WO2020158355A1 - シームレス缶体及びシームレス缶体の製造方法 - Google Patents

シームレス缶体及びシームレス缶体の製造方法 Download PDF

Info

Publication number
WO2020158355A1
WO2020158355A1 PCT/JP2020/000780 JP2020000780W WO2020158355A1 WO 2020158355 A1 WO2020158355 A1 WO 2020158355A1 JP 2020000780 W JP2020000780 W JP 2020000780W WO 2020158355 A1 WO2020158355 A1 WO 2020158355A1
Authority
WO
WIPO (PCT)
Prior art keywords
seamless
cup
plate thickness
outer peripheral
tubular body
Prior art date
Application number
PCT/JP2020/000780
Other languages
English (en)
French (fr)
Inventor
具実 小林
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019014857A external-priority patent/JP6835109B2/ja
Priority claimed from JP2019190496A external-priority patent/JP6760460B1/ja
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to EP20749070.7A priority Critical patent/EP3919200A4/en
Priority to US17/426,313 priority patent/US20220097896A1/en
Priority to CN202080018253.5A priority patent/CN113507993A/zh
Publication of WO2020158355A1 publication Critical patent/WO2020158355A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/12Cans, casks, barrels, or drums
    • B65D1/14Cans, casks, barrels, or drums characterised by shape
    • B65D1/16Cans, casks, barrels, or drums characterised by shape of curved cross-section, e.g. cylindrical
    • B65D1/165Cylindrical cans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/30Deep-drawing to finish articles formed by deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/40Details of walls
    • B65D1/42Reinforcing or strengthening parts or members
    • B65D1/46Local reinforcements, e.g. adjacent closures

