WO2020158572A1 - 大動脈内バルーンカテーテル - Google Patents
大動脈内バルーンカテーテル Download PDFInfo
- Publication number
- WO2020158572A1 WO2020158572A1 PCT/JP2020/002336 JP2020002336W WO2020158572A1 WO 2020158572 A1 WO2020158572 A1 WO 2020158572A1 JP 2020002336 W JP2020002336 W JP 2020002336W WO 2020158572 A1 WO2020158572 A1 WO 2020158572A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hole
- filling
- resin
- tip
- intra
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/50—Details relating to control
- A61M60/508—Electronic control means, e.g. for feedback regulation
- A61M60/515—Regulation using real-time patient data
- A61M60/531—Regulation using real-time patient data using blood pressure data, e.g. from blood pressure sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/0215—Measuring pressure in heart or blood vessels by means inserted into the body
- A61B5/02154—Measuring pressure in heart or blood vessels by means inserted into the body by optical transmission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6852—Catheters
- A61B5/6853—Catheters with a balloon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/135—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
- A61M60/139—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting inside the aorta, e.g. intra-aortic balloon pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/295—Balloon pumps for circulatory assistance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/802—Constructional details other than related to driving of non-positive displacement blood pumps
- A61M60/81—Pump housings
- A61M60/816—Sensors arranged on or in the housing, e.g. ultrasound flow sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/841—Constructional details other than related to driving of balloon pumps for circulatory assistance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/841—Constructional details other than related to driving of balloon pumps for circulatory assistance
- A61M60/843—Balloon aspects, e.g. shapes or materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M2025/0001—Catheters; Hollow probes for pressure measurement
- A61M2025/0002—Catheters; Hollow probes for pressure measurement with a pressure sensor at the distal end
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3306—Optical measuring means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2207/00—Methods of manufacture, assembly or production
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/30—Blood pressure
Definitions
- the present invention relates to an intra-aortic balloon catheter.
- the intra-aortic balloon pumping method (IABP method) is known as a method for treating a decline in cardiac function, in which a balloon catheter is inserted into the aorta and the balloon is expanded and contracted according to the heartbeat to assist the cardiac function. There is.
- a sensor for detecting pressure using light is attached to the distal end portion of the balloon catheter, and the detected blood pressure signal is transmitted to the vicinity of the balloon catheter via an optical fiber.
- a balloon catheter with a sensor adapted to be transmitted to the distal end has been proposed (for example, refer to Patent Document 1).
- the catheter described in Patent Document 1 has a distal tip, and inside thereof, a sensor housing hole for arranging a sensor and a through hole for inserting an optical fiber connected to the sensor are formed. ing.
- the optical fiber is fixed in the through hole by means such as adhesion by the following method, for example.
- the optical fiber with the sensor connected to the distal end is inserted into the hole, and the distal side is pulled out to the outside of the sensor housing hole. Then, an adhesive is filled in the sensor housing hole, and the distal side of the optical fiber is drawn into the through hole. At this time, since the distal side of the optical fiber passes through the adhesive filled in the sensor housing hole, the adhesive adheres to the periphery thereof and the adhesive is drawn into the through hole together with the optical fiber. Therefore, an adhesive is filled in the through hole, and the adhesive can fix the optical fiber in the through hole.
- the adhesive since the adhesive is filled in the sensor housing hole, the adhesive adheres to the inner wall of the sensor housing hole. If this adhesive adheres to the sensor arranged in the sensor housing hole, the accuracy of the sensor may decrease and the accuracy of blood pressure fluctuation measurement in the aorta may decrease.
- the present invention has been made in view of such circumstances, and an object thereof is to provide an intra-aortic balloon catheter capable of measuring blood pressure fluctuation in the aorta with high accuracy.
- the intra-aortic balloon catheter according to the present invention, A sensor that can measure pressure using light, An optical fiber connected to the sensor, A sensor housing hole that houses the sensor; and a tip chip that is connected to the sensor housing hole and has a through hole that allows the optical fiber to pass therethrough, A filling hole is formed in the tip chip, one end of which is opened at the outer peripheral surface of the tip chip and the other end of which is connected to the through hole so that the inside of the through hole can be filled with resin. Characterize.
- the distal tip has a filling hole in which one end opens at the outer peripheral surface of the distal tip and the other end is connected to the through hole, so that the inside of the through hole can be filled with resin. Is formed in. Therefore, it is possible to directly fill the resin into the through hole through the filling hole, and the resin can fix the optical fiber in the through hole. That is, in the intra-aortic balloon catheter according to the present invention, unlike the method of fixing an optical fiber shown in the prior art, it is not necessary to fill the resin into the sensor housing hole.
- the resin is directly filled in the through holes, voids are less likely to occur in the resin layer formed in the through holes. Therefore, the resin can be prevented from peeling from the inner wall surface of the through hole, and the optical fiber can be fixed in the through hole with high fixing strength.
- the insides of the through hole and the filling hole are filled with resin.
- a sufficient amount of resin is supplied into the through hole, and the fixing strength of the optical fiber fixed in the through hole can be sufficiently increased.
- each of the plurality of the filling holes is arranged in the tip chip along the axial direction of the through hole.
- the filling amount of the resin can be adjusted according to the filling degree of the resin in the through hole, and the optimal amount of the resin can be filled in the through hole.
- the first filling hole is connected to the proximal end of the through hole
- the second filling hole is connected to the distal end of the through hole.
- the third filling hole may be connected to the through hole, and the third filling hole may be located between the first filling hole and the second filling hole.
- the resin is filled into the through hole through the first filling hole, and the through hole is provided in the area between the first filling hole and the third filling hole through the third filling hole.
- the filling condition of the resin inside can be confirmed.
- the resin is further filled into the through hole through the third filling hole, and the resin filling condition in the through hole in the area between the second filling hole and the third filling hole is further filled through the second filling hole. Can be confirmed.
- the amount of resin filled in the through hole can be finely adjusted by filling the resin into the through hole through the two filling holes and confirming the filling condition.
- the filling hole extends along the radial direction of the tip.
- the outer peripheral surface of the tip is connected to the through hole at the shortest distance via the filling hole, and the resin can be easily filled into the through hole through the filling hole.
- FIG. 2 is a perspective view of a distal tip of the intra-aortic balloon catheter shown in FIG. 1.
- FIG. 6 is a perspective view of a distal tip of an intra-aortic balloon catheter according to a second embodiment of the present invention.
- FIG. 2A is a schematic cross-sectional view of the tip chip shown in FIG. 2B.
- FIG. 3B is a schematic cross-sectional view showing a step of filling the resin through the first filling hole into the through hole formed in the tip chip shown in FIG. 3A.
- FIG. 3B is a schematic cross-sectional view showing a step of filling the resin through the first filling hole into the through hole formed in the tip chip shown in FIG. 3A.
- FIG. 4B is a schematic cross-sectional view showing a step of filling the resin through the third filling hole into the through hole shown in FIG. 4A. It is a schematic sectional drawing which shows the process after filling the resin in the through hole. It is a schematic sectional drawing which shows the process of forming a resin film on the outer peripheral surface of a body part. It is a schematic sectional drawing which shows the modification of the resin film shown to FIG. 4D.
- a balloon catheter 1 according to a first embodiment of the present invention is an intra-aortic balloon catheter used in the IABP method, and a balloon portion that expands and contracts in accordance with the heartbeat.
- the balloon portion 4 is composed of a thin film having a film thickness of about 50 to 150 ⁇ m.
- the material of the thin film is not particularly limited, but is preferably a material having excellent bending fatigue resistance, and is composed of, for example, polyurethane.
- the outer diameter and the length of the balloon portion 4 are determined according to the inner volume of the balloon portion 4, which greatly affects the assisting effect of the cardiac function, and the inner diameter of the arterial blood vessel.
- the inner volume of the balloon portion 4 is not particularly limited, but is 20 to 50 cc, the outer diameter of the balloon portion 4 when expanded is preferably 12 to 16 mm, and the length is preferably 150 to 250 mm.
- the distal end 40a of the balloon portion 4 is attached to the outer periphery of the tip 5 by means such as heat fusion or adhesion.
- a wire insertion hole 50 communicating in the axial direction is formed in the tip tip 5, and the distal end portion of the inner tube 3 is inserted into the proximal end side thereof.
- the distal end portion of the inner tube 3 is attached to the proximal end portion of the distal tip 5 by means such as heat fusion or adhesion so that the wire passage 30 inside the inner tube 3 and the wire insertion hole 50 communicate with each other. It is connected.
- the proximal end portion 40b of the balloon portion 4 is connected to the outer circumference of the distal end portion of the outer tube 2 via a contrast marker 6 made of a radiopaque metal ring or the like.
- the pressure fluid is introduced into and drawn out from the balloon portion 4 through the pressure fluid passage 20 formed inside the outer tube 2, and the balloon portion 4 is expanded and contracted.
- the balloon portion 4 and the outer tube 2 are connected by heat fusion or adhesion with an adhesive.
- the inner tube 3 extends in the axial direction inside the balloon portion 4 and the outer tube 2, and does not communicate with the pressure fluid communication path 20 formed inside the balloon portion 4 and inside the outer tube 2 therein.
- a wire passage 30 is formed and communicates with a secondary port 72 of the branching unit 7 described later.
- the deflated balloon portion 4 is wrapped around the inner tube 3 located inside the balloon portion 4.
- the wire passage 30 is used as a lumen for inserting a guide wire used for inserting the balloon portion 4 into the artery conveniently.
- an optical fiber 9 extends in the axial direction of the inner tube 3. More specifically, the optical fiber 9 is arranged inside the outer tube 2 extending between the branch portion 7 and the proximal end portion 40b of the balloon portion 4 along the outer side (outer peripheral surface) of the inner tube 3, It extends straight in the axial direction. The optical fiber 9 is spirally wound around the outer peripheral surface of the inner tube 3 inside the balloon portion 4 located between the proximal end portion 40b and the distal end portion 40a of the balloon portion 4, It extends in the axial direction.
