WO2020158086A1 - 表示装置及びトランジスタ - Google Patents

表示装置及びトランジスタ Download PDF

Info

Publication number
WO2020158086A1
WO2020158086A1 PCT/JP2019/043308 JP2019043308W WO2020158086A1 WO 2020158086 A1 WO2020158086 A1 WO 2020158086A1 JP 2019043308 W JP2019043308 W JP 2019043308W WO 2020158086 A1 WO2020158086 A1 WO 2020158086A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
gate electrode
semiconductor layer
gate
channel region
Prior art date
Application number
PCT/JP2019/043308
Other languages
English (en)
French (fr)
Inventor
芳孝 尾関
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to CN201980090991.8A priority Critical patent/CN113366654A/zh
Publication of WO2020158086A1 publication Critical patent/WO2020158086A1/ja
Priority to US17/390,328 priority patent/US11635663B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136204Arrangements to prevent high voltage or static electricity failures
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate

Definitions

  • Embodiments of the present invention relate to a display device and a transistor.
  • an electrophoretic display in which an electrophoretic element is sandwiched between an element substrate and a counter substrate is known.
  • this electrophoretic display device by driving a pixel transistor included in each pixel arranged in the electrophoretic display device, for example, white or black can be displayed in each pixel.
  • the electrophoretic display device has a large driving voltage, and a high voltage is applied to the above-mentioned pixel transistor.
  • the problem to be solved by the present invention is to provide a display device and a transistor capable of suppressing abnormality due to heat generation.
  • a display panel having a pixel portion in which a plurality of pixels are arranged and a peripheral portion provided around the pixel portion, and a drive circuit provided in the peripheral portion and driving the pixels are provided.
  • a display device having the same is provided.
  • a transistor is provided in the pixel portion or the peripheral portion, and the transistor overlaps with a semiconductor layer having a first end portion and a second end portion and a semiconductor layer at a position near the first end portion.
  • the first and second gate electrodes are arranged in the first layer.
  • the source electrode and the drain electrode are arranged in a second layer different from the first layer.
  • the source electrode is formed so as to cover at least a first channel region which is a region where the first gate electrode and the semiconductor layer overlap each other in plan view.
  • the drain electrode is formed so as to cover at least a second channel region which is a region where the second gate electrode and the semiconductor layer overlap each other in plan view.
  • FIG. 1 is a plan view showing an example of the configuration of the display device according to the first embodiment.
  • FIG. 2 is a diagram showing an example of a cross section of the pixel along the first direction.
  • FIG. 3 is a plan view showing an example of the pixel transistor.
  • FIG. 4 is a diagram showing an example of a cross section along the first direction of the pixel in the comparative example of the present embodiment.
  • FIG. 5 is a plan view showing an example of a pixel transistor in a comparative example of this embodiment.
  • FIG. 6 is a diagram for explaining an example of the structure of the source electrode and the drain electrode.
  • FIG. 7 is a diagram for explaining an example of the configuration of the protection diode.
  • FIG. 8 is a diagram showing an example of a top gate type pixel transistor.
  • FIG. 1 is a plan view showing an example of the configuration of the display device according to the first embodiment.
  • FIG. 2 is a diagram showing an example of a cross section of the pixel along the first direction
  • FIG. 9 is a diagram showing an example of a cross section along the first direction of the pixel according to the second embodiment.
  • FIG. 10 is a plan view showing an example of the pixel transistor in this embodiment.
  • FIG. 11 is a plan view showing another example of the pixel transistor in this embodiment.
  • FIG. 12 is a diagram showing an example of a top gate type pixel transistor.
  • FIG. 1 is a plan view showing an example of the configuration of the display device according to the first embodiment.
  • the first direction X, the second direction Y, and the third direction Z are orthogonal to each other, but may intersect with each other at an angle other than 90 degrees.
  • the first direction X and the second direction Y correspond to the directions parallel to the main surface of the substrate forming the display device DSP
  • the third direction Z corresponds to the thickness direction of the display device DSP.
  • the position on the tip side of the arrow indicating the third direction Z is referred to as upper (or simply upper), and the position on the rear end side of the arrow is referred to as lower (or simply lower).
  • the display device DSP shown in FIG. 1 includes a display panel 1 including a first substrate SUB1 and a second substrate SUB2.
  • the display panel 1 has a display area DA as a pixel portion and a non-display area NDA as a peripheral portion provided around the pixel portion.
  • the display area DA is located in an area where the first substrate SUB1 and the second substrate SUB2 overlap in a plan view.
  • a plurality of pixels PX are arranged in a matrix in the first direction X and the second direction Y.
  • the non-display area NDA is formed like a frame.
  • a drive circuit (drive circuit that drives the display panel 1) including the gate drivers GD1 and GD2 and the source driver SD is located in the non-display area NDA and is provided on the first substrate SUB1.
  • the flexible wiring board 2 is connected to the first board SUB1.
  • the IC chip 3 is connected to the flexible wiring board 2.
  • the IC chip 3 may be connected to the first substrate SUB1.
  • the gate drivers GD1 and GD2 and the source driver SD described above may be incorporated in the IC chip 3, for example.
  • the protection diodes 4 and 5 may be provided on the first substrate SUB1.
  • the protection diode 4 is arranged between the flexible wiring board 2 and the source driver SD, and a signal supplied via the protection diode 4 is input to the source driver SD.
  • the protection diode 5 is arranged at a position corresponding to each of the gate drivers GD1 and GD2, and a signal supplied via the protection diode 5 is input to the gate drivers GD1 and GD2.
  • FIG. 2 shows an example of a cross section along the first direction X of the pixel PX provided in the pixel portion.
  • the first substrate SUB1 includes a base material 11 and insulating films 12 to 15.
  • the base material 11 is an insulating substrate made of insulating glass or resin such as polyimide resin. Since the base material 11 is located on the side opposite to the observation position with respect to the second substrate SUB2, for example, it is an opaque base material, but may be a transparent base material.
  • the pixel PX (pixel circuit) described above includes a pixel transistor (thin film transistor) SW that is a switching element, but in the present embodiment, the pixel transistor SW has a double gate structure. That is, the pixel transistor SW has the semiconductor layer SC, two gate electrodes GE1 and GE2, one source electrode SE, and one drain electrode DE.
  • the gate electrodes GE1 and GE2 are located on the base material 11 and covered with an insulating film (gate insulating film) 12.
  • the gate electrodes GE1 and GE2 are made of metal materials such as aluminum (Al), titanium (Ti), silver (Ag), molybdenum (Mo), tungsten (W), copper (Cu), and chromium (Cr), and these metals. It is formed of an alloy or the like in which materials are combined.
  • the gate electrodes GE1 and GE2 may have a single-layer structure or a laminated structure.
  • the semiconductor layer SC is located on the insulating film 12 and covered with the insulating film 13.
  • the semiconductor layer SC is arranged at a position overlapping the above-mentioned gate electrodes GE1 and GE2 in a plan view.
  • the semiconductor layer SC is formed of, for example, polycrystalline silicon (for example, low temperature polysilicon), but may be formed of amorphous silicon or an oxide semiconductor.
  • the pixel transistor SW is a bottom gate type transistor in which the gate electrodes GE1 and GE2 are arranged between the base material 11 and the semiconductor layer SC (that is, below the semiconductor layer SC). is there.
  • the source electrode SE and the drain electrode DE are located on the insulating film 13 and covered with the insulating film 14.
  • the source electrode SE and the drain electrode DE are formed of the same material, for example, the above metal material.
  • the source electrode SE is in contact with (connected to) the semiconductor layer SC in the through hole CH1 penetrating the insulating film 13.
  • the drain electrode DE is in contact with (connected to) the semiconductor layer SC in a through hole CH2 penetrating the insulating film 13.
  • the transistor SW includes the semiconductor layer SC, the gate electrode GE1 overlapping the semiconductor layer SC at a position near one end (first end) EP1 of the semiconductor layer SC, the gate electrode GE1 and the other end.
  • the gate electrode GE2 overlapping the semiconductor layer SC with the portion (second end) EP2, the source electrode SE connected to the end EP1 of the semiconductor layer SC, and the end EP2 of the semiconductor layer SC. Drain electrode DE.
  • the gate electrodes GE1 and GE2 are connected to the scanning line and the source electrode SE is connected to the signal line, but the scanning line and the signal line are omitted in FIG.
  • the capacitive electrode 100 is located on the insulating film 14 and covered with an insulating film (capacitive insulating film) 15.
  • the capacitor electrode 100 is a transparent electrode formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the capacitive electrode 100 may be formed of a non-transparent metal material (non-transparent conductive material).
  • the capacitance electrode 100 may be in contact with, for example, a power supply line.
  • the pixel electrode PE is located on the insulating film 15. One pixel electrode PE is provided for each of the plurality of pixels PX arranged in the display area DA.
  • the pixel electrode PE is in contact with the drain electrode DE at a through hole CH3 penetrating the insulating film 14 and a through hole CH4 penetrating the insulating film 15.
  • the pixel electrode PE is a transparent electrode formed of a transparent conductive material such as ITO or IZO described above.
  • the pixel electrode PE may be formed of a metal material (non-transparent conductive material) having light reflectivity.
  • the pixel electrode PE overlaps with the capacitor electrode 100 via the insulating film 15 to form the capacitor of the pixel PX.
  • the insulating films 12, 13 and 15 correspond to inorganic insulating films formed of an inorganic material such as silicon oxide (SiO), silicon nitride (SiN), and silicon oxynitride (SiON). Each of these insulating films 12, 13 and 15 may have a single layer structure or a laminated structure.
  • the insulating film 14 corresponds to an organic insulating film (organic flattening film) formed of an organic material such as acrylic resin.
  • the insulating film 14 is formed thicker than the above-described inorganic insulating films (insulating films 12, 13 and 15). By forming the organic insulating film with a predetermined thickness, irregularities below the organic insulating film are absorbed, and the organic insulating film becomes flat. Thereby, the unevenness of the capacitor electrode and the pixel electrode formed on the organic insulating film is suppressed.