Definitions

  • the present invention relates to a seamless can and a method for manufacturing the seamless can.
  • a so-called seamless can body in which the body of the can is formed by drawing and ironing.
  • This seamless can is excellent in lightness because the can body is thinned by ironing.
  • the bottom portion is required to have strength (pressure resistance) to resist deformation due to internal pressure of the can, it is necessary to reduce the material thickness at the bottom portion of the can body in order to reduce the weight and to maintain or improve the pressure resistance.
  • Various proposals have been conventionally made including the following patent documents.
  • Patent Document 1 and Patent Document 2 disclose so-called bottom reforming, which is performed for the purpose of preventing a phenomenon (buckling) in which the dome portion of the can bottom is inverted, which appears when the internal pressure of the can exceeds the pressure resistance. Has been done.
  • a bottom reforming process is disclosed in which a recess is formed by pressing an inner peripheral wall of the grounding portion of the can bottom, which is located on the inner side in the radial direction orthogonal to the can axis.
  • the bottom reform processing has the following problems. That is, in this bottom reforming step, the concave portion is formed by pressing the inner peripheral wall of the can bottom using a forming roller or the like. At the time of pressing using this forming roller or the like, as described in Patent Document 3, there is a problem that blackening is likely to occur at a pressed portion and that a metal material is apt to adhere to the forming roller and the like. was there. In addition, when pressing, lubricating oil is applied for smooth processing, but since a step of cleaning this lubricating oil is required after bottom reform processing, from the viewpoint of cost and environmental load required for cleaning, further Improvement was required.
  • Patent Document 4 the present inventor has disclosed a technique for improving the pressure resistance of a seamless can body.
  • this technique improves the pressure resistance, it does not sufficiently optimize the plate thickness distribution of each part of the can body (particularly the can bottom part). Therefore, the demand for weight reduction of the can has not been sufficiently satisfied.
  • Patent Document 5 discloses a two-piece can body characterized in that the plate thickness of the grounding portion of the can bottom is thicker than the plate thickness of the material before processing.
  • the device is complicated, it is difficult to realize it on an industrial level, or the cost of equipment is increased.
  • the present inventor repeatedly conducted diligent studies in view of the problems exemplified above.
  • a seamless can body and a manufacturing method thereof which can reduce the plate thickness of a blank plate (blank) and at the same time suppress the buckling by increasing the pressure resistance of the can bottom and solve the above-mentioned problems of blackening and cleaning.
  • the present invention has been made possible by providing a simpler manufacturing apparatus.
  • the seamless can in one embodiment of the present invention is (1) a seamless can having a tubular body and a can bottom, wherein the can bottom is the tubular body.
  • An outer peripheral bottom portion continuous so as to reduce the diameter from the lower end to the inner side, and a peripheral ground contact portion located inside the outer peripheral bottom portion, and the plate thickness of the outer peripheral bottom portion is set to t1. Is defined as t2, t2>t1.
  • the seamless can is (2) a tubular body portion, which is continuous from the lower end of the tubular body portion so as to be reduced in diameter through a boundary portion to the inside. And a can bottom portion having at least an outer peripheral bottom portion, the plate thickness of the lower end of the tubular body portion being substantially equal to the plate thickness of the intermediate portion in the axial direction of the tubular body portion.
  • the can bottom portion further includes an inner end portion 202c located inside the circumferential ground contact portion, and a plate thickness of the inner end portion is t3. In this case, it is preferable that t3>t1.
  • the plate thickness gradually increases from the outer peripheral bottom portion to the inner end portion so that (4) t3>t2.
  • the can bottom portion further includes a rising portion 202d rising upward from the inner end portion, and the plate thickness at the upper end of the rising portion is t4. , T4>t1 is preferable.
  • the can bottom portion further includes a can dome portion that bulges upward to be continuous with the rising portion, and has a plate thickness at the center of the can dome portion.
  • t5 it is preferable that the plate thickness gradually increases from the can dome portion to the inner end portion so that t3>t4>t5.
  • a ring groove is formed so that a connecting portion between the rising portion and the dome portion is convex toward the outside of the can body axis. preferable.
  • the plate thickness at the boundary portion is substantially equal to the plate thickness at the intermediate portion.
  • the tubular body has a relationship of t WC ⁇ t0 ⁇ 1.09 ⁇ t WC (where t0 is the plate thickness of the boundary portion).
  • the 60-degree specular glossiness from the lower end of the tubular body to near the boundary is 300% or more.
  • a method for producing a seamless can body is (13) a method for producing a seamless can body having a tubular body portion and a can bottom portion, wherein a metal material is -Shaped body portion, a cup outer peripheral bottom portion continuing to reduce the diameter from the lower end of the tubular body portion, an inclined portion extending inward and upward from the cup outer peripheral bottom portion, and an upper portion from the end portion from the inclined portion.
  • the cup dome portion By applying a pressing force from the cup dome portion toward the outside of the can with the molding member, the cup dome portion is pushed down to a second height lower than the first height, and the inclined portion is meridian direction and circumferential direction.
  • a second molding step in which a compressive stress in a direction is applied to increase the thickness of the inclined portion and presses the lower mold molding member.
  • the circumferential ground contact portion 202b located inside the outer peripheral bottom portion and the circumferential ground portion 202b are formed.
  • An inner end portion 202c located inside the grounding portion and a rising portion 202d rising from the inner end portion to connect to the can dome portion are formed, and a connecting portion between the rising portion 202d and the can dome portion 201d.
  • a ring groove is formed so that the connecting portion is convex toward the outside of the can body shaft so that the inner diameter (dx) of the (outermost end 201e) is larger than the inner diameter (dy) of the inner end portion 202c.
  • the connecting portion is convex toward the outside of the can body shaft so that the inner diameter (dx) of the (outermost end 201e) is larger than the inner diameter (dy) of the inner end portion 202c.
  • the method for manufacturing a seamless can is (15) a tubular body portion thinned by metal-working a metal material, and the tubular body portion
  • the outer peripheral bottom portion is formed so that the lower end of the tubular body portion is drawn in such that it is approximately equal to the plate thickness of the intermediate portion, and the diameter is reduced from the lower end of the tubular body portion to the inner side through the boundary portion.
  • a can bottom having a higher pressure resistance than the can bottom obtained by the conventional bottom reforming process can be obtained even when the thickness of the blank (blank) is reduced. Therefore, a seamless can body can be manufactured using a blank plate (blank) thinner than before, and the amount of metal material used can be reduced, which is advantageous in terms of cost. Furthermore, the reduction in weight of the seamless can also contributes to the reduction of recycling costs and transportation costs.
  • the method for producing a seamless can of the present invention it is possible to increase the pressure resistance of the can bottom and suppress buckling even with a thin blank plate (blank) with a simple manufacturing apparatus. Is. In addition, it is possible to solve the problem of black discoloration, which is a problem in bottom reform processing. Furthermore, since there is no need for the conventional bottom reforming process and the subsequent process for cleaning the lubricating oil, there are great cost and environmental advantages.
  • FIG. 1st Embodiment It is a schematic diagram which shows the seamless can body 1A in 1st Embodiment. It is an enlarged view which shows the can bottom of the seamless can body 1A in 1st Embodiment. It is a graph which shows the plate thickness of each point in 1 A of seamless cans in 1st Embodiment. It is a figure which shows the 1st shaping
  • FIG. 6 is a partially enlarged view of a can bottom of a seamless can used in Comparative Example 1.
  • FIG. It is a schematic diagram which shows the whole longitudinal cross section of the seamless can body 1B in 2nd Embodiment.
  • FIG. 8 is a comparison diagram of a seamless can body 1B in the second embodiment and a seamless can body having a conventional structure in the vicinity of a lower end 10e of a tubular body portion 10. It is a figure which shows the 1st shaping
  • FIG. 11 is a schematic diagram in which the ⁇ part and the ⁇ part in FIG. 10 are partially enlarged. It is a figure which shows the 2nd shaping
  • the seamless can body 1A of the present embodiment is a seamless can body having a tubular body portion 10 and a can bottom portion 20.
  • the can bottom portion 20 includes a can bottom central portion 201 that does not contact the horizontal surface when the seamless can body is placed on the horizontal surface, and the can bottom portion 201. It is preferable to include a foot portion 202 located outside the center bottom portion 201.
  • the can bottom center portion 201 of the seamless can body 1A in the present embodiment may have a horizontal shape, or rises toward the inner surface of the can as shown in FIG. 1(a) (expands so as to project upward). It may have a dome shape.
  • the foot portion 202 of the can bottom portion 20 is located at the bottom of the can bottom center portion 201 from the lower end 10e of the tubular body portion 10 in the can body axis RA direction. It is defined as a part up to the outer end 201e.
  • the “outermost end 201e of the can bottom central portion 201” is a dome in the dome shape when the can bottom central portion 201 is dome shaped. The diameter is the maximum.
  • the lowermost portion of the foot portion 202 in the Z-axis direction is the circumferential ground contact portion 202b. That is, it can be said that the circumferential grounding portion 202b is a portion that comes into contact with the horizontal plane when the seamless can body 1A of the present embodiment is placed on the horizontal plane. Then, the lower end 10e of the tubular body portion 10 to the circumferential grounding portion 202b is defined as an outer peripheral bottom portion 202a.
  • the foot portion 202 includes an outer peripheral bottom portion 202a that is continuous from the lower end 10e of the tubular body portion 10 so as to reduce in diameter, and a peripheral ground contact portion 202b that is located inside the outer peripheral bottom portion 202a. And, including.
  • the outer peripheral bottom portion 202a is located in a ring shape up to the lower end 10e of the tubular body portion 10 on the outer side of the peripheral ground contact portion 202b.
  • the ring width of the outer peripheral bottom portion 202a and the area thereof are not particularly limited, and a known shape can be applied to the inclination angle and the curved state. That is, it may have a straight line shape in a cross section, an arc shape curved toward the inside of the can body, or conversely, an arc shape curved toward the outside. Further, a part may be curved inwardly and the rest may be curved outwardly, and these may be connected continuously. In the present embodiment, as shown in FIG. 2, it is preferable that the outer peripheral bottom portion 202a has an inflection point IP in its cross-sectional view so that it can be easily placed on the lid of a can of the same type.
  • the seamless can body 1A of the present embodiment further includes an inner end portion 202c located inside the circumferential ground contact portion 202b.
  • the inner end portion 202c is defined as a portion of the above-described foot portion 202 that is closest to the can body axis RA side in the cross-sectional view.
  • the seamless can body 1A of the present embodiment includes a rising portion 202d extending from the inner end portion 202c in the upward direction (+ direction of the Z axis).
  • the rising portion 202d is defined as a portion from the inner end portion 202c to the outermost end 201e in the can bottom center portion 201 direction in the cross-sectional view shown in FIG.
  • the seamless can body 1A of the present embodiment is characterized in that when the plate thickness of the outer peripheral bottom portion 202a is t1 and the plate thickness of the circumferential grounding portion 202b is t2, the relationship of "t2>t1" is established. ..
  • the plate thickness (t1) of the outer peripheral bottom portion 202a is the plate thickness at the midpoint of the length (the length along the shape) from the lower end 10e to the circumferential grounding portion 202b.
  • the relationship of “t3>t1” is established.
  • t3>t1 it is possible to provide a preferable pressure resistance while reducing the weight of the can body.
  • t3>t1 it is possible to impart strength against deformation when the seamless can body 1A is dropped with the can bottom portion 20 facing downward, which is preferable.
  • the thickness is defined in the present invention for the following reason. That is, when the liquid contained in the seamless can is beer or carbonated drink, the can bottom is always under internal pressure. If an impact is applied to the bottom of the can while the inner pressure is applied, or if the inner pressure applied to the bottom of the can suddenly increases for some reason, the inner pressure of the can exceeds the pressure resistance of the bottom, A phenomenon (buckling) that the dome part of the can bottom is inverted occurs.
  • the present inventor diligently studied in order to realize a seamless can body that simultaneously satisfies the requirements for weight reduction of the can and pressure resistance of the can bottom.
  • the thickness of the blank (blank) should be the same as or thinner than the conventional one, but the pressure resistance of the can bottom should be increased by thickening only the part of the can bottom that is likely to contribute to the improvement of pressure resistance. And realized the present invention.
  • the body of the can since a blank plate (blank) thinner than the conventional one can be adopted, a squeezing and ironing process similar to the conventional one allows the body plate thickness to be the same as or thinner than the conventional one. Can be reached Therefore, it can be said that it is possible to satisfy the requirements for weight reduction and pressure resistance of the can bottom at a high level.
  • the foot portion 202 of the can bottom portion 20 is a portion of the outermost end 201e from the inner end portion 202c through the rising portion 202d. Is connected to the can bottom center portion 201 (can dome portion 201d).
  • the rising portion 202d has a center portion of the can bottom so that the inner diameter (dx) of the outermost end 201e is larger than the inner diameter (dy) of the inner end portion 202c.
  • 201 can dome portion 201d).
  • the cross-sectional view has a substantially " ⁇ " or " ⁇ " shape.
  • the outermost end 201e toward the outside of the can body axis RA. It is preferable that the ring groove has a convex shape.
  • the outer peripheral bottom portion 202a has an inflection point IP in its sectional view. As shown in FIG. 2, this inflection point IP may be located in the + direction of the Z axis rather than the outermost end 201e, or conversely, may be located in the ⁇ direction of the Z axis.
  • the plate thickness of the outermost end 201e where the rising portion 202d and the can bottom center portion 201 are connected is t4
  • the relationship of “t4>t1” is also established, which also contributes to weight reduction of the can body. It is preferable from the viewpoint of pressure resistance.
  • the seamless can body 1A of the present embodiment further includes a can dome portion 201d, which bulges upward from the can bottom portion 20 so as to be continuous and convex with the rising portion 202d.
  • a can dome portion 201d which bulges upward from the can bottom portion 20 so as to be continuous and convex with the rising portion 202d.
  • the center portion 201 of the can bottom has a dome shape as shown in FIG.
  • the central plate thickness of the can dome portion 201d is t5
  • the following relationship be satisfied in the relationship between the plate thickness (t3) of the inner end portion 202c and the plate thickness (t4) of the rising portion 202d.
  • the plate thicknesses have a relationship of “t3>t2>t1”. In other words, it is preferable that the plate thickness gradually increases in the order of the outer peripheral bottom portion 202a, the peripheral ground contact portion 202b, and the inner end portion 202c. By satisfying such a relationship, it becomes possible to impart preferable pressure resistance to the seamless can body 1A of the present embodiment.
  • t2 and t3 may have the same thickness as shown in FIG. 3(b), or t2 may have the same thickness as shown in FIG. 3(c). It may be maximum.
  • the thickness is not limited to the above thickness.
  • the plate thickness of the can bottom portion 20 has the above relationship from the viewpoint of desired pressure resistance. That is, in the seamless can body 1A in the present embodiment, it is preferable that the average plate thickness of the can bottom portion 20, particularly the foot portion 202, is thicker than the can bottom center portion 201.
  • the thickness of the can dome portion 201d is smaller than the thickness of the outer peripheral bottom portion 202a. That is, it is preferable that “t5 ⁇ t1”.
  • Buckling pressure is a numerical value indicating the pressure resistance. That is, the peak value of the pressure until the phenomenon in which the dome portion convex inside the can bottom is deformed so as to be inverted by the internal pressure is called buckling pressure.
  • the process in which the buckling phenomenon occurs can be explained as follows.
  • the dome part which has a substantially spherical shape, begins to receive internal pressure, it itself does not deform immediately, and the product of the projected area of the dome part and the internal pressure becomes the force that pushes the dome part out of the can.
  • the ground contact portion 202b, the inner end portion 202c, and the rising portion 202d act to apply a load and deform.
  • the outer periphery of the dome portion is supported by the member in the narrow region from the circumferential grounding portion 202b to the rising portion 202d.
  • the function of supporting the outer periphery of the dome portion is lost. That is, the circumferential grounding portion 202b, the inner end portion 202c, and the rising portion 202d cannot maintain the annular shape centered on the can body axis RA, and the outermost end 201e located on the outer periphery of the dome portion continuing to the circular shape is also broken. Since the can dome portion 201d connected to the can dome portion cannot maintain the spherical shape, the strength of the dome portion rapidly decreases and the dome portion is inverted (buckling) to the outside of the can.
  • the second height Hp of the can dome portion 201d in the seamless can body 1A is not particularly limited, and can be the same height as a known seamless can body having a dome portion.
