WO2020158000A1 - 監視制御装置、人工衛星および監視システム - Google Patents
監視制御装置、人工衛星および監視システム Download PDFInfo
- Publication number
- WO2020158000A1 WO2020158000A1 PCT/JP2019/014988 JP2019014988W WO2020158000A1 WO 2020158000 A1 WO2020158000 A1 WO 2020158000A1 JP 2019014988 W JP2019014988 W JP 2019014988W WO 2020158000 A1 WO2020158000 A1 WO 2020158000A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- artificial satellite
- monitoring
- orbit
- control device
- target area
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 195
- 238000012806 monitoring device Methods 0.000 claims abstract description 48
- 230000007423 decrease Effects 0.000 claims description 13
- 230000000694 effects Effects 0.000 description 37
- 230000001360 synchronised effect Effects 0.000 description 18
- 230000006870 function Effects 0.000 description 14
- 230000001133 acceleration Effects 0.000 description 11
- 239000000203 mixture Substances 0.000 description 9
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 230000002349 favourable effect Effects 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 239000003380 propellant Substances 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000007257 malfunction Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000001174 ascending effect Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
- B64G1/1021—Earth observation satellites
- B64G1/1028—Earth observation satellites using optical means for mapping, surveying or detection, e.g. of intelligence
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
- B64G1/1021—Earth observation satellites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
- B64G1/1021—Earth observation satellites
- B64G1/1035—Earth observation satellites using radar for mapping, surveying or detection, e.g. of intelligence
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/242—Orbits and trajectories
- B64G1/2423—Sun-synchronous orbits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/244—Spacecraft control systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G3/00—Observing or tracking cosmonautic vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/40—Arrangements or adaptations of propulsion systems
- B64G1/411—Electric propulsion
- B64G1/413—Ion or plasma engines
Definitions
- the present invention relates to a system for monitoring the earth from space.
- the orbit of the artificial satellite is affected by the elliptic effect of the earth (earth flattening effect), the asymmetry of the earth with respect to the equatorial plane, and higher-order components, compared to the case where the earth is calculated as a mass point with no volume. Therefore, the effect that the orbital surface rotates with respect to the inertial space is produced.
- An artificial satellite orbiting in a geostationary orbit flies about 36000 kilometers above the equator and orbits the earth in about one day in synchronization with the rotation of the earth. Therefore, the geostationary orbit satellites seem to be stationary above the sky when viewed from a specific point on the ground. That is, it is possible to constantly monitor a specific point by the monitoring means mounted on the geostationary orbit satellite. Since the geostationary orbit satellites fly about 36000 kilometers above the equator, the geostationary orbit satellites will be monitored at a long distance. Also, when monitoring the mid-latitude (for example, around 35 degrees north), the observation by the geosynchronous orbit satellite is a perspective observation.
- mid-latitude for example, around 35 degrees north
- Geostationary orbit satellites have conventionally been put into geosynchronous orbit by chemical propulsion. Therefore, it is necessary to mount a large amount of propellant on the geosynchronous orbit satellite, and it is difficult to mount on the geosynchronous orbit satellite a photographing means having a large diameter and a long focal length.
- Chemical propulsion or electric propulsion is used as a propulsion means for artificial satellites.
- an artificial satellite called an ultra-low altitude demonstrator uses electric propulsion.
- the ultra-low altitude demonstrator maintains an orbital altitude (about 200 kilometers) where atmospheric resistance cannot be ignored by increasing the speed of electric propulsion, and has the effect of high-resolution monitoring.
- the ultra-low altitude demonstrator does not have the synchronization with the rotation of the earth like the geostationary orbit satellite. Therefore, it is not possible to constantly monitor a specific point with the super low altitude altitude demonstrator.
- Patent Document 1 discloses a system for observing an observation target area in a short time after making an observation plan using a plurality of observation satellite groups.
- the system disclosed in Patent Document 1 requires a plurality of observation satellite groups. Therefore, the system construction cost is high.
- the present invention is intended to enable high-resolution monitoring of the target area of the earth from space.
- the supervisory control device of the present invention is mounted on an artificial satellite.