- the optical fiber 9 extends straight in the axial direction of the inner tube 3 inside the distal tip 5 (a body portion 51 described later) where the distal end portion 40a of the balloon portion 4 is located (FIG. 4C). reference).
- the balloon part 4 in the contracted state described above is wound around the inner tube 3 in which the optical fiber 9 is spirally wound inside the balloon part 4.
- a branch 7 is connected to the proximal end of the outer tube 2.
- the branch portion 7 is formed separately from the outer tube 2, and is connected to the outer tube 2 by means such as heat fusion or adhesion.
- a primary passage 74 in which a primary port 71 for introducing and discharging a pressure fluid into the pressure fluid conducting passage 20 in the outer pipe 2 and the balloon portion 4 is formed, and a wire passage in the inner pipe 3.
- a secondary passage 75 is formed in which a secondary port 72 communicating with 30 is formed.
- the primary port 71 is connected to a pump device (not shown), and the pump device allows the pressure fluid to be introduced into and discharged from the balloon portion 4.
- the primary passage 74 extends linearly inside the branch portion 7 and is directly connected to the pressure fluid passage 20. Therefore, inside the pressure fluid passage 20, the flow passage resistance of the pressure fluid introduced and led out via the primary port 71 is reduced, and the responsiveness of expansion/contraction of the balloon portion 4 can be enhanced. ..
- the pressure fluid is not particularly limited, but helium gas or the like having a small viscosity and a small mass is used so that the balloon portion 4 quickly expands and contracts in response to the driving of the pump device.
- the branch port 7 has a tertiary port 73.
- a tertiary passage 76 for inserting the optical fiber 9 is communicated with the tertiary port 73, and the proximal end side of the optical fiber 9 is pulled out from the tertiary port 73.
- the optical fiber 9 drawn out from the tertiary port 73 is adhesively fixed inside the tertiary passage 76 adjacent to the outlet of the tertiary port 73.
- the outlet of the optical fiber 9 at the tertiary port 73 is designed so that the fluid inside the primary passage 74 and the secondary passage 75 does not leak to the outside.
- An optical connector 10 is connected to the proximal end of the optical fiber 9.
- a pressure sensor 8 for measuring blood pressure which will be described in detail later, is connected to the distal end of the optical fiber 9.
- a blood pressure measurement device (not shown) is connected to the optical connector 10. Based on the fluctuation of blood pressure measured by this blood pressure measuring device, the pump device is controlled according to the pulsation of the heart to inflate and deflate the balloon portion 4 in a short cycle of 0.4 to 1 second.
- the inner peripheral surface of the outer tube 2 and the outer peripheral surface of the inner tube 3 are fixed by an adhesive.
- the adhesive used for fixing is not particularly limited, and an adhesive such as a cyanoacrylate adhesive or an epoxy adhesive can be used, and the cyanoacrylate adhesive is particularly preferable.
- the outer diameter of the inner tube 3 is not particularly limited, but is preferably 0.5 to 1.5 mm, and 30 to 60% of the inner diameter of the outer tube 2 is preferable.
- the outer diameter of the inner pipe 3 is substantially the same along the axial direction.
- the inner tube 3 is made of, for example, a synthetic resin tube of polyurethane, polyvinyl chloride, polyethylene, polyamide, polyether ether ketone (PEEK), or the like, or a nickel titanium alloy thin tube, a stainless steel thin tube, or the like.
- PEEK polyether ether ketone
- the outer tube 2 is not particularly limited, but is made of a synthetic resin such as polyurethane, polyvinyl chloride, polyethylene terephthalate, and polyamide, and may be embedded with a stainless steel wire or the like.
- the inner diameter and the wall thickness of the outer tube 2 are not particularly limited, but the inner diameter is preferably 1.5 to 4.0 mm and the wall thickness is preferably 0.05 to 0.4 mm.
- the length of the outer tube 2 is preferably 300 to 800 mm.
- the tip 5 is roughly divided into a body portion 51 and a tip portion 52.
- the body 51 has a substantially columnar outer shape, and constitutes most of the tip 5.
- the length of the body portion 51 along the axial direction is longer than the length of the tip portion 52 along the axial direction.
- the tip portion 52 is located on the distal side of the body portion 51, and projects from the distal end of the body portion 51 to the distal side along the axial direction thereof.
- the body portion 51 and the tip portion 52 are integrated, and a step portion 57 is formed at the boundary between the body portion 51 and the tip portion 52.
- the tip portion 52 located on the distal side of the step portion 57 has an outer diameter larger than that of the body portion 51 located on the proximal side of the step portion 57.
- the outer peripheral surface of the tip portion 52 is covered with the resin film 11. More specifically, of the outer peripheral surface of the tip portion 52, the curved surface located on the distal side and the peripheral portion of the opening 54 a of the side insertion hole 54 are covered with the resin film 11.
- the resin film 11 is formed on the outer peripheral surface of the tip portion 52 so that the opening 54a of the side insertion hole 54 and the opening 55a of the distal insertion hole 55 are closed.
- the periphery of the opening of the wire insertion hole 50 is not covered with the resin film 11 so that a guide wire (not shown) can be inserted.
- the resin film 11 is made of a material such as a urethane resin, a silicone resin, or a polyamide elastomer from the viewpoint of sufficiently ensuring compatibility with a living body.
- a material such as a urethane resin, a silicone resin, or a polyamide elastomer from the viewpoint of sufficiently ensuring compatibility with a living body.
- the outer peripheral surface of the tip portion 52 is locally covered with the resin film 11 in the present embodiment, it may be entirely covered.
- the body portion 51 has an inner pipe insertion hole 53 into which the inner pipe 3 is inserted.
- the inner tube insertion hole 53 extends from the proximal end of the body portion 51 toward the distal side, and the distal end of the inner tube insertion hole 53 is connected to the proximal end of the wire insertion hole 50.
- the inner pipe insertion hole 53 is arranged coaxially with the wire insertion hole 50 and has a diameter slightly larger than the diameter of the wire insertion hole 50 (larger by a dimension corresponding to the thickness of the inner pipe 3 ).
- the distal end of the wire passage 30 of the inner tube 3 is connected to the proximal end of the wire insertion hole 50. ..
- a substantially cylindrical sensor housing hole 514 is formed inside the tip portion 52.
- the sensor housing hole 514 is formed in parallel with the axial direction (longitudinal direction) of the tip 5, and is a space for housing (arranging) a pressure sensor 8 described later.
- the sensor housing hole 514 is arranged on the tip portion 52 side of the tip chip 5, it may be arranged on the body portion 51 side. Further, the sensor housing hole 514 may be disposed so as to straddle the body portion 51 and the tip portion 52.
- a lateral insertion hole 54, a distal insertion hole 55, and a through hole 56 are connected to the sensor housing hole 514.
- the side insertion hole 54 is formed so that one end thereof opens at the outer peripheral surface of the tip chip 5 and the other end thereof is connected to the side (upper side in the drawing) of the sensor housing hole 514.
- the lateral insertion hole 54 extends laterally along the radial direction of the tip 5, and opens at the outer peripheral surface (non-curved surface) located on the proximal side of the tip 52.
- the lateral insertion hole 54 communicates the internal space of the sensor housing hole 514 with the outside of the tip chip 5.
- the distal-side insertion hole 55 is formed so that one end opens at the outer peripheral surface (distal end) of the tip 5 and the other end is connected to the distal side of the sensor housing hole 514.
- the distal-side insertion hole 55 extends toward the distal side of the distal end tip 5 while inclining laterally (upward in the drawing), and is located on the distal side of the distal end portion 52 on the outer peripheral surface (curved surface). It is open at.
- the extending direction of the distal insertion hole 55 is different from the extending direction of the lateral insertion hole 54, and the inclination angle of the distal insertion hole 55 is 0 with respect to the axial direction of the tip 5, for example. It is set in the range of not less than 90 degrees and not more than 90 degrees.
- the distal insertion hole 55 communicates the internal space of the sensor housing hole 514 with the outside of the tip 5.
- the through hole 56 is formed so that one end opens at the proximal end of the tip chip 5 and the other end is connected to the proximal side of the sensor housing hole 514.
- the through hole 56 extends along the axial direction of the tip 5 (body portion 51).
- a proximal side opening 56a is formed at the proximal end of the through hole 56, and a distal side opening 56b is formed at the distal end.
- the through hole 56 communicates the outside of the tip chip 5 with the internal space of the sensor housing hole 514 via the proximal side opening 56a and the distal side opening 56b.
- An optical fiber 9 connected to a pressure sensor 8 described later can be inserted into the through hole 56.
- the opening widths of the proximal side opening 56a and the distal side opening 56b allow the pressure sensor 8 to which the optical fiber 9 is connected from the outside of the tip 5 to the inside of the sensor housing hole 514 through the through hole 56.
- the width is such that the pressure sensor 8 can be inserted when it is inserted. That is, the opening widths of the proximal side opening 56a and the distal side opening 56b are larger than the maximum width (maximum diameter) of the pressure sensor 8.
- the tip chip 5 has a filling hole (through hole), one end of which opens at the outer peripheral surface of the tip chip 5 and the other end of which is connected to the through hole 56.
- the tip 5 has a plurality of the filling holes. More specifically, the tip chip 5 has three filling holes, a first filling hole 511, a second filling hole 512, and a third filling hole 513, arranged along the axial direction of the through hole 56.
- Each of the plurality of filling holes 511 to 513 has a substantially columnar shape and is connected to the through hole 56 at regular intervals along the axial direction.
- the filling holes 511 to 513 extend straight along the radial direction of the tip 5 (body portion 51) and are substantially orthogonal to the through hole 56.
- the filling holes 511 to 513 communicate the space outside the tip 5 and the internal space of the through hole 56.
- the first filling hole 511 is connected to the proximal end of the through hole 56. More specifically, the first filling hole 511 is connected to the through hole 56 at a position separated from the proximal end of the through hole 56 on the distal side by the distance L1. When the length of the through hole 56 is L, it is preferable that 0 ⁇ L1 ⁇ L/4.