  • the type of metal material used for the seamless can 1A is not particularly limited. That is, a known metal plate usually used for a seamless can, such as an aluminum alloy plate or a surface-treated steel plate, can be used. Further, the metal plate may be appropriately surface-treated, such as a laminate of known films, a coat of an organic resin, or a chemical conversion treatment.
  • the seamless can body 1A of the present embodiment is subjected to a known necking process, a flange process, or a process of forming a screw, and after a beer, a carbonated drink, etc. are stored as the contents, a known method is applied to the opening.
  • the lid is attached with.
  • the method for producing a seamless can body in the present embodiment is a method for producing a seamless can body 1A having a tubular body portion 10 and a can bottom portion 20 as shown in FIG. 1(a), which will be described in detail below. It is characterized by including at least the first molding step and the second molding step.
  • the method for manufacturing the seamless can body of the present embodiment as a method for forming the tubular body portion 10, a known method as described in Patent Document 4, for example, can be adopted.
  • the method for molding the can bottom portion 20 is characterized by including at least a first molding step and a second molding step as described in detail below.
  • the metal body (blank) described above is used to form a can body by a known method to prepare a precursor 3 having a cup shape.
  • the metal material (precursor 3) may have a domeless cup shape obtained by a known drawing and ironing method. Further, it may have a cup shape having a dome as long as the following first molding step and second molding step can be realized.
  • the seamless can body 1A in the present embodiment can be obtained.
  • the metal material (precursor 3) is added to the tubular body 10 and the tubular body 10.
  • a cup outer peripheral bottom portion A continuing to be reduced in diameter from the lower end 10e of the body portion 10, an inclined portion S extending inward and upward from the cup outer peripheral bottom portion A, and an upper end portion Se of the inclined portion S directed upward.
  • the end portion Se of the inclined portion S can also be referred to as a connection point with the cup dome portion D.
  • the first molding step shown in FIG. 4 is performed as a separate step using the upper mold and the lower mold for the precursor 3 in which the tubular body 10 is molded by a known pressing process or the like. It can also be done at the final stage of the stroke following the step of ironing.
  • a cylindrical punch 401 positioned in and supporting the cup-shaped precursor 3 and a peripheral bottom of the precursor 3 cooperate with the punch 401.
  • the first molding step is performed by the hold-down ring 501 that moves and supports and the doming die 502.
  • the outer peripheral bottom portion of the precursor 3 is held by the peripheral wall portion 402 (tapered portion) of the punch 401 and the tapered support portion 503 of the holddown ring 501, and the punch 401 and the doming die 502 are driven so as to be engaged with each other.
  • the cup body 2 having the Ho cup dome portion D at the bottom can be obtained by making them close to each other.
  • the shape of the cup body 2 obtained by the first molding step will be described. That is, the inclined portion S of the cup body 2 extends from the cup outer peripheral bottom portion A toward the upper inside. That is, the inclined portion S of the cup body 2 is, as shown in FIG. 4, a curved portion sandwiched between the lowest portion of the cup body 2 in the Z-axis direction and the connection point (end Se) with the cup dome portion D. And the straight part.
  • the inclined portion S is not vertical but is inclined at a predetermined angle ⁇ 1 . That is, the angle ⁇ 1 formed between the inclined portion S and the Z axis is preferably 5° to 30° from the viewpoint of preferably controlling the plate thickness of each portion in the second molding step described below. Further, the angle ⁇ 1 formed between the inclined portion S and the Z axis is 10° to 30°, which facilitates spray coating when a coating film is formed on the inner surface by a spray coating method after the first molding step. Therefore, it is more preferable.
  • the first height Ho of the cup dome portion D of the cup body 2 is preferably larger than the second height Hp of the can dome portion 201d of the seamless can body 1A obtained by the second molding step described later. ..
  • the reason for this is that, as will be described later, while the cup dome portion D of the cup body 2 is pushed down in the second molding step to be described later, a compressive stress is applied to the inclined portion S. That is, the first height Ho of the cup dome portion D of the cup body 2 is increased in advance, and finally the second height Hp of the can dome portion 201d that is preferable in the seamless can body 1A is obtained. ..
  • the second molding step After the cup body 2 having the cup outer peripheral bottom portion A and the inclined portion S is molded by the first molding step, the following second molding step is performed.
  • the cup body 2 is appropriately subjected to a known washing step, surface treatment step, printing step, painting step, shape imparting processing for the tubular body, Alternatively, neck-in (mouth drawing) processing or the like may be carried out within a range that does not hinder the second molding step.
  • neck-in (mouth drawing) processing or the like may be carried out within a range that does not hinder the second molding step.
  • the outer surface coating is performed on the portion in the range from the cup outer peripheral bottom portion A to the inclined portion S, centering on the lowermost curvature portion of the cup body 2. Can be applied.
  • the cup body 2 is processed by a mold different from the molding mold used in the first molding process to mold the seamless can body 1A. That is, while bringing the cup body 2 into contact with the cup outer peripheral holder 60 as the lower mold forming member, the dome pushing down tool 70 as the upper mold forming member is used to move the cup body 2 toward the cup dome portion D of the cup body 2 toward the outside of the can. Apply pressing force to (-Z axis direction). Alternatively, the pressing force may be applied in the +Z-axis direction by using the lower mold forming member while bringing the cup body 2 into contact with the lower mold forming member and the upper mold forming member.
  • the cup outer peripheral bottom portion A is placed on the cup outer peripheral side holder 60.
  • the dome push-down tool 70 moves down relatively, and the support portion 701 of the dome push-down tool 70 contacts the cup dome portion D.
  • the cup outer peripheral side holder 60 has a tapered surface 601 and a groove 602, and after the cup outer peripheral bottom portion A of the cup body 2 contacts the tapered surface 601, the dome pushing down tool 70 is further pushed down, The metal of the inclined portion S of the cup body 2 is guided and pushed into the groove 602 while receiving a compressive stress.
  • the cup dome portion D is pushed down so that the second height Hp is lower than the first height Ho.
  • a compressive stress ⁇ ⁇ in the meridian direction and a compressive stress ⁇ ⁇ in the circumferential direction are applied to the inclined portion S by using the upper mold forming member (dome pressing tool) and the lower mold forming member (cup outer peripheral side holder). Let it work.
  • FIG. 6 is a schematic diagram showing the compressive stress applied when the inclined portion S is formed on the rising portion 202d in the present embodiment. That is, when the inclined portion S is pushed into the groove 602 of the lower die forming member, the inclined portion S tries to follow the compressive stress ⁇ ⁇ in the meridional direction and the lower die forming member by the pushing force of the dome pushing tool 70.
  • the compressive stress ⁇ ⁇ in the circumferential direction due to the movement inward in the radial direction simultaneously acts, and the thickness of the metal material in the inclined portion S increases (arrow direction ⁇ ⁇ in FIG. 6 ).
  • the seamless can body 1A is obtained after the second molding step.
  • the dome pushing-down tool may be relatively raised to take out the seamless can 1A from the cup outer peripheral holder.
  • the seamless can body 1A obtained after the second molding step is preferably the seamless can body 1A in the above-described embodiment. That is, as shown in FIG. 1, the seamless can body 1A obtained after the second molding step has an outer peripheral bottom portion 202a and a peripheral ground contact portion 202b, and the outer peripheral bottom portion 202a has a plate thickness of t1, and a peripheral ground contact portion is formed.
  • the plate thickness of the portion 202b is t2, it is preferable that the relationship of "t2>t1" is satisfied.
  • the second molding step has the following features. That is, in the second molding step, by pushing the cup body 2 described above into the cup outer peripheral side holder 60 of the second molding step, the inclined portion S and the circumferential grounding portion 202b positioned inside the outer peripheral bottom portion 202a, It is preferable to form an inner end portion 202c located inside the circumferential grounding portion 202b and a rising portion 202d that rises upward from the inner end portion 202c and connects to the can dome portion 201d.
  • the inner diameter (dx) of the connection point (outermost end 201e) between the rising portion 202d of the seamless can 1A and the can dome portion 201d is larger than the inner diameter (dy) of the inner end 202c. It is preferable to form a ring groove whose outermost end 201e is convex toward the outside of the can body axis RA so as to be large.
  • a reform molding method bottom reform processing
  • the plate thickness of the ring groove portion does not become thin but tends to become thicker, and a deep groove can be formed without difficulty.
  • the shape and length of the upper portion of the cup outer peripheral bottom portion A of the cup body 2 are not changed between the first molding step and the second molding step. That is, when the cup body 2 is placed on the cup outer peripheral side holder 60, the lowest point in the Z-axis direction of the surface where the cup outer peripheral bottom portion A of the cup body 2 and the tapered surface 601 of the cup outer peripheral side holder 60 contact each other. Set to T point. The position of this point T does not change as the dome pushing down tool 70 is lowered and the cup dome portion D is pushed down. (See Figure 5)
  • the inclined portion S of the cup body 2 becomes a part of the outer peripheral bottom portion 202a of the seamless can body 1A, the circumferential grounding portion 202b, the inner end portion 202c, and the rising portion 202d. Molded. That is, all the inclined portions S of the cup body 2 finally enter the groove 602 of the cup outer peripheral side holder 60.
  • this second molding step there is no significant sliding in the contact between the cup body 2 and the upper and lower molds. Therefore, the metal surface of the cup body 2 is not damaged, and it is not necessary to use a lubricant.
  • the point T is an inflection point IP in the seamless can 1A. Due to the compressive stress applied by the second molding step, the metal length becomes short as described below. That is, the metal length from the inflection point IP to the outermost end 201e in FIG. 5(f) is 0.85 to 0.99 as compared with the metal length from point T to Se in FIG. 5(b). It will be about twice as short.
  • the thickness of the metal material in the relevant part is increased to 1.1 to 1.3 times the thickness (t0) of the raw plate in the part where the thickness is increased most by the second forming step.
  • Example 1 A squeezed ironing can (DI can) having an inner volume of 350 mL was manufactured by the method described below. First, an aluminum alloy plate (JIS H 4000 A3104-H19 material, 0.28 mm) was prepared as a base plate. Next, a predetermined amount of known cupping oil was applied to both surfaces of the aluminum alloy plate as a lubricant for drawing.
  • JIS H 4000 A3104-H19 material 0.28 mm
  • the aluminum alloy plate was punched into a disk shape having a diameter of 160 mm by a drawing machine, and then immediately drawn to obtain a drawing cup (not shown) having a diameter of 90 mm.
  • the drawn cup obtained is transported to a body maker (can body manufacturing machine) and re-drawn to a shape with a diameter of 66 mm, and then a coolant is used to give a diameter of 66 mm, a height of 130 mm, and a minimum side wall thickness.
  • Ironing was performed so as to obtain the precursor 3 formed by drawing and ironing with a shape of 0.105 mm.
  • the following first forming step and second forming step were performed on the precursor 3 obtained above.
  • the first molding step is performed at the final stage of the stroke following the ironing process by the body maker described above, and the punch 401, the hold-down ring 501 and the doming die 502 shown in FIG.
  • the cup body 2 having S was used.
  • the length and plate thickness of the cup outer peripheral bottom portion A and the inclined portion S at this time are as shown in Table 1.
  • the dome pushing tool 70 as the upper die forming member and the cup outer peripheral side holder 60 as the lower die forming member shown in FIG. 5 are used to push down the cup dome portion D and the metal material in the inclined portion S. Was increased to form a seamless can body 1A.
  • the plate thickness of each part from t1 to t5 was measured.
  • the locations of the respective portions from t1 to t5 are as shown in the above embodiment and FIG.
  • the method for measuring the plate thickness was as follows. That is, the molded seamless can body 1A was embedded with an epoxy resin and then cut together with the epoxy resin along the vertical axis (Z axis) of the seamless can body 1A. After exposing the central cross section by cutting and careful polishing, the thickness of each of the t1 to t5 portions was measured with a measuring microscope. Table 1 shows the plate thickness of each portion.
  • Example 2 Example 1 was repeated except that the thickness of the base plate was 0.225 mm and the side wall minimum thickness of the precursor 3 was 0.093 mm. Table 1 shows the plate thickness and the like of each part of the obtained seamless can.
  • Comparative Example 1 The can bottom molding process was performed in one step using a known can bottom molding method using a known can bottom molding die. Other than that was performed like Example 1. A partially enlarged view of the can bottom of the seamless can used in Comparative Example 1 is shown in FIG. 7. Table 1 shows the plate thickness and the like of each part of the obtained seamless can. However, in Table 1, the value of t3 was obtained by measuring the lower end of the inclined portion ((1) in FIG. 7) and the value of t4 was measured at the upper end of the inclined portion ((2) in FIG. 7).
  • Comparative example 2 Bottom reforming processing was applied to the seamless can body obtained in Comparative Example 1. That is, the inner peripheral wall located inside the radial direction orthogonal to the can body axis of the grounding portion of the can bottom was pressed by a rotating roll to form a circumferential recess. Other than that was performed like the comparative example. Table 1 shows the plate thickness and the like of each part of the obtained seamless can.
  • Comparative example 3 The same procedure as in Comparative Example 2 was performed except that the thickness of the base plate was 0.225 mm and the minimum side wall thickness was 0.093 mm. Table 1 shows the plate thickness and the like of each part of the obtained seamless can.
  • the conventional seamless can body is excellent in lightness, but there are still some points to be improved in the can body part which is the side surface thereof.
  • various designs have been applied to the can body to ensure product competitiveness, and from such a point of view, it is required that the can body be imaged as homogeneously as possible.
  • the surface state of the can body portion after molding is not uniform along the axial direction, and particularly exists near the lower end of the can body portion or between the can body portion and the can bottom portion. It was not possible to obtain high metallic luster in the reduced diameter portion (outer peripheral bottom portion). This point will be described in detail with reference to FIG.
  • FIG. 14A schematically shows a partial state of the can body and the tip of the ironing punch immediately after the ironing process is completed.
  • a tapered shape is provided from a point A to a point B near the tip of the cylindrical portion of the punch. This tapered shape is provided so that the ironing rate rises gently when the ironing process is started. Therefore, the can body portion corresponding to the taper portion has a wedge-shaped thickness distribution. As shown in FIG. 9 and the like, this area may also be referred to as a “body wall step (BWS)”. Further, below the BWS, there is formed a portion also referred to as a body wall radius (BWR) which has a relatively large diameter reduction toward the inside of the can.
  • BWS body wall step
  • BWR body wall radius
  • FIG. 14(b) shows that the doming die relatively immerses inside the tip of the ironing punch after the ironing process is completed, so that the can body portion and the tip portion of the ironing punch are partially formed when the dome portion is formed on the can bottom. It is a figure which shows a different state. The bottom portion of the can bottom becomes a dome portion and is pulled in, so that the portion located at the point A in FIG.
  • the moving amount (shift amount) of each of these points is, for example, about 2 to 5 mm.
  • shift amount the amount of each of these points.
  • a seamless can body capable of imparting excellent image clarity to a can body portion after drawing and ironing and a manufacturing method thereof. It is possible to provide.
  • elements having the same configuration and function as those of the seamless can body 1A of the first embodiment described above will be denoted by the same reference numerals, and the description thereof will be appropriately omitted.
  • the seamless can body 1B of the present embodiment has a tubular body portion 10 and an outer peripheral bottom portion 20a which is continuous from the lower end of the tubular body portion 10 through the boundary portion BP to reduce the diameter inward. It is a seamless can body which has the can bottom part 20 provided with at least. Although a neck-flange shape is drawn above the tubular body 10 as an example in the figure, a known seamless can structure having an opening 10a above the tubular body 10 can be applied.
  • the "lower end 10e of the tubular body portion 10" in the present embodiment is a portion that is substantially located at the lower end of the cylindrical surface, and in the case where printing is performed on the outer surface of the seamless can body, for example, it is well known. It can be defined as the lower end of the area where curved surface printing by the dry offset method is possible.
  • the tubular body portion 10 is a portion that constitutes a side surface of the seamless can body 1B, and is formed by drawing and ironing a known metal plate such as aluminum or steel described later.
  • the tubular body 10 has a width depending on the application, but is configured to have a thickness of, for example, about 0.07 to 0.40 mm.
  • the tubular body portion 10 in the present embodiment has a lower end 10e described later as a lower end portion, and the upper end portion is defined as a boundary with a neck shoulder (a portion that is reduced in diameter as it goes axially upward) as shown in FIG. To be done.
  • the can bottom portion 20 has an outer peripheral bottom portion 20a that is continuous from the lower end 10e of the tubular body portion 10 described above so as to reduce in diameter, and a bulge that bulges from the outer peripheral bottom portion 20a toward the opening portion 10a. It is configured to include at least the portion 20b. Note that, as is clear from FIG. 8, the outer peripheral bottom portion 20a and the bulging portion 20b in the present embodiment are separated by the circumferential grounding portion 20c that is grounded when the seamless can 1B is placed on a flat surface such as a table. Has been done.