  • the display device DSP is, for example, an electrophoretic display device (EPD: Electrophoretic Display).
  • the second substrate SUB2 includes the base material 21, the common electrode CE, and the electrophoretic element 22.
  • the base material 21 is made of insulating glass or resin such as polyimide resin.
  • the base material 21 is a transparent base material because it is located on the observation position side with respect to the first substrate SUB1.
  • the common electrode CE is located between the base material 21 and the electrophoretic element 22.
  • the common electrode CE is a transparent electrode made of a transparent conductive material such as ITO or IZO.
  • the common electrode CE has the same potential as the above-mentioned capacitance electrode 100.
  • the electrophoretic element 22 is located between the pixel electrode PE and the common electrode CE.
  • the electrophoretic element 22 is formed of a plurality of microcapsules 30 arranged with almost no space in the XY plane.
  • the microcapsule 30 has a particle size of, for example, about 20 ⁇ m to 70 ⁇ m. Note that, for example, about 1 to 10 microcapsules 30 are arranged on the rectangular or polygonal pixel electrode PE having a side length of about 100 to several hundreds ⁇ m.
  • the microcapsule 30 includes a dispersion medium 31, a plurality of black particles 32, and a plurality of white particles 33.
  • the outer shell 34 of the microcapsule 30 is formed of a transparent resin such as acrylic resin.
  • the dispersion medium 31 is a liquid that disperses the black particles 32 and the white particles 33 in the microcapsules 30.
  • the black particles 32 and the white particles 33 are called, for example, electrophoretic particles and have electric charges of opposite polarities.
  • the black particles 32 are positively charged and the white particles 33 are negatively charged.
  • microcapsules 30 may include electrophoretic particles of other colors such as red, green, blue, yellow, cyan, and magenta in addition to the black particles 32 and the white particles 33. Further, the electrophoretic particles of other colors described above may be replaced with at least one of the black particles 32 and the white particles 33.
  • the pixel electrode PE when the pixel PX displays black, the pixel electrode PE is held at a relatively higher potential than the common electrode CE. That is, when the potential of the common electrode CE is used as the reference potential, the pixel electrode PE is held in the positive polarity. As a result, the positively charged black particles 32 are attracted to the common electrode CE, while the negatively charged white particles 33 are attracted to the pixel electrode PE. As a result, when the pixel PX is observed from above the second substrate SUB2 (that is, the observation position), black is visually recognized.
  • the pixel electrode PE is held at a lower potential than the common electrode CE. That is, when the potential of the common electrode CE is used as the reference potential, the pixel electrode PE is held in the negative polarity. As a result, the negatively charged white particles 33 are attracted to the common electrode CE side, while the positively charged black particles 32 are attracted to the pixel electrode PE. As a result, when the pixel PX is observed from above the second substrate SUB2 (that is, the observation position), white is visually recognized.
  • the adhesive layer 40 is located between the pixel electrode PE and the electrophoretic element 22.
  • FIG. 3 is a plan view showing an example of the pixel transistor SW in this embodiment. Note that, as described above, the pixel transistor SW has the double gate structure including the two gate electrodes (that is, the gate electrodes GE1 and GE2).
  • the gate electrodes GE1 and GE2 are formed in the same layer as the scanning line G and are connected to the scanning line G.
  • the scanning line G extends along the first direction X and is connected to one of the gate drivers GD1 and GD2 shown in FIG.
  • the source electrode SE is connected to the signal line S formed in the same layer as the source electrode SE and the drain electrode DE.
  • the signal line S extends along the second direction Y and is connected to the source driver SD shown in FIG.
  • the pixel transistor SW is located at the intersection of the scanning line G and the signal line S.
  • the gate electrodes GE1 and GE2 are arranged side by side in the first direction X at intervals. In addition, the gate electrodes GE1 and GE2 are arranged at positions overlapping the semiconductor layer SC.
  • the gate electrodes GE1 and GE2 are formed to have the same shape and the same size (area) in plan view.
  • the source electrode SE is electrically connected to the semiconductor layer SC in the through hole CH1.
  • the drain electrode DE is electrically connected to the semiconductor layer SC in the through hole CH2.
  • the pixel electrode PE is electrically connected to the drain electrode DE in the through hole CH4.
  • the drain electrode DE also functions as a pedestal of a contact portion that contacts the pixel electrode PE.
  • the gate electrode GE1 includes a first end GE1a along the signal line S and a second end GE1b provided between the first end GE1a and the gate electrode GE2.
  • the source electrode SE extends along the gate line G and overlaps both the first end portion GE1a and the second end portion GE1b in a plan view.
  • the gate electrode GE2 is provided with a third end GE2a along a direction intersecting (for example, orthogonal to) the gate line G, and a fourth end GE2b provided between the third end GE2a and the gate electrode GE1. It has and.
  • the drain electrode DE extends along the gate line G and overlaps both the third end portion GE2a and the fourth end portion GE2b in a plan view.
  • the source electrode SE is formed so as to entirely cover the gate electrode GE1 (the upper part of the channel region corresponding to the gate electrode GE1) in the first direction X
  • the drain electrode DE is formed as the gate electrode GE2 (gate electrode GE2). It is formed so as to entirely cover the upper part of the channel region corresponding to GE2).
  • the channel region refers to a region CHN1 of the semiconductor layer which is orthographically projected to overlap the gate electrode GE1 and overlaps with the gate electrode GE1, and a region CHN2 of which is orthogonally projected to the gate electrode GE2 and overlaps with the gate electrode GE2.
  • the end of the source electrode SE on the side of the drain electrode DE coincides with the end GE1b of the gate electrode GE1 in a plan view, but the source electrode SE does not correspond to the gate electrode GE1 in the first direction X. All you have to do is cover it. Therefore, the end portion of the source electrode SE on the drain electrode DE side may extend beyond the end portion GE1b of the gate electrode GE1 on the gate electrode GE2 side.
  • the end portion of the drain electrode DE on the source electrode SE side may extend further beyond the end portion GE2b of the gate electrode GE2.
  • FIG. 4 is a diagram showing a cross section along the first direction X of the pixel PX in the comparative example of the present embodiment.
  • FIG. 5 is a plan view of the pixel transistor SW′ in the comparative example of the present embodiment.
  • FIGS. 4 and 5 the same parts as those in FIGS. 2 and 3 described above are denoted by the same reference numerals as those in FIGS. 2 and 3.
  • description of the same parts as those in FIGS. 2 and 3 is omitted. The same applies to the following description.
  • the pixel transistor SW′ has a single gate structure. That is, the pixel transistor SW′ has one gate electrode GE′, one source electrode SE, and one drain electrode DE.
  • the source electrode SE is assumed not to overlap the gate electrode GE′ in plan view.
  • the drain electrode DE is assumed to overlap only a part of the gate electrode GE′ on the drain electrode DE side in plan view.
  • the comparative example of the present embodiment is different from the present embodiment in that the pixel transistor SW′ has a single-gate structure, and the gate electrode GE′ is not entirely covered with the source electrode SE and the drain electrode DE. different.
  • the insulating film may be burnt out.
  • the burnout of the organic insulating film affects the threshold characteristic (Vth characteristic) of the pixel transistor SW′, which causes characteristic abnormality and operation abnormality of the pixel transistor SW′.
  • the drain electrode DE overlaps a part of the gate electrode GE′ in the examples shown in FIGS. 4 and 5, the high voltage applied in the electrophoretic display device can be obtained only by overlapping the drain electrode DE in this way. It is not possible to prevent the above-mentioned organic insulating film from being burnt out.
  • a configuration in which all of the gate electrode GE′ is covered (overlapped) with, for example, the drain electrode DE (drain metal) can be considered. ..
  • the electric field generated by the voltage state of the drain electrode DE affects the channel region CHN′ and changes the transistor characteristics. That is, the entire pixel transistor (including the source electrode SE and the drain electrode DE) has an asymmetrical configuration in terms of circuit design, and the case where the source electrode SE-positive application and the drain electrode DE-negative application are performed and the case where these are reversed It is conceivable that the transistor characteristics will change (not be symmetrical). Therefore, good transistor characteristics may be impaired.
  • the pixel transistor SW has a double gate structure, and the source electrode SE that covers one gate electrode GE1 (channel region corresponding to the gate electrode GE1) in the double gate structure is formed. At the same time, the drain electrode DE that covers the other gate electrode GE2 (the channel region corresponding to the gate electrode GE2) is formed.
  • the heat generated in the channel region corresponding to the gate electrode GE1 is dispersed in the source electrode SE, and the heat generated in the channel region corresponding to the gate electrode GE2 is dispersed in the drain electrode DE.
  • the pixel transistor SW includes the semiconductor layer SC having the first end EP1 and the second end EP2, and the semiconductor layer SC at a position close to the first end EP1 of the semiconductor layer SC.
  • a source electrode SE connected to the first end EP1 of the layer SC and a drain electrode DE connected to the second end EP2 of the semiconductor layer SC are provided.
  • the gate electrodes GE1 and GE2, the source electrode SE, and the drain electrode DE are arranged in different layers.
  • the source electrode SE overlaps with the end portions GE1a and GE1b of the gate electrode GE1 in a plan view.
  • the drain electrode DE overlaps the end portions GE2a and GE2b of the gate electrode GE2 when seen in a plan view.
  • the pixel transistor SW has a double-gate structure, and then the source electrode SE and the drain electrode DE are respectively extended and overlapped with the gate electrodes GE1 and GE2 (the source electrode SE and the drain up to the intermediate node). Cover with electrode DE).
  • DSP for example, an electrophoretic display device
  • the gate electrodes GE1 and GE2 have the same shape and area (size) in a plan view, and the area of the portion where the gate electrode GE1 and the source electrode SE overlap is the same as the gate electrode GE2 and the drain electrode.
  • the area is the same as the area where DE overlaps.
  • the width of the source electrode SE that overlaps with the channel region (first channel region) CHN1 corresponding to the gate electrode GE1 and the width of the channel region (second channel region) CHN2 corresponding to the gate electrode GE2 overlap.