- the second filling hole 512 is connected to the distal end portion of the through hole 56. More specifically, the second filling hole 512 is connected to the through hole 56 at a position distant from the distal end of the through hole 56 on the proximal side by the distance L2.
- L the length of the through hole 56
- the third filling hole 513 is connected to the area of the through hole 56 between the first filling hole 511 and the second filling hole 512.
- the third filling hole 513 is connected to the through hole 56 at a position equidistant from the first filling hole 511 and the second filling hole 512.
- the filling holes 511 to 513 include first opening portions 511a to 513a opening on the outer peripheral surface of the tip 5 (body portion 51) and second opening portions 511b to 511b opening on the inner wall surface lateral to the through hole 56. 513b.
- Each of the first openings 511a to 513a is arranged on the outer peripheral surface of the tip 5 (body 51) located closer to the sensor housing hole 514 so as to be aligned along the axial direction thereof. ing.
- Each of the second openings 511b to 513b is arranged on the inner wall surface of the through hole 56 so as to be aligned along the axial direction thereof.
- the openings 511a to 513a and 511b to 513b of the filling holes 511 to 513 have a substantially circular shape, and the diameter thereof is preferably 0.1 to 0.5 mm.
- the resin 14 is filled into the through hole 56 through the filling holes 511 and 513.
- the resin 14 is filled up to the vicinity of the first openings 511a to 513a of the filling holes 511 to 513 as shown in FIG. 4C.
- the resin 14 is not particularly limited, but a curable resin (adhesive) that has fluidity during filling and that cures after filling is preferably used.
- a curable resin adheresive
- Specific examples of the resin used include moisture-curable adhesives such as cyanoacrylate adhesives, heat-curable adhesives such as epoxy one-component adhesives, and two-component mixed curing such as epoxy two-component adhesives.
- a mold adhesive may be mentioned.
- a resin film 15 is formed on the outer peripheral surface of the body portion 51.
- the resin film 15 is made of the same material as the thin film forming the balloon portion 4 shown in FIG. 1, and is formed at least in the peripheral portion of each of the first openings 511a to 513a.
- the resin film 15 covers each of the first openings 511a to 513a so as to cover each of the first openings 511a to 513a, and the resin 14 located on the opening surface of each of the first openings 511a to 513a corresponds to the tip 5 Is covered with the resin film 15 without being exposed to the outside.
- the resin film 15 continuously covers a region from the distal side of the first opening 512a to the proximal side of the first opening 511a on the outer peripheral surface of the body 51.
- the width of the resin film 15 in the direction orthogonal to the longitudinal direction is sufficient to close each of the first openings 511a to 513a and is preferably larger than the diameter of each of the first openings 511a to 513a. ..
- the distal end portion 40a of the balloon portion 4 shown in FIG. 1 is connected to the outer periphery of the body portion 51 via the resin film 15 at the peripheral portion of each of the first openings 511a to 513a. Therefore, the resin 14 located on the opening surface of each of the first openings 511a to 513a does not come into contact with the resin.
- the resin film 15 is made of the same material as the thin film forming the balloon portion 4, while the resin 14 is made of a material different from the thin film. Therefore, the resin film 15 has a better compatibility with the thin film forming the balloon portion 4 than the resin 14, and the resin film 15 is formed on the opening surface of each of the first openings 511a to 513a.
- the resin film 15 may discontinuously cover a region of the outer peripheral surface of the body portion 51 from the distal side of the first opening 512a to the proximal side of the first opening 511a.
- each of the three resin films 15_1 to 15_3 may locally cover only the peripheral portion of each of the first openings 511a to 513a on the outer peripheral surface of the body portion 511. ..
- the pressure sensor 8 is a sensor that detects the pressure (blood pressure) in the space inside the sensor housing hole 514 by utilizing the path difference of light transmitted through the optical fiber 9.
- the pressure sensor 8 those described in Japanese Patent Publication No. 2008-524606, Japanese Unexamined Patent Publication No. 2000-35369, etc. can be used.
- a gel substance 12 such as silicone gel, polyacrylamide gel, polyethylene oxide gel, or silicone oil. It is filled with a pressure transmitting filling substance such as an oily substance.
- the tip 5 and the pressure sensor 8 to which the distal end of the optical fiber 9 is connected are prepared, and the pressure sensor 8 is inserted into the through hole 56 from the proximal side opening 56a, and the through hole 56 is formed. Through the sensor housing hole 514 until it is located inside the sensor housing hole 514. As a result, as shown in FIG. 4A, the pressure sensor 8 is housed inside the sensor housing hole, and the distal end portion of the optical fiber is arranged inside the through hole 56.
- the method of forming the tip 5 is not particularly limited, but is manufactured by, for example, an injection molding method using synthetic resin materials such as polyurethane, polyvinyl chloride, polyethylene terephthalate, and polyamide, and various metal materials such as Ni—Ti alloy. be able to.
- the resin 14 flows out from the second opening 511b of the first filling hole 511 into the through hole 56, and from there, flows toward the proximal side and the distal side of the through hole 56.
- the resin 14 flowing to the distal side is filled (sufficiently) into the through hole 56 in the area between the first filling hole 511 and the third filling hole 513, the resin 14 is filled from the through hole 56. It flows out into the third filling hole 513 and is filled up to the vicinity of the first opening 513a.
- the filling condition of the resin 14 filled in the third filling hole 513 is confirmed. Can be grasped.
- the filling amount of the resin 14 can be adjusted according to the filling degree of the resin 14 in the through hole 56 in the area, and the optimal amount of the resin can be filled in the through hole 56 in the area. it can.
- the syringe 13 is pulled out from the first filling hole 511, and the syringe 13 is inserted into the third filling hole 513. Then, the resin 14 is discharged from the syringe 13, and the resin 14 is filled (flowed) into the through hole 56 through the third filling hole 513.
- the resin 14 flows out from the second opening 513b of the third filling hole 513 into the through hole 56, and from there, flows toward the distal side of the through hole 56.
- the resin 14 flowing to the distal side is filled (sufficiently) into the through hole 56 in the area between the second filling hole 512 and the third filling hole 513, the resin 14 is filled from the through hole 56. It flows out into the second filling hole 512 and is filled up to the vicinity of the first opening 512a.
- the resin 14 is filled into the through hole 56 through the two filling holes (at least one resin injection hole) 511 and 513, and the through hole 56 is provided through the two filling holes (at least one filling confirmation hole) 512 and 513. Since the filling degree of the resin 14 in the inside can be confirmed, the amount of the resin 14 filled in the through hole 56 can be finely adjusted. Further, the inside of the through hole 56 and the filling holes 511 to 513 is filled with resin (a sufficient amount of resin is supplied into the through hole 56), and the fixing strength of the optical fiber 9 fixed in the through hole 56 is sufficient. Can be increased to
- the syringe 13 is inserted into the second filling hole 512, the resin 14 is discharged from the syringe 13, and the resin is discharged from the syringe 13 through the second filling hole 512 in a region distal to the second filling hole 512.
- the resin 14 may be filled (supplemented) in the holes 56.
- the gel substance 12 is filled into the sensor housing hole 514 through the side insertion hole 54.
- the interiors of the sensor housing hole 514, the side insertion hole 54, and the distal insertion hole 55 are filled with the gel substance 12, and the pressure sensor 8 housed inside the sensor housing hole 514 is filled with the gel substance 12.
- the sensor housing hole 514 since the sensor housing hole 514 communicates with the outside of the tip 5 through the lateral insertion hole 54 and the distal insertion hole 55, the distal end is filled when the gel substance 12 is filled. Bubbles easily escape from the side insertion hole 55, and it is possible to prevent bubbles from accumulating in the internal space of the sensor housing hole 514.
- the pressure sensor 8 is in communication with the outside where the blood pressure of the tip 5 is to be measured via the side insertion hole 54 and the distal insertion hole 55, and the pressure around the tip 5 is increased. Is detected by the pressure sensor 8. Moreover, as shown in FIG. 4C, when the pressure-transmitting filling substance (gel substance 12) is filled in the sensor housing hole 514, the blood pressure of the tip 5 should be measured via the pressure-transmitting filling substance. External pressure is transmitted, and this is detected by the pressure sensor 8.
- the resin film 11 is formed, for example, in a substantially circular shape on the outer peripheral surface (non-curved surface) on the proximal side of the tip portion 52 of the tip chip 5 so as to close the opening portion 54a of the side insertion hole 54. Further, the resin film 11 is formed on the outer peripheral surface (curved surface) on the distal side of the tip portion 52 of the tip chip 5 so as to close the opening 55 a of the distal insertion hole 55. Thereby, it is possible to prevent the gel-like substance 12 filled in the sensor housing hole 514 from coming out of the tip 5. The opening on the distal side of the wire insertion hole 50 is left open without being blocked by the resin film 11.
- a resin film 15 is formed on the outer peripheral surface of the body portion 51 so as to close each of the first openings 511a to 513a.
- the distal side of the inner tube 3 is inserted into the inner tube insertion hole 53 of the body section 51 to be connected and fixed, and the distal end 40a (see FIG. 1) of the balloon section 4 is connected to the proximal side of the body section 51.
- the intra-aortic balloon catheter 1 shown in FIG. 1 is manufactured by fixing to the outer peripheral surface of the. Regarding the portion of the outer peripheral surface of the body portion 51 where the resin film 15 is formed, the distal end portion 40 a is fixed to the surface of the resin film 15.
- filling holes 511 to 513 are formed in the distal tip 5. Therefore, the resin 14 can be directly filled in the through hole 56 through the filling holes 511 to 513, and the optical fiber 9 can be fixed in the through hole 56 by the resin 14. That is, in the intra-aortic balloon catheter 1 according to the present embodiment, it is not necessary to fill the resin accommodating hole 514 with the resin 14 unlike the optical fiber fixing method described in the related art. Therefore, there is no risk that the resin 14 will adhere to the pressure sensor 8 arranged in the sensor housing hole 514, the deterioration of the accuracy of the pressure sensor 8 due to the adhesion of the resin 14 is prevented, and the blood pressure fluctuation in the aorta is highly accurate. Can be measured.