  • the outer peripheral bottom portion 20a, the circumferential ground contact portion 20c, and the bulging portion 20b in the present embodiment correspond to the foot portion 202 and the can bottom central portion 201 in the above-described first embodiment.
  • the circumferential grounding portion 20c of the present embodiment corresponds to the circumferential grounding portion 202b of the first embodiment.
  • the “boundary portion BP” in the present embodiment is a boundary of a region related to the outer appearance of the can bottom side (that is, it is usually possible to observe from the outside of the can), and as shown in FIG. It is defined as a point that is a portion that is inflected from the lower end 10e of the portion 10 and continues to the outer peripheral bottom portion 20a, and that the angle ⁇ between the tangent line of the outer surface and the ground plane P at this boundary portion BP is 45°. To be done.
  • the reason why the point where the angle ⁇ is 45° is defined as the boundary portion BP in the present embodiment is as follows. That is, at the position where ⁇ is smaller than 45°, the normal line to the outer surface is too downward. Then, for example, when the can to which the present invention is applied is normally placed on the display shelf or the like (upright), the reflected light is less likely to be in the field of view, and therefore the excellent gloss of the outer surface of the can, which is the gist of the present invention, This is because it is difficult to exert it.
  • the vicinity of the above-mentioned boundary portion BP Is a portion having a relative thickness.
  • the seamless can 1B of the present embodiment as shown in FIG. 9(b), one of the lower ends of the tubular body 10 including the lower end 10e of the tubular body 10 that has been ironed. Since the portion is drawn toward the outer peripheral bottom portion 20a, at least the vicinity of the boundary portion BP of the outer peripheral bottom portion 20a beyond the boundary portion BP is formed of the metal plate after ironing.
  • the tubular body portion 10 of the present embodiment has a high glossiness from the upper end to the lower end in the axial direction (Z direction in FIG. 8) and further to the position of the boundary portion BP in comparison with the conventional structure, and has a uniform image clarity. It is possible to demonstrate.
  • the ironing rate for the cylindrical body 10 that has undergone ironing to exhibit high glossiness is not limited to this because it depends on the characteristics of the material used and the processing conditions, but as an example, the total ironing rate is at least 60% or more. Is preferred.
  • the plate thickness near the boundary portion BP (for example, the lower end of the tubular body portion 10) of the tubular body portion 10 is set to t WL, and the axial direction of the tubular body portion 10 is set.
  • the thickness of the intermediate portion in the (Z direction) and t WC have a relationship of t WC ⁇ t WL ⁇ 1.09 ⁇ t WC, more preferably from t WC ⁇ t WL ⁇ 1.05 ⁇ t WC It is desirable to have a relationship. As a result, it is possible to maintain the pressure resistance of the seamless can body 1B while improving the image clarity of the side surface of the can.
  • the "intermediate portion in the axial direction of the tubular body portion 10" in the present embodiment does not necessarily have to be a strictly intermediate thickness in the axial direction, and can be defined to include the vicinity of the intermediate portion.
  • the thickness of the intermediate portion in the axial direction of the cylindrical body 10 and t WC have a relationship of t WC ⁇ t0 ⁇ 1.09 ⁇ t WC , And more preferably, t WC ⁇ t0 ⁇ 1.05 ⁇ t WC . If t0 is less than t WC , there is a possibility that the axial load strength of this part may decrease, and if t0 is 1.09 times or more than t WC , the glossiness at the lower end of the tubular body is This is because there is a problem in that the effect of the present invention is lowered and it becomes difficult to obtain the effect of the present invention. As a result, it is possible to maintain the pressure resistance of the seamless can body 1B while enhancing the image clarity of the side surface of the can.
  • the 60-degree specular glossiness near the boundary portion BP from the lower end 10e of the tubular body 10 is 300%. The above is desirable. If the 60-degree specular gloss near the boundary portion BP is less than 300%, the appearance of the corresponding portion will be rough and dull, and the appeal of the product will be reduced. Because.
  • the specular glossiness of this embodiment is measured according to the measuring method defined in JIS Z 8741-1997.
  • the type of metal material used for the seamless can 1B is not particularly limited. That is, a known metal plate usually used for a seamless can body, for example, an aluminum alloy plate or a steel plate (for example, tin plate) can be used. Further, the metal plate may be appropriately coated with a surface such as one having a known film laminated on its inner surface, one coated with an organic resin, one subjected to chemical conversion treatment, and the like. Further, the seamless can body 1B of the present embodiment is subjected to, for example, known flange processing, necking processing, screw processing, and the like, and after beer, carbonated drink, coffee, juice, liquid food, etc. are stored as contents. A lid is attached to the opening 10a by a known method.
  • the method for producing the seamless can body 1B in the present embodiment is a method for producing a seamless can body having the tubular body portion 10 and the can bottom portion 20 as shown in FIG. 8, and the first molding described in detail below. It is characterized by including a step and a second molding step.
  • the method for manufacturing the seamless can body 1B according to the present embodiment uses the metal material (precursor 3), the tubular body portion 10, and the lower end of the tubular body portion 10 as in the first molding step shown in FIG. 10.
  • An inclined portion S that extends upward inward from a boundary portion BP, and a cup dome portion D that bulges upward from an end Se of the inclined portion S at a first height Ho.
  • the cup body 2 is formed.
  • the end portion Se of the inclined portion S can also be referred to as a connection point with the cup dome portion D.
  • the first molding step of the present embodiment is performed by using an upper die and a lower die for the precursor 3 on which the tubular body portion 10 thinned by the ironing process is formed by a known pressing step or the like. It That is, the first forming step of the present embodiment can be performed at the end position (near bottom dead center) of the punch stroke of the forming machine that performs ironing, or a machine different from the machine that performs ironing. It is also possible to do in. As a specific example, as shown in FIG. 10, a cylindrical punch 401 positioned in and supporting the precursor 3 having a cup shape, and an outer peripheral bottom portion of the precursor 3 cooperate with the punch 401. The first molding step is performed by the working and supporting doming die 502.
  • the lower end of the punch 401 has a concave shape that is convex upward corresponding to the doming die 502, and a peripheral wall portion 402 is formed along the circumferential direction.
  • the peripheral wall portion 402 has a single circular arc as a cross-sectional shape, but the sectional shape is not limited to this shape.
  • a plurality of circular arcs and tapered surfaces may be formed. It may have a combined shape.
  • a wrinkle pressing member 80 (also referred to as a hold down ring) illustrated in FIG. 16 may be used if necessary. It is also possible to install and perform wrinkle holding force by the peripheral wall portion 402 and the wrinkle holding member 80 to perform molding.
  • the material forming each of the cup dome portion D, the end portion Se, and the inclined portion S is adjusted so that the can bottom portion 20 in FIG. 8 can be formed by the second molding step described later. It is necessary to set the first height Ho of the. As a result, the first height Ho in the present embodiment is higher than the dome height of the conventional structure, and accordingly, the amount by which the tubular body portion 10 is pulled toward the outer peripheral bottom portion 20a also increases.
  • the portion that normally constitutes the lower end of the tubular body portion 10 during ironing exceeds the boundary portion BP between the tubular body portion 10 and the outer peripheral bottom portion 20a described above, and the outer peripheral bottom portion. 20a side (more specifically, in the example shown in FIG. 11, the points A and B, which were located on the tubular body, are respectively drawn beyond the boundary portion BP).
  • the lower end 10e of the tubular body 10 is drawn in, and the diameter of the lower end 10e of the tubular body 10 is reduced to be a part of the outer peripheral bottom portion 20a that is continuous (substantially still A curved surface near the boundary portion BP, which is referred to as a first outer peripheral bottom portion 20a', is formed.
  • the inclined portion S of the cup body 2 extends inward and upward from the first outer peripheral bottom portion 20a'. That is, the inclined portion S of the cup body 2 is sandwiched between the lowest portion of the cup body 2 in the Z-axis direction and the connection point (end Se) with the cup dome portion D, as shown in FIG.
  • the curved portion and the straight portion are referred to.
  • the above-mentioned inclined portion S and cup dome portion D are also referred to as a bulge portion. Therefore, it can be said that the cup body 2 of the present embodiment is configured to include the tubular body portion 10 and the bulging portion formed on the bottom surface of the tubular body portion 10.
  • the above-mentioned shape of the cup dome portion D is an example, and the top of the dome may be, for example, a horizontal surface shape instead of the curved surface shape.
  • the first height Ho of the cup dome portion D of the cup body 2 is larger than the second height Hp of the can dome portion 201d of the seamless can body 1B obtained by the second molding step.
  • One of the reasons for this is to apply a compressive stress to the inclined portion S while pushing down the cup dome portion D of the cup body 2 in the second molding step described later. That is, the first height Ho of the cup dome portion D of the cup body 2 is made large in advance, and finally the second height Hp of the can dome portion 201d that is preferable in the seamless can body 1B is obtained. ..
  • a bulge portion that bulges at the first height Ho from the first outer peripheral bottom portion 20a' near the boundary portion BP toward the opening 10a is first formed, and the second molding step described later. Then, the bulging portion is pushed down so that the second height is lower than the first height Ho.
  • the cup body 2 is appropriately subjected to a known washing process, surface treatment process, printing process, painting process, and shape forming process for the tubular body.
  • neck-in (neck drawing) processing or the like may be performed within a range that does not hinder the second molding step.
  • the outer surface can be coated on the portion in the range from the grounded portion at the lowermost end of the cup body 2 to the inclined portion S.
  • the cup body 2 is processed by a mold different from the molding die used in the first molding step, and the seamless can body 1B is molded. That is, as shown in FIG. 12, while the cup body 2 is brought into contact with the lower mold molding member, the upper mold molding member is used to move the cup body 2 in the can outer direction ( ⁇ Z axis direction) with respect to the cup dome portion D of the cup body 2. Apply pressing force.
  • the vicinity of the boundary portion BP of the cup body 2 is placed on the cup outer peripheral side holder 60.
  • the dome pushing down tool 70 is relatively lowered, and the support portion 701 of the dome pushing down tool 70 comes into contact with the cup dome portion D as shown in FIG.
  • the shape of the support portion 701 is drawn so as to substantially match the shape of the cup dome portion D.
  • a difference in curvature is provided so that the outer peripheral portion of the cup dome portion D is strongly pressed.
  • the shapes do not necessarily have to match.
  • the cup outer peripheral side holder 60 has a tapered surface 601 and a groove 602, and after the boundary portion BP of the cup body 2 and the first outer peripheral bottom portion 20a′ come into contact with the tapered surface 601, the dome pushing down tool 70 is It is pushed down further. As a result, as shown in FIG. 12C, the metal of the inclined portion S of the cup body 2 is shaped so as to follow the tapered surface 601 while receiving compressive stress.
  • the dome pushing-down tool 70 is further pushed down, so that the remaining portion (the portion other than the metal following the taper surface 601) of the inclined portion S of the cup body 2 enters the groove 602. Be guided.
  • the cup dome portion D is pushed down so that the second height Hp is lower than the first height Ho described above.
  • the upper mold forming member (dome pressing tool) and the lower mold forming member (cup outer peripheral side holder) are used in the meridian direction with respect to the inclined portion S. A compressive stress ⁇ ⁇ and a circumferential compressive stress ⁇ ⁇ are applied.
  • the metal of the cup body 2 that follows the tapered surface 601 constitutes the outer peripheral bottom portion 20a
  • the metal guided in the groove 602 constitutes the above-mentioned circumferential grounding portion 20c
  • the circumferential grounding portion 20c constitutes the bulging part 20b.
  • the can bottom portion 20 of the seamless can body 1B is obtained after the second molding step.
  • the dome depressing tool may be relatively elevated and the seamless can 1B may be taken out from the cup outer peripheral holder.
  • the seamless can body 1B molded by the manufacturing method according to the present embodiment described above is excellent in that the tubular body portion 10 serving as the can side surface can form a substantially uniform surface state from the upper end to the lower end in the axial direction thereof.
  • the appearance and image clarity can be exhibited.
  • the second embodiment described above is substantially common to the first embodiment except the can bottom portion (mainly the shape of the dome portion of the can bottom). Therefore, it goes without saying that the technical idea regarding the relationship between the plate thicknesses in the present embodiment and the technical idea regarding the metallic luster in the can body portion and the can bottom portion can be commonly applied to the first embodiment as long as no contradiction occurs. ..
  • the seamless can body 1B molded by the manufacturing method according to the present embodiment has the features (the inner end portion 202c, the rising portion 202d, the outermost end 201e, and the can dome portion 201d) of the first embodiment described above.
  • the same effect as that of the first embodiment can be further obtained.
  • applying the shape of the dome portion in the seamless can body 1A of the first embodiment to the seamless can body 1B of the second embodiment, and combining FIG. 1 and its description and FIG. 13, the seamless can body of the present invention is It is possible to realize a seamless can and a method for producing the same, which can impart excellent image clarity to the can body after drawing and ironing while imparting high pressure resistance.
  • the foot portion 202 in FIG. 13 has a plate thickness that changes from the boundary portion BP (see FIG. 8) toward the circumferential ground contact portion 202b, so that it is clear from FIGS.
  • the portion having the thickness t1 is shifted to the circumferential grounding portion 202b side from the position of the plate thickness t0 in the boundary portion BP described above.
  • the seamless can body of the present invention can have the features of the above-described first embodiment and second embodiment, and the tubular body portion 10 serving as the can side surface is substantially uniform from the upper end to the lower end in the axial direction. It is possible to achieve excellent surface appearance and excellent appearance and image clarity, and at the same time, have excellent pressure resistance at the bottom of the can.
  • FIG. 14(a) shows an excerpted structure near the lower end of the can body part in the seamless can immediately after being ironed by the conventional manufacturing method
  • FIG. 14(b) shows that the dome molding is further performed.
  • the structure near the lower end of the can body is extracted and shown.
  • FIG. 14C shows an extracted structure of the vicinity of the lower end of the can body portion in the seamless can body 1B of the present embodiment. Note that in FIG.
  • the plate thickness t WL at the lower end of the tubular body portion 10 is equal to the plate thickness t WC of the intermediate portion in the axial direction of the tubular body portion, but the present invention is not limited to this mode and t WL ⁇ . As described above, it may be 1.09 ⁇ t WC .
  • the ironing process for forming the seamless can is performed, first, in FIG. 14(a) of the conventional method, as described above, the ironing process is started at the point B with an ironing rate of 0, and the ironing process is performed as the point A is approached.
  • the rate increases and the ironing rate becomes maximum after point A. Therefore, for example, the gloss of the ironing surface of the can body is almost the same as that of the original material surface at the point B, increases as it approaches the point A, and reaches the maximum gloss after the point A. It will show a degree.
  • the doming die relatively immerses inside the tip of the ironing punch to form a dome portion on the bottom of the can.
  • a part of the bottom of the can is pulled into the dome, and the part originally located at the point A shifts to the point A'and the part originally located at the point B shifts to the point B'. ..
  • the displacement amount of each part in the above-mentioned conventional method is, for example, about 2 to 5 mm. Therefore, at the bottom of the cylindrical portion of the can body, there remains a portion with low gloss and poor print clarity.
  • the metal plate after ironing reaches the boundary portion BP and reaches at least a part of the outer peripheral bottom portion,
  • the glossiness in the vicinity of the portion BP is equal to that of the can body portion. This allows the can body to have high glossiness from the upper end to the lower end in the axial direction.
  • the first embodiment and the second embodiment described above are examples embodying the spirit of the present invention, and may be appropriately modified without departing from the spirit of the present invention. Furthermore, a known structure may be added to the seamless can body shown in the first and second embodiments without departing from the above-mentioned gist of the present invention.
  • the present invention it is possible to improve the pressure resistance performance and suppress the phenomenon of buckling while reducing the plate thickness of the blank (blank) of the seamless can body. Therefore, it is possible to reduce the manufacturing cost of the seamless can body, the transportation cost, and the like. Further, since fuel and the like required for manufacturing and transportation can be reduced, it is possible to realize the production of the seamless can body in consideration of the environment. Further, according to the present invention, the present invention can be applied to a container that is required to have improved appearance and image clarity, and can be particularly used for a can body that can store a liquid such as a beverage or a drug.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