  • the source electrode SE only needs to extend at least to the position where the end of the source electrode SE coincides with the end of the channel region CHN1 corresponding to the gate electrode GE1 (that is, the source). It suffices that the electrode SE overlaps the end of the channel region CHN1 corresponding to the first end GE1a of the gate electrode GE1 and the end of the channel region CHN1 corresponding to the second end GE1b) of the source electrode SE. May extend to a position where the end of the source electrode SE exceeds the end of the channel region CHN1 corresponding to the gate electrode GE1.
  • the source electrode SE is formed so as to cover at least the channel region CHN1 corresponding to the gate electrode GE1 in plan view.
  • the drain electrode DE may extend to at least the position where the end of the drain electrode DE coincides with the end of the channel region CHN2 corresponding to the gate electrode GE2 (that is, the drain). It is sufficient that the electrode DE overlaps with the end of the channel region CHN2 corresponding to the third end GE2a of the gate electrode GE2 and the end of the channel region CHN2 corresponding to the fourth end GE2b). May extend to a position where the end of the drain electrode DE exceeds the end of the channel region CHN2 corresponding to the gate electrode GE2.
  • the drain electrode DE is formed so as to cover at least the channel region CHN2 corresponding to the gate electrode GE2 in plan view.
  • the source electrode SE and the drain electrode DE both have large areas.
  • the end of the source electrode SE exceeding the second end GE1b of the gate electrode GE1 and the end of the drain electrode DE exceeding the second end GE2b of the gate electrode GE2 may be close to each other between the gate electrodes.
  • the source electrode SE and the drain electrode DE are electrically connected to each other if they are excessively close to each other, which may cause a short circuit. Therefore, it is assumed that the end of the source electrode SE and the end of the drain electrode DE are close to each other so as not to cause a short circuit.
  • a corner portion (end portion) of the source electrode SE on the drain electrode DE side and a corner portion (end portion of the drain electrode DE on the source electrode SE side Part) may be chamfered.
  • the source electrode SE is connected to the signal line S having a relatively large area (formed integrally), even if heat is generated in the channel region corresponding to the gate electrode GE1, the heat is signaled. It is easy to radiate heat to the line S side (easy to escape).
  • the drain electrode DE is formed in an island shape, it is more difficult for heat to escape than the source electrode SE. Therefore, as shown in FIG. 6, for example, the width W1 (first width) in which the source electrode SE extends beyond the gate electrode GE1 and the width W2 (first width) in which the drain electrode DE extends beyond the gate electrode GE2. 2 width).
  • the drain electrode DE can be formed large, and the effect of dispersing heat generated in the channel region CHN2 corresponding to the gate electrode GE2 can be improved.
  • the present embodiment includes, for example, a protection diode (protection circuit) included in the peripheral portion (non-display area NDA). Etc. may be applied.
  • At least one of the protection diodes 4 and 5 shown in FIG. 1 may have the configuration shown in FIG.
  • the protective diodes 4 and 5 specifically include a diode-connected thin film transistor, and the threshold voltage of the protective diodes 4 and 5 is made higher than that of a pixel transistor included in the pixel PX, for example. With such protection diodes 4 and 5, the pixel transistor (pixel circuit) can be protected when a surge current enters.
  • the gate electrodes are arranged in the order of the gate electrodes GE1 and GE2 and the gate electrode section (first gate electrode section) 201, and the gate electrodes are arranged in the order of the gate electrodes GE2 and GE1.
  • the gate electrode portions (second gate electrode portions) 202 to be arranged are arranged alternately.
  • the source electrode SE and the drain electrode DE are each formed in a comb shape and arranged so as to mesh with each other in a plan view. According to this, the source electrode SE is arranged at a position overlapping with the gate electrode GE1, and the drain electrode DE is arranged at a position overlapping with the gate electrode GE2.
  • the gate electrode GE1 is covered with the source electrode SE and the gate electrode GE2 is covered with the drain electrode DE, as in the pixel transistor SW described above. It is possible to dissipate the heat generated in the channel region of the transistor.
  • the semiconductor layer SC is omitted in FIG. 7.
  • protection diodes 4 and 5 have been described here, the same applies to the other transistors included in the peripheral portion, and a double gate structure is used to form a source electrode and a drain electrode that overlap with each of the two gate electrodes. This makes it possible to disperse the heat generated in the channel region of the transistor.
  • the pixel transistor SW is a bottom gate type transistor
  • the present embodiment between the source electrode SE and the drain electrode DE and the semiconductor layer SC, as shown in FIG. It may be applied to a top gate type transistor in which the gate electrodes GE1 and GE2 are arranged (that is, on the semiconductor layer SC).
  • the first substrate SUB1 includes the base material 11 and the insulating films 12 to 15 as in the bottom gate type, but the undercoat layer 16 is provided between the base material 11 and the semiconductor layer SC. Is further provided.
  • the undercoat layer 16 corresponds to an inorganic insulating film formed of an inorganic material. Detailed description of portions similar to those in FIG. 2 and the like will be omitted here.
  • the display device DSP is mainly described as an electrophoretic display device in the present embodiment
  • the transistor described in the present embodiment may be used in a display device other than the electrophoretic display device (for example, a liquid crystal display device). It may be applied.
  • the transistor described in the present embodiment may be applied to electronic devices and the like other than the display device. The same applies to the following embodiments.
  • FIG. 9 is a diagram showing an example of a cross section along the first direction X of the pixel PX in the present embodiment.
  • the same parts as those in FIG. 2 described above are designated by the same reference numerals, and detailed description thereof will be omitted.
  • parts different from those in FIG. 2 will be mainly described.
  • the source electrode SE overlaps with the gate electrode GE1 and the drain electrode DE overlaps with the gate electrode GE2.
  • the source electrode SE overlaps with the gate electrodes GE1 and GE2. It is different from the first embodiment in that a floating metal (metal member) is arranged.
  • the floating metal FM is located on the insulating film 13 and covered with the insulating film 14.
  • the floating metal FM is in the same layer as the source electrode SE and the drain electrode DE, and is arranged at a position sandwiched by the source electrode SE and the drain electrode DE.
  • the floating metal FM is formed using the metal material described above.
  • the pixel transistor SW is a bottom gate type transistor.
  • FIG. 10 is a plan view of the pixel transistor SW in this embodiment.
  • the same parts as those in FIG. 3 described above are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the part different from FIG. 3 will be mainly described.
  • the pixel transistor SW in the present embodiment has a double gate structure as in the above-described first embodiment.
  • the source electrode SE is electrically connected to the semiconductor layer SC in the through hole CH1.
  • the drain electrode DE is electrically connected to the semiconductor layer SC in the through hole CH2.
  • the source electrode SE does not overlap the gate electrodes GE1 and GE2 in plan view.
  • the drain electrode DE does not overlap the gate electrodes GE1 and GE2 in a plan view.
  • the floating metal FM is formed at the position sandwiched between the source electrode SE and the drain electrode DE as described above.
  • the floating metal FM overlaps all of the ends GE1a and GE1b of the gate electrode GE1 and the ends GE2a and GE2b of the gate electrode GE2.
  • the floating metal FM extends to a position where the end portion of the floating metal FM on the source electrode SE side and the end portion GE1a of the gate electrode GE1 at least coincide with each other, and the drain electrode DE of the floating metal FM.
  • the end portion on the side and the end portion GE2a of the gate electrode GE2 extend to a position where they at least coincide with each other in plan view.
  • the floating metal FM that entirely covers the gate electrodes GE1 and GE2 (the upper portions of the channel regions CHN1 and CHN2 corresponding to the gate electrodes GE1 and GE2) in the first direction X is formed.
  • both ends of the floating metal FM in the first direction X are aligned with the end portion GE1a of the gate electrode GE1 and the end portion GE2a of the gate electrode GE2 in a plan view, but the floating metal FM is a gate electrode. It only needs to cover GE1 and GE2. For this reason, both ends of the floating metal FM may further extend to both the source electrode SE side and the drain electrode DE side, or to only one of the source electrode SE side and the drain electrode DE side. May be.
  • the pixel transistor SW has the double gate structure, and the gate electrode GE1 (the channel region CHN1 corresponding to the gate electrode GE1) and the gate electrode GE2 (the channel corresponding to the gate electrode GE2) are formed.
  • the floating metal FM metal member is arranged at a position overlapping with the region CHN2).
  • the heat generated in the channel region CHN1 corresponding to the gate electrode GE1 and the heat generated in the channel region CHN2 corresponding to the gate electrode GE2 are dispersed in the floating metal FM.
  • the width of the floating metal FM in the second direction Y in plan view is narrower than the width of the gate electrodes GE1 and GE2 in the second direction Y, but the width of the floating metal FM in the second direction Y is small. May be further stretched in the second direction Y. According to this, it is possible to increase the area of the floating metal FM and surely cover the gate electrodes GE1 and GE2. Therefore, it is possible to further improve the dispersion effect of heat generation in the channel region of the pixel transistor SW described above. Becomes
  • FIG. 10 one floating metal FM that overlaps the gate electrode GE1 (corresponding to the channel region CHN1) and the gate electrode GE2 (corresponding to the channel region CHN2) has been described, but in FIG. As shown, the first floating metal FM1 overlapping the gate electrode GE1 and the second floating metal FM2 overlapping the gate electrode GE2 may be formed.
  • the heat generated in the channel region CHN1 corresponding to the gate electrode GE1 is dispersed in the first floating metal FM1 and the gate electrode Since the heat generated in the channel region CHN2 corresponding to GE2 can be dispersed in the second floating metal FM2, it is possible to suppress the abnormality due to heat generation.
  • the present embodiment may be applied to the transistor included in the peripheral portion as described in the first embodiment. Absent.
  • the present embodiment may be applied to a top gate type transistor as shown in FIG. Note that, except that the floating metal FM is arranged between the source electrode SE and the drain electrode DE, it is the same as FIG. 8 described above, and therefore detailed description thereof is omitted here.