- the resin 14 is directly filled in the through holes 56, voids are less likely to occur in the resin layer formed in the through holes 56. Therefore, the resin 14 can be prevented from peeling from the inner wall surface of the through hole 56, and the optical fiber 9 can be fixed in the through hole 56 with high strength.
- the filling holes 511 to 513 extend along the radial direction of the tip 5. Therefore, the outer peripheral surface of the tip 5 is connected to the through hole 56 at the shortest distance through the filling holes 511 to 513, and the resin 14 can be easily filled in the through hole 56 through the filling holes 511 to 513. ..
- the intra-aortic balloon catheter according to the second embodiment of the present invention has a distal tip 5A.
- the tip 5A of the present embodiment is different from the tip 5 of the first embodiment in that it has a body portion 51A.
- description of portions common to the first embodiment will be omitted, and common members will be denoted by common reference numerals.
- the body portion 51A differs from the body portion 51 in the first embodiment in that the body portion 51A does not have the third filling hole 513 shown in FIGS. 2A and 3A. Further, the body portion 51A in the first embodiment is that the second filling hole 512A is arranged on the distal side of the through hole 56 with respect to the second filling hole 512 shown in FIG. 3A. Is different from.
- the resin 14 is filled into the through hole 56 through the first filling hole 511, and the inside of the through hole 56 in the area between the first filling hole 511 and the second filling hole 512A through the second filling hole 512A.
- the filling condition of the resin 14 can be confirmed.
- the number of filling holes formed in the tip chip 5A is smaller than the number of filling holes formed in the tip chip 5 shown in FIG. 2A, so that the tip end is different from the first embodiment.
- the configuration of the chip 5A can be simplified.
- the second filling hole 512A may be arranged further on the distal side of the through hole 56 (the distal end of the through hole 56).
- the tip 5 may have only one filling hole.
- the filling hole can be provided at any position in the proximal end portion, the distal end portion, or the area between the proximal end portion and the distal end portion of the through hole 56.
- one end may be opened at the outer peripheral surface of the tip chip 5, and the other end may be provided with a filling hole connected to the axial center of the through hole 56.
- each of the filling holes 511 to 513 may be formed on the outer peripheral surface of the body 51 with a displacement in the circumferential direction. Further, the intervals along the axial direction of the filling holes 511 to 513 do not have to be equal intervals.
- the filling holes 511 to 513 extend straight along the radial direction of the tip 5, but they may extend obliquely. The same applies to the side insertion holes 54.
- the shape of the filling holes 511 to 513 may be, for example, a substantially prismatic shape or a substantially triangular prism shape.
- the resin film 11 formed on the outer peripheral surface of the tip portion 52 may be omitted.
- the diameters of the openings 511a to 513a and 511b to 513b are smaller than the diameters of the proximal side opening 56a and the distal side opening 56b of the through hole 56, but even if they are large, Good. With such a configuration, the resin 14 can be easily filled into the through hole 56 without a gap.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Mechanical Engineering (AREA)
- Vascular Medicine (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Transplantation (AREA)
- Geometry (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Physiology (AREA)
- Pulmonology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- External Artificial Organs (AREA)
Abstract
【課題】大動脈内の血圧変動を高精度に計測することが可能な大動脈内バルーンカテーテルを提供すること。 【解決手段】大動脈内バルーンカテーテル1は、光を利用して圧力を測定可能な圧力センサ8と、圧力センサ8に接続される光ファイバ9と、圧力センサ8を収容するセンサ収容孔514と、センサ収容孔514に接続され、光ファイバ9を通す通孔56とが形成された先端チップ5と、を有する。先端チップ5には、一端が先端チップ5の外周面で開口するとともに、他端が通孔56に接続された充填孔511~513が、通孔56の内部に樹脂14を充填可能に形成されている。
Description
本発明は、大動脈内バルーンカテーテルに関する。
心機能低下時の治療として、大動脈内にバルーンカテーテルを挿入し、心臓の拍動に合わせてバルーンを拡張および収縮させて心機能の補助を行う大動脈内バルーンポンピング法(IABP法)が知られている。
このIABP法に用いられる大動脈内バルーンカテーテルとしては、バルーンカテーテルの遠位端部に光を利用して圧力を検出するセンサを取り付け、検出された血圧の信号を光ファイバを介してバルーンカテーテルの近位端に伝達するようにしたセンサ付きのバルーンカテーテルが提案されている(たとえば特許文献1参照)。
特許文献1に記載されているカテーテルは先端チップを有し、その内部には、センサを配置するためのセンサ収容孔と、センサに接続された光ファイバを挿通させるための通孔とが形成されている。光ファイバは、たとえば以下のような方法により、接着等の手段によって通孔内に固定される。
すなわち、遠位端にセンサが接続された光ファイバを通孔内に挿通し、その遠位側をセンサ収容孔の外側に引き出しておく。そして、センサ収容孔内に接着剤を充填し、該光ファイバの遠位側を通孔内に引き込む。このとき、センサ収容孔内に充填された接着剤の中を光ファイバの遠位側が通過するため、その周囲に接着剤が付着し、該接着剤が光ファイバとともに通孔内に引き込まれる。そのため、通孔内には接着剤が充填され、この接着剤によって光ファイバを通孔内に固定することが可能となる。
しかしながら、従来技術に示す光ファイバの固定方法では、センサ収容孔内に接着剤を充填するため、センサ収容孔の内壁に接着剤が付着する。この接着剤がセンサ収容孔内に配置されたセンサに付着した場合、センサの精度が低下し、大動脈内の血圧変動の計測精度が低下するおそれがある。
本発明は、このような実状に鑑みてなされ、その目的は、大動脈内の血圧変動を高精度に計測することが可能な大動脈内バルーンカテーテルを提供することである。
上記目的を達成するために、本発明に係る大動脈内バルーンカテーテルは、
光を利用して圧力を測定可能なセンサと、
前記センサに接続される光ファイバと、
前記センサを収容するセンサ収容孔と、前記センサ収容孔に接続され、前記光ファイバを通す通孔とが形成された先端チップと、を有し、
前記先端チップには、一端が前記先端チップの外周面で開口するとともに、他端が前記通孔に接続された充填孔が、前記通孔の内部に樹脂を充填可能に形成されていることを特徴とする。
光を利用して圧力を測定可能なセンサと、