- the satellite is A monitoring device for monitoring the target area of the earth, And a propulsion device for changing the speed of the artificial satellite.
- the monitoring control device By controlling the propulsion device while the artificial satellite orbits the earth, the relative position of the artificial satellite with respect to the target area in the target time zone is adjusted, and the orbital cycle of the artificial satellite is the rotation cycle of the earth. To match.
- FIG. 1 is a configuration diagram of a monitoring system 100 according to Embodiment 1.
- 6 is a configuration diagram of a monitoring system 100 according to Embodiment 5.
- FIG. FIG. 13 is a diagram of the relationship between the earth 120, an orbit 122, and the sun 123 according to the fifth embodiment.
- FIG. 16 is a diagram showing an arrangement example of a plurality of track surfaces in the fifth embodiment.
- FIG. 16 is a diagram showing an arrangement example of a plurality of track surfaces in the fifth embodiment.
- Embodiment 1 A system for high-resolution monitoring of a target area of the earth from space will be described with reference to FIGS. 1 and 2.
- the configuration of the monitoring system 100 will be described with reference to FIG.
- the monitoring system 100 is a system for monitoring a target area of the earth from space with high resolution.
- the monitoring system 100 is realized by an artificial satellite 101.
- the artificial satellite 101 includes a monitoring device 102, a propulsion device 103, a communication device 104, an attitude control device 105, a power supply device 106, and the like. That is, the monitoring device 102, the propulsion device 103, the communication device 104, the attitude control device 105, the power supply device 106, and the like are mounted on the artificial satellite 101.
- the monitoring device 102 is a device for monitoring the target area of the earth. Specifically, the monitoring device 102 is a visible optical sensor or an infrared optical sensor. However, the monitoring device 102 may be a synthetic aperture radar (SAR) or other device.
- SAR synthetic aperture radar
- the propulsion device 103 is a device for changing the speed of the artificial satellite 101.
- the propulsion device 103 is an electric propulsion device.
- the propulsion device 103 is an ion engine or a Hall thruster.
- the communication device 104 is a device for communicating monitoring data and the like.
- the monitoring data is data obtained by the monitoring performed by the monitoring device 102.
- the monitoring data corresponds to an image showing the target area.
- the attitude control device 105 is a device for controlling attitude elements such as the attitude of the artificial satellite 101, the angular velocity of the artificial satellite 101, and the line-of-sight direction of the monitoring device 102.
- the attitude control device 105 changes each attitude element in a desired direction.
- the attitude control device 105 maintains each attitude element in a desired direction.
- the attitude control device 105 includes an attitude sensor, an actuator, and a controller.
- attitude sensors are gyroscopes, earth sensors, sun sensors, star trackers, thrusters, magnetic sensors and the like.
- the actuators are attitude control thrusters, momentum wheels, reaction wheels and control moment gyros.
- the controller controls the actuator by executing the control program based on the measurement data of the attitude sensor or the control command from the earth.
- the power supply device 106 includes a solar cell, a battery, a power control device, and the like, and supplies power to each device mounted on the artificial satellite 101.
- the artificial satellite 101 further includes a monitoring control device 110. That is, the monitoring controller 110 is mounted on the artificial satellite 101.
- the monitoring control device 110 is a device that controls the propulsion device 103 so that the monitoring device 102 can monitor the target area with high resolution for as long as possible.
- the monitoring controller 110 is a computer.
- the monitoring controller 110 includes a processing circuit 111.
- the processing circuit 111 may be dedicated hardware or a processor that executes a program stored in the memory.
- the processing circuit 111 functions as a monitoring control unit that controls the propulsion device 103.
- some functions may be implemented by dedicated hardware and the remaining functions may be implemented by software or firmware. That is, the processing circuit 111 can be realized by hardware, software, firmware, or a combination thereof.
- the dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA or a combination thereof.
- ASIC is an abbreviation for Application Specific Integrated Circuit.
- FPGA is an abbreviation for Field Programmable Gate Array.
- the artificial satellite 101 orbits the earth 120.