Abstract

実施形態によれば、複数の画素が配置される画素部と、当該画素部の周辺に設けられる周辺部とを有する表示パネルと、周辺部に設けられ、画素を駆動する駆動回路とを具備する表示装置が提供される。画素部または周辺部にはトランジスタが設けられており、トランジスタは、半導体層と、半導体層と重畳する第1及び第2ゲート電極と、ソース電極と、ドレイン電極とを備える。ソース電極は、少なくとも平面視において、第1ゲート電極と半導体層の重畳領域である第1チャネル領域を覆って形成されている。ドレイン電極は、平面視において、少なくとも第2ゲート電極と半導体層の重畳領域である第2チャネル領域を覆って形成されている。

Description

表示装置及びトランジスタ
 本発明の実施形態は、表示装置及びトランジスタに関する。
 一般に、素子基板と対向基板との間に電気泳動素子を挟持した電気泳動表示装置(EPD:Electrophoretic Display)が知られている。
 この電気泳動表示装置によれば、当該電気泳動表示装置に配列されている各画素に含まれる画素トランジスタを駆動することによって、当該各画素において例えば白色または黒色等を表示することができる。
 ところで、電気泳動表示装置は駆動電圧が大きく、上記した画素トランジスタにも高電圧が印加される。
 このため、電気泳動表示装置においては、画素トランジスタに印加される高電圧に起因する発熱により、特性異常または動作異常が生じる可能性がある。
特開2009-049080号公報
 そこで、本発明が解決しようとする課題は、発熱による異常を抑制することが可能な表示装置及びトランジスタを提供することにある。
 実施形態によれば、複数の画素が配置される画素部と、当該画素部の周辺に設けられる周辺部とを有する表示パネルと、前記周辺部に設けられ、前記画素を駆動する駆動回路とを具備する表示装置が提供される。前記画素部または前記周辺部にはトランジスタが設けられており、該トランジスタは、第1端部及び第2端部を有する半導体層と、当該第1端部寄りの位置で半導体層と重畳する第1ゲート電極と、該第1ゲート電極と前記第2端部との間で当該半導体層と重畳する第2ゲート電極と、前記第1端部に接続されるソース電極と、前記第2端部に接続されるドレイン電極とを備える。前記第1及び第2ゲート電極は、第1層に配置されている。前記ソース電極及び前記ドレイン電極は、前記第1層とは異なる第2層に配置されている。前記ソース電極は、平面視において、少なくとも前記第1ゲート電極と半導体層の重畳領域である第1チャネル領域を覆って形成されている。前記ドレイン電極は、平面視において、少なくとも前記第2ゲート電極と半導体層の重畳領域である第2チャネル領域を覆って形成されている。
図1は、第1実施形態に係る表示装置の構成の一例を示す平面図である。 図2は、画素の第1方向に沿った断面の一例を示す図である。 図3は、画素トランジスタの一例を示す平面図である。 図4は、本実施形態の比較例における画素の第1方向に沿った断面の一例を示す図である。 図5は、本実施形態の比較例における画素トランジスタの一例を示す平面図である。 図6は、ソース電極及びドレイン電極の構成の一例について説明するための図である。 図7は、保護ダイオードの構成の一例について説明するための図である。 図8は、トップゲート型の画素トランジスタの一例を示す図である。 図9は、第2実施形態における画素の第1方向に沿った断面の一例を示す図である。 図10は、本実施形態における画素トランジスタの一例を示す平面図である。 図11は、本実施形態における画素トランジスタの他の例を示す平面図である。 図12は、トップゲート型の画素トランジスタの一例を示す図である。
 以下、本実施形態について、図面を参照しながら説明する。なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は、説明をより明確にするため、実際の態様に比べて、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同一または類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を適宜省略することがある。
 (第1実施形態) 
 図1は、第1実施形態に係る表示装置の構成の一例を示す平面図である。図1に示す例では、第1方向X、第2方向Y及び第3方向Zは、互いに直交しているが、互いに90度以外の角度で交差していてもよい。第1方向X及び第2方向Yは、表示装置DSPを構成する基板の主面と平行な方向に相当し、第3方向Zは、表示装置DSPの厚さ方向に相当する。本実施形態において、第3方向Zを示す矢印の先端側の位置を上方(または単に上)と称し、矢印の後端側の位置を下方(または単に下)と称する。また、第3方向Zを示す矢印の先端側に表示装置DSPを観察する観察位置があるものとし、この観察位置から、第1方向X及び第2方向Yで規定されるX-Y平面に向かって見ることを平面視という。
 図1に示す表示装置DSPは、第1基板SUB1及び第2基板SUB2を含む表示パネル1を備える。表示パネル1は、画素部としての表示領域DAと、当該画素部の周辺に設けられる周辺部としての非表示領域NDAとを有する。
 表示領域DAは、平面視で第1基板SUB1及び第2基板SUB2が重畳する領域に位置している。表示領域DA(画素部)においては、第1方向X及び第2方向Yにマトリクス状に複数の画素PXが配置されている。
 非表示領域NDAは、額縁状に形成されている。ゲートドライバGD1及びGD2とソースドライバSDとを含む駆動回路(表示パネル1を駆動する駆動回路)は、非表示領域NDAに位置し、第1基板SUB1に設けられている。
 フレキシブル配線基板2は、第1基板SUB1に接続されている。ICチップ3は、フレキシブル配線基板2に接続されている。なお、ICチップ3は、第1基板SUB1に接続されてもよい。また、上記したゲートドライバGD1及びGD2とソースドライバSDとは、例えばICチップ3に内蔵されていてもよい。
 更に、本実施形態に係る表示装置DSPにおいては、第1基板SUB1上に保護ダイオード4及び5が設けられていてもよい。保護ダイオード4はフレキシブル配線基板2とソースドライバSDとの間に配置されており、当該保護ダイオード4を経て供給される信号がソースドライバSDに入力される。保護ダイオード5はゲートドライバGD1及びGD2の各々に対応する位置に配置されており、当該保護ダイオード5を経て供給される信号がゲートドライバGD1及びGD2に入力される。
 図2は、画素部に設けられる画素PXの第1方向Xに沿った断面の一例を示す。図2に示すように、第1基板SUB1は、基材11及び絶縁膜12~15を備える。
 基材11は、絶縁性のガラスやポリイミド樹脂等の樹脂によって形成された絶縁基板である。基材11は、第2基板SUB2に対して観察位置の反対側に位置しているため、例えば不透明な基材であるが、透明な基材であってもよい。
 ここで、上記した画素PX(画素回路)はスイッチング素子である画素トランジスタ(薄膜トランジスタ)SWを含むが、本実施形態において、当該画素トランジスタSWは、ダブルゲート構造を有する。すなわち、画素トランジスタSWは、半導体層SCと、2つのゲート電極GE1及びGE2と、1つのソース電極SEと、1つのドレイン電極DEとを有する。
 ゲート電極GE1及びGE2は、基材11の上に位置し、絶縁膜(ゲート絶縁膜)12によって覆われている。ゲート電極GE1及びGE2は、アルミニウム(Al)、チタン(Ti)、銀(Ag)、モリブデン(Mo)、タングステン(W)、銅(Cu)、クロム(Cr)等の金属材料や、これらの金属材料を組み合わせた合金等によって形成される。また、ゲート電極GE1及びGE2は、単層構造であってもよいし、積層構造であってもよい。
 半導体層SCは、絶縁膜12の上に位置し、絶縁膜13によって覆われている。半導体層SCは、平面視において、上記したゲート電極GE1及びGE2と重畳する位置に配置されている。半導体層SCは、例えば多結晶シリコン(例えば、低温ポリシリコン)によって形成されているが、アモルファスシリコンや酸化物半導体によって形成されていてもよい。
 なお、図2に示す例において、画素トランジスタSWは、基材11と半導体層SCとの間に(つまり、半導体層SCの下に)ゲート電極GE1及びGE2が配置されるボトムゲート型のトランジスタである。
 ソース電極SE及びドレイン電極DEは、絶縁膜13の上に位置し、絶縁膜14によって覆われている。ソース電極SE及びドレイン電極DEは、同一材料によって形成され、例えば上記の金属材料を用いて形成されている。
 ソース電極SEは、絶縁膜13を貫通する貫通孔CH1において、半導体層SCにコンタクトしている(接続されている)。ドレイン電極DEは、絶縁膜13を貫通する貫通孔CH2において、半導体層SCにコンタクトしている(接続されている)。
 すなわち、トランジスタSWは、半導体層SCと、当該半導体層SCの一方の端部(第1端部)EP1寄りの位置で半導体層SCと重畳するゲート電極GE1と、当該ゲート電極GE1と他方の端部(第2端部)EP2との間で半導体層SCと重畳するゲート電極GE2と、半導体層SCの端部EP1に接続されるソース電極SEと、当該半導体層SCの端部EP2に接続されるドレイン電極DEとを備えている。