前記センサに接続される光ファイバと、
前記センサを収容するセンサ収容孔と、前記センサ収容孔に接続され、前記光ファイバを通す通孔とが形成された先端チップと、を有し、
前記先端チップには、一端が前記先端チップの外周面で開口するとともに、他端が前記通孔に接続された充填孔が、前記通孔の内部に樹脂を充填可能に形成されていることを特徴とする。
本発明に係る大動脈内バルーンカテーテルでは、先端チップには、一端が先端チップの外周面で開口するとともに、他端が通孔に接続された充填孔が、前記通孔の内部に樹脂を充填可能に形成されている。そのため、充填孔を通じて、直接、通孔内に樹脂を充填することが可能であり、該樹脂によって、光ファイバを通孔内に固定することができる。すなわち、本発明に係る大動脈内バルーンカテーテルでは、従来技術に示す光ファイバの固定方法とは異なり、センサ収容孔内に樹脂を充填する必要がない。そのため、センサ収容孔内に配置されたセンサに樹脂が付着するおそれがなく、樹脂の付着に起因するセンサの精度の低下を防止し、大動脈内の血圧変動を高精度に計測することができる。
また、通孔内に樹脂を直接充填するため、通孔内に形成される樹脂層に空隙(ボイド)が発生しにくくなる。そのため、通孔の内壁面から樹脂が剥離することを防止し、光ファイバを通孔内に高い固着強度で固定することができる。
好ましくは、前記通孔および前記充填孔の内部は樹脂で満たされている。この場合、通孔内には十分な量の樹脂が供給されており、通孔内に固定される光ファイバの固着強度を十分に高めることができる。
好ましくは、前記先端チップには、複数の前記充填孔の各々が前記通孔の軸方向に沿って配置されている。この場合、いずれかの充填孔を通じて樹脂を通孔内に充填し、隣接する他の充填孔を通じて通孔内における樹脂の充填具合を確認することができる。したがって、通孔内における樹脂の充填具合に応じて、樹脂の充填量を調整することが可能となり、通孔内に最適な量の樹脂を充填することができる。
好ましくは、前記通孔の近位端部には第1の前記充填孔が接続されており、前記通孔の遠位端部には第2の前記充填孔が接続されている。このような構成とすることにより、第1の充填孔を通じて樹脂を通孔内に充填し、第2の充填孔を通じて通孔内における樹脂の充填具合を確認することができる。また、上記のような構成とすることにより、通孔の近位端部から遠位端部にわたる広域に十分な量の樹脂を容易に充填することができる。
前記通孔には第3の前記充填孔が接続されており、第3の前記充填孔は、第1の前記充填孔と第2の前記充填孔との間に位置していてもよい。このような構成とすることにより、第1の充填孔を通じて通孔内に樹脂を充填し、第3の充填孔を通じて、第1の充填孔と第3の充填孔との間の区域における通孔内の樹脂の充填具合を確認することができる。また、第3の充填孔を通じて通孔内に樹脂をさらに充填し、第2の充填孔を通じて、第2の充填孔と第3の充填孔との間の区域における通孔内の樹脂の充填具合を確認することができる。
また、2つの充填孔を通じて通孔内への樹脂の充填およびその充填具合の確認を行うことにより、通孔内に充填する樹脂の量を細かく調整することができる。
好ましくは、前記充填孔は、前記先端チップの径方向に沿って延びている。このような構成とすることにより、先端チップの外周面と通孔とが充填孔を介して最短距離で結ばれ、充填孔を通じて、通孔内に樹脂を容易に充填することができる。
以下、本発明を、図面に示す実施形態に基づき説明する。
第1実施形態
図1に示すように、本発明の第1実施形態に係るバルーンカテーテル1は、IABP法に用いられる大動脈内バルーンカテーテルであり、心臓の拍動に合わせて拡張および収縮するバルーン部4を有する。バルーン部4は、膜厚50~150μm程度の薄膜で構成される。薄膜の材質は、特に限定されないが、耐屈曲疲労特性に優れた材質であることが好ましく、たとえばポリウレタンなどにより構成される。
図1に示すように、本発明の第1実施形態に係るバルーンカテーテル1は、IABP法に用いられる大動脈内バルーンカテーテルであり、心臓の拍動に合わせて拡張および収縮するバルーン部4を有する。バルーン部4は、膜厚50~150μm程度の薄膜で構成される。薄膜の材質は、特に限定されないが、耐屈曲疲労特性に優れた材質であることが好ましく、たとえばポリウレタンなどにより構成される。
バルーン部4の外径および長さは、心機能の補助効果に大きく影響するバルーン部4の内容積と、動脈血管の内径などに応じて決定される。バルーン部4の内容積は、特に限定されないが、20~50ccであり、バルーン部4の外径は、拡張時で12~16mmが好ましく、長さは、150~250mmが好ましい。
このバルーン部4の遠位端部40aは、先端チップ5の外周に熱融着ないしは接着などの手段で取り付けてある。この先端チップ5には、軸方向に連通するワイヤ挿通孔50が形成してあり、その近位端側には、内管3の遠位端部が入り込んでいる。内管3の遠位端部は、内管3の内部のワイヤ通路30とワイヤ挿通孔50とが連通するように、熱融着ないしは接着などの手段で、先端チップ5の近位端部に接続してある。
バルーン部4の近位端部40bは、放射線不透過性金属リング等からなる造影マーカ6を介してまたは直接に、外管2の遠位端部外周に接続してある。この外管2の内部に形成された圧力流体導通路20を通じて、バルーン部4の内部に、圧力流体が導入および導出され、バルーン部4が拡張および収縮するようになっている。バルーン部4と外管2との接続は、熱融着あるいは接着剤による接着により行われる。
内管3は、バルーン部4および外管2の内部を軸方向に延在し、その内部には、バルーン部4の内部および外管2内に形成された圧力流体導通路20とは連通しないワイヤ通路30が形成してあり、後述する分岐部7の二次ポート72に連通している。
バルーン部4内に位置する内管3には、大動脈内バルーンカテーテル1を動脈内に挿入する際に、収縮した状態のバルーン部4が巻きつけられる。ワイヤ通路30は、バルーン部4を都合良く動脈内に差し込むために用いるガイドワイヤを挿通する管腔として用いられる。
内管3の外側では、光ファイバ9が、内管3の軸方向に向かって延びている。より詳細には、光ファイバ9は、分岐部7とバルーン部4の近位端部40bとの間に延在する外管2の内部では、内管3の外側(外周面)に沿って、その軸方向に向かってまっすぐに延びている。また、光ファイバ9は、バルーン部4の近位端部40bと遠位端部40aとの間に位置するバルーン部4の内部では、内管3の外周面に螺旋状に巻きつけられつつ、その軸方向に向かって延びている。また、光ファイバ9は、バルーン部4の遠位端部40aが位置する先端チップ5(後述する胴体部51)の内部では、内管3の軸方向に向かってまっすぐに延びている(図4C参照)。なお、上述した収縮した状態のバルーン部4は、バルーン部4内において、光ファイバ9が螺旋状に巻きつけられた内管3に対して、巻きつけられる。
光ファイバ9の近位端側と遠位端側との間に位置するいずれの部分も、接着剤等の固定手段によって内管3の外周面等に固定されてはおらず、光ファイバ9の近位端側および遠位端側のみが、それぞれ三次ポート73および圧力センサ8に固定されている。
外管2の近位端部には、分岐部7が連結してある。分岐部7は、外管2と別体に成形され、熱融着あるいは接着などの手段で外管2と連結される。分岐部7には、外管2内の圧力流体導通路20およびバルーン部4内に圧力流体を導入および導出するための一次ポート71が形成される一次通路74と、内管3内のワイヤ通路30に連通する二次ポート72が形成される二次通路75とが形成してある。
一次ポート71は、図示省略してあるポンプ装置に接続され、このポンプ装置により、圧力流体がバルーン部4内に導入および導出されるようになっている。一次通路74は、分岐部7の内部で直線状に延びており、圧力流体通路20に対してまっすぐに接続される。そのため、圧力流体通路20の内部では、一次ポート71を介して導入および導出される圧力流体の流路抵抗が低減され、バルーン部4の拡張・収縮の応答性を高めることが可能となっている。圧力流体としては、特に限定されないが、ポンプ装置の駆動に応じて素早くバルーン部4が拡張および収縮するように、粘性および質量の小さいヘリウムガスなどが用いられる。
分岐部7には、一次ポート71および二次ポート72以外に、三次ポート73が形成してある。三次ポート73には、光ファイバ9を挿通させるための三次通路76が連通しており、三次ポート73からは、光ファイバ9の近位端側が引き出されるようになっている。三次ポート73から引き出される光ファイバ9は、三次ポート73の引き出し口に近接する三次通路76の内部に接着固定される。三次ポート73における光ファイバ9の引き出し口は、一次通路74および二次通路75の内部の流体が外部には漏れないようになっている。
光ファイバ9の近位端には、光コネクタ10が接続してある。光ファイバ9の遠位端には、後に詳述するが、血圧を測定するための圧力センサ8が接続してある。光コネクタ10には、図示省略してある血圧測定装置が接続される。この血圧測定装置で測定した血圧の変動に基づき、心臓の拍動に応じてポンプ装置を制御し、0.4~1秒の短周期でバルーン部4を拡張および収縮させるようになっている。
外管2の内周面と内管3の外周面とは、接着剤により固着してある。このように外管2と内管3とを固着することで、外管2内の圧力流体導通路20の流路抵抗が低くなり、バルーン部4の応答性が向上する。固着に用いる接着剤としては、特に限定されず、シアノアクリレート系接着剤、エポキシ系接着剤等の接着剤を用いることができ、シアノアクリレート系接着剤を用いることが特に好ましい。
本実施形態のバルーンカテーテル1では、内管3の外径は、特に限定されないが、好ましくは、0.5~1.5mmであり、外管2の内径の30~60%が好ましい。この内管3の外径は、本実施形態では、軸方向に沿って略同じである。内管3は、たとえば、ポリウレタン、ポリ塩化ビニル、ポリエチレン、ポリアミド、ポリエーテルエーテルケトン(PEEK)等の合成樹脂チューブ、あるいはニッケルチタン合金細管、ステンレス鋼細管等で構成される。また、内管3を合成樹脂チューブで構成する場合は、ステンレス鋼線等を埋設してもよい。
外管2は、特に限定されないが、ポリウレタン、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリアミド等の合成樹脂で構成され、ステンレス鋼線等を埋設してもよい。外管2の内径および肉厚は、特に限定されないが、内径は、好ましくは、1.5~4.0mmであり、肉厚は、好ましくは、0.05~0.4mmである。外管2の長さは、好ましくは300~800mmである。
図2Aに示すように、先端チップ5は、胴体部51と先端部52とに大別される。胴体部51は、外形が略柱状からなり、先端チップ5の大部分を構成する。胴体部51の軸方向に沿った長さは、先端部52の軸方向に沿った長さよりも長くなっている。先端部52は、胴体部51よりも遠位側に位置し、胴体部51の遠位端からその軸方向に沿って遠位側に突出している。
図3Aに示すように、胴体部51と先端部52とは、一体となっており、胴体部51と先端部52との境界には、段差部57が形成されている。段差部57よりも遠位側に位置する先端部52では、段差部57よりも近位側に位置する胴体部51に比較して、外径が大きくなっている。
図1および図4Cに示すように、先端部52の外周面は、樹脂膜11で覆われている。より詳細には、先端部52の外周面のうち、遠位側に位置する湾曲面と、側方挿通孔54の開口部54aの周辺部とが、樹脂膜11で覆われている。樹脂膜11は、側方挿通孔54の開口部54aおよび遠位側挿通孔55の開口部55aが塞がれるように、先端部52の外周面に形成される。ただし、先端部52の湾曲面において、ワイヤ挿通孔50の開口部周辺は、ガイドワイヤ(図示略)が挿通できるよう、樹脂膜11で覆われてはいない。樹脂膜11は、生体との適合性を十分に確保する観点から、ウレタン樹脂、シリコーン樹脂、ポリアミドエラストマー等の材料で構成されている。なお、本実施形態では、先端部52の外周面は、樹脂膜11によって局所的に覆われているが、全体的に覆われていてもよい。