【課題】素板(ブランク)の板厚を薄くすると同時に、缶底の耐圧性を高めてバックリングを抑制し、且つ、上記黒変や洗浄の問題も解決するシームレス缶体及びその製造方法を提供する。 【解決手段】筒状胴部10と缶底部20とを有し、前記缶底部20は、前記筒状胴部10の下端から内側へ縮径するように連続する外周底部202aと、前記外周底部202aよりも内側に位置する周状接地部202bと、を含み、前記外周底部202aの板厚をt1とし、周状接地部202bの板厚をt2とそれぞれした場合、t2>t1であることを特徴とするシームレス缶体1。

Description

シームレス缶体及びシームレス缶体の製造方法
 本発明は、シームレス缶体及びシームレス缶体の製造方法に関する。
 従来、絞りしごき加工によって缶胴部などが成形される、いわゆるシームレス缶体が知られている。このシームレス缶体は、しごき加工により缶胴部が薄肉化されているため、軽量性に優れている。その一方で、これらのシームレス缶体底部においてはしごき加工のような強制的な薄肉化を施す加工法を採用することが難しく、缶体底部の厚さは素材厚さから大きくは変動しない。底部には、缶内圧による変形に対する抵抗する強度(耐圧性)が求められることから、缶体底部においても軽量化を図るべく素材厚さを薄くして且つ、耐圧性を維持又は向上させるための種々の提案が、下記特許文献を含めて従来よりなされている。
 例えば特許文献1や特許文献2には、缶の内圧が耐圧強度を超えたときに現れる、缶底のドーム部が反転する現象(バックリング)を防止する目的で施す、いわゆるボトムリフォーム加工が開示されている。具体的には、缶底の接地部の、缶軸に直交する径方向の内側に位置する内周壁を押圧することにより、凹部を成形するボトムリフォーム加工が開示されている。
特開2018-103227号公報 特開2016-47541号公報 特開2000-176575号公報 特開平9-285832号公報 WO2018/070542号公報 特開2016-43991号公報
 しかしながらボトムリフォーム加工は、以下のような問題を有していた。
 すなわちこのボトムリフォーム工程は、成形ローラ等を使用して缶底の内周壁を押圧することにより、凹部を成形する。この成形ローラ等を使用した押圧の際には、特許文献3に記載されるように、押圧箇所に黒変を生じやすいという問題や、成形ローラ等への金属材料の凝着が生じやすいという問題があった。
 また押圧の際に、加工をスムーズに行うため潤滑油が塗布されるが、ボトムリフォーム加工後にこの潤滑油を洗浄する工程が必要となるため、洗浄に要するコスト及び環境負荷の観点からは、さらなる改善が求められていた。
 また昨今、シームレス缶体の軽量化を図るために、絞りしごき加工を行う前の素板(ブランク)の板厚を益々薄くすることが求められている。しかしながら上記ボトムリフォーム加工を施した場合、上記の押圧部の金属素材の厚みはその加工により延ばされて薄くなるため、素板(ブランク)の板厚を薄くすることに関しての限界があった。
 また特許文献4に示すように、本発明者はシームレス缶体の耐圧性を向上する技術を公開した。しかしながらこの技術によっては、耐圧性は向上するものの、缶体(特に缶底部)の各部分の板厚分布を十分に最適化するものではなかった。したがって、缶体の軽量化の要求を十分に満たすものでなかった。
 さらに特許文献5には、缶底の接地部の板厚が、加工前の素材の板厚よりも厚いことを特徴とする2ピース缶胴が示されている。しかしながら当該技術においては、装置が煩雑であり、工業レベルでの実現が困難もしくは設備上の高コスト化を招くなどの課題があった。
 本発明者は上記に例示した課題に鑑みて鋭意検討を繰り返した。その結果、素板(ブランク)の板厚を薄くすると同時に、缶底の耐圧性を高めてバックリングを抑制し、且つ、上記黒変や洗浄の問題も解決するシームレス缶体及びその製造方法をより簡易な製造装置で提供することを可能とし、本発明に至ったものである。
 上記目的を達成するため、本発明の一実施形態におけるシームレス缶体は、(1)筒状胴部と缶底部とを有するシームレス缶体であって、前記缶底部は、前記筒状胴部の下端から内側へ縮径するように連続する外周底部と、前記外周底部よりも内側に位置する周状接地部と、を含み、前記外周底部の板厚をt1とし、周状接地部の板厚をt2とした場合、t2>t1であることを特徴とする。
 また、上記目的を達成するため、本発明の一実施形態におけるシームレス缶体は、(2)筒状胴部と、前記筒状胴部の下端から境界部を経て内側へ縮径するように連続する外周底部を少なくとも備えた缶底部と、を含み、前記筒状胴部の下端の板厚が前記筒状胴部の軸方向における中間部の板厚とほぼ等しい、ことを特徴とする。
 なお、上記(1)又は(2)において、(3)前記缶底部は、前記周状接地部よりも内側に位置する内側端部202cを更に含み、前記内側端部の板厚をt3とした場合、t3>t1であることが好ましい。
 また、上記(3)において、(4)t3>t2となるように、前記外周底部から前記内側端部まで板厚が漸次増加することが好ましい。
 また、上記(1)~(4)のいずれかにおいて、(5)前記缶底部は、前記内側端部から上方に立ち上がる立ち上がり部202dを更に含み、前記立ち上がり部上端の板厚をt4とした場合、t4>t1であることが好ましい。
 また、上記(5)において、(6)前記缶底部は、前記立ち上がり部と連続して上方に凸となるよう膨出する缶ドーム部と、を更に含み、前記缶ドーム部における中央の板厚をt5とした場合、t3>t4>t5となるように、前記缶ドーム部から前記内側端部まで板厚が漸次増加することが好ましい。
 また上記(6)において、(7)さらに、t5<t1であることが好ましい。
 また上記(5)~(7)のいずれかにおいて、(8)缶体軸の外方に向かって、前記立ち上がり部と前記ドーム部の接続部分が凸となるリング溝が形成されていることが好ましい。
 また、上記(2)において、(9)前記境界部における板厚が、前記中間部の板厚とほぼ等しいことが好ましい。
 また、上記(2)又は(9)において、(10)前記筒状胴部の下端における板厚をtWLとし、前記筒状胴部の軸方向における中間部の板厚をtWCとする場合、tWC≦tWL<1.09×tWCの関係にあることが好ましい。
 また、上記(10)において、(11)前記筒状胴部において、tWC≦t0<1.09×tWCの関係にある(ただしt0は前記境界部の板厚)ことが好ましい。
 また、上記(1)~(11)において、(12)前記筒状胴部の下端から前記境界部付近における60度鏡面光沢度が300%以上であることが好ましい。
 上記目的を達成するため、本発明の一実施形態におけるシームレス缶体の製造方法は、(13)筒状胴部と缶底部とを有するシームレス缶体の製造方法であって、金属素材を、筒状胴部と、前記筒状胴部の下端から縮径するように続くカップ外周底部と、前記カップ外周底部から内側上方に向けて延出する傾斜部と、前記傾斜部からの端部から上方へ向けて第1の高さで膨出するカップドーム部と、を有するカップ体に成形する第1成形工程と、前記カップ体の前記カップ外周底部を下型成形部材に当接させながら上型成形部材で前記カップドーム部より缶外方に向かい押圧力を加えることで、前記第1の高さより低い第2の高さとなるように前記カップドーム部を押し下げて前記傾斜部に子午線方向ならびに周方向の圧縮応力を作用させ、当該傾斜部の厚みを増大させながら前記下型成形部材に押し込む第2成形工程と、を含むことを特徴とする。
 また、上記(13)において、(14)前記第2成形工程において、前記傾斜部を前記下型成形部材に押し込むことで、外周底部よりも内側に位置する周状接地部202bと、前記周状接地部よりも内側に位置する内側端部202cと、前記内側端部から上方に立ち上がって缶ドーム部へ接続する立ち上がり部202dが形成され、前記立ち上がり部202dと前記缶ドーム部201dとの接続部分(最外端201e)の内径(dx)が、前記内側端部202cの内径(dy)よりも大きくなるように、缶体軸の外方に向かって前記接続部分が凸となるリング溝が形成されることが好ましい。
 さらに、上記目的を達成するため、本発明の一実施形態におけるシームレス缶体の製造方法は、(15)金属素材を、しごき加工によって薄肉化された筒状胴部と、前記筒状胴部の下端から続く外周底部と、前記外周底部から開口部へ向けて第1の高さで膨出する膨出部と、を有するカップ体に成形する第1成形工程と、前記第1の高さより低い第2の高さとなるように前記膨出部を押し下げる第2成形工程と、を含み、前記第1成形工程において、前記筒状胴部の下端の板厚が前記筒状胴部の軸方向における中間部の板厚とほぼ等しくなるように、前記筒状胴部の下端が引き込まれて前記筒状胴部の下端から境界部を経て内側へ縮径するように連続する前記外周底部が形成される、ことを特徴とする。
  発明の効果
 本発明のシームレス缶体によれば、素板(ブランク)の板厚を薄くした場合でも、従来のボトムリフォーム加工により得られる缶底以上に耐圧性の高い缶底を得ることができる。そのため、従来よりも薄い素板(ブランク)を用いてシームレス缶体を製造することができ、使用する金属材料の量を削減することができるためコスト的に有利である。さらに、シームレス缶体の軽量化により、リサイクル費、輸送費の削減等にも繋げることが可能となるものである。
 また、本発明のシームレス缶体の製造方法によれば、素板(ブランク)の板厚を薄くした場合でも、簡易な製造装置により缶底の耐圧性を高めてバックリングを抑制することが可能である。且つ、ボトムリフォーム加工で問題となる黒変の問題を解決することが可能である。さらには、従来のボトムリフォーム加工の工程や、その後に潤滑油を洗浄する工程を必要としないため、コスト的及び環境的なメリットが大きい。
第1実施形態におけるシームレス缶体1Aを示す模式図である。 第1実施形態におけるシームレス缶体1Aの缶底を示す拡大図である。 第1実施形態におけるシームレス缶体1Aにおいて、各点の板厚を示すグラフである。 第1実施形態のシームレス缶体の製造方法において、第1成形工程を示す図である。 第1実施形態のシームレス缶体の製造方法において、第2成形工程を示す図である。 第1実施形態において、立ち上がり部に付与される圧縮応力を示す模式図である。 比較例1で用いたシームレス缶体の缶底の部分拡大図である。 第2実施形態におけるシームレス缶体1Bの全体の縦断面を示す模式図である。 第2実施形態におけるシームレス缶体1Bと、従来構造におけるシームレス缶体との、筒状胴部10の下端10e付近における比較図である。 シームレス缶体1Bの製造方法のうちの第1成形工程を示す図である。 図10におけるα部とβ部をそれぞれ部分的に拡大した模式図である。 シームレス缶体1Bの製造方法のうちの第2成形工程を示す図である。 第2実施形態で示した境界部BPを適用した第1実施形態のシームレス缶体1Aにおける缶底を示す拡大図である。 従来手法によるシームレス缶体と本実施形態によるシームレス缶体における構造の比較を行うための模式図である。 図10で示すシームレス缶体1Bの製造方法のうちの第1成形工程に適用可能な他の例(その1)を示す模式図である。 図10で示すシームレス缶体1Bの製造方法のうちの第1成形工程に適用可能な他の例(その2)を示す模式図である。 実施形態における境界部BPの位置を説明するための模式図である。
 以下、適宜図面を参照しつつ、本発明のシームレス缶体及びその製造方法について具体的に説明する。なお、以下の実施形態は本発明の一例を示してその内容について説明するものであり、本発明を意図的に限定するものではない。
[第1実施形態]
<シームレス缶体1A>
 図1に示すように、本実施形態のシームレス缶体1Aは、筒状胴部10と缶底部20とを有するシームレス缶体である。本実施形態において缶底部20は、図1(a)及び図1(b)に示すように、シームレス缶体を水平面に載置した場合に当該水平面に接触しない缶底中央部201と、該缶底中央部201の外側に位置する足部202を含むことが好ましい。
 本実施形態におけるシームレス缶体1Aの缶底中央部201は、水平形状であってもよいし、図1(a)に示すように缶内面側に盛り上がる(上方に凸となるよう膨出する)ドーム形状であってもよい。
 本実施形態において、図1(b)に示すように、缶底部20における足部202は、前記筒状胴部10の下端10eから、缶体軸RA方向に向かって缶底中央部201の最外端201eまでの部分と定義される。
 なお、図2における上記足部202を拡大した断面図に示すように、「缶底中央部201の最外端201e」は、缶底中央部201がドーム形状の場合には当該ドーム形状においてドームの径が最大となる部分とする。
 本実施形態において、足部202のうちZ軸方向において最も下方の部分を周状接地部202bとする。すなわち、周状接地部202bは、本実施形態のシームレス缶体1Aを水平面に載置した場合に、当該水平面に接触する部分ということができる。
 そして、筒状胴部10の下端10eから周状接地部202bまでを、外周底部202aと定義する。
 すなわち本実施形態において、足部202は、前記筒状胴部10の下端10eから内側へ縮径するように連続する外周底部202aと、前記外周底部202aよりも内側に位置する周状接地部202bと、を含む。
 言い換えると、本実施形態のシームレス缶体1Aにおいて前記外周底部202aは、周状接地部202bよりも外側において筒状胴部10の下端10eまでリング状に位置する。
 本実施形態において、外周底部202aのリング幅やその面積等には特に制限はなく、またその傾斜角度や湾曲状態についても公知の形状が適用され得る。すなわち、断面において直線状となっていてもよいし、缶体の内側に向けて湾曲した円弧状であってもよいし、逆に外側に湾曲した円弧状であってもよい。また、一部が内側に湾曲し残りが外側に湾曲し、これらを連続的に繋げた形状であってもよい。
 本実施形態においては、図2において示すように、前記外周底部202aはその断面図において変曲点IPを有することが同種の缶詰の蓋上に重ねて載置しやすくなって好ましい。
 図2に示されるように、本実施形態のシームレス缶体1Aはさらに、前記周状接地部202bよりも内側に位置する内側端部202cを含む。この内側端部202cは、上述した足部202のうち、断面図において最も缶体軸RA側に近い部分であると定義される。
 またさらに本実施形態のシームレス缶体1Aは、この内側端部202cから上方向(Z軸の+方向)に向けて延伸する立ち上がり部202dを含む。この立ち上がり部202dは、図1(a)又は図2に示す断面図において、内側端部202cから缶底中央部201方向の最外端201eまでの部分と定義される。
 本実施形態のシームレス缶体1Aは、前記外周底部202aの板厚をt1とし、周状接地部202bの板厚をt2とそれぞれした場合、「t2>t1」の関係が成り立つことを特徴とする。このような関係を満たすことにより、本実施形態のシームレス缶体1Aにおいて缶体の軽量化をはかりながら好ましい耐圧性を付与することが可能となる。また、t2>t1とすることにより、シームレス缶体1Aが缶底部20を下にして落下した場合の変形に対しての強度を付与することができ、好ましい。
 なお、前記外周底部202aの板厚(t1)は、下端10eから周状接地部202bに至る長さ(形状に沿った長さ)の中間点の板厚とする。
 本実施形態のシームレス缶体1Aは、さらに、内側端部202cの板厚をt3とした場合、「t3>t1」の関係が成立することが好ましい。このような関係を満たすことにより、本実施形態のシームレス缶体1Aにおいて缶体の軽量化をはかりながら好ましい耐圧性を付与することが可能となる。また、t3>t1とすることにより、シームレス缶体1Aが缶底部20を下にして落下した場合の変形に対しての強度を付与することができ、好ましい。
 本発明における上記厚みの規定に関しては、以下の理由によるものである。
 すなわち、シームレス缶体の中に収容する液体がビールや炭酸飲料である場合には、缶底には常に内圧がかかっている。このように内圧がかかった状態で缶底に衝撃が加えられた場合や、何らかの理由で缶底に加えられる内圧が急激に大きくなった場合、缶の内圧が缶底の耐圧強度を超えて、缶底のドーム部が反転する現象(バックリング)が発生する。
 このバックリング現象を抑制するためには、缶底の耐圧強度を高くする必要があるが、そのためには、缶底部分の板厚を厚くする方法が考えられる。
 しかしながら昨今の軽量化・省資源化の要求により素板(ブランク)の板厚は薄くなりつつあるため、缶底の耐圧強度を高くするために単純に素板(ブランク)の板厚を厚くした場合には、上記要求に反することとなる。
 そのため本発明者は、上記缶の軽量化及び缶底の耐圧強度の要求を同時に満たすシームレス缶体を実現すべく、鋭意検討した。その結果、素板(ブランク)の板厚を従来と同様または従来よりも薄くしつつも、缶底において耐圧強度の向上に寄与しやすい部分のみを厚くして缶底の耐圧強度を高くすることを実現し、本発明に想到した。
 本発明によれば、缶胴部に関しては、従来よりも薄い素板(ブランク)が採用可能なため、従来と同様の厳しい絞りしごき加工により、従来と同様または従来よりも薄い胴部板厚に到達することができる。そのため、軽量化及び缶底の耐圧強度の要求を高い次元で両立することが可能であるといえる。
 本実施形態のシームレス缶体1Aは、図1(a)及び図2に示すように、缶底部20の足部202が、内側端部202cから立ち上がり部202dを介して、最外端201eの部分で缶底中央部201(缶ドーム部201d)に接続されている。
 本実施形態において立ち上がり部202dは、その断面において内側端部202cから鉛直方向(Z軸の+方向)に延伸した直線又は曲線であってもよい。
 また、図1(a)及び図2に示すように、立ち上がり部202dは、断面においてZ=-aX(Z>0)の直線に沿って延伸する直線又は曲線であってもよい。
 そして、図1(a)に示すように、立ち上がり部202dは、上記した最外端201eの内径(dx)が、内側端部202cの内径(dy)よりも大きくなるように、缶底中央部201(缶ドーム部201d)と接続する。
 言い換えると、図1(a)及び図2に示すように、最外端201eの付近では、断面図において概ね「⊂」又は「⊃」形状となっている。
 また図1(a)を示して説明すると、Z軸の+方向に向かって、内側端部202cと缶ドーム部201dとの間には、缶体軸RAの外方に向かって最外端201eが凸となるリング溝を有していることが好ましい。
 上記のような形状とすることにより、本実施形態のシームレス缶体1Aの耐圧性を向上させることが可能となる。
 なお、上述したように、本実施形態においては、前記外周底部202aはその断面図において変曲点IPを有することが好ましい。この変曲点IPは、図2に示すように、最外端201eよりもZ軸の+方向に位置していてもよいし、逆にZ軸の-方向に位置していてもよい。
 本実施形態において、立ち上がり部202dと缶底中央部201が接続する最外端201e部分の板厚をt4とした場合、「t4>t1」の関係が成立することも、缶体の軽量化と耐圧性の観点からは好ましい。
 本実施形態のシームレス缶体1Aはさらに、図1(a)に示すように、缶底部20において、前記立ち上がり部202dと連続して上方に凸となるよう膨出する缶ドーム部201dを含むことが好ましい。すなわち本実施形態においては、缶底中央部201の形状が図1(a)に示すようなドーム形状であることが好ましい。
 そして缶ドーム部201dの中央の板厚をt5とした場合、内側端部202cの板厚(t3)と立ち上がり部202dの板厚(t4)との関係において、以下の関係を満たすことが好ましい。
 t3>t4>t5
 すなわちこれは、缶ドーム部201dの中央部分から外側に向けて前記内側端部202cまで連続する金属板において、その板厚が漸次増加することを意味する。
 さらに本実施形態において、図3に示すように、素板(ブランク)の板厚をtzとした場合、「t1>tz」且つ、「t2>tz」且つ、「t3>tz」且つ、「t4>tz」の関係を満たすことが、シームレス缶体に望まれる耐圧性の観点からは好ましい。
 一方で本実施形態においては缶ドーム部201dの中央の板厚(t5)は、素板(ブランク)の板厚(tz)以下となっていても問題はない(t5≦tz)。
 なお本実施形態においては、図3(a)に示すように、各々の板厚が「t3>t2>t1」の関係を有していることが好ましい。言い換えると、外周底部202a、周状接地部202b、内側端部202c、の順に板厚が徐々に増加していることが好ましい。
 このような関係を満たすことにより、本実施形態のシームレス缶体1Aにおいて好ましい耐圧性を付与することが可能となる。
 また、上記した「t3>t2>t1」の関係を満たすことにより、t3部分の板厚が増加した場合でも、缶の重量増加を抑えることが可能となるため好ましい。その理由として、t1→t2→t3の順に、それらの位置は缶体軸RAに近くなることから、それぞれの占める体積は順に小さくなるためである。
 そのため結果的に、缶の重量増加を抑えつつ耐圧性を高めることができるため、好ましい。
 しかしながら本実施形態はこれに限られるものではなく、図3(b)に示すように、t2とt3の厚みが同じであってもよいし、図3(c)に示すようにt2の厚みが最大であってもよい。