 なお、ゲート電極GE1及びGE2は走査線に接続され、ソース電極SEは信号線に接続されているが、図2においては、当該走査線及び信号線は省略されている。
 容量電極100は、絶縁膜14の上に位置し、絶縁膜(容量絶縁膜)15によって覆われている。容量電極100は、例えばインジウムスズ酸化物(ITO)またはインジウム亜鉛酸化物(IZO)等の透明導電材料によって形成された透明電極である。容量電極100は、透明でない金属材料(非透明導電材料)によって形成されていてもよい。なお、図2においては省略されているが、容量電極100は、例えば給電線等にコンタクトしていてもよい。
 画素電極PEは、絶縁膜15の上に位置している。画素電極PEは、表示領域DAに配置されている複数の画素PXの各々に対して1つずつ設けられている。
 画素電極PEは、絶縁膜14を貫通する貫通孔CH3及び絶縁膜15を貫通する貫通孔CH4において、ドレイン電極DEにコンタクトしている。画素電極PEは、上記したITOまたはIZO等の透明導電材料によって形成された透明電極である。画素電極PEは、光反射性を有する金属材料(非透明導電材料)によって形成されていてもよい。画素電極PEは、絶縁膜15を介して容量電極100と重畳し、画素PXの容量を形成する。
 絶縁膜12、13及び15は、シリコン酸化物(SiO)、シリコン窒化物(SiN)、シリコン酸窒化物(SiON)等の無機材料によって形成された無機絶縁膜に相当する。これらの絶縁膜12、13及び15は、それぞれが単層構造であってもよいし、積層構造であってもよい。
 絶縁膜14は、アクリル樹脂等の有機材料によって形成された有機絶縁膜(有機平坦化膜)に相当する。絶縁膜14は、上記の無機絶縁膜(絶縁膜12、13及び15)よりも厚く形成されている。当該有機絶縁膜を所定の厚さで形成することにより、当該有機絶縁膜より下方の凹凸が吸収され、有機絶縁膜上は平坦なものとなる。これにより、当該有機絶縁膜上に形成される容量電極や画素電極の凹凸は抑制される。
 ここで、本実施形態に係る表示装置DSPは、例えば電気泳動表示装置(EPD:Electrophoretic Display)であるものとする。この場合、第2基板SUB2は、基材21、共通電極CE及び電気泳動素子22を備えている。
 基材21は、絶縁性のガラスまたはポリイミド樹脂等の樹脂によって形成されている。基材21は、第1基板SUB1に対して観察位置側に位置しているため、透明な基材である。
 共通電極CEは、基材21と電気泳動素子22との間に位置している。共通電極CEは、ITOやIZO等の透明導電材料によって形成された透明電極である。なお、共通電極CEは、上記した容量電極100と同電位である。
 電気泳動素子22は、画素電極PEと共通電極CEとの間に位置している。電気泳動素子22は、X-Y平面内においてほとんど隙間なく配列された複数のマイクロカプセル30によって形成されている。
 マイクロカプセル30は、例えば20μm~70μm程度の粒径を有している。なお、例えば1辺の長さが百~数百μm程度の矩形状または多角形上の画素電極PEの上には、1個~10個程度のマイクロカプセル30が配置されている。
 マイクロカプセル30は、分散媒31と、複数の黒色粒子32と、複数の白色粒子33とを備えている。マイクロカプセル30の外殻34は、例えばアクリル樹脂等の透明な樹脂によって形成されている。
 分散媒31は、マイクロカプセル30内において、黒色粒子32及び白色粒子33を分散させる液体である。
 黒色粒子32及び白色粒子33は、例えば電気泳動粒子と称され、互いに逆極性の電荷を有している。例えば黒色粒子32は正に帯電し、白色粒子33は負に帯電している。
 なお、マイクロカプセル30は、黒色粒子32及び白色粒子33の他に、赤、緑、青、イエロー、シアン、マゼンタ等の他の色の電気泳動粒子を備えていてもよい。また、上記の他の色の電気泳動粒子は、黒色粒子32及び白色粒子33の少なくとも一方と置換されてもよい。
 上記構成の電気泳動素子22において画素PXが黒を表示する場合、画素電極PEが共通電極CEよりも相対的に高電位に保持される。すなわち、共通電極CEの電位を基準電位としたとき、画素電極PEが正極性に保持される。これにより、正に帯電した黒色粒子32が共通電極CEに引き寄せられる一方で、負に帯電した白色粒子33が画素電極PEに引き寄せられる。その結果、第2基板SUB2の上方(つまり、観察位置)から画素PXを観察すると、黒色が視認される。
 一方、画素PXが白を表示する場合、画素電極PEが共通電極CEよりも相対的に低電位に保持される。すなわち、共通電極CEの電位を基準電位としたとき、画素電極PEが負極性に保持される。これにより、負に帯電した白色粒子33が共通電極CE側へ引き寄せられる一方で、正に帯電した黒色粒子32が画素電極PEに引き寄せられる。その結果、第2基板SUB2の上方(つまり、観察位置)から画素PXを観察すると白色が視認される。
 なお、上記した第1基板SUB1及び第2基板SUB2は、粘着層40によって貼合されている。図2に示す例では、粘着層40は、画素電極PEと電気泳動素子22との間に位置している。
 図3は、本実施形態における画素トランジスタSWの一例を示す平面図である。なお、上記したように画素トランジスタSWは、2つのゲート電極(つまり、ゲート電極GE1及びGE2)を備えるダブルゲート構造を有する。
 図3に示すように、ゲート電極GE1及びGE2は、走査線Gと同層に形成されており、当該走査線Gと接続されている。走査線Gは、第1方向Xに沿って延出し、図1に示すゲートドライバGD1及びGD2の一方に接続されている。ソース電極SEは、ソース電極SE及びドレイン電極DEと同層に形成されている信号線Sと接続されている。信号線Sは、第2方向Yに沿って延出し、図1に示すソースドライバSDに接続されている。画素トランジスタSWは、走査線Gと信号線Sとの交差部に位置している。
 ゲート電極GE1及びGE2は、第1方向Xに間隔を置いて並べて配置される。また、ゲート電極GE1及びGE2は、半導体層SCと重畳する位置に配置される。
 なお、ゲート電極GE1及びGE2は、平面視において同一の形状及び同一の大きさ(面積)に形成されている。
 ソース電極SEは、貫通孔CH1において半導体層SCと電気的に接続されている。ドレイン電極DEは、貫通孔CH2において半導体層SCと電気的に接続されている。なお、画素電極PEは、貫通孔CH4においてドレイン電極DEと電気的に接続されている。この場合、ドレイン電極DEは、画素電極PEとコンタクトするコンタクト部の台座としても機能する。
 ここで、ゲート電極GE1は、信号線Sに沿う第1端部GE1aと、該第1端部GE1aとゲート電極GE2との間に設けられる第2端部GE1bとを備えている。かかるゲート電極GE1に対し、ソース電極SEはゲート線Gに沿って延在しており、平面視において、第1端部GE1a及び第2端部GE1bの両方と重畳する。
 また、ゲート電極GE2は、ゲート線Gと交差する(例えば、直行する)方向に沿う第3端部GE2aと、当該第3端部GE2aとゲート電極GE1との間に設けられる第4端部GE2bとを備えている。かかるゲート電極GE2に対し、ドレイン電極DEはゲート線Gに沿って延在しており、平面視において、第3端部GE2a及び第4端部GE2bの両方と重畳する。
 すなわち、本実施形態において、ソース電極SEは第1方向Xにおいてゲート電極GE1(ゲート電極GE1に対応するチャネル領域の上部)を全て覆って形成されており、ドレイン電極DEはゲート電極GE2(ゲート電極GE2に対応するチャネル領域の上部)を全て覆って形成されている。チャネル領域とは、半導体層のうち、ゲート電極GE1を正投影して当該ゲート電極GE1に重なる領域CHN1及びゲート電極GE2を正投影して当該ゲート電極GE2に重なる領域CHN2をいう。
 なお、図3に示す例では平面視においてソース電極SEのドレイン電極DE側の端部がゲート電極GE1の端部GE1bと一致しているが、ソース電極SEは第1方向Xにおいてゲート電極GE1の全てを覆っていればよい。このため、ソース電極SEのドレイン電極DE側の端部は、ゲート電極GE1のゲート電極GE2側の端部GE1bを越えて、更に延伸していてもよい。
 同様に、ドレイン電極DEのソース電極SE側の端部は、ゲート電極GE2の端部GE2bを越えて、更に延伸していてもよい。
 以下、本実施形態に係る表示装置DSPの作用について説明する。ここで、図4は、本実施形態の比較例における画素PXの第1方向Xに沿った断面を示す図である。また、図5は、本実施形態の比較例における画素トランジスタSW´の平面図である。
 なお、図4及び図5において上記した図2及び図3と同様の部分には、当該図2及び図3と同一参照符号が付されている。ここでは、図2及び図3と同様の部分についての説明を省略する。以下の説明についても同様である。
 本実施形態の比較例において、画素トランジスタSW´は、シングルゲート構造を有する。すなわち、画素トランジスタSW´は、ゲート電極GE´、ソース電極SE及びドレイン電極DEをそれぞれ1つずつ有している。