図3Aに示すように、胴体部51には、内管3が挿入される内管挿通孔53が形成されている。内管挿通孔53は、胴体部51の近位端から遠位側に向かって延びており、内管挿通孔53の遠位端は、ワイヤ挿通孔50の近位端に接続される。内管挿通孔53は、ワイヤ挿通孔50と同軸上に連通して配置されており、ワイヤ挿通孔50の径よりも僅かに大きい(内管3の肉厚に相当する寸法だけ大きい)径を有している。なお、詳細な図示は省略するが、内管挿通孔53の内部に内管3を挿入すると、ワイヤ挿通孔50の近位端に、内管3のワイヤ通路30の遠位端が接続される。
先端部52の内部には、略円柱状のセンサ収容孔514が形成されている。センサ収容孔514は、先端チップ5の軸方向(長手方向)に平行に形成され、後述する圧力センサ8を収容(配置)するための空間である。センサ収容孔514は、先端チップ5のうち、先端部52側に配置されているが、胴体部51側に配置されていてもよい。また、センサ収容孔514は、胴体部51と先端部52とに跨って配置されていてもよい。
センサ収容孔514には、側方挿通孔54と、遠位側挿通孔55と、通孔56とが接続されている。側方挿通孔54は、一端が先端チップ5の外周面で開口するとともに、他端がセンサ収容孔514の側方(図面の上方)に接続されるように形成されている。
側方挿通孔54は、先端チップ5の径方向に沿って側方に延びており、先端部52の近位側に位置する外周面(非湾曲面)で開口している。側方挿通孔54は、センサ収容孔514の内部空間と先端チップ5の外部とを連通している。
遠位側挿通孔55は、一端が先端チップ5の外周面(遠位端)で開口するとともに、他端がセンサ収容孔514の遠位側に接続されるように形成されている。
遠位側挿通孔55は、先端チップ5の遠位側に向かって、側方(図面の上方)に傾斜しつつ延びており、先端部52の遠位側に位置する外周面(湾曲面)で開口している。遠位側挿通孔55の延在方向は、側方挿通孔54の延在方向とは異なっており、遠位側挿通孔55の傾斜角度は、たとえば先端チップ5の軸方向に対して、0度以上90度未満の範囲で設定される。遠位側挿通孔55は、センサ収容孔514の内部空間と先端チップ5の外部とを連通している。
通孔56は、一端が先端チップ5の近位端で開口するとともに、他端がセンサ収容孔514の近位側に接続されるように形成されている。通孔56は、先端チップ5(胴体部51)の軸方向に沿って延在している。通孔56の近位端には近位側開口56aが形成され、遠位端には遠位側開口56bが形成されている。通孔56は、近位側開口56aおよび遠位側開口56bを介して、先端チップ5の外部とセンサ収容孔514の内部空間とを連通している。通孔56には、後述する圧力センサ8に接続された光ファイバ9を挿通させることが可能となっている。
近位側開口56aおよび遠位側開口56bの開口幅は、後述するように、光ファイバ9が接続された圧力センサ8を、通孔56を通じて先端チップ5の外部からセンサ収容孔514の内部に挿入する際に、該圧力センサ8を挿入可能な幅となっている。すなわち、近位側開口56aおよび遠位側開口56bの開口幅は、圧力センサ8の最大幅(最大径)よりも大きい。
先端チップ5には、一端が先端チップ5の外周面で開口するとともに、他端が通孔56に接続された充填孔(貫通孔)が形成されている。本実施形態では、先端チップ5には、複数の上記充填孔が形成されている。より具体的には、先端チップ5には、第1充填孔511、第2充填孔512および第3充填孔513の3つの充填孔が、通孔56の軸方向に沿って配置されている。これら複数の充填孔511~513の各々は、略円柱状からなり、通孔56に、軸方向に沿って一定間隔で接続されている。
充填孔511~513は、先端チップ5(胴体部51)の径方向に沿ってまっすぐに延びており、通孔56に略直交している。充填孔511~513は、先端チップ5の外側の空間と、通孔56の内部空間とを連通している。
第1充填孔511は、通孔56の近位端部に接続されている。より詳細には、第1充填孔511は、通孔56の近位端から距離L1だけ遠位側に離れた位置で、通孔56に接続されている。通孔56の長さをLとすると、好ましくは、0≦L1≦L/4である。
第2充填孔512は、通孔56の遠位端部に接続されている。より詳細には、第2充填孔512は、通孔56の遠位端から距離L2だけ近位側に離れた位置で、通孔56に接続されている。通孔56の長さをLとすると、好ましくは、0<L2≦L/4である。
第3充填孔513は、通孔56における第1充填孔511と第2充填孔512との間の区域に接続されている。好ましくは、第3充填孔513は、第1充填孔511および第2充填孔512から等距離の位置で、通孔56に接続されている。
充填孔511~513は、先端チップ5(胴体部51)の外周面で開口する第1開口部511a~513aと、通孔56の側方に位置する内壁面で開口する第2開口部511b~513bとを有する。
第1開口部511a~513aの各々は、センサ収容孔514よりも近位側に位置する先端チップ5(胴体部51)の外周面上に、その軸方向に沿って一直線となるように配置されている。第2開口部511b~513bの各々は、通孔56の内壁面上に、その軸方向に沿って一直線となるように配置されている。充填孔511~513の開口部511a~513a,511b~513bは略円形状からなり、その直径は、好ましくは0.1~0.5mmである。
詳細については後述するが、図4A~図4Cに示すように、本実施形態では、充填孔511,513を通じて、通孔56内に樹脂14を充填することが可能となっている。通孔56内に十分な量の樹脂14が充填されている場合、樹脂14は、図4Cに示すように、充填孔511~513の第1開口部511a~513a付近まで充填される。
樹脂14としては、特に限定されないが、充填時には流動性を有し、充填後に硬化する硬化性の樹脂(接着剤)が好適に使用される。用いられる樹脂の具体例としては、シアノアクリレート系接着剤等の湿気硬化型接着剤、エポキシ系一液型接着剤等の加熱硬化型接着剤、エポキシ系二液型接着剤等の二液混合硬化型接着剤を挙げることができる。
図4Dに示すように、胴体部51の外周面には、樹脂膜15が形成されている。樹脂膜15は、図1に示すバルーン部4を構成する薄膜と同様の材料からなり、少なくとも第1開口部511a~513aの各々の周辺部に形成されている。本実施形態では、樹脂膜15は、第1開口部511a~513aの各々を塞ぐように覆っており、第1開口部511a~513aの各々の開口面上に位置する樹脂14は、先端チップ5の外部に露出することなく樹脂膜15で覆われる。
樹脂膜15は、胴体部51の外周面のうち、第1開口部512aの遠位側から第1開口部511aの近位側にかけての領域を連続的に覆っている。樹脂膜15の長手方向に直交する方向の幅は、第1開口部511a~513aの各々を塞ぐのに十分な幅からなり、第1開口部511a~513aの各々の直径よりも大きいことが好ましい。
詳細な図示は省略するが、図1に示すバルーン部4の遠位端部40aは、第1開口部511a~513aの各々の周辺部において、樹脂膜15を介して胴体部51の外周に接続され、第1開口部511a~513aの各々の開口面上に位置する樹脂14と接触することがない。前述のとおり樹脂膜15はバルーン部4を構成する薄膜と同様の材料で構成される一方で、樹脂14は該薄膜とは異なる材料で構成される。そのため、樹脂14よりも樹脂膜15の方が、バルーン部4を構成する薄膜との接続の相性が良く、第1開口部511a~513aの各々の開口面上に位置する樹脂14を樹脂膜15で覆った上で、遠位端部40aを胴体部51の外周(樹脂膜15)に接続することにより、これらの間の接続強度あるいは接続信頼性を高めることができる。
なお、樹脂膜15は、胴体部51の外周面のうち、第1開口部512aの遠位側から第1開口部511aの近位側にかけての領域を不連続に覆っていてもよい。例えば、図4Eに示すように、3つの樹脂膜15_1~15_3の各々によって、胴体部511の外周面のうち、第1開口部511a~513aの各々の周辺部のみを局所的に覆ってもよい。
圧力センサ8は、光ファイバ9を通して伝達する光の行路差などを利用して、センサ収容孔514内の空間内の圧力(血圧)を検出するセンサである。圧力センサ8としては、特表2008-524606号公報、特開2000-35369号公報などに記載されたものを用いることができる。
センサ収容孔514内において圧力センサ8の周囲に画成された空間内には、が、たとえばシリコーンゲル、ポリアクリルアミドゲル、ポリエチレンオキサイドゲルなどのゲル状物質12(図4C参照)、シリコーンオイルなどのオイル状物質などの圧力伝達充填物質が充填されている。
次に、遠位端に圧力センサ8が接続された光ファイバ9を先端チップ5の通孔56内に固定する方法を中心に、本発明の大動脈内バルーンカテーテル1の製造方法を図面を参照しながら説明する。
まず、先端チップ5と、光ファイバ9の遠位端が接続された圧力センサ8とを用意し、該圧力センサ8を、近位側開口部56aから通孔56内に挿入し、通孔56を通じて、センサ収容孔514の内部に配置されるまで遠位側に向けて押し込む。これにより、図4Aに示すように、圧力センサ8がセンサ収容孔の内部に収容されるとともに、通孔56内に光ファイバの遠位端部が配置される。先端チップ5の形成方法は、特に限定されないが、ポリウレタン、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリアミド等の合成樹脂材料や、Ni-Ti合金等の各種金属材料を用いて、たとえば射出成形法により製造することができる。
次に、第1充填孔511内に、硬化性の樹脂14が充填されたシリンジ13を挿入するとともに、シリンジ13から樹脂14を排出し、第1充填孔511を通じて、通孔56内に樹脂14を充填する(流し込む)。
充填開始後、樹脂14は、第1充填孔511の第2開口部511bから通孔56内に流出し、そこから通孔56の近位側および遠位側に向かって流れ出す。遠位側に流れる樹脂14が、第1充填孔511と第3充填孔513との間の区域における通孔56内に隙間なく(十分に)充填されると、該樹脂14が通孔56から第3充填孔513に流出し、第1開口部513a付近まで充填される。
したがって、第3充填孔513内に充填された樹脂14の充填具合を確認することにより、第1充填孔511と第3充填孔513との間の区域における通孔56内の樹脂14の充填具合を把握することができる。また、該区域における通孔56内の樹脂14の充填具合に応じて、樹脂14の充填量を調整することが可能となり、該区域における通孔56内に最適な量の樹脂を充填することができる。
なお、通孔56の近位側開口部56aに樹脂14が到達しているか否かを確認することにより、第1充填孔511よりも近位側の区域における通孔56内の樹脂14の充填具合を把握することが可能である。
次に、図4Bに示すように、第1充填孔511からシリンジ13を引き抜き、第3充填孔513内に、該シリンジ13を挿入する。そして、シリンジ13から樹脂14を排出し、第3充填孔513を通じて、通孔56内に樹脂14を充填する(流し込む)。
充填開始後、樹脂14は、第3充填孔513の第2開口部513bから通孔56内に流出し、そこから通孔56の遠位側に向かって流れ出す。遠位側に流れる樹脂14が、第2充填孔512と第3充填孔513との間の区域における通孔56内に隙間なく(十分に)充填されると、該樹脂14が通孔56から第2充填孔512に流出し、第1開口部512a付近まで充填される。
したがって、第2充填孔512内に充填された樹脂14の充填具合を確認することにより、第2充填孔512と第3充填孔513との間の区域における通孔56内の樹脂14の充填具合を把握することができる。
また、2つの充填孔(少なくとも1個の樹脂注入孔)511,513を通じて通孔56内に樹脂14を充填し、2つの充填孔(少なくとも1個の充填確認孔)512,513を通じて通孔56内における樹脂14の充填具合を確認できるため、通孔56内に充填する樹脂14の量を細かく調整することができる。また、通孔56および充填孔511~513の内部が樹脂で満たされ(通孔56内に十分な量の樹脂が供給され)、通孔56内に固定される光ファイバ9の固着強度を十分に高めることができる。