- An orbit around which the artificial satellite 101 orbits the earth 120 is referred to as an orbit 122.
- the orbit 122 is a geostationary orbit.
- the supervisory control device 110 controls the propulsion device 103 while the artificial satellite 101 orbits the earth 120. Specifically, the monitoring control device 110 instructs the propulsion device 103 to increase or decrease the thrust, and the propulsion device 103 increases or decreases the thrust according to the instruction. As a result, the artificial satellite 101 accelerates or decelerates. For example, the monitoring control device 110 inputs the control signal determined in the determined time zone to the propulsion device 103 by executing the monitoring control program. Alternatively, the supervisory control device 110 receives control data from the ground station via the communication device 104, and inputs a control signal to the propulsion device 103 according to the control data from the ground station.
- the monitoring control device 110 controls the injection direction, injection amount, injection time, etc. of the propellant by the propulsion device 103.
- Various parameters of the artificial satellite 101 are changed under the control of the monitoring control device 110. For example, parameters such as orbital altitude or acceleration/deceleration of thrust are changed.
- the supervisory control device 110 realizes the following adjustments (1-1) and (1-2).
- (1-1) The monitoring control device 110 adjusts the relative position of the artificial satellite 101 with respect to the target area 121 in the target time zone.
- the target time zone is daytime and the target area 121 is Japan.
- (1-2) The orbiting period of the artificial satellite 101 is adjusted to the rotation period of the earth 120.
- the orbital period is the time required for one orbit of the orbit 122.
- the monitoring control device 110 controls the propulsion device 103 so that the artificial satellite 101 flies to a position suitable for photographing Japan with a visible optical sensor in the daytime of Japan time. Then, the propulsion device 103 changes the speed of the artificial satellite 101 at night in Japan time.
- the monitoring controller 110 adjusts the relative position of the artificial satellite 101 with respect to the target area 121 as follows. For example, the monitoring control device 110 controls the propulsion device 103 so that the artificial satellite 101 slows down before the target time period. As a result, the orbital altitude of the artificial satellite 101 in the target time zone is lowered.
- the orbit altitude of the artificial satellite 101 means the altitude of the orbit 122.
- the orbiting speed of the artificial satellite 101 increases with respect to the rotation speed of the earth 120. As a result, the artificial satellite 101 moves eastward with respect to the target area 121.
- the monitoring control device 110 controls the propulsion device 103 so that the artificial satellite 101 accelerates before the target time zone.
- the orbital altitude of the artificial satellite 101 in the target time zone rises.
- the orbiting speed of the artificial satellite 101 with respect to the rotation speed of the earth 120 decreases.
- the artificial satellite 101 moves westward with respect to the target area 121.
- the supervisory control device 110 controls the propulsion device 103 to repeatedly increase and decrease the orbital altitude.
- the orbital altitude of the artificial satellite 101 decreases and the relative speed of the artificial satellite 101 with respect to the target area 121 increases. Due to this effect, the flight position (phase) of the artificial satellite 101 in the orbit 122 moves to the east.
- the orbital altitude of the artificial satellite 101 increases and the relative speed of the artificial satellite 101 with respect to the target area 121 decreases. Due to this effect, the flight position (phase) of the artificial satellite 101 in the orbit 122 moves to the west.
- the artificial satellite 101 can be artificially operated by increasing or decreasing the speed by electric propulsion.
- the orbital surface is a circular (or elliptical) surface formed by a circular orbit.
- the orbital altitude is increased.
- the rotation of the raceway surface becomes slow. If the rotation of the raceway surface remains slow, the time required for one revolution will be extended. If the artificial satellite 101 decelerates due to electric propulsion, the orbit altitude drops.
- the rotation of the raceway surface becomes faster. If the orbital surface continues to rotate quickly, the time required for one revolution will be shortened. However, it is possible to maintain the time required for one revolution by performing acceleration and deceleration during one revolution. That is, if the deceleration is performed after the acceleration, the rotation of the raceway surface is accelerated after the rotation of the raceway surface is delayed, and the one-round return time is maintained. Further, if acceleration is performed after deceleration, the rotation of the raceway surface is slowed after the rotation of the raceway surface is accelerated, and the one-round return time is maintained.