 また、本実施形態の比較例において、ソース電極SEは、平面視においてゲート電極GE´と重畳していないものとする。また、ドレイン電極DEは、平面視においてゲート電極GE´のドレイン電極DE側の一部のみと重畳しているものとする。
 すなわち、本実施形態の比較例は、画素トランジスタSW´がシングルゲート構造を有し、かつ、ゲート電極GE´の全てがソース電極SE及びドレイン電極DEで覆われていない点で本実施形態とは異なる。
 ここで、上記した本実施形態の比較例に係る表示装置DSP´において画像を表示する場合を想定する。この場合、画素トランジスタSW´には、当該画素トランジスタSW´のスイッチング駆動に伴って例えば40V以上の高電圧が印加される。このため、画素トランジスタSW´のチャネル領域CHN´においては強電界が生じ、ホットキャリアが加速される。
 この結果、当該のチャネル領域CHN´(ゲート電極GE´と重畳する半導体層SCの領域)で局所的にホットキャリアの発生に伴う高熱が発生し、画素トランジスタSW´の上部に形成されている有機絶縁膜(絶縁膜14)が焼損する可能性がある。
 このような有機絶縁膜の焼損は、画素トランジスタSW´の閾値特性(Vth特性)に影響を及ぼすため、画素トランジスタSW´の特性異常及び動作異常の原因となる。
 なお、図4及び図5に示す例ではドレイン電極DEがゲート電極GE´の一部と重畳しているが、このように一部と重畳するのみでは、電気泳動表示装置において印加される高電圧下における上記した有機絶縁膜の焼損を防止することはできない。
 ここで、上記した有機絶縁膜の焼損を防止するために、本実施形態の比較例において、ゲート電極GE´の全てを例えばドレイン電極DE(ドレインメタル)で覆う(オーバーラップさせる)構成が考えられる。
 一方で、かかる構成はドレイン電極DEの電圧状態によって発生する電界がチャネル領域CHN´に影響し、トランジスタ特性に変化を及ぼすことが考えられる。すなわち、回路設計的に画素トランジスタ(ソース電極SE及びドレイン電極DE含む)全体が非対称な構成となり、ソース電極SE―正印加及びドレイン電極DE-負印加とした場合と、これらを逆転させた場合とでトランジスタ特性が変化する(対称とならない)ことが考えられる。このため、良好なトランジスタ特性が損なわれる場合がある。
 これに対して、本実施形態においては、画素トランジスタSWがダブルゲート構造を有し、当該ダブルゲート構造における一方のゲート電極GE1(当該ゲート電極GE1に対応するチャネル領域)を覆うソース電極SEを形成するとともに、他方のゲート電極GE2(当該ゲート電極GE2に対応するチャネル領域)を覆うドレイン電極DEを形成する。
 これによれば、ゲート電極GE1に対応するチャネル領域で発生する熱はソース電極SEで分散され、ゲート電極GE2に対応するチャネル領域で発生する熱はドレイン電極DEで分散される。
 上記したように本実施形態において、画素トランジスタSWは、第1端部EP1及び第2端部EP2を有する半導体層SCと、半導体層SCの第1端部EP1寄りの位置で当該半導体層SCと重畳するゲート電極(第1ゲート電極)GE1と、当該ゲート電極GE1と半導体層SCの第2端部EP2との間で当該半導体層SCと重畳するゲート電極(第2ゲート電極)GE2と、半導体層SCの第1端部EP1に接続されるソース電極SEと、半導体層SCの第2端部EP2に接続されるドレイン電極DEとを備える。なお、本実施形態において、ゲート電極GE1及びGE2とソース電極SE及びドレイン電極DEとは異なる層に配置されている。
 また、本実施形態において、ソース電極SEは、平面視において、ゲート電極GE1の端部GE1a及びGE1bと重畳している。更に、ドレイン電極DEは、平面視において、ゲート電極GE2の端部GE2a及びGE2bと重畳している。
 すなわち、本実施形態においては、画素トランジスタSWをダブルゲート構造とした上で、ソース電極SE及びドレイン電極DEをそれぞれ延伸してゲート電極GE1及びGE2と重畳させる(中間ノードまで当該ソース電極SE及びドレイン電極DEで覆う)。これより、高電圧下での表示装置DSP(例えば、電気泳動表示装置)の駆動に起因する画素トランジスタの発熱を当該ソース電極SE及びドレイン電極DEで分散(放熱)させることが可能となる。これによれば、有機絶縁膜への局所的な伝熱を抑制し、当該有機絶縁膜が焼損することを防止する(つまり、許容耐圧を向上する)ことができるため、発熱による異常を抑制することが可能となる。
 なお、本実施形態において、平面視におけるゲート電極GE1及びGE2の形状及び面積(大きさ)は同一であり、ゲート電極GE1とソース電極SEとが重畳する部分の面積は、ゲート電極GE2とドレイン電極DEとが重畳する部分の面積と同一である。
 すなわち、本実施形態においては、ゲート電極GE1に対応するチャネル領域(第1チャネル領域)CHN1と重畳するソース電極SEの幅及びゲート電極GE2に対応するチャネル領域(第2チャネル領域)CHN2と重畳するドレイン電極DEの幅(つまり、メタル幅)を同一とすることにより、S-D逆転時のトランジスタ特性(Vth、ON電流)が対称となり、駆動設計観点でマージンを確保しやすい良好なトランジスタ特性を得ることができる。
 ここで、本実施形態において、ソース電極SEは少なくとも当該ソース電極SEの端部が当該ゲート電極GE1に対応するチャネル領域CHN1の端部と一致する位置まで延在していればよい(つまり、ソース電極SEがゲート電極GE1の第1端部GE1aに対応するチャネル領域CHN1の端部及び第2端部GE1bに対応するチャネル領域CHN1の端部と重畳していればよい)が、当該ソース電極SEは、当該ソース電極SEの端部がゲート電極GE1に対応するチャネル領域CHN1の端部を越える位置まで延在していてもよい。換言すれば、本実施形態においてソース電極SEは、平面視において、少なくともゲート電極GE1に対応するチャネル領域CHN1を覆って形成されている。
 同様に、本実施形態において、ドレイン電極DEは少なくとも当該ドレイン電極DEの端部が当該ゲート電極GE2に対応するチャネル領域CHN2の端部と一致する位置まで延在していればよい(つまり、ドレイン電極DEがゲート電極GE2の第3端部GE2aに対応するチャネル領域CHN2の端部及び第4端部GE2bに対応するチャネル領域CHN2の端部と重畳していればよい)が、当該ドレイン電極DEは、当該ドレイン電極DEの端部がゲート電極GE2に対応するチャネル領域CHN2の端部を越える位置まで延在していてもよい。換言すれば、本実施形態においてドレイン電極DEは、平面視において、少なくともゲート電極GE2に対応するチャネル領域CHN2を覆って形成されている。
 この場合、上記発熱における放熱の効率を高めるためには、ソース電極SEとドレイン電極DEの面積がいずれも大きい方が好ましい。この結果としてゲート電極GE1の第2端部GE1bを越えるソース電極SEの端部と、ゲート電極GE2の第2端部GE2bを越えるドレイン電極DEの端部とがゲート電極間で互いに近接することが考えられるが、過剰に近接するとソース電極SEとドレイン電極DEとが電気的に接続され、ショートする可能性がある。このため、ソース電極SEの端部とドレイン電極DEの端部とはショートしない程度に近接しているものとする。なお、ソース電極SE及びドレイン電極DEとがショートすることを防止するために、例えばソース電極SEのドレイン電極DE側の角部(端部)及びドレイン電極DEのソース電極SE側の角部(端部)が面取り加工されていてもよい。
 更に、ソース電極SEは、比較的面積の大きい信号線Sと接続されている(一体に形成されている)ため、ゲート電極GE1に対応するチャネル領域で熱が発生したとしても、当該熱を信号線S側に放熱しやすい(逃がしやすい)。他方、ドレイン電極DEは島状に形成されており、ソース電極SEに比べると熱を逃がしにくい。このため、図6に示すように、例えばソース電極SEがゲート電極GE1を越えて延在する幅W1(第1幅)を、ドレイン電極DEがゲート電極GE2を越えて延在する幅W2(第2幅)よりも小さく形成する。
 このような構成によれば、ドレイン電極DEを大きく形成することができ、ゲート電極GE2に対応するチャネル領域CHN2における発熱に対する分散効果を向上させることができる。
 なお、本実施形態においては画素部(表示領域DA)に含まれる画素トランジスタSWについて主に説明したが、本実施形態は、周辺部(非表示領域NDA)に含まれる例えば保護ダイオード(保護回路)等に対して適用されても構わない。
 ここで、図7を参照して、保護ダイオードの構成の一例について簡単に説明する。本実施形態においては、上記した図1に示す保護ダイオード4及び5のうちの少なくとも一方が図7に示す構成を有していればよい。
 保護ダイオード4、5は具体的にはダイオード接続された薄膜トランジスタを含み、例えば画素PXに含まれる画素トランジスタよりも保護ダイオード4、5の閾値電圧を高くする。このような保護ダイオード4、5によれば、サージ電流が侵入した場合に画素トランジスタ(画素回路)を保護することができる。
 図7に示すように、保護ダイオード4、5において、ゲート電極は、ゲート電極GE1及びGE2の順に並べて配置されるゲート電極部(第1ゲート電極部)201と、ゲート電極GE2及びGE1の順に並べて配置されるゲート電極部(第2ゲート電極部)202とが交互に配置される構成を有する。