 なお、素板(ブランク)の板厚tzとしては、通常シームレス缶体を製造される場合の板厚であればよく、概ねtz=0.15mm~0.4mm程度の厚さの金属板を打ち抜いて素板(ブランク)として使用することができるが、上記厚みに限定されるものではない。
 以上のように、本実施形態のシームレス缶体1Aにおいて、缶底部20の板厚は上記したような関係を有することが、望まれる耐圧性の観点からは好ましいことを述べた。
 すなわち本実施形態におけるシームレス缶体1Aでは、缶底部20の特に足部202の平均板厚が缶底中央部201よりも厚いことが好ましい。
 さらに、缶ドーム部201dの厚みが、外周底部202aの厚みよりも小さいことが好ましい。すなわち「t5<t1」であることが好ましい。
 上記のような板厚の関係を有することにより、耐圧性が向上することについては、以下のような理由が考えられる。
 耐圧性を数値で示したものがバックリング圧力である。すなわち、缶底の内側に凸のドーム部が、内圧によって外側に反転するように変形する現象を生じるまでの圧力のピーク値をバックリング圧力という。
 バックリングの現象が生じる過程は、以下のように説明できる。
 まず、ほぼ球面形状をなすドーム部は、内圧を受け始めると、これ自体はすぐに変形せず、ドーム部の投影面積と内圧の積がドーム部を缶外方に押し出す力となって、周状接地部202b、内側端部202c、立ち上がり部202dに負荷を与え変形を与えるように作用する。
 換言すると、周状接地部202bから立ち上がり部202dにかけての狭い領域の部材によってドーム部外周は支えられている。
 さらに内圧の上昇によって、周状接地部202bから立ち上がり部202dにかけての領域の変形が進むと、ドーム部外周を支える機能が失われる。すなわち、周状接地部202b、内側端部202c、立ち上がり部202dは缶体軸RAを中心とする円環形状を維持できなくなり、それに連なるドーム部外周に位置する最外端201eも円形を崩す形となり、さらにそれに連なる缶ドーム部201dは球面形状を維持できなくなるため、ドーム部の強度は急速に低下してドーム部は缶外方に反転(バックリング)する。
 したがって、耐圧性を向上させるためには、ドーム部の板厚そのものを厚くするよりも、
ドーム部外周の板厚を厚くする方が有効であると考えられる。よって、外周底部202aの厚みが缶ドーム部201dの中央の板厚よりも厚い、すなわち「t5<t1」である場合には、本実施形態において望ましい耐圧性を得ることができる。
 なお、シームレス缶体1Aにおける缶ドーム部201dの第2の高さHpに関しては、特に制限はなく、ドーム部を有する公知のシームレス缶体と同様の高さとすることができる。
 なお、本実施形態において、シームレス缶体1Aに用いられる金属素材の種類としては特に制限されない。すなわち、シームレス缶体に通常用いられる公知の金属板、例えばアルミニウム合金板や表面処理鋼板を使用することができる。また、金属板は公知のフィルムを積層したものや、有機樹脂を塗装したもの、化成処理を施したもの等、適宜表面処理を施していてもよい。
 本実施形態のシームレス缶体1Aは、公知のネッキング加工やフランジ加工、あるいはねじを形成する加工が施され、また、ビールや炭酸飲料等が内容物として収容された後に、開口部に公知の方法で蓋が取り付けられる。
<シームレス缶体の製造方法>
 次に、本実施形態におけるシームレス缶体1Aの製造方法について説明する。
 本実施形態におけるシームレス缶体の製造方法としては、図1(a)に示すような筒状胴部10と缶底部20とを有するシームレス缶体1Aの製造方法であって、下記に詳述するような第1成形工程と第2成形工程とを少なくとも含むことを特徴とする。
 なお、本実施形態のシームレス缶体の製造方法において、筒状胴部10の成形方法としては、例えば特許文献4に記載のような公知の方法を採用可能である。
 一方で、特に缶底部20の成形方法として下記に詳述するような第1成形工程と第2成形工程とを少なくとも含むことを特徴とする。
 以下に、本実施形態におけるシームレス缶体の製造方法を説明する。
 まず、上述した金属素材(ブランク)を用いて、公知の方法により缶胴部を形成することにより、カップ形状を有する前駆体3を準備する。
 なお図4に示されるように、金属素材(前駆体3)としては、公知の絞りしごき方法等で得られるドームを有しないカップ形状を有していてもよい。また、以下の第1成形工程と第2成形工程が実現可能な限りにおいて、ドームを有したカップ形状を有していてもよい。
 この前駆体3に対して、以下の第1成形工程と第2成形工程を付与することにより、本実施形態におけるシームレス缶体1Aを得ることができる。
 まず、本実施形態におけるシームレス缶体1Aの製造方法のうち、第1成形工程においては、図4に示されるように、金属素材(前駆体3)を、筒状胴部10と、前記筒状胴部10の下端10eから縮径するように続くカップ外周底部Aと、前記カップ外周底部Aから内側上方に向けて延出する傾斜部Sと、前記傾斜部Sの端部Seから上方へ向けて第1の高さHoで膨出するカップドーム部Dと、を有するカップ体2に成形する。
 ここで傾斜部Sの端部Seは、カップドーム部Dとの接続点ともいうことができる。
 図4に示される上記第1成形工程は、公知のプレス工程等により筒状胴部10が成形された前駆体3に対し、上型と下型とを用いて、分離した工程として実施することもできるし、しごき加工を行う工程に続くストローク終段で行うこともできる。
 具体的な例としては、図4に示されるように、カップ形状を有する前駆体3内に位置してこれを支持する筒状のパンチ401と、前駆体3の外周底部を前記パンチ401と協動して支持するホールドダウンリング501と、ドーミングダイ502と、により上記第1成形工程が実施される。
 まず、パンチ401の周壁部402(テーパー部)とホールドダウンリング501のテーパー状支持部503とで前駆体3の外周底部を保持し、パンチ401とドーミングダイ502とがかみ合うように駆動して相対的に近接させて、ボトムにHoのカップドーム部Dを有するカップ体2を得ることができる。
 ここで、上記第1成形工程により得られたカップ体2の形状について説明する。すなわち、カップ体2における傾斜部Sは、前記カップ外周底部Aから内側上方に向けて延出するものである。
 すなわちカップ体2の傾斜部Sは、図4に示すように、Z軸方向においてカップ体2の最も低い部分と、カップドーム部Dとの接続点(端部Se)とで挟まれた曲線部分及び直線部分を言うものとする。
 図4(c)に示すように傾斜部Sは、垂直とはせず、所定の角度θで傾斜させることが好ましい。
 すなわち、傾斜部SとZ軸のなす角度θについては、5°~30°であることが、下記の第2成形工程において各部分の板厚を好ましく制御する観点から好ましい。
 また、上記傾斜部SとZ軸のなす角度θについて、10°~30°であることが、第1成形工程後に内面にスプレー塗装法により塗膜を形成する場合にスプレー塗装がしやすくなるため、より好ましい。
 また、カップ外周底部Aから傾斜部Sのなす角θにおける曲率半径Rについては、R=5×t0~15×t0とすることが、下記の第2成形工程において各部分の板厚を好ましく制御する観点からは好ましい。
 さらに、カップ体2におけるカップドーム部Dの第1の高さHoは、後述する第2成形工程により得られるシームレス缶体1Aにおける缶ドーム部201dの第2の高さHpよりも大きいことが好ましい。この理由としては、後述するように、後述する第2成形工程においてカップ体2におけるカップドーム部Dを押し下げながら、傾斜部Sに圧縮応力を付与するためである。すなわち、カップ体2におけるカップドーム部Dの第1の高さHoを事前に大きくしておき、最終的にシームレス缶体1Aにおいて好ましい缶ドーム部201dの第2の高さHpを得るためである。
 引き続き、第2成形工程について説明する。
 上記第1成形工程により、カップ外周底部A及び傾斜部Sを有するカップ体2が成形された後に、以下の第2成形工程が実施される。
 なお、上記第1成形工程と第2成形工程との間に、カップ体2に対して、適宜公知の洗浄工程、表面処理工程、印刷工程、塗装工程、筒状胴部への形状付与加工、あるいは第2成形工程を行うのに支障がない範囲でのネックイン(口絞り)加工等が実施されてもよい。
 さらに必要に応じて、第1成形工程以降の搬送性や耐食性を確保する目的で、カップ体2の最下端曲率部を中心として、カップ外周底部Aから傾斜部Sにかけての範囲の部分に外面塗装を施すことができる。
 第2成形工程においては、前記カップ体2に対して、上述の第1成形工程における成形金型とは異なる金型により加工を施し、シームレス缶体1Aが成形される。すなわち、カップ体2を下型成形部材としてのカップ外周側ホルダー60に当接させながら、上型成形部材としてのドーム押し下げ工具70を用いてカップ体2のカップドーム部Dに対して缶外方向(-Z軸方向)に押圧力を加える。
 あるいは、カップ体2を下型成形部材及び上型成形部材に当接させながら、下型成形部材を用いて+Z軸方向に押圧力を加えてもよい。
 より詳細には図5に示すように、カップ体2のカップ外周底部Aをカップ外周側ホルダー60に載せる。ドーム押し下げ工具70が相対的に下降し、カップドーム部Dにドーム押し下げ工具70の支持部701が接触する。ここで、カップ外周側ホルダー60はテーパー面601及び溝602を有しており、カップ体2のカップ外周底部Aが前記テーパー面601に接触した後に、ドーム押し下げ工具70がさらに押し下げられることにより、カップ体2の傾斜部Sの金属が、圧縮応力を受けながら溝602内に案内され、押し込まれる。
 そして、前記第1の高さHoより低い第2の高さHpとなるように、前記カップドーム部Dを押し下げる。同時に、上型成形部材(ドーム押し下げ工具)及び下型成形部材(カップ外周側ホルダー)を用いて、前記傾斜部Sに対して、子午線方向の圧縮応力σφならびに周方向の圧縮応力σθを作用させる。
 なお図6は、本実施形態において、傾斜部Sが立ち上がり部202dに形成される際に付与される圧縮応力を示す模式図である。
 すなわち、傾斜部Sを前記下型成形部材の溝602内に押し込まれる際、該傾斜部Sにはドーム押し下げ工具70の押す力により子午線方向の圧縮応力σφと下型成形部材に倣おうとして径方向内側に移動することによる周方向の圧縮応力σθが同時に作用して、当該傾斜部Sにおける金属素材の厚みは増大する(図6における矢印方向σψ)。
 このようにして、第2成形工程を経た後にシームレス缶体1Aが得られる。
 成形が終了したら、ドーム押し下げ工具を相対的に上昇させ、シームレス缶体1Aをカップ外周側ホルダーから取り出せばよい。
 ここで、第2成形工程後に得られるシームレス缶体1Aとしては、上述した本実施形態におけるシームレス缶体1Aであることが好ましい。
 すなわち、第2成形工程後に得られるシームレス缶体1Aとしては、図1に示すように、外周底部202a及び周状接地部202bを有し、さらに外周底部202aの板厚をt1とし、周状接地部202bの板厚をt2とそれぞれした場合、「t2>t1」の関係が成り立つものであることが好ましい。
 なお、第2成形工程は、以下の特徴を有することがさらに好ましい。
 すなわち、第2成形工程は、上述したカップ体2を第2成形工程のカップ外周側ホルダー60に押し込むことで、傾斜部Sを、外周底部202aよりも内側に位置する周状接地部202bと、前記周状接地部202bよりも内側に位置する内側端部202cと、前記内側端部202cから上方に立ち上がって前記缶ドーム部201dへ接続する立ち上がり部202dと、に形成することが好ましい。
 そして第2成形工程により、シームレス缶体1Aの前記立ち上がり部202dと前記缶ドーム部201dとの接続点(最外端201e)の内径(dx)が、内側端部202cの内径(dy)よりも大きくなるように、缶体軸RAの外方に向かって最外端201eが凸となるリング溝が形成されることが好ましい。
 従来、回転ロールや割型を用いて上記したようなリング溝を形成するリフォーム成形方法(ボトムリフォーム加工)が存在した。しかしながら従来の方法では、加工部位が薄くなりやすく十分に深い溝を形成することが困難であった。
 本発明の方法によればリング溝部の板厚は薄くならず逆に厚くなる傾向が生じ、且つ無理なく深い溝が形成できる。
 本実施形態のシームレス缶体の製造方法において、第1成形工程と第2成形工程との間で、カップ体2のカップ外周底部Aの上部の形状や長さに変化は与えられない。
 すなわち、カップ体2をカップ外周側ホルダー60に載せた際に、カップ体2のカップ外周底部Aとカップ外周側ホルダー60のテーパー面601とが接触する面の、Z軸方向において最も低い点をT点とする。このT点は、ドーム押し下げ工具70の下降及びカップドーム部Dの押し下げに伴って、位置は変化しない。(図5参照)
 一方で、第2成形工程により、カップ体2の傾斜部Sであった部分は、シームレス缶体1Aの外周底部202aの一部と周状接地部202bと内側端部202cと立ち上がり部 202dとに成形される。すなわちカップ体2の傾斜部Sは、カップ外周側ホルダー60の溝602に最終的には全て入り込む。
 なおこの第2成形工程において、カップ体2と上下金型との間の接触には著しい摺動がない。そのため、カップ体2の金属表面の損傷を生じることはなく、もとより潤滑剤を使用する必要はない。
 図5に示すように、上記T点は、シームレス缶体1Aにおける変曲点IPとなる。第2成形工程により付与される圧縮応力が原因で、下記のようにその金属長さが短くなる。
 すなわち、図5(f)における変曲点IPから最外端201eまでの金属長さは、図5(b)におけるT点からSeまでの金属長さに比べて、0.85~0.99倍程度に短くなる。
 一方で、当該部分の金属素材の厚みは、第2成形工程により、最も厚さが増大する部分で素板厚さ(t0)の1.1~1.3倍に増大される。
 以下、実施例及び比較例により本発明の第1実施形態における内容をさらに具体的に説明する。しかしながら、本発明は以下の実施例に何ら限定されるものではない。
(実施例1)
 以下に示す方法により、内容積350mLの絞りしごき缶(DI缶)を製造した。
 まず、素板としてアルミニウム合金板(JIS H 4000 A3104-H19材、0.28mm)を用意した。次いで、上記アルミニウム合金板の両面に、絞り加工時の潤滑剤として、公知のカッピング油を所定量塗布した。
 次いで、上記アルミニウム合金板を絞り成形機で、直径160mmの円盤状に打ち抜いた後、直ちに直径90mmの絞りカップ(図示せず)となるように絞り成形を行った。
 得られた絞りカップをボディーメーカ(缶体製造機)に搬送し、直径66mmの形状になるように再絞り成形を行った後、クーラントを用いて、直径66mm、高さ130mm、側壁最小厚さ0.105mmの形状の絞りしごき加工によってつくられた前駆体3となるようにしごき加工を行った。
 次いで、缶底の成形加工を行うため、上記で得られた前駆体3に対し、以下の第1成形工程及び第2成形工程を施した。
 まず第1成形工程としては前記のボディメーカでしごき加工に続く行程のストローク終段で行い、図4に示されるパンチ401、ホールドダウンリング501及びドーミングダイ502を用いてカップ外周底部A及び傾斜部Sを有するカップ体2とした。このときのカップ外周底部A及び傾斜部Sの長さ及び板厚は表1に示すとおりである。
 次に第2成形工程として図5に示す上型成形部材としてのドーム押し下げ工具70と下型成形部材としてのカップ外周側ホルダー60を用いて、カップドーム部Dを押し下げると共に傾斜部Sにおける金属素材の厚みを増大させて、シームレス缶体1Aを成形した。
 次いで、t1~t5の各部分の板厚を測定した。なお、t1~t5の各部分の箇所としては、上記実施形態及び図2に示すとおりとした。また、板厚の板厚測定方法としては以下のとおりとした。すなわち、成形したシームレス缶体1Aをエポキシ樹脂で包埋した後、エポキシ樹脂ごと、シームレス缶体1Aの縦軸(Z軸)に沿って切断した。切削加工、および入念な研磨加工で中心断面を露出させた後、測定顕微鏡でt1~t5部分の各々の厚さを測定した。各部分の板厚を表1に示す。
(実施例2)
 素板厚さを0.225mmとし、前駆体3の側壁最小厚さを0.093mmにした以外は実施例1と同様に行った。得られたシームレス缶体の各部分の板厚等に関しては表1に示す。
(比較例1)
 缶底の成形加工については、公知の缶底成型金型を使用し、公知の缶底成型方法により1工程で行った。それ以外は実施例1と同様に行った。
 なお、比較例1で用いたシームレス缶体の缶底の部分拡大図を図7に示す。
 得られたシームレス缶体の各部分の板厚等に関しては表1に示す。ただし、表1においてt3の数値は、傾斜部の下端(図7の(1))、t4の数値は傾斜部の上端(図7の(2))を測定して得た。
(比較例2)
 比較例1により得られたシームレス缶体に対して、ボトムリフォーム加工を施した。すなわち、缶底の接地部の缶体軸に直交する径方向の内側に位置する内周壁を回転ロールで押圧することにより周状に凹部を成形した。それ以外は、比較例と同様に行った。得られたシームレス缶体の各部分の板厚等に関しては表1に示す。
(比較例3)
 素板厚さを0.225mmとし、側壁最小厚さを0.093mmにした以外は比較例2と同様に行った。得られたシームレス缶体の各部分の板厚等に関しては表1に示す。
[評価]
 上記方法により得られたDI缶について、以下の方法により評価を行った。結果を表1に示す。
[耐圧性試験方法]
 カップ内に水を満たした状態で、送水管を設けた栓で開口端を密封する。次いで送水ポンプから送水管を通じてカップ内に加圧水を送り込む。カップの内圧が上昇し、ある時点でドーム部が外方に反転するように瞬時に変形する(バックリング)。通常、この変形と同時に缶の内圧が急激に低下する。この間における缶内圧の最高値を耐圧力(MPa)とする。
Figure JPOXMLDOC01-appb-T000001
 実施例及び比較例の結果により、缶底の特定部分の厚みを制御することにより、素板(ブランク)の板厚を薄くした場合でも好ましい耐圧性(炭酸飲料用途として求められる0.618MPa以上)が得られることが示された。
[第2実施形態]
 上述のとおり従来のシームレス缶体は軽量性には優れているものの、その側面となる缶胴部においては未だに改善すべき点が存在する。すなわち近年では缶胴部に様々な意匠を施すことで商品競争力を担保しており、かような観点から缶胴部に対してなるべく均質な写像性が要求される。
 しかしながら従来のシームレス缶体の製造方法では、成形後における缶胴部の表面状態が軸方向に沿って揃っておらず、特に缶胴部の下端付近または缶胴部と缶底部との間に存在する縮径部(外周底部)において高い金属光沢を得ることができなかった。
 この点について図14を用いて詳述する。
 図14(a)は、しごき加工が完了した直後の缶胴部としごきパンチの先端部の部分的な状態を模式的に示している。図示されるとおり、パンチの円筒部のうち先端寄りには点Aから点Bにかけてテーパー形状が設けられている。このテーパー形状は、しごき加工が開始される時にしごき率を緩やかに立ち上げるようにするために設けられている。したがって、このテーパー部分に相当する缶体部分はくさび状に板厚分布をもつ領域となる。なお図9などにも示したとおり、この領域は「ボディウォールステップ(BWS)」とも称されることがある。また、このBWSの下側には、缶の内側へと比較的大きく縮径するボディウォールラジアス(BWR)とも称される部位が形成されている。
 そして上記のしごき加工を行った場合、しごき加工面の光沢度は、上記したBWSの下端に位置する点Bでは元の素材表面とほぼ同等の光沢度であり、上記BWSの上端に位置する点Aに近づくに従ってその光沢度は増して、点A以降で最大の光沢度を呈することになる。
 図14(b)は、しごき加工完了後にドーミングダイがしごきパンチの先端内部に相対的に没入することで、缶底にドーム部を形成した時点の缶胴部としごきパンチの先端部の部分的な状態を示す図である。缶底の底面部はドーム部となって引き込まれることで、図14(a)で点Aに位置していた部分は点A´に、点Bに位置していた部分は点B´にそれぞれずれることになる。なおこれら各点の移動量(ずれ量)は、一例としておよそ2~5mm程度となっている。このように缶胴部のうち円筒部分の最下部付近には依然として光沢度が低く印刷の鮮映性が劣る部分が存在する事となるが、従前よりこの部分における高い金属光沢を有した意匠性の高いシームレス缶体をも求められていた。
なお、上記ドーミングダイの没入する量を単純に増やすことで上記ずれ量を増やすことも可能ではあるが、成形される缶の内容量において著しい減少を招き、同時に缶の材料使用量が増してしまうといった課題が残る。
 そこで後述する第2実施形態では、上記に例示した課題に鑑みて鋭意検討を繰り返した結果、絞りしごき加工後における缶胴部に対して優れた写像性を付与可能なシームレス缶体及びその製造方法を提供することを可能としている。また、第2実施形態では、缶胴部と缶底部との間に存在する縮径部(外周底部)において、高い金属光沢を有するシームレス缶体及びその製造方法を提供することを可能としている。
 なお以下においては、上記した第1実施形態のシームレス缶体1Aに対して構成及び機能が同様の要素には、それぞれ同じ番号を付して適宜その説明を省略する。
