができる。
 前記白金族層は、オスミウム(Os)を主成分とする、としてもよい。
 これにより、白金族層を、オスミウム(Os)を主成分として形成することができる。
 上述の何れかのプランジャーと、端部が前記プランジャーに当接するスプリングと、を備えたコンタクトプローブ、を構成してもよい。
 これにより、通電検査に用いても、検査対象物に接触するプランジャーの摩耗や損耗が生じにくいコンタクトプローブを実現することができる。
1…コンタクトプローブ
 10…第1プランジャー
  11…プランジャー母材、12…被覆層、13…白金族層
 20…第2プランジャー
 30…スプリング
 40…バレル

Claims (10)

  1.  導電性の基材層と、
     前記基材層の外側に設けられた白金族元素を主成分とする白金族層と、
     を有したプランジャー。
  2.  母材が前記基材層であり、
     検査対象物に接触する先端部において、前記基材層の外側に前記白金族層を有する、
     請求項1に記載のプランジャー。
  3.  前記基材層の外側に金(Au)又はパラジウム(Pd)を主成分とする被覆層を有し、
     前記先端部において、前記被覆層の外側に前記白金族層を有する、
     請求項2に記載のプランジャー。
  4.  前記白金族層は表面層である、
     請求項1~3の何れか一項に記載のプランジャー。
  5.  前記白金族層は、厚みが0.02μm以上である、
     請求項1~4の何れか一項に記載のプランジャー。
  6.  前記白金族層は、イリジウム(Ir)を主成分とする、
     請求項1~5の何れか一項に記載のプランジャー。
  7.  前記白金族層は、ルテニウム(Ru)を主成分とする、
     請求項1~5の何れか一項に記載のプランジャー。
  8.  前記白金族層は、ロジウム(Rh)を主成分とする、
     請求項1~5の何れか一項に記載のプランジャー。
  9.  前記白金族層は、オスミウム(Os)を主成分とする、
     請求項1~5の何れか一項に記載のプランジャー。
  10.  請求項1~9の何れか一項に記載のプランジャーと、
     端部が前記プランジャーに当接するスプリングと、
     を備えたコンタクトプローブ。
PCT/JP2020/002356 2019-01-29 2020-01-23 プランジャーおよびコンタクトプローブ WO2020158575A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080008922.0A CN113287024A (zh) 2019-01-29 2020-01-23 柱塞及接触探针
KR1020217021462A KR20210121010A (ko) 2019-01-29 2020-01-23 플런저 및 컨택트 프로브
JP2020569566A JP7497303B2 (ja) 2019-01-29 2020-01-23 プランジャーおよびコンタクトプローブ
US17/421,731 US20220082588A1 (en) 2019-01-29 2020-01-23 Plunger and contact probe
JP2024059258A JP2024071740A (ja) 2019-01-29 2024-04-01 プランジャーおよびコンタクトプローブ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019012725 2019-01-29
JP2019-012725 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020158575A1 true WO2020158575A1 (ja) 2020-08-06

Family

ID=71840003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002356 WO2020158575A1 (ja) 2019-01-29 2020-01-23 プランジャーおよびコンタクトプローブ

Country Status (5)