- the cycle of one revolution of the artificial satellite 101 may match the rotation cycle of the earth, and the cycle of multiple revolutions of the artificial satellite 101 may match the rotation cycle of the earth.
- Embodiment 1 An image pickup device having a large aperture and a long focal length can be mounted on the artificial satellite 101 to perform high-resolution monitoring.
- the artificial satellite 101 can be moved to the east or the west with respect to the target area 121. Therefore, the line-of-sight direction can be changed when monitoring the target area 121 located in the middle latitude such as the vicinity of Japan.
- the monitoring system 100 can be operated for a long period of time while the orbital cycle of the artificial satellite 101 is synchronized with the rotation synchronization of the earth 120 on average.
- Embodiment 2 Regarding the mode for monitoring the target area 121 as long as possible, the points different from the first embodiment will be mainly described with reference to FIG.
- the orbit 122 of the artificial satellite 101 and the operation of the monitoring controller 110 will be described with reference to FIG.
- the orbit 122 is an elliptical orbit and has an eccentricity different from that of the geostationary orbit (generally circular orbit).
- a point closest to the earth 120 in the orbit 122 is called a perigee.
- the section based on the perigee (perigee and the vicinity of the perigee) is called the perigee section.
- the point farthest from the earth 120 in the orbit 122 is called an apogee.
- the section based on the apogee (apogee and the vicinity of the apogee) is called an apogee section.
- the perigee is preferably located between the earth and the inner zone of the Van Allen belt or between the inner zone of the Van Allen belt and the outer zone of the Van Allen belt (implementation). See Embodiment 6 and Embodiment 7).
- the artificial satellite 101 passes through the perigee at approximately 12:00.
- the perigee section is a section in which the artificial satellite 101 flies in the daytime (9:00 to 15:00). In other words, the perigee section is a section in which the artificial satellite 101 flies in the target time zone.
- the artificial satellite 101 passes through the apogee at approximately 0:00.
- the apogee section is a section in which the artificial satellite 101 flies at night (for example, from 18:00 to 6:00). In other words, the apogee section is a section in which the artificial satellite 101 flies in a time zone different from the target time zone. Each time is a time in the target area 121.
- the monitoring control device 110 controls the propulsion device 103 during a period (nighttime) during which the artificial satellite 101 stays in the apogee section. As a result, the monitor control device 110 realizes the following adjustment (2) in addition to the adjustments (1-1) and (1-2) described in the first embodiment. (2) The monitoring control device 110 extends the period in which the artificial satellite 101 stays in the perigee section.
- Embodiment 2 ***Effects of Embodiment 2*** At the perigee, the distance from the artificial satellite 101 to the target area 121 becomes short. Therefore, at the perigee, it is possible to improve the monitoring resolution.
- the normal line of the orbital surface rotates without being synchronized with the rotation of the earth 120. Therefore, the major axis of the orbit 122 and the minor axis of the orbit 122 rotate in the east-west direction of the earth 120. That is, the position of the perigee is not synchronized with the rotation of the earth 120. As a result, the time period during which high-resolution monitoring can be performed is limited.
- the supervisory control device 110 controls the electric propulsion of the propulsion device 103 to accelerate or decelerate the artificial satellite 101.
- the position of the artificial satellite 101 on the same orbital plane can be moved east and west (see Embodiment 1).
- the rotation speed of the normal line of the orbit 122 elliptical orbit
- the period in which the artificial satellite 101 stays near the perigee can be lengthened.
- the time during which high-resolution monitoring can be performed is extended.
- the monitoring control device 110 can reversely correct the rotation of the normal line of the orbit 122 by decelerating or accelerating during the apogee stay period, which is not suitable for monitoring. As a result, the relative relationship between the orbit of the artificial satellite 101 and the rotation of the earth 120 is restored to the original relationship. As a result, the monitoring system 100 can be operated for a long period of time while adjusting the orbiting period of the artificial satellite 101 to the rotation period of the earth 120.