<シームレス缶体1B>
 図8に示すように、本実施形態のシームレス缶体1Bは、筒状胴部10と、この筒状胴部10の下端から境界部BPを経て内側へ縮径するように連続する外周底部20aを少なくとも備えた缶底部20と、を有するシームレス缶体である。なお図示では筒状胴部10より上方は一例としてネック・フランジ形状が描かれているが、筒状胴部10より上方は開口部10aを有する公知のシームレス缶体の構造が適用できる。ここで、本実施形態における「筒状胴部10の下端10e」とは、実質的に円筒面の下端に位置する部位であり、シームレス缶体の外表面に印刷を施す場合において、例えば公知のドライオフセット方式による曲面印刷が可能な領域のうちの下端であると定義できる。
 筒状胴部10は、シームレス缶体1Bの側面を構成する部位であり、後述するアルミニウムやスチールなど公知の金属板を絞りしごき加工することで形成される。この筒状胴部10は、用途により幅はあるが例えば概ね0.07~0.40mm程度の厚みを持つように構成されている。
 本実施形態における筒状胴部10は、後述する下端10eを下端部として、上端部は図8に示すようにネックショルダー(軸方向上方に向かうに従って縮径される部位)との境界までと定義される。
 缶底部20は、図8のとおり上記した筒状胴部10の下端10eから内側へ縮径するように連続する外周底部20aと、この外周底部20aから開口部10aに向かって膨出する膨出部20bとを少なくとも含んで構成されている。
 なお図8からも明らかなとおり、本実施形態における外周底部20aと膨出部20bは、シームレス缶体1Bをテーブルなどの平面上に載置した際に接地する周状接地部20cを境に区分けされている。したがって、本実施形態における外周底部20a、周状接地部20cおよび膨出部20bは、既述した第1実施形態における足部202および缶底中央部201に対応していると言える。このとき、特に本実施形態の周状接地部20cは、第1実施形態における周状接地部202bに対応する。
 また、本実施形態における「境界部BP」とは、缶底側の外観に関連する(すなわち缶の外側から観察が通常可能な)領域の境であって、図17に示すように筒状胴部10の下端10eから変曲して外周底部20aへと連続する部位であって、且つ、この境界部BPにおける外表面の接線と接地面Pとのなす角度γが45°となる点と定義される。
 本実施形態において上記角度γが45°となる点を境界部BPと定義する理由は次のとおりである。すなわちこのγが45°より小さくなる位置においては、上記した外表面の法線が下向きになりすぎてしまう。すると、例えば本発明が適用された缶が陳列棚等に普通に置かれた(正立)状態において反射光が視界に入りにくくなるため、本発明の主旨とする缶外面の優れた光沢性が発揮しにくくなるためである。
 なお図9(a)に示すとおり、従来の構造においては、上記したドーム部を成形する際に筒状胴部の薄肉部が下方へと引き込まれる量がごく小さいため、上記した境界部BP付近は相対的に厚みを有する部位となっている。
 これに対して本実施形態のシームレス缶体1Bにおいては、図9(b)にも示すとおり、しごき加工を経た筒状胴部10の下端10eを含む筒状胴部10のうち下端側の一部が外周底部20aの側へ引き込まれるため、境界部BPを超えて外周底部20aのうち少なくとも境界部BP付近までがしごき加工後の金属板で構成されることになる。
 換言すれば、本実施形態のシームレス缶体1Bにおいては、少なくとも境界部BPにおける板厚t0が、筒状胴部10の中間部における板厚tWC(図8参照)とほぼ等しくなっていると言える。
 したがって本実施形態の筒状胴部10は、従来構造に比してその軸方向(図8のZ方向)に関して上端から下端、さらに境界部BPの位置まで高い光沢度を有し均質な写像性を発揮することが可能となっている。なお、しごき加工を経た筒状胴部10が、高い光沢度を呈するためのしごき率は、用いる素材の特性や加工条件により異なるためこれに限定されないが、一例として総しごき率は少なくとも60%以上であることが好ましい。
 なお本実施形態においては、図8に示すとおり、筒状胴部10のうち境界部BP付近(例えば筒状胴部10の下端)における板厚をtWLとし、筒状胴部10の軸方向(Z方向)における中間部の板厚をtWCとする場合、tWC≦tWL<1.09×tWCの関係にあり、さらに好ましくはtWC≦tWL<1.05×tWCの関係にあることが望ましい。これにより缶側面の写像性は高めつつシームレス缶体1Bの耐圧性も維持することが可能となっている。なお本実施形態における「筒状胴部10の軸方向における中間部」とは、必ずしも厳密に上記軸方向における中間の板厚である必要はなく、中間付近も含むものと定義できる。
 さらに本実施形態においては、同じく図8に示すとおり、筒状胴部10の軸方向における中間部の板厚をtWCとする場合、tWC≦t0<1.09×tWCの関係にあり、さらに好ましくはtWC≦t0<1.05×tWCの関係にあることが望ましい。t0がtWC未満ではこの部分の軸荷重強度が低下する可能性が出てくるという問題が生じ、t0がtWCの1.09倍以上であると筒状胴部の下端部分における光沢度が低下し本発明の効果が得られにくくなるという問題が生じるからである。
 これにより缶側面の写像性は高めつつシームレス缶体1Bの耐圧性も維持することが可能となっている。
 また、しごき加工後の金属板が境界部BPを超えて外周底部20aの少なくとも一部まで到達することから、筒状胴部10の下端10eから境界部BP付近における60度鏡面光沢度が300%以上であることが望ましい。境界部BP付近における60度鏡面光沢度が300%未満であると、外観上、該当する部分において表面のざらつきやくすみ等が感じられるようになるため商品としての訴求力が低下するという問題が生じるからである。
 なお本実施形態の鏡面光沢度は、JIS Z 8741-1997に規定された測定方法に準拠して測定される。
 なお、本実施形態において、シームレス缶体1Bに用いられる金属素材の種類としては特に制限されない。すなわち、シームレス缶体に通常用いられる公知の金属板、例えばアルミニウム合金板や鋼板(例えばブリキ等)を使用することができる。また、金属板はその内面側に公知のフィルムを積層したものや、有機樹脂を塗装したもの、化成処理を施したもの等、表面被覆を適宜施していてもよい。
 また、本実施形態のシームレス缶体1Bは、例えば公知のフランジ加工やネッキング加工、ねじ加工等が施され、また、ビールや炭酸飲料、コーヒー、ジュース、流動食品等が内容物として収容された後に、開口部10aに公知の方法で蓋が取り付けられる。
<シームレス缶体1Bの製造方法>
 次に本実施形態におけるシームレス缶体1Bの製造方法について、図10~12などを適宜参照しつつ説明する。
 本実施形態におけるシームレス缶体1Bの製造方法としては、図8に示すような筒状胴部10と缶底部20とを有するシームレス缶体の製造方法であって、下記に詳述する第1成形工程および第2成形工程を含むことを特徴とする。
[第1成形工程]
 本実施形態におけるシームレス缶体1Bの製造方法は、図10に示される第1成形工程のように、金属素材(前駆体3)を、筒状胴部10と、前記筒状胴部10の下端にある境界部BPから内側上方に向けて延出する傾斜部Sと、前記傾斜部Sの端部Seから上方へ向けて第1の高さHoで膨出するカップドーム部Dと、を有するカップ体2に成形する。ここで傾斜部Sの端部Seは、カップドーム部Dとの接続点ともいうことができる。
 そして本実施形態の第1成形工程は、公知のプレス工程等によりしごき加工によって薄肉化された筒状胴部10が成形された前駆体3に対し、上型と下型とを用いて実施される。すなわち、本実施形態の第1成形工程は、しごき加工を行う成形機のパンチストロークの終端位置(下死点付近)で行うことも可能であるし、しごき加工を行った機械とは別の機械において行うことも可能である。
 具体的な例としては、図10に示されるように、カップ形状を有する前駆体3内に位置してこれを支持する筒状のパンチ401と、前駆体3の外周底部を前記パンチ401と協働して支持するドーミングダイ502と、により上記第1成形工程が実施される。このうちパンチ401の下端は、上記ドーミングダイ502に対応して上に凸の凹状となっており、周方向に沿って周壁部402が形成されている。なお、本実施形態における図10では周壁部402の断面形状として単一な円弧のものを例示しているが、この形状に限られず例えば図15又は図16のように複数の円弧とテーパー面を組み合わせた形状であってもよい。
 まず、パンチ401とドーミングダイ502とで前駆体3を挟むようにプレスすると、前駆体3の底面がドーミングダイ502によって開口部に向けて膨出するとともに、下端周縁は周壁部402によって引っ張られる状態となる。換言すれば、第1成形工程においては、パンチ401の周壁部402で前駆体3の外周を支持するとともに、当該パンチ401とドーミングダイ502とを相互にかみ合うように駆動することで、ボトムに第1の高さHoのカップドーム部Dを有するカップ体2を得ることができる。
 なお、この第1成形工程でカップドーム部Dを形成する際に周壁部402およびその近傍にかけてしわが生じる場合には、必要により図16に例示するしわ押さえ部材80(ホールドダウンリングとも称する)を設置して、周壁部402としわ押さえ部材80とによりしわ押さえ力を付加して成形することもできる。
 このときカップドーム部D、端部Se、および傾斜部Sをそれぞれ構成する材料が、後の第2成形工程によって図8における缶底部20を構成可能となるように素材量を合わせてカップドーム部の第1の高さHoを設定する必要がある。これにより、本実施形態における第1の高さHoは従来構造のドーム高さに比べて高くなり、したがって筒状胴部10が外周底部20a側に引き込まれる量もそれに伴い大きくなる。
 これにより、図11に示すとおり、しごき加工時に本来であれば筒状胴部10の下端を構成する部位が、上記した筒状胴部10と外周底部20aとの境界部BPを超えて外周底部20a側に引き込まれることになる(より具体的には図11に示す例では筒状胴部に位置していた点Aと点Bはそれぞれ境界部BPを超えて引き込まれる)。換言すれば、この第1成形工程において、筒状胴部10の下端10eが引き込まれて筒状胴部10の下端10eから縮径して連続する外周底部20aの一部(実質的にはまだ境界部BP付近の曲面の状態であり、これを第1外周底部20a´と称する)が形成される。
 ここで、上記第1成形工程により得られたカップ体2の形状について説明する。
 カップ体2における傾斜部Sは、前記第1外周底部20a´から内側上方に向けて延出するものである。すなわちカップ体2の傾斜部Sは、図10(c)などに示すように、Z軸方向においてカップ体2の最も低い部分と、カップドーム部Dとの接続点(端部Se)とで挟まれた曲線部分及び直線部分を言うものとする。
 なお本第1成形工程では、上記した傾斜部Sおよびカップドーム部Dを含めて膨出部とも称する。したがって本実施形態のカップ体2は、筒状胴部10と、この筒状胴部10の底面に形成された膨出部とを含んで構成されているとも言える。
 上記したカップドーム部Dの形状は一例であって、ドームの頂上を曲面状とせず例えば水平面状としてもよい。
 さらに、カップ体2におけるカップドーム部Dの第1の高さHoは、第2成形工程により得られるシームレス缶体1Bにおける缶ドーム部201dの第2の高さHpよりも大きいことが好ましい。この理由の一つとしては、後述する第2成形工程においてカップ体2におけるカップドーム部Dを押し下げながら、傾斜部Sに圧縮応力を付与するためである。すなわち、カップ体2におけるカップドーム部Dの第1の高さHoを事前に大きくしておき、最終的にシームレス缶体1Bにおいて好ましい缶ドーム部201dの第2の高さHpを得るためである。
 すなわちこの第1成形工程においては境界部BP付近の第1外周底部20a´から開口部10aへ向けて第1の高さHoで膨出する膨出部がまず形成され、後述する第2成形工程では第1の高さHoより低い第2の高さとなるように当該膨出部が押し下げられることになる。
[第2成形工程]
 次に図12を参照しつつ、本実施形態におけるシームレス缶体1Bの製造方法のうち第2成形工程について説明する。
 上記第1成形工程により、第1外周底部20a´及び傾斜部Sを有するカップ体2が成形された後に、以下の第2成形工程が実施される。
 なお、上記第1成形工程と第2成形工程との間に、カップ体2に対して、適宜それぞれ公知の洗浄工程、表面処理工程、印刷工程、塗装工程、筒状胴部への形状付与加工、あるいは第2成形工程を行うのに支障がない範囲でのネックイン(口絞り)加工等が実施されてもよい。さらに必要に応じて、第1成形工程以降の搬送性や耐食性を確保する目的で、カップ体2の最下端の接地部から傾斜部Sにかけての範囲の部分に外面塗装を施すことができる。
 第2成形工程においては、前記カップ体2に対して、上述の第1成形工程における成形金型は異なる金型により加工を施し、シームレス缶体1Bが成形される。すなわち図12に示すように、カップ体2を下型成形部材に当接させながら、上型成形部材を用いてカップ体2のカップドーム部Dに対して缶外方向(-Z軸方向)に押圧力を加える。
 より詳細には図12(a)に示すように、カップ体2の境界部BP付近をカップ外周側ホルダー60に載せる。次いでドーム押し下げ工具70が相対的に下降し、図12(b)に示すとおりカップドーム部Dにドーム押し下げ工具70の支持部701が接触する。なお図12では、支持部701の形状はカップドーム部Dの形状とほぼ一致して描かれているが、例えばカップドーム部Dの外周部で強く押圧がかかるように曲率に差を設けるなど、必ずしも形状を一致させる必要はない。
 ここで、カップ外周側ホルダー60はテーパー面601及び溝602を有しており、カップ体2の境界部BPと第1外周底部20a´が前記テーパー面601に接触した後に、ドーム押し下げ工具70がさらに押し下げられる。これにより、図12(c)に示すようにカップ体2の傾斜部Sの金属が、圧縮応力を受けながらテーパー面601に倣うように成形される。
 次いで図12(d)に示すように、ドーム押し下げ工具70がさらに押し下げられることで、カップ体2の傾斜部Sのうちの残部(テーパー面601に倣った金属以外の部分)が溝602内に案内される。このとき前記した第1の高さHoより低い第2の高さHpとなるように、前記カップドーム部Dを押し下げる。同時に、第1実施形態で既述したのと同様に、上型成形部材(ドーム押し下げ工具)及び下型成形部材(カップ外周側ホルダー)を用いて、前記傾斜部Sに対して、子午線方向の圧縮応力σφならびに周方向の圧縮応力σθを作用させる。(図6参照)
 これにより、カップ体2のうちテーパー面601に倣った金属は外周底部20aを構成し、溝602内に案内された金属は上記した周状接地部20cを構成し、さらに周状接地部20cから上方は膨出部20bをそれぞれ構成することになる。(図12(e)参照)
 このようにして、第2成形工程を経た後にシームレス缶体1Bの缶底部20が得られる。
 以上の成形が終了したら、図12(e)に示すとおり、ドーム押し下げ工具を相対的に上昇させ、シームレス缶体1Bをカップ外周側ホルダーから取り出せばよい。
 以上説明した本実施形態による製造方法で成形されたシームレス缶体1Bは、缶側面となる筒状胴部10がその軸方向における上端から下端までほぼ均質な表面状態を形成することができ、優れた外観性や写像性を発揮することができる。
 なお、以上で説明した第2実施形態は、缶底部(主に缶底のドーム部の形状)を除いて概ね第1実施形態と共通していると言える。そのため、本実施形態における上記各板厚の関係に関する技術思想、缶胴部と缶底部における金属光沢に関する技術思想は、それぞれ第1実施形態においても矛盾が生じない限り共通して適用できることは言うまでもない。
 逆に言えば、本実施形態による製造方法で成形されたシームレス缶体1Bは、上記した第1実施形態の特徴(内側端部202c、立ち上がり部202d、最外端201e、缶ドーム部201d)を組み入れることで、上記第1実施形態と同様の効果もさらに奏することができる。
 このように第1実施形態のシームレス缶体1Aにおけるドーム部の形状を第2実施形態のシームレス缶体1Bに適用し、図1及びその説明並びに図13を総合すると、本発明のシームレス缶体において、高い耐圧性を付与しつつ絞りしごき加工後における缶胴部に対して優れた写像性を付与可能なシームレス缶体及びその製造方法を実現することができる。
 なお、図13での足部202は、境界部BP(図8参照)から周状接地部202bに向けて板厚が変化しているため、図1、8及び図11などからも明らかなとおり、厚みがt1となる部位は、上記した境界部BPにおける板厚t0の位置よりも周状接地部202b側にシフトしていることとなる。このとき板厚t0<板厚t1である特徴、第2実施形態で示したtWC≦tWL<1.09×tWCの特徴、tWC≦t0<1.09×tWCの特徴、さらには筒状胴部10の下端10eから境界部BP付近における60度鏡面光沢度が300%以上である特徴をそれぞれ有していることが好ましい。
 このように本発明のシームレス缶体は、上述した第1実施形態と第2実施形態における特徴を併せ持つことができ、缶側面となる筒状胴部10がその軸方向における上端から下端までほぼ均質な表面状態を形成して優れた外観性や写像性を発揮するとともに、缶底部において優れた耐圧性をも同時に両立することが可能となっている。
 ここで、上記の第2実施形態で説明したシームレス缶体1Bが従来構造に対して少なくとも光沢度の点で有利であることを、図14を用いて改めて説明する。
 ここで図14(a)は従来の製法によりしごき成形された直後のシームレス缶体における缶胴部の下端付近の構造を抜粋して示しており、図14(b)はそれからさらにドーム成形を行った缶胴部の下端付近の構造を抜粋して示している。これらに対して図14(c)は、本実施形態のシームレス缶体1Bにおける缶胴部の下端付近の構造を抜粋して示している。
 なお図14(c)では筒状胴部10の下端における板厚tWLが筒状胴部の軸方向における中間部の板厚tWCと等しいが、本発明はこの形態に限られずtWL<1.09×tWCであってもよいことは上述のとおりである。
 すなわち、シームレス缶体を成形するためのしごき加工が行われる場合、まず上述のとおり従来手法の図14(a)では、点Bにおいてしごき率0でしごき加工が開始され、点Aに近づくに従ってしごき率は上昇していき、点A以降でしごき率が最大となる。したがって、例えば缶胴部に関するしごき加工面の光沢度は、点Bでは元の素材表面とほぼ同等の光沢度で、点Aに近づくに従って光沢度は増していき、そして点A以降で最大の光沢度を呈することになる。
 そして図14(b)は、しごき加工完了後にドーミングダイがしごきパンチの先端内部に相対的に没入することで缶底部にドーム部を形成した状態となる。これにより缶底部の一部はドーム部に引き込まれる形となり、もともと点Aに位置していた部位は点A′に、もともと点Bに位置していた部位は点B′にそれぞれずれ込むことになる。なお上記した従来手法の各部位のずれ量は、一例としておよそ2~5mm程度である。したがって、缶胴の円筒部最下部には依然として光沢度が低く印刷の鮮映性が劣る部分が残存する事となる。
 一方、本実施形態のシームレス缶体1Bでは、図14(c)などからも明らかなとおり、しごき加工後の金属板が境界部BPを超えて外周底部の少なくとも一部まで到達することから、境界部BP付近における光沢度が缶胴部と同等となる。これにより、缶胴部が軸方向の上端から下端に渡って高い光沢度をもつことが可能となっている。
 以上説明した第1実施形態および第2実施形態は本発明の趣旨を具現化した一例であり、本発明の上記趣旨を逸脱しない範囲で適宜変更を加えてもよい。さらには本発明の上記趣旨を逸脱しない範囲で第1実施形態および第2実施形態で示したシームレス缶体に対して公知の構造を追加してもよい。
 本発明によれば、シームレス缶体の素板(ブランク)の板厚を薄くしつつも耐圧性能を向上させてバックリングの現象を抑制することが可能となる。したがって、シームレス缶体の製造コストや輸送にかかるコスト等を削減することが可能となる。また、製造や輸送に必要とされる燃料等も削減できるため、環境に配慮したシームレス缶体の製造を実現することが可能である。
 また、本発明によれば、外観性や写像性を高めることが要求される容器に対して適用可能であり、特に飲料や薬品などの液体を貯蔵可能な缶体に利用することができる。
 1A、1B   シームレス缶体
 2   カップ体
 3   前駆体
 10  筒状胴部
 10e 下端
 20  缶底部
  20a 外周底部
  20a´ 第1外周底部
  20b 膨出部
 201 缶底中央部
 201d  缶ドーム部
 201e 最外端
 202 足部
 202a 外周底部
 202b 周状接地部
 202c 内側端部
 202d 立ち上がり部
 A   カップ外周底部
 D   カップドーム部
 S   傾斜部
 Se  端部
 Hp  缶ドーム部の高さ(第2の高さ)
 Ho  カップドーム部の高さ(第1の高さ)
 60  下型成形部材(カップ外周側ホルダー)
 70  上型成形部材(ドーム押し下げ工具)