なお、必要に応じて、第2充填孔512にシリンジ13を挿入するとともに、シリンジ13から樹脂14を排出し、第2充填孔512を通じて、第2充填孔512よりも遠位側の区域における通孔56内に樹脂14を充填(補充)してもよい。
次に、図4Cに示すように、側方挿通孔54を通じて、ゲル状物質12をセンサ収容孔514内に充填する。これにより、センサ収容孔514、側方挿通孔54および遠位側挿通孔55の内部はゲル状物質12で満たされ、センサ収容孔514の内部に収容された圧力センサ8はゲル状物質12で覆われる(固定される)。本実施形態では、センサ収容孔514が、側方挿通孔54と遠位側挿通孔55とを介して、先端チップ5の外部と連通しているため、ゲル状物質12の充填時に、遠位側挿通孔55から気泡が抜けやすく、センサ収容孔514の内部空間に気泡が溜まることを防止することができる。
本実施形態では、側方挿通孔54および遠位側挿通孔55を介して、先端チップ5の血圧を測定すべき外部と圧力センサ8とが連通された状態となり、先端チップ5の周囲の圧力が圧力センサ8により検出される。また、図4Cに示すように、センサ収容孔514内に圧力伝達充填物質(ゲル状物質12)が充填されている場合、該圧力伝達充填物質を介して、先端チップ5の血圧を測定すべき外部の圧力が伝達され、これが圧力センサ8により検出される。
その後、側方挿通孔54の開口部54aを塞ぐように、先端チップ5の先端部52の近位側の外周面(非湾曲面)に樹脂膜11をたとえば略円形状に形成する。また、遠位側挿通孔55の開口部55aを塞ぐように、先端チップ5の先端部52の遠位側の外周面(湾曲面)に樹脂膜11を形成する。これにより、センサ収容孔514に充填されたゲル状物質12が先端チップ5の外部に抜けることを防止することができる。なお、ワイヤ挿通孔50の遠位側の開口部については、樹脂膜11で塞がずに、開放しておく。
また、図4Dに示すように、第1開口部511a~513aの各々を塞ぐように胴体部51の外周面に樹脂膜15を形成する。
次に、胴体部51の内管挿通孔53に内管3の遠位側を挿入して接続固定し、バルーン部4の遠位端部40a(図1参照)を胴体部51の近位側の外周面に固定することにより、図1に示す大動脈内バルーンカテーテル1が製造される。なお、胴体部51の外周面のうち、樹脂膜15が形成された部分については、樹脂膜15の表面に遠位端部40aを固定する。
本実施形態に係る大動脈内バルーンカテーテル1では、先端チップ5に、充填孔511~513が形成されている。そのため、充填孔511~513を通じて、直接、通孔56内に樹脂14を充填することが可能であり、該樹脂14によって、光ファイバ9を通孔56内に固定することができる。すなわち、本実施形態に係る大動脈内バルーンカテーテル1では、従来技術に示す光ファイバの固定方法とは異なり、センサ収容孔514内に樹脂14を充填する必要がない。そのため、センサ収容孔514内に配置された圧力センサ8に樹脂14が付着するおそれがなく、樹脂14の付着に起因する圧力センサ8の精度の低下を防止し、大動脈内の血圧変動を高精度に計測することができる。
また、通孔56内に樹脂14を直接充填するため、通孔56内に形成される樹脂層に空隙(ボイド)が発生しにくくなる。そのため、通孔56の内壁面から樹脂14が剥離することを防止し、光ファイバ9を通孔56内に高い強度で固定することができる。
また、充填孔511~513は、先端チップ5の径方向に沿って延びている。そのため、先端チップ5の外周面と通孔56とが充填孔511~513を介して最短距離で結ばれ、充填孔511~513を通じて、通孔56内に樹脂14を容易に充填することができる。
第2実施形態
図2Bに示すように、本発明の第2実施形態に係る大動脈内バルーンカテーテルは、先端チップ5Aを有する。本実施形態における先端チップ5Aは、胴体部51Aを有する点において、第1実施形態における先端チップ5とは異なる。以下において、第1実施形態と共通する部分の説明については省略するとともに、共通する部材には共通する符号を付している。
図2Bに示すように、本発明の第2実施形態に係る大動脈内バルーンカテーテルは、先端チップ5Aを有する。本実施形態における先端チップ5Aは、胴体部51Aを有する点において、第1実施形態における先端チップ5とは異なる。以下において、第1実施形態と共通する部分の説明については省略するとともに、共通する部材には共通する符号を付している。
図2Bおよび図3Bに示すように、胴体部51Aは、図2Aおよび図3Aに示した第3充填孔513を具備していない点において、第1実施形態における胴体部51とは異なる。また、胴体部51Aは、第2充填孔512Aが、図3Aに示した第2充填孔512よりも、通孔56の遠位側に配置されている点において、第1実施形態における胴体部51とは異なる。
本実施形態では、第1充填孔511を通じて樹脂14を通孔56内に充填し、第2充填孔512Aを通じて、第1充填孔511と第2充填孔512Aとの間の区域における通孔56内の樹脂14の充填具合を確認することができる。また、本実施形態では、先端チップ5Aに形成された充填孔の数が、図2Aに示す先端チップ5に形成された充填孔の数よりも少ないため、第1実施形態と比較して、先端チップ5Aの構成を簡素化することができる。
また、第2充填孔512Aを上記のような位置に配置することにより、通孔56の近位端部から遠位端部にわたる広域に十分な量の樹脂14を容易に充填することができる。なお、第2充填孔512Aを通孔56のさらに遠位側(通孔56の遠位端)に配置してもよい。
なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。たとえば、先端チップ5が具備する充填孔の数は1個だけであってもよい。この場合、通孔56の近位端部、遠位端部、あるいは近位端部と遠位端部との間の区域における任意の位置に充填孔を設けることが可能である。たとえば、一端が先端チップ5の外周面で開口するとともに、他端が通孔56の軸方向略中央部に接続された充填孔を先端チップ5に具備させても良い。
また、図2Aに示す先端チップ5において、充填孔511~513の各々は、胴体部51の外周面上に、その周方向に位置ずれして形成されていてもよい。また、充填孔511~513の各々の軸方向に沿った間隔は等間隔でなくてもよい。
また、図3Aにおいて、充填孔511~513は、先端チップ5の径方向に沿ってまっすぐに延びているが、斜めに延びていてもよい。側方挿通孔54についても同様である。
また、充填孔511~513の形状を、たとえば略角柱形状や略三角柱形状等としてもよい。
上記第1実施形態において、先端部52の外周面に形成されている樹脂膜11については省略してもよい。
上記各実施形態において、開口部511a~513a,511b~513bの直径は、通孔56の近位側開口部56aおよび遠位側開口部56bの直径よりも小さくなっているが、大きくしてもよい。このような構成とすることにより、通孔56内に樹脂14を隙間なく充填しやすくなる。
1…大動脈内バルーンカテーテル
2…外管
20…圧力流体導通路
3…内管
30…ワイヤ通路
4…バルーン部
40a…遠位端部
40b…近位端部
5,5A…先端チップ
50…ワイヤ挿通孔
51,51A…胴体部
511…第1充填孔
511a…第1開口部
511b…第2開口部
512,512A…第2充填孔
512a…第1開口部
512b…第2開口部
513…第3充填孔
513a…第1開口部
513b…第2開口部
514…センサ収容孔
52…先端部
53…内管挿通孔
54…側方挿通孔
54a…開口部
55…遠位側挿通孔
55a…開口部
56…通孔
56a…近位側開口部
56b…遠位側開口部
57…段差部
6…造影マーカ
7…分岐部
71…一次ポート
72…二次ポート
73…三次ポート
74…一次通路
75…二次通路
76…三次通路
8…圧力センサ
9…光ファイバ
10…光コネクタ
11,15,15_1~15_3…樹脂膜
12…ゲル状物質
13…シリンジ
14…樹脂
2…外管
20…圧力流体導通路
3…内管
30…ワイヤ通路
4…バルーン部
40a…遠位端部
40b…近位端部
5,5A…先端チップ
50…ワイヤ挿通孔
51,51A…胴体部
511…第1充填孔
511a…第1開口部
511b…第2開口部
512,512A…第2充填孔
512a…第1開口部
512b…第2開口部
513…第3充填孔
513a…第1開口部
513b…第2開口部
514…センサ収容孔
52…先端部
53…内管挿通孔
54…側方挿通孔
54a…開口部
55…遠位側挿通孔
55a…開口部
56…通孔
56a…近位側開口部
56b…遠位側開口部
57…段差部
6…造影マーカ
7…分岐部
71…一次ポート
72…二次ポート
73…三次ポート
74…一次通路
75…二次通路
76…三次通路
8…圧力センサ
9…光ファイバ
10…光コネクタ
11,15,15_1~15_3…樹脂膜
12…ゲル状物質
13…シリンジ
14…樹脂
Claims (6)
- 光を利用して圧力を測定可能なセンサと、
前記センサに接続される光ファイバと、
前記センサを収容するセンサ収容孔と、前記センサ収容孔に接続され、前記光ファイバを通す通孔とが形成された先端チップと、を有し、
前記先端チップには、一端が前記先端チップの外周面で開口するとともに、他端が前記通孔に接続された充填孔が、前記通孔の内部に樹脂を充填可能に形成されていることを特徴とする大動脈内バルーンカテーテル。 - 前記通孔および前記充填孔の内部は樹脂で満たされていることを特徴とする請求項1に記載の大動脈内バルーンカテーテル。
- 前記先端チップには、複数の前記充填孔の各々が前記通孔の軸方向に沿って配置されていることを特徴とする請求項1または2に記載の大動脈内バルーンカテーテル。
- 前記通孔の近位端部には第1の前記充填孔が接続されており、
前記通孔の遠位端部には第2の前記充填孔が接続されていることを特徴とする請求項3に記載の大動脈内バルーンカテーテル。 - 前記通孔には第3の前記充填孔が接続されており、
第3の前記充填孔は、第1の前記充填孔と第2の前記充填孔との間に位置することを特徴とする請求項4に記載の大動脈内バルーンカテーテル。 - 前記充填孔は、前記先端チップの径方向に沿って延びていることを特徴とする請求項1~5のいずれかの請求項に記載の大動脈内バルーンカテーテル。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20748168.0A EP3919109A4 (en) | 2019-01-30 | 2020-01-23 | INTRA-AORTAL BALLOON CATHETER |
CN202080010010.7A CN113316465B (zh) | 2019-01-30 | 2020-01-23 | 主动脉内球囊导管 |
JP2020569563A JP7463969B2 (ja) | 2019-01-30 | 2020-01-23 | 大動脈内バルーンカテーテル |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-014277 | 2019-01-30 | ||
JP2019014277 | 2019-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020158572A1 true WO2020158572A1 (ja) | 2020-08-06 |
Family
ID=71842175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/002336 WO2020158572A1 (ja) | 2019-01-30 | 2020-01-23 | 大動脈内バルーンカテーテル |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3919109A4 (ja) |