- Embodiment 3 Regarding the mode for monitoring the target area 121 with higher resolution, the points different from the first embodiment will be mainly described with reference to FIG.
- the orbit 122 of the artificial satellite 101 and the operation of the monitoring controller 110 will be described with reference to FIG.
- the orbit 122 is an inclined orbit and has an orbit inclination angle of a size corresponding to the latitude of the target area 121. Therefore, the artificial satellite 101 passes right above the target area 121 not located on the equator.
- the monitoring control device 110 controls the propulsion device 103 while the artificial satellite 101 orbits the earth 120, as in the first embodiment.
- the supervisory control device 110 realizes the adjustments (1-1) and (1-2) described in the first embodiment.
- the monitoring control device 110 moves the artificial satellite 101 to the sky above the target area 121 (for example, directly above, at the zenith, or at a high elevation angle of 60 degrees or more).
- Embodiment 3 When monitoring the target area 121 located in the mid-latitude like Japan, the target area 121 will be squinted in a geostationary orbit.
- the orbital inclination angle has a size corresponding to the latitude of the target area 121. Therefore, there is a time zone in which the artificial satellite 101 stays near the zenith when viewed from the target area 121. Since the target area 121 can be directly viewed during that time, high-resolution monitoring is possible.
- the supervisory control device 110 controls the electric propulsion of the propulsion device 103 to accelerate or decelerate the artificial satellite 101.
- the effect of moving the satellite position in the same orbital plane to the east and west and the effect of changing the rotation speed of the normal line of the elliptical orbit can be obtained. That is, it is possible to artificially change the rotation speed of the inclined trajectory. Therefore, the period in which the artificial satellite 101 stays near the zenith when viewed from the target area 121 can be extended. Therefore, it is possible to extend the time when high-resolution monitoring is possible.
- the target area 121 can be monitored almost from the zenith, so that the area shielded can be monitored by monitoring from above the equator.
- the orbit 122 is an elliptical orbit and has an eccentricity different from that of the geostationary orbit (generally circular orbit) (similar to the second embodiment). Furthermore, the orbit 122 is an inclined orbit and has an orbit inclination angle of a size corresponding to the latitude of the target area 121 (similar to the third embodiment).
- the monitoring control device 110 controls the propulsion device 103 while the artificial satellite 101 orbits the earth 120, as in the first to third embodiments. As a result, the adjustments (1-1) and (1-2) described in the first and third embodiments are realized.
- (1-1) The monitoring control device 110 adjusts the relative position of the artificial satellite 101 with respect to the target area 121 in the target time zone. Further, the monitoring control device 110 moves the artificial satellite 101 to the sky above the target area 121 (for example, directly above, at the zenith, or at a high elevation angle of 60 degrees or more) in the target time zone.
- the orbiting period of the artificial satellite 101 is adjusted to the rotation period of the earth 120.
- the monitoring control device 110 controls the propulsion device 103 during the period (night) during which the artificial satellite 101 stays in the apogee section, as in the second embodiment. As a result, the adjustment (2) described in the second embodiment is realized. (2) The monitoring control device 110 extends the period in which the artificial satellite 101 stays in the perigee section.
- an effect that the target area 121 can be monitored from a short distance (similar to the second embodiment) and an effect that the target area 121 can be monitored from the zenith (similar to the third embodiment) can be obtained.
- the monitoring control device 110 controls the electric propulsion of the propulsion device 103 to accelerate or decelerate the artificial satellite 101.
- the rotational speed of the normal line of the raceway is artificially accelerated/decelerated. Then, the flight position of the artificial satellite 101 on the orbit plane is artificially changed. As a result, the time during which good monitoring conditions are maintained is extended, and constant monitoring with a small number of satellites becomes possible.
- Embodiment 5 Regarding the mode for constantly monitoring the target area 121 under good monitoring conditions, differences from the first to fourth embodiments will be mainly described based on FIGS. 5 to 8.
- the configuration of the monitoring system 100 will be described based on FIG.
- the monitoring system 100 includes a plurality of artificial satellites (101A, 101B,... ).