Claims (15)

  1.  筒状胴部と缶底部とを有するシームレス缶体であって、
     前記缶底部は、前記筒状胴部の下端から内側へ縮径するように連続する外周底部と、前記外周底部よりも内側に位置する周状接地部と、を含み、
     前記外周底部の板厚をt1とし、周状接地部の板厚をt2とした場合、
     t2>t1
     であることを特徴とするシームレス缶体。
  2.  筒状胴部と、前記筒状胴部の下端から境界部を経て内側へ縮径するように連続する外周底部を少なくとも備えた缶底部と、を含み、
     前記筒状胴部の下端の板厚が前記筒状胴部の軸方向における中間部の板厚とほぼ等しい、ことを特徴とするシームレス缶体。
  3.  前記缶底部は、前記周状接地部よりも内側に位置する内側端部を更に含み、
     前記内側端部の板厚をt3とした場合、
     t3>t1
     である請求項1又は2に記載のシームレス缶体。
  4.  t3>t2となるように、前記外周底部から前記内側端部まで板厚が漸次増加する請求項3に記載のシームレス缶体。
  5.  前記缶底部は、前記内側端部から上方に立ち上がる立ち上がり部を更に含み、
     前記立ち上がり部上端の板厚をt4とした場合、
     t4>t1
     である請求項1~4のいずれか一項に記載のシームレス缶体。
  6.  前記缶底部は、前記立ち上がり部と連続して上方に凸となるよう膨出するドーム部と、を更に含み、前記ドーム部における中央の板厚をt5とした場合、t3>t4>t5となるように、前記ドーム部から前記内側端部まで板厚が漸次増加する請求項5に記載のシームレス缶体。
  7.  さらに、t5<t1である請求項6に記載のシームレス缶体。
  8.  缶体軸の外方に向かって、前記立ち上がり部と前記ドーム部の接続部分が凸となるリング溝が形成されている請求項5~7のいずれか一項に記載のシームレス缶体。
  9.  前記境界部における板厚が、前記中間部の板厚とほぼ等しい、請求項2に記載のシームレス缶体。
  10.  前記筒状胴部の下端における板厚をtWLとし、前記筒状胴部の軸方向における中間部の板厚をtWCとする場合、
     tWC ≦ tWL < 1.09×tWC
     の関係にある、請求項2又は9に記載のシームレス缶体。
  11.  前記筒状胴部において、
     tWC ≦ t0 < 1.09×tWC
     の関係にある(ただしt0は前記境界部の板厚)、請求項10に記載のシームレス缶体。
  12.  前記筒状胴部の下端から前記境界部付近における60度鏡面光沢度が300%以上である、請求項1~11のいずれか一項に記載のシームレス缶体。
  13.  筒状胴部と缶底部とを有するシームレス缶体の製造方法であって、
     金属素材を、筒状胴部と、前記筒状胴部の下端から縮径するように続くカップ外周底部と、前記カップ外周底部から内側上方に向けて延出する傾斜部と、前記傾斜部からの端部から上方へ向けて第1の高さで膨出するカップドーム部と、を有するカップ体に成形する第1成形工程と、
     前記カップ体のカップ外周底部を下型成形部材に当接させながら上型成形部材で前記カップドーム部より缶外方に向かい押圧力を加えることで、前記第1の高さより低い第2の高さとなるように前記カップドーム部を押し下げて前記傾斜部に子午線方向ならびに周方向の圧縮応力を作用させ、当該傾斜部の厚みを増大させながら前記下型成形部材に押し込む第2成形工程と、
     を含むことを特徴とするシームレス缶体の製造方法。
  14.  前記第2成形工程において、
     前記傾斜部を前記下型成形部材に押し込むことで、外周底部よりも内側に位置する周状接地部と、前記周状接地部よりも内側に位置する内側端部と、前記内側端部から上方に立ち上がって缶ドーム部へ接続する立ち上がり部が形成され、
     前記立ち上がり部と前記缶ドーム部との接続部分の内径が、前記内側端部の内径よりも大きくなるように、缶体軸の外方に向かって前記接続部分が凸となるリング溝が形成される請求項13に記載のシームレス缶体の製造方法。
  15.  金属素材を、しごき加工によって薄肉化された筒状胴部と、前記筒状胴部の下端から続く外周底部と、前記外周底部から開口部へ向けて第1の高さで膨出する膨出部と、を有するカップ体に成形する第1成形工程と、
     前記第1の高さより低い第2の高さとなるように前記膨出部を押し下げる第2成形工程と、を含み、
     前記第1成形工程において、前記筒状胴部の下端の板厚が前記筒状胴部の軸方向における中間部の板厚とほぼ等しくなるように、前記筒状胴部の下端が引き込まれて前記筒状胴部の下端から境界部を経て内側へ縮径するように連続する前記外周底部が形成される、
     ことを特徴とするシームレス缶体の製造方法。
PCT/JP2020/000780 2019-01-30 2020-01-13 シームレス缶体及びシームレス缶体の製造方法 WO2020158355A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20749070.7A EP3919200A4 (en) 2019-01-30 2020-01-13 SEAMLESS CAN BODY AND METHOD FOR PRODUCING SEAMLESS CAN BODY
US17/426,313 US20220097896A1 (en) 2019-01-30 2020-01-13 Seamless can body and method of manufacturing seamless can body
CN202080018253.5A CN113507993A (zh) 2019-01-30 2020-01-13 无缝罐体及无缝罐体的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019014857A JP6835109B2 (ja) 2019-01-30 2019-01-30 シームレス缶体及びシームレス缶体の製造方法
JP2019-014857 2019-01-30
JP2019190496A JP6760460B1 (ja) 2019-10-17 2019-10-17 シームレス缶体及びシームレス缶体の製造方法
JP2019-190496 2019-10-17

Publications (1)

Publication Number Publication Date
WO2020158355A1 true WO2020158355A1 (ja) 2020-08-06

Family

ID=71841727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000780 WO2020158355A1 (ja) 2019-01-30 2020-01-13 シームレス缶体及びシームレス缶体の製造方法

Country Status (4)

Country Link
US (1) US20220097896A1 (ja)
EP (1) EP3919200A4 (ja)
CN (1) CN113507993A (ja)
WO (1) WO2020158355A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054361A1 (ja) * 2020-09-10 2022-03-17 東洋製罐株式会社 プリフォーム缶及びその製造方法
WO2022096650A1 (de) * 2020-11-09 2022-05-12 Ardagh Metal Beverage Europe Gmbh Verfahren zur herstellung eines metallischen behälters
TWI787960B (zh) * 2020-09-10 2022-12-21 日商東洋製罐集團控股股份有限公司 罐體之製造方法及罐體的生產線
EP4059627A4 (en) * 2019-11-11 2023-11-29 Toyo Seikan Co., Ltd. HOLLOW BODY MOLDING DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077851A (ja) * 1983-10-01 1985-05-02 大和製罐株式会社 変形diアルミ罐
JPS6293142A (ja) * 1985-10-18 1987-04-28 Fuji Xerox Co Ltd 用紙送行装置
JPS6310688A (ja) * 1986-06-30 1988-01-18 Osaka Soda Co Ltd 土質安定化方法
JPH09285832A (ja) 1996-04-23 1997-11-04 Kishimoto Akira シームレス缶及びその成形法
JP2018087031A (ja) * 2016-11-29 2018-06-07 ユニバーサル製缶株式会社 ボトル缶およびその製造方法
JP2019001500A (ja) * 2017-06-14 2019-01-10 東洋製罐グループホールディングス株式会社 純アルミニウム製シームレス缶

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927679A (en) * 1987-05-29 1990-05-22 Devtech, Inc. Preform for a monobase container
JPH0426328Y2 (ja) * 1987-06-17 1992-06-24
JPH01116120U (ja) * 1988-01-29 1989-08-04
US5228588A (en) * 1989-02-16 1993-07-20 Toyo Seikan Kaisha Ltd. Thickness-reduced deep-draw-formed can
US5540352A (en) * 1991-07-24 1996-07-30 American National Can Company Method and apparatus for reforming can bottom to provide improved strength
WO2004113181A1 (ja) * 2003-06-23 2004-12-29 Toyo Seikan Kaisha, Ltd. 流通時の破胴耐性およびフランジクラック耐性に優れた樹脂被覆アルミニウム・シームレス缶体
US7398894B2 (en) * 2003-11-24 2008-07-15 Metal Container Corporation Container bottom, method of manufacture, and method of testing
JP4692144B2 (ja) * 2005-08-12 2011-06-01 Jfeスチール株式会社 2ピース缶及びその製造方法、並びに2ピース缶用鋼板
JP5108411B2 (ja) * 2007-08-03 2012-12-26 パナソニック株式会社 電池缶およびその製造方法並びに製造装置
US10525519B2 (en) * 2009-10-21 2020-01-07 Stolle Machinery Company, Llc Container, and selectively formed cup, tooling and associated method for providing same
CN104896990A (zh) * 2014-03-05 2015-09-09 株式会社T.Rad 无联箱板换热器的罐连接构造
KR20170107464A (ko) * 2014-12-30 2017-09-25 몽테벨로 테크놀로지 서비스즈 리미티드. 충격 압출 방법, 툴링 및 제품
JP6458909B2 (ja) * 2016-10-13 2019-01-30 新日鐵住金株式会社 2ピース缶胴の成形方法、その製造装置および2ピース缶胴
US11338954B2 (en) * 2016-10-25 2022-05-24 Toyo Seikan Co., Ltd. Aluminum can

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077851A (ja) * 1983-10-01 1985-05-02 大和製罐株式会社 変形diアルミ罐
JPS6293142A (ja) * 1985-10-18 1987-04-28 Fuji Xerox Co Ltd 用紙送行装置
JPS6310688A (ja) * 1986-06-30 1988-01-18 Osaka Soda Co Ltd 土質安定化方法
JPH09285832A (ja) 1996-04-23 1997-11-04 Kishimoto Akira シームレス缶及びその成形法
JP2018087031A (ja) * 2016-11-29 2018-06-07 ユニバーサル製缶株式会社 ボトル缶およびその製造方法
JP2019001500A (ja) * 2017-06-14 2019-01-10 東洋製罐グループホールディングス株式会社 純アルミニウム製シームレス缶

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3919200A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4059627A4 (en) * 2019-11-11 2023-11-29 Toyo Seikan Co., Ltd. HOLLOW BODY MOLDING DEVICE
WO2022054361A1 (ja) * 2020-09-10 2022-03-17 東洋製罐株式会社 プリフォーム缶及びその製造方法
TWI787960B (zh) * 2020-09-10 2022-12-21 日商東洋製罐集團控股股份有限公司 罐體之製造方法及罐體的生產線
WO2022096650A1 (de) * 2020-11-09 2022-05-12 Ardagh Metal Beverage Europe Gmbh Verfahren zur herstellung eines metallischen behälters

Also Published As

Publication number Publication date
EP3919200A4 (en) 2022-11-02
US20220097896A1 (en) 2022-03-31
TW202041299A (zh) 2020-11-16
CN113507993A (zh) 2021-10-15
EP3919200A1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
WO2020158355A1 (ja) シームレス缶体及びシームレス缶体の製造方法
EP1725354B1 (en) Bottom profile for drawn and ironed can body
AU7566494A (en) Method of forming a metal container body
US6968724B2 (en) Method and apparatus for making a can lid shell
US20170253371A1 (en) Concave Can End
JP6760460B1 (ja) シームレス缶体及びシームレス缶体の製造方法
US4412440A (en) Process for making container
JP2008132522A (ja) 金属製缶胴およびその製造方法
WO2021181949A1 (ja) シームレス缶体及びシームレス缶体の製造方法
TWI840492B (zh) 無縫罐體及無縫罐體之製造方法
JP7424448B2 (ja) シームレス缶体及びシームレス缶体の製造方法
JP7402835B2 (ja) シームレス缶体及びシームレス缶体の製造方法
JP6835109B2 (ja) シームレス缶体及びシームレス缶体の製造方法
JPH07300124A (ja) 絞りーしごき成形缶としごきポンチ
JP2018104095A (ja) ボトル缶
JP6650283B2 (ja) 缶の製造方法及び缶
JPH07275961A (ja) シームレス缶の製造方法
GB2092932A (en) Improved tooling for making container bodies
JP4573985B2 (ja) 薄肉缶用スムーズネック成形方法および成形工具
JPH0371938A (ja) シームレス金属缶の製造方法
US20220055785A1 (en) Bottle can, manufacturing method of bottle can, and design method of bottle can
JPH089077B2 (ja) 1体成形缶の底部の成形方法
JP2010222045A (ja) 缶体
JP2002240815A (ja) 軽量2ピース容器およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020749070

Country of ref document: EP

Effective date: 20210830