JP (1) | JP7463969B2 (ja) |
CN (1) | CN113316465B (ja) |
WO (1) | WO2020158572A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114111617A (zh) * | 2021-12-13 | 2022-03-01 | 中交第二航务工程局有限公司 | 用于检测管道线形的充气胶囊结构及检测方法 |
US20220080154A1 (en) * | 2020-09-15 | 2022-03-17 | Boston Scientific Scimed, Inc. | Devices and systems for an endoscopic procedure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117717704B (zh) * | 2024-02-18 | 2024-05-14 | 安徽通灵仿生科技有限公司 | 一种基于心室导管泵的泵血流量估测系统及方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000035369A (ja) | 1998-05-14 | 2000-02-02 | Masaki Esashi | 圧力センサおよびその製造方法 |
US6398738B1 (en) * | 2000-09-25 | 2002-06-04 | Millar Instruments, Inc. | Method and apparatus for reconstructing a high fidelity pressure waveform with a balloon catheter |
JP2008524606A (ja) | 2004-12-22 | 2008-07-10 | オプセンス インコーポレイテッド | カテーテル用の光ファイバ圧力センサ |
JP2010233883A (ja) | 2009-03-31 | 2010-10-21 | Nippon Zeon Co Ltd | カテーテル |
US20150141854A1 (en) * | 2013-11-21 | 2015-05-21 | Vascular Imaging Corporation | Optical fiber pressure sensor |
JP2016093290A (ja) * | 2014-11-13 | 2016-05-26 | 日本ゼオン株式会社 | バルーンカテーテル |
JP2016093289A (ja) * | 2014-11-13 | 2016-05-26 | 日本ゼオン株式会社 | 医療用スタイレット |
CN105852833A (zh) * | 2016-04-17 | 2016-08-17 | 深圳北芯生命科技有限公司 | 血管内压力测量导管 |
JP2016190011A (ja) * | 2015-03-31 | 2016-11-10 | 日本ゼオン株式会社 | 医療器具用光コネクタ |
JP2017176719A (ja) * | 2016-03-31 | 2017-10-05 | 日本ゼオン株式会社 | カテーテル |
WO2018180976A1 (ja) * | 2017-03-27 | 2018-10-04 | 日本ゼオン株式会社 | カテーテル |
WO2019013201A1 (ja) * | 2017-07-13 | 2019-01-17 | 株式会社東海メディカルプロダクツ | 測定子付嘴管 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4409499B2 (ja) * | 2005-10-25 | 2010-02-03 | 国立大学法人浜松医科大学 | 血栓溶解装置 |
JP2009002997A (ja) * | 2007-06-19 | 2009-01-08 | Hitachi Cable Ltd | 光ファイバ、光ファイバの端面部構造及び光コネクタ |
CN107920780B (zh) * | 2015-07-13 | 2022-01-11 | 阿维格公司 | 用于图像引导治疗/诊断导管的微模制畸变反射透镜 |
-
2020
- 2020-01-23 WO PCT/JP2020/002336 patent/WO2020158572A1/ja unknown
- 2020-01-23 EP EP20748168.0A patent/EP3919109A4/en active Pending
- 2020-01-23 JP JP2020569563A patent/JP7463969B2/ja active Active
- 2020-01-23 CN CN202080010010.7A patent/CN113316465B/zh active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000035369A (ja) | 1998-05-14 | 2000-02-02 | Masaki Esashi | 圧力センサおよびその製造方法 |
US6398738B1 (en) * | 2000-09-25 | 2002-06-04 | Millar Instruments, Inc. | Method and apparatus for reconstructing a high fidelity pressure waveform with a balloon catheter |
JP2008524606A (ja) | 2004-12-22 | 2008-07-10 | オプセンス インコーポレイテッド | カテーテル用の光ファイバ圧力センサ |
JP2010233883A (ja) | 2009-03-31 | 2010-10-21 | Nippon Zeon Co Ltd | カテーテル |
US20150141854A1 (en) * | 2013-11-21 | 2015-05-21 | Vascular Imaging Corporation | Optical fiber pressure sensor |
JP2016093290A (ja) * | 2014-11-13 | 2016-05-26 | 日本ゼオン株式会社 | バルーンカテーテル |
JP2016093289A (ja) * | 2014-11-13 | 2016-05-26 | 日本ゼオン株式会社 | 医療用スタイレット |
JP2016190011A (ja) * | 2015-03-31 | 2016-11-10 | 日本ゼオン株式会社 | 医療器具用光コネクタ |
JP2017176719A (ja) * | 2016-03-31 | 2017-10-05 | 日本ゼオン株式会社 | カテーテル |
CN105852833A (zh) * | 2016-04-17 | 2016-08-17 | 深圳北芯生命科技有限公司 | 血管内压力测量导管 |
WO2018180976A1 (ja) * | 2017-03-27 | 2018-10-04 | 日本ゼオン株式会社 | カテーテル |
WO2019013201A1 (ja) * | 2017-07-13 | 2019-01-17 | 株式会社東海メディカルプロダクツ | 測定子付嘴管 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3919109A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220080154A1 (en) * | 2020-09-15 | 2022-03-17 | Boston Scientific Scimed, Inc. | Devices and systems for an endoscopic procedure |
US12109373B2 (en) * | 2020-09-15 | 2024-10-08 | Boston Scientific Scimed, Inc. | Devices and systems for an endoscopic procedure |
CN114111617A (zh) * | 2021-12-13 | 2022-03-01 | 中交第二航务工程局有限公司 | 用于检测管道线形的充气胶囊结构及检测方法 |
CN114111617B (zh) * | 2021-12-13 | 2023-10-10 | 中交第二航务工程局有限公司 | 用于检测管道线形的充气胶囊结构及检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113316465A (zh) | 2021-08-27 |
EP3919109A1 (en) | 2021-12-08 |
JPWO2020158572A1 (ja) | 2021-12-02 |
CN113316465B (zh) | 2023-03-31 |
JP7463969B2 (ja) | 2024-04-09 |
EP3919109A4 (en) | 2022-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5347656B2 (ja) | カテーテル | |
WO2020158572A1 (ja) | 大動脈内バルーンカテーテル | |
US5711754A (en) | Intra-aortic balloon catheter | |
EP3151739B1 (en) | Pressure sensing guidewire systems with reduced pressure offsets | |
JP6569271B2 (ja) | 医療器具用光コネクタ | |
WO2018180976A1 (ja) | カテーテル | |
JP2017176719A (ja) | カテーテル | |
JP6511781B2 (ja) | 医療用スタイレット | |
JP7505546B2 (ja) | センサ搭載型カテーテル | |
JP6429001B2 (ja) | カテーテル | |
JP6472487B2 (ja) | 測定子付嘴管 | |
JP7091770B2 (ja) | 大動脈内バルーンカテーテル | |
JP6550726B2 (ja) | バルーンカテーテル | |
JP2016189921A (ja) | Iabp用バルーンカテーテル | |
EP1878453A1 (en) | Intra-aortic balloon pumping set | |
JP7138189B2 (ja) | 圧力センサ付き医療装置 | |
JP2020081526A (ja) | カテーテルならびにカテーテルの先端チップおよびその製造方法 | |
JP2015192808A (ja) | バルーンカテーテル | |
JPH08257139A (ja) | バルーンカテーテル | |
JPH0724060A (ja) | バルーンカテーテル | |
JP2001238953A (ja) | バルーンカテーテル | |
JP6835120B2 (ja) | Iabp用バルーンカテーテル | |
JP3654355B2 (ja) | カテーテル管セット | |
JPH06114109A (ja) | バルーンカテーテル | |
JPH10165495A (ja) | 大動脈内バルーンポンピング用バルーンカテーテル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20748168 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020569563 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020748168 Country of ref document: EP Effective date: 20210830 |