- each is referred to as an artificial satellite 101.
- the configuration of each artificial satellite 101 is the same as the configuration in the first embodiment.
- the supervisory control device 110 controls the propulsion device 103 while the artificial satellite 101 orbits the earth 120.
- the relative position of the artificial satellite 101 with respect to the target area 121 in the target time zone is adjusted.
- the monitoring control device 110 controls the monitoring device 102 so that the artificial satellite 101 slows down before the target time zone.
- the orbital altitude of the artificial satellite 101 in the target time zone is lowered.
- the orbital speed of the artificial satellite 101 increases with respect to the rotation speed of the earth 120 as the orbital altitude decreases.
- the artificial satellite 101 moves eastward with respect to the target area 121.
- the monitoring control device 110 controls the monitoring device 102 so that the artificial satellite 101 accelerates before the target time zone.
- the monitoring control device 110 controls the propulsion device 103 during the period when the artificial satellite 101 stays in the apogee section. This extends the period in which the artificial satellite 101 stays in the perigee section.
- FIG. 7 shows eight orbital planes arranged in the monitoring system 100 from the north-south direction.
- the monitoring system 100 includes eight artificial satellites 101. Illustration of the artificial satellite 101 is omitted. The eight ellipses surrounding the earth 120 correspond to the eight orbits 122 (see FIG. 2 or FIG. 6) corresponding to the eight artificial satellites 101.
- orbital planes having a high eccentricity and a high orbital inclination angle near the geostationary orbit are arranged at equal intervals in the east-west direction.
- Various parameters are set in the monitoring control device 110 of each artificial satellite 101 so that at least one of the artificial satellites 101 passes near the target area 121 in addition to the acceleration/deceleration effect of electric propulsion. ing.
- FIG. 8 shows eight orbital planes arranged in the monitoring system 100 from the north-south direction.
- each artificial satellite 101 is an artificial satellite that orbits in a low orbit.
- orbital planes having a high eccentricity and a high orbital inclination angle are arranged at equal intervals in the east-west direction.
- Various parameters are set in the monitoring control device 110 of each artificial satellite 101 so that at least one of the artificial satellites 101 passes near the target area 121 in addition to the acceleration/deceleration effect of electric propulsion. ing.
- each artificial satellite 101 is a low-orbit satellite with an average orbital altitude of about 500 kilometers.
- a low-orbit satellite orbits the earth 120 in about 100 minutes, and orbits the earth 120 about 14 times a day. In one day, the low-orbit satellites fly about 4 laps in the vicinity of the target area 121, and fly away from the target area 121 for the remaining about 10 laps.
- the low earth orbit satellite monitoring control device 110 controls the electric propulsion of the propulsion device 103 to accelerate or decelerate the low earth orbit satellite.
- the time during which the low earth orbit satellite stays in the vicinity of the target area 121 is extended.
- the low-orbit satellite passes in a short time except the vicinity of the target area 121.
- Various parameters of the artificial satellite 101 are artificially manipulated so that the low-orbit satellite can fly in this manner. As a result, constant monitoring by a smaller number of low-orbit satellites is realized.
- the artificial satellite 101 is operated for a long time while maintaining synchronization with the rotation of the earth 120 on average. If the propulsion device 103 is controlled so as to reduce the staying time when the artificial satellite 101 passes over the area other than the target area 121 after extending the time for which the artificial satellite 101 stays above the target area 121, It is possible to build a system without limiting the number of return days to one day. Specifically, if the satellite 101 restarts the monitoring of the target area 121 by one lap behind or one lap ahead of the rotation of the earth 120, the system returns without limiting the number of return days to one day. It is possible to build.
- the Mornia orbit is an orbit whose number of return days is not limited to one day.
- An artificial satellite that orbits the earth 120 by free fall due to a physical phenomenon without the propulsion means being actively used cannot artificially operate the position of the perigee and the satellite position in the orbital plane due to the selectable orbital conditions. Therefore, it is possible to use services that are not affected by the sunlight conditions such as communication services, but it is difficult to use services that are affected by the sunlight conditions such as the monitoring service.