 このようなゲート電極に対して、ソース電極SE及びドレイン電極DEは、それぞれ櫛歯状に形成され、平面視で互いに噛み合って配置されている。これによれば、ソース電極SEはゲート電極GE1と重畳する位置に配置され、ドレイン電極DEはゲート電極GE2と重畳する位置に配置される。
 図7に示すような保護ダイオード4、5においては、上記した画素トランジスタSWと同様に、ゲート電極GE1がソース電極SEで覆われるとともに、ゲート電極GE2がドレイン電極DEで覆われる構成であるため、トランジスタのチャネル領域で発生した熱を分散させることが可能となる。なお、図7においては、半導体層SCは省略されている。
 ここでは保護ダイオード4、5について説明したが、周辺部に含まれる他のトランジスタであっても同様に、ダブルゲート構造とし、2つのゲート電極の各々と重畳するソース電極及びドレイン電極を形成することによって、トランジスタのチャネル領域で発生した熱を分散させることが可能である。
 なお、本実施形態においては画素トランジスタSWがボトムゲート型のトランジスタである場合について説明したが、本実施形態は、図8に示すようにソース電極SE及びドレイン電極DEの各々と半導体層SCの間(つまり、半導体層SCの上に)ゲート電極GE1及びGE2が配置されるトップゲート型のトランジスタに適用されても構わない。
 図8に示す例では、第1基板SUB1は、ボトムゲート型の場合と同様に基材11及び絶縁膜12~15を備えるが、基材11と半導体層SCとの間にはアンダーコート層16が更に設けられている。なお、アンダーコート層16は、無機材料によって形成された無機絶縁膜に相当する。なお、図2等と同様の部分については、ここではその詳しい説明を省略する。
 また、本実施形態においては表示装置DSPが電気泳動表示装置であるものとして主に説明したが、本実施形態において説明したトランジスタは、電気泳動表示装置以外の表示装置(例えば、液晶表示装置)に適用されても構わない。更に、本実施形態において説明したトランジスタは、表示装置以外の電子機器等に適用されても構わない。以下の実施形態についても同様である。
 (第2実施形態) 
 次に、第2実施形態について説明する。なお、本実施形態に係る表示装置の構成については、前述した第1実施形態と同様であるため、適宜、図1を用いて説明する。
 図9は、本実施形態における画素PXの第1方向Xに沿った断面の一例を示す図である。なお、前述した図2と同様の部分には同一参照符号を付してその詳しい説明を省略する。ここでは、図2と異なる部分について主に述べる。
 前述した第1実施形態においてはソース電極SEがゲート電極GE1と重畳し、ドレイン電極DEがゲート電極GE2と重畳するものとして説明したが、本実施形態は、ゲート電極GE1及びGE2と重畳する位置にフローティングメタル(メタル部材)を配置する点で当該第1実施形態とは異なる。
 図9に示すように、フローティングメタルFMは、絶縁膜13の上に位置し、絶縁膜14によって覆われている。また、フローティングメタルFMは、ソース電極SE及びドレイン電極DEと同じ層であって、当該ソース電極SE及びドレイン電極DEに挟まれる位置に配置される。なお、フローティングメタルFMは、前述した金属材料を用いて形成される。
 なお、図9に示す例において、画素トランジスタSWは、ボトムゲート型のトランジスタである。
 図10は、本実施形態における画素トランジスタSWの平面図である。なお、前述した図3と同様の部分には同一参照符号を付してその詳しい説明を省略する。ここでは、図3と異なる部分について主に述べる。
 本実施形態における画素トランジスタSWは、前述した第1実施形態と同様に、ダブルゲート構造を有する。
 ソース電極SEは、貫通孔CH1において半導体層SCと電気的に接続されている。ドレイン電極DEは、貫通孔CH2において半導体層SCと電気的に接続されている。
 なお、本実施形態において、ソース電極SEは、平面視においてゲート電極GE1及びGE2とは重畳しない。同様に、ドレイン電極DEは、平面視においてゲート電極GE1及びGE2とは重畳しない。
 ここで、本実施形態においては、上記したようにソース電極SEとドレイン電極DEとに挟まれる位置にフローティングメタルFMが形成されている。
 フローティングメタルFMは、ゲート電極GE1の端部GE1a及びGE1bとゲート電極GE2の端部GE2a及びGE2bとの全てと重畳している。
 この場合、フローティングメタルFMは、当該フローティングメタルFMのソース電極SE側の端部とゲート電極GE1の端部GE1aとが平面視において少なくとも一致する位置まで延在し、当該フローティングメタルFMのドレイン電極DE側の端部とゲート電極GE2の端部GE2aとが平面視において少なくとも一致する位置まで延在している。
 すなわち、本実施形態においては、第1方向Xにおいてゲート電極GE1及びGE2(ゲート電極GE1及びGE2の各々に対応するチャネル領域CHN1及びCHN2の上部)を全て覆うフローティングメタルFMが形成されている。
 図10に示す例では平面視においてフローティングメタルFMの第1方向Xの両端部がゲート電極GE1の端部GE1a及びゲート電極GE2の端部GE2aとそれぞれ一致しているが、フローティングメタルFMはゲート電極GE1及びGE2を覆っていればよい。このため、フローティングメタルFMの両端部は、ソース電極SE側及びドレイン電極DE側の双方に更に延伸していてもよいし、当該ソース電極SE側及びドレイン電極DE側の一方にのみ更に延伸していてもよい。
 上記したように本実施形態においては、画素トランジスタSWをダブルゲート構造とした上で、ゲート電極GE1(当該ゲート電極GE1に対応するチャネル領域CHN1)及びゲート電極GE2(当該ゲート電極GE2に対応するチャネル領域CHN2)と重畳する位置にフローティングメタルFM(メタル部材)が配置される。
 これによれば、ゲート電極GE1に対応するチャネル領域CHN1で発生した熱及びゲート電極GE2に対応するチャネル領域CHN2で発生した熱はフローティングメタルFMで分散される。
 したがって、本実施形態においては、有機絶縁膜への伝熱を抑制し、当該有機絶縁膜が焼損することを防止することができるため、発熱による異常を抑制することが可能となる。
 なお、上記した図10に示す例では平面視におけるフローティングメタルFMの第2方向Yの幅はゲート電極GE1及びGE2の第2方向Yの幅よりも狭いが、当該フローティングメタルFMの第2方向Yの幅を当該第2方向Yに更に延伸してもよい。これによれば、フローティングメタルFMの面積を大きくし、ゲート電極GE1及びGE2を確実に覆うことが可能となるため、上記した画素トランジスタSWのチャネル領域における発熱に対する分散効果を更に向上させることが可能となる。
 また、図10においてはゲート電極GE1(に対応するチャネル領域CHN1)及びゲート電極GE2(に対応するチャネル領域CHN2)を重畳する1つのフローティングメタルFMが形成されるものとして説明したが、図11に示すように、ゲート電極GE1に重畳する第1フローティングメタルFM1及びゲート電極GE2に重畳する第2フローティングメタルFM2が形成される構成としても構わない。
 図11に示す第1フローティングメタルFM1及び第2フローティングメタルFM2が形成される構成であっても、ゲート電極GE1に対応するチャネル領域CHN1で発生した熱を第1フローティングメタルFM1で分散し、ゲート電極GE2に対応するチャネル領域CHN2で発生した熱を第2フローティングメタルFM2で分散することができるため、発熱による異常を抑制することが可能となる。
 なお、本実施形態においては画素部に含まれる画素トランジスタSWについて主に説明したが、本実施形態は、第1実施形態において説明したように周辺部に含まれるトランジスタに対して適用されても構わない。
 また、本実施形態においては画素トランジスタSWがボトムゲート型のトランジスタである場合について説明したが、本実施形態は、図12に示すようにトップゲート型のトランジスタに適用されても構わない。なお、ソース電極SE及びドレイン電極DEの間にフローティングメタルFMが配置されている点以外は、前述した図8と同様であるため、ここではその詳しい説明を省略する。
 以上に述べた少なくとも1つの実施形態によれば、チャネル領域における発熱による異常を抑制することが可能な表示装置及びトランジスタを提供することにある。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 
 1…表示パネル、2…フレキシブル配線基板、3…ICチップ、11,21…基材、12~16…絶縁膜、22…電気泳動素子、30…マイクロカプセル、31…分散媒、32…黒色粒子、33…白色粒子、100…容量電極、201…第1ゲート電極部、202…第2ゲート電極部、DSP…表示装置、SUB1…第1基板、SUB2…第2基板、GD1,GD2…ゲートドライバ、SD…ソースドライバ、DA…表示領域(画素部)、NDA…非表示領域(周辺部)、SC…半導体層、GE1,GE2…ゲート電極、SE…ソース電極、DE…ドレイン電極、SW…画素トランジスタ、PX…画素、PE…画素電極、FM…フローティングメタル(メタル部材)。