Country Link
US (1) US20220082588A1 (ja)
JP (1) JP2024071740A (ja)
KR (1) KR20210121010A (ja)
CN (1) CN113287024A (ja)
WO (1) WO2020158575A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085483A1 (ja) * 2020-10-22 2022-04-28 株式会社ヨコオ コンタクトプローブ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110102009A1 (en) * 2008-06-20 2011-05-05 Lee Jae Hak Test socket electrical connector, and method for manufacturing the test socket
JP2011214965A (ja) * 2010-03-31 2011-10-27 Yokowo Co Ltd プローブ
WO2013084730A1 (ja) * 2011-12-06 2013-06-13 山一電機株式会社 コンタクトプローブ及びそれを備えた半導体素子用ソケット
JP2018501490A (ja) * 2014-12-30 2018-01-18 テクノプローベ エス.ピー.エー. テストヘッド用コンタクトプローブ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7137830B2 (en) * 2002-03-18 2006-11-21 Nanonexus, Inc. Miniaturized contact spring
JPWO2003005042A1 (ja) * 2001-07-02 2004-10-28 日本発条株式会社 導電性接触子
JP2003014779A (ja) * 2001-07-02 2003-01-15 Nhk Spring Co Ltd 導電性接触子
JPWO2006064546A1 (ja) * 2004-12-14 2008-06-12 株式会社アドバンテスト コンタクトピン、それを用いたプローブカード及び電子部品試験装置
JP4808794B2 (ja) * 2008-03-28 2011-11-02 パナソニック株式会社 半導体検査装置
JP2010223852A (ja) * 2009-03-25 2010-10-07 Toshiba Corp 電気検査用プローブ及びその製造方法並びに半導体装置の製造方法
JP5926587B2 (ja) * 2012-03-21 2016-05-25 株式会社エンプラス 電気接触子及び電気部品用ソケット
JP2015089955A (ja) * 2013-11-06 2015-05-11 株式会社日本アレフ めっき方法
JP6433680B2 (ja) 2014-05-09 2018-12-05 株式会社ヨコオ ソケット
JP7021874B2 (ja) * 2017-06-28 2022-02-17 株式会社ヨコオ コンタクトプローブ及び検査治具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110102009A1 (en) * 2008-06-20 2011-05-05 Lee Jae Hak Test socket electrical connector, and method for manufacturing the test socket
JP2011214965A (ja) * 2010-03-31 2011-10-27 Yokowo Co Ltd プローブ
WO2013084730A1 (ja) * 2011-12-06 2013-06-13 山一電機株式会社 コンタクトプローブ及びそれを備えた半導体素子用ソケット
JP2018501490A (ja) * 2014-12-30 2018-01-18 テクノプローベ エス.ピー.エー. テストヘッド用コンタクトプローブ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085483A1 (ja) * 2020-10-22 2022-04-28 株式会社ヨコオ コンタクトプローブ

Also Published As

Publication number Publication date
JP2024071740A (ja) 2024-05-24
US20220082588A1 (en) 2022-03-17
CN113287024A (zh) 2021-08-20
JPWO2020158575A1 (ja) 2021-12-02
KR20210121010A (ko) 2021-10-07

Similar Documents

Publication Publication Date Title
KR101427506B1 (ko) 콘택트 프로브
JP2024071740A (ja) プランジャーおよびコンタクトプローブ
CN1285915C (zh) 导电性接头
KR102015798B1 (ko) 검사장치용 프로브
TWI704352B (zh) 測試頭之接觸探針
TW201625963A (zh) 包含用於測試頭的複數個接觸式探針的半完成產品及相關製造方法
JP2009282003A (ja) 接点部材
TW201409852A (zh) 電子接觸子及用於電子零部件之插座
KR20080027182A (ko) 접속 장치
US20100244869A1 (en) Probe for electrical inspection, method for fabricating the same, and method for fabricating a semiconductor device
WO2019193771A1 (ja) ボールボンディング用貴金属被覆銀ワイヤおよびその製造方法、ならびにボールボンディング用貴金属被覆銀ワイヤを使用した半導体装置およびその製造方法
JPWO2018123708A1 (ja) リードフレーム材およびその製造方法ならびに半導体パッケージ
US10782317B2 (en) Contact probe
JP7497303B2 (ja) プランジャーおよびコンタクトプローブ
JP6751249B1 (ja) 筒状部材、コンタクトプローブ及び半導体検査用ソケット
KR102289580B1 (ko) 통 형상 부재, 컨택트 프로브 및 반도체 검사용 소켓
JP2011214965A (ja) プローブ
JP2018189396A (ja) プローブ及びその製造方法
JP7008541B2 (ja) プローブ針
JP2017215221A (ja) プローブ及びその製造方法
CN113223754A (zh) 包层线和生产包层线的方法
JP2014016263A (ja) 電気テスト用コンタクト
JP2008107313A (ja) 多層電気プローブおよびその製造方法
US6414500B1 (en) Test socket for an electronic circuit device having improved contact pins and manufacturing method thereof
WO2003081725A2 (en) A miniaturized contact spring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748709

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569566

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748709

Country of ref document: EP

Kind code of ref document: A1