- various parameters can be made variable by removing the constraint on the number of recurrent days. Specifically, parameters such as the eccentricity of the raceway surface, the inclination angle of the raceway, the altitude of the raceway, and the acceleration or deceleration by electric propulsion can be made variable. As a result, the options for parameter sets that can reasonably monitor the target area 121 are greatly expanded. Further, since the electric propulsion artificially changes the rotational speed of the orbital plane and the satellite position on the orbital plane, the time during which the target area 121 can be monitored under favorable conditions is extended. Then, when the plurality of artificial satellites 101 share the monitoring service in a time division manner, the monitoring system 100 can be configured with a small number of machines. As a result, the total cost of system construction and system operation is reduced.
- the operation of monitoring system 100 is the same as the operation in the fifth embodiment.
- the inner belt 131 is the inner belt of the Van Allen belt.
- the outer belt 132 is an outer belt of the Van Allen belt.
- the rotation axis 133 is the rotation axis of the earth 120.
- Magnetic axis 134 is the magnetic axis of Earth 120.
- the perigee is located between the earth 120 and the inner zone 131.
- the Van Allen belt has a two-layer structure including an inner zone 131 and an outer zone 132, and surrounds the earth 120 at 360 degrees in a donut shape.
- the Van Allen belt is thickest near the equator and extremely thin near the polar axis.
- the inner zone 131 is a relatively small zone and is located at an altitude of 2000 to 5000 kilometers on the equator.
- the outer zone 132 is a relatively large zone and is located at 10,000 to 20,000 kilometers on the equator.
- the inner zone 131 has many protons, and the outer zone 132 has many electrons.
- the perigee where the monitoring operation is performed is located between the earth 120 and the inner zone 131. Therefore, the risk of malfunction of the monitoring system 100 is reduced.
- Embodiment 7 Regarding a mode for reducing malfunction of the monitoring system 100, differences from the fifth and sixth embodiments will be mainly described with reference to FIG.
- the operation of monitoring system 100 is the same as the operation in the fifth embodiment.
- the perigee is located between the inner zone 131 and the outer zone 132.
- Embodiment 7 ***Effects of Embodiment 7***
- the inner zone 131 has many protons, and the outer zone 132 has many electrons. Therefore, if the monitoring operation is performed in the inner zone 131 or the outer zone 132, there is a risk that the device of the artificial satellite 101 malfunctions.
- the perigee where the monitoring operation is performed is located between the inner zone 131 and the outer zone 132. Therefore, the risk of malfunction of the monitoring system 100 is reduced.
- each artificial satellite 101 is not a visible optical sensor but a synthetic aperture radar (SAR).
- SAR synthetic aperture radar
- monitoring system 100 is the same as the operation in the fifth embodiment. However, the monitoring device 102 (SAR) of each artificial satellite 101 monitors the target area 121 by side-looking (see FIG. 11 ).
- SAR monitoring device 102
- the synthetic aperture radar performs a side look inclined in a direction (cross-track direction) orthogonal to the traveling direction of the artificial satellite.
- the side look effect of the synthetic aperture radar has the effect of expanding the monitoring range from high latitude to low latitude.
- Synthetic aperture radar can be monitored in all weathers and has no dependency on sunshine conditions. Therefore, the sunshine condition is not a constraint, and the side look angle of the synthetic aperture radar can be made variable in addition to the parameters such as the eccentricity of the orbital surface, the orbital inclination angle, the orbital altitude, and the acceleration/deceleration by electric propulsion.
- a parameter set capable of rationally monitoring the target area 121 can be selected, and a monitoring system 100 capable of constant monitoring by a small number of artificial satellites 101 can be constructed.
- the orbit inclination angle is set to about 20 degrees
- the off-nadir angle of the synthetic aperture radar is set to 20 degrees to 60 degrees.
- the orbital altitude at the perigee is set appropriately, it is possible to monitor the area around Japan located in the middle latitude.
- the orbital inclination angle is shallow, so that the range of options for parameter setting is widened and it is easy to perform monitoring under favorable conditions. Is obtained.