Claims (8)

  1.  複数の画素が配置される画素部と、当該画素部の周辺に設けられる周辺部とを有する表示パネルと、
     前記周辺部に設けられ、前記画素を駆動する駆動回路と
     を具備し、
     前記画素部または前記周辺部にはトランジスタが設けられており、該トランジスタは、第1端部及び第2端部を有する半導体層と、当該第1端部寄りの位置で当該半導体層と重畳する第1ゲート電極と、該第1ゲート電極と前記第2端部との間で当該半導体層と重畳する第2ゲート電極と、前記第1端部に接続されるソース電極と、前記第2端部に接続されるドレイン電極とを備え、
     前記第1及び第2ゲート電極は、第1層に配置されており、
     前記ソース電極及び前記ドレイン電極は、前記第1層とは異なる第2層に配置されており、
     前記ソース電極は、平面視において、少なくとも前記第1ゲート電極と半導体層の重畳領域である第1チャネル領域を覆って形成されており、
     前記ドレイン電極は、平面視において、少なくとも前記第2ゲート電極と半導体層の重畳領域である第2チャネル領域を覆って形成されている
    表示装置。
  2.  前記第1チャネル領域と第2チャネル領域の形状及び面積は同一であり、
     前記第1チャネル領域と前記ソース電極とが重畳する部分の面積は、前記第2チャネル領域と前記ドレイン電極とが重畳する部分の面積と同一である
     請求項1記載の表示装置。
  3.  前記周辺部は、保護回路を含み、
     前記保護回路は、前記第1ゲート電極及び前記第2ゲート電極の順に並べて配置される第1ゲート電極部と、前記第2ゲート電極及び前記第1ゲート電極が並べて配置される第2ゲート電極部とが交互に配置されるように構成されており、
     前記ソース電極及び前記ドレイン電極は、当該ソース電極が前記第1ゲート電極と重畳する位置に配置され、当該ドレイン電極が前記第2ゲート電極と重畳する位置に配置されるように、互いに噛み合う櫛歯型の形状に形成されている
     請求項1記載の表示装置。
  4.  前記ソース電極は、前記第1チャネル領域を越えて延在する第1延在部を備え、前記ドレイン電極が前記第2チャネル領域を越えて延在する第2延在部を備え、前記第1延在部の第1延在幅は前記第2延在部の第2延在幅よりも小さい請求項1記載の表示装置。
  5.  前記トランジスタは、基材と前記半導体層の間に前記第1及び第2ゲート電極が配置されるボトムゲート型のトランジスタである請求項1記載の表示装置。
  6.  前記トランジスタは、前記半導体層と前記ソース電極及び前記ドレイン電極との間に前記第1及び第2ゲート電極が配置されるトップゲート型のトランジスタである請求項1記載の表示装置。
  7.  複数の画素が配置される画素部と、当該画素部の周辺に設けられる周辺部とを有する表示パネルと、
     前記周辺部に設けられ、前記画素を駆動する駆動回路と
     を具備し、
     前記画素部または前記周辺部にはトランジスタが設けられており、該トランジスタは、第1端部及び第2端部を有する半導体層と、当該第1端部寄りの位置で半導体層と重畳する第1ゲート電極と、前記第2端部寄りの位置で半導体層と重畳する第2ゲート電極と、前記第1端部に接続されるソース電極と、前記第2端部に接続されるドレイン電極と、メタル部材とを備え、
     前記第1及び第2ゲート電極は、第1層に配置されており、
     前記ソース電極、前記ドレイン電極及び前記メタル部材は、前記第1層とは異なる第2層に配置されており、
     前記メタル部材は、平面視において、少なくとも前記第1ゲート電極と半導体層の頂上領域である第1チャネル領域及び前記第2ゲート電極と半導体層の頂上領域である第2チャネル領域を覆って形成されている
     表示装置。
  8.  第1端部及び第2端部を有する半導体層と、
     前記第1端部寄りの位置で半導体層と重畳する第1ゲート電極と、
     前記第2端部寄りの位置で半導体層と重畳する第2ゲート電極と、
     前記第1端部に接続されるソース電極と、
     前記第2端部に接続されるドレイン電極と
     を具備し、
     前記第1及び第2ゲート電極は、第1層に配置されており、
     前記ソース電極及び前記ドレイン電極は、前記第1層とは異なる第2層に配置されており、
     前記ソース電極は、平面視において、少なくとも前記第1ゲート電極と半導体層の頂上領域である第1チャネル領域を覆って形成されており、
     前記ドレイン電極は、平面視において、少なくとも前記第2ゲート電極と半導体層の重畳領域である第2チャネル領域を覆って形成されている
     トランジスタ。
PCT/JP2019/043308 2019-01-31 2019-11-05 表示装置及びトランジスタ WO2020158086A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980090991.8A CN113366654A (zh) 2019-01-31 2019-11-05 显示装置及晶体管
US17/390,328 US11635663B2 (en) 2019-01-31 2021-07-30 Display device and transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-015774 2019-01-31
JP2019015774A JP7183061B2 (ja) 2019-01-31 2019-01-31 表示装置及びトランジスタ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/390,328 Continuation-In-Part US11635663B2 (en) 2019-01-31 2021-07-30 Display device and transistor

Publications (1)

Publication Number Publication Date
WO2020158086A1 true WO2020158086A1 (ja) 2020-08-06

Family

ID=71840045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043308 WO2020158086A1 (ja) 2019-01-31 2019-11-05 表示装置及びトランジスタ

Country Status (4)

Country Link
US (1) US11635663B2 (ja)
JP (1) JP7183061B2 (ja)
CN (1) CN113366654A (ja)
WO (1) WO2020158086A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023113430A (ja) * 2022-02-03 2023-08-16 シャープディスプレイテクノロジー株式会社 アクティブマトリクス基板および液晶表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186561A (ja) * 1997-12-18 1999-07-09 Sony Corp 薄膜半導体装置及び表示装置
JP2000036599A (ja) * 1998-07-16 2000-02-02 Semiconductor Energy Lab Co Ltd 半導体素子からなる半導体回路を備えた半導体装置およびその作製方法
JP2002189427A (ja) * 2000-12-21 2002-07-05 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2003308027A (ja) * 2002-04-15 2003-10-31 Semiconductor Energy Lab Co Ltd 半導体表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512504B1 (en) * 1999-04-27 2003-01-28 Semiconductor Energy Laborayory Co., Ltd. Electronic device and electronic apparatus
TW525216B (en) 2000-12-11 2003-03-21 Semiconductor Energy Lab Semiconductor device, and manufacturing method thereof
TWI633365B (zh) * 2006-05-16 2018-08-21 日商半導體能源研究所股份有限公司 液晶顯示裝置
US7847904B2 (en) * 2006-06-02 2010-12-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic appliance
JP2009049080A (ja) 2007-08-15 2009-03-05 Hitachi Displays Ltd 表示装置
WO2012035984A1 (en) * 2010-09-15 2012-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
KR102422576B1 (ko) * 2015-10-14 2022-07-21 삼성디스플레이 주식회사 액정 표시장치
JP2017167432A (ja) 2016-03-17 2017-09-21 株式会社ジャパンディスプレイ 表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186561A (ja) * 1997-12-18 1999-07-09 Sony Corp 薄膜半導体装置及び表示装置
JP2000036599A (ja) * 1998-07-16 2000-02-02 Semiconductor Energy Lab Co Ltd 半導体素子からなる半導体回路を備えた半導体装置およびその作製方法
JP2002189427A (ja) * 2000-12-21 2002-07-05 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2003308027A (ja) * 2002-04-15 2003-10-31 Semiconductor Energy Lab Co Ltd 半導体表示装置

Also Published As

Publication number Publication date
JP2020123696A (ja) 2020-08-13
US20210356786A1 (en) 2021-11-18
JP7183061B2 (ja) 2022-12-05
US11635663B2 (en) 2023-04-25
CN113366654A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
JP5925901B2 (ja) 半導体装置
JP2007316104A (ja) 表示装置
JP5294883B2 (ja) 液晶表示装置および電子機器
US10903243B2 (en) Display device
JP7326137B2 (ja) 表示装置
US11635663B2 (en) Display device and transistor
CN111538195B (zh) 半导体基板及显示装置
US10871698B2 (en) Display device
US11187958B2 (en) Display device and array substrate
JP7317593B2 (ja) 半導体基板及び表示装置
US20220260881A1 (en) Semiconductor substrate and display device
US11906870B2 (en) Display device
JP2007024964A (ja) 液晶表示装置
US11150524B2 (en) Display device
US20220342271A1 (en) Array substrate and display device
JP2021027082A (ja) 表示装置
JP2019049627A (ja) 表示装置
JP2023116953A (ja) 表示装置
JP2019053138A (ja) 表示装置
JP2022070072A (ja) 表示装置
CN113495387A (zh) 半导体基板及显示装置
JP2009151325A (ja) 表示装置
JP2008293048A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912405

Country of ref document: EP

Kind code of ref document: A1