- the orbit inclination angle is effectively changed. be able to.
- the orbit inclination angle In order to maintain an average regression cycle by intentionally accelerating the rotation of the orbital surface during N orbits, in the first half of N orbits, the orbit inclination angle is 0 degree at each of the ascending and descending intersections. Injection is performed in the out-of-plane direction so as to approach. After that, in the middle stage of the N round, injection is performed in the out-of-plane direction at each of the ascending intersection and the descending intersection so that the orbital inclination angle returns to the original.
- the out-of-plane injection may be performed again at each of the ascending and descending intersection points so that the trajectory inclination angle returns to the original value. That is, the injection amount and injection time of the propellant by the propulsion device 103 may be optimized so that the average regression cycle is constant.
- the artificial satellite 101 has a pointing function for directing the monitoring direction to the target area.
- the pointing function is a function for changing the monitoring direction.
- the artificial satellite 101 includes a reaction wheel.
- the reaction wheel is a device for controlling the attitude of the artificial satellite 101.
- Body pointing is realized by controlling the attitude of the artificial satellite 101 by the reaction wheel.
- the monitoring device 102 includes a pointing mechanism.
- the pointing mechanism is a mechanism for changing the monitoring direction.
- a driving mirror or the like is used for the pointing mechanism.
- the monitoring device 102 also has a variable resolution function and an autofocus function.
- the variable resolution function is a function of changing the resolution.
- the auto focus function is a function of focusing.
- the monitoring control device 110 directs the monitoring direction of the monitoring device 102 to the target area by controlling the pointing function.
- the target area can be oriented.
- the orbit of the artificial satellite 101 is a sun-synchronous inclined elliptical orbit (inclined orbit having a high eccentricity), and the monitoring control device 110 satisfies the visible condition for making the target area visible for 10 minutes or more. Control the pointing function.
- the monitor control device 110 adjusts the resolution of the monitor device 102 by controlling the monitor device 102.
- the monitoring control device 110 focuses the target area by controlling the monitoring device 102.
- Embodiment 10 Regarding the artificial satellite 101 that orbits the circular orbit above the equator, points not described in Embodiments 1 to 9 will be mainly described with reference to FIGS. 12 to 16.
- the artificial satellite 101 orbits a circular orbit above the equator.
- the supervisory control device 110 controls the propulsion device 103 to lower the orbital altitude of the artificial satellite 101 below the altitude of the geostationary orbit (about 36000 km).
- the artificial satellite orbiting the geosynchronous orbit makes one orbit per day, while the artificial satellite 101 makes multiple orbits per day.
- the time attached to each orbit is Japan Standard Time (JST) when the artificial satellite 101 passes.
- JST Japan Standard Time
- GSD is an abbreviation for Ground Sampling Distance.
- FIG. 12 shows tracks (1) to (4).
- Orbit (1) is a circular orbit (stationary orbit) with an altitude of about 36000 kilometers.
- the artificial satellite 101 orbits the orbit (1) once in about 24 hours. That is, the artificial satellite 101 orbits the orbit (1) about once a day.
- Orbit (2) is a circular orbit with an altitude of about 20,000 kilometers.
- the artificial satellite 101 orbits the orbit (2) once in about 12 hours. That is, the artificial satellite 101 orbits the orbit (2) about two times a day.
- Orbit (3) is a circular orbit with an altitude of approximately 14,000 kilometers. When the artificial satellite 101 orbits the orbit (3), the artificial satellite 101 orbits the orbit (3) once in about 8 hours.
- the artificial satellite 101 makes three orbits in the orbit (3) about one day.
- Orbit (4) is a circular orbit with an altitude of about 10,000 kilometers.
- the artificial satellite 101 orbits the orbit (4) once in about 6 hours. That is, the artificial satellite 101 orbits the orbit (4) about four times a day.
- FIG. 13 shows the trajectory (2).
- the altitude of orbit (2) is about 20,000 kilometers.
- the artificial satellite 101 makes one orbit in the orbit (2) in about 12 hours, and makes two orbits in the orbit (2) about one day.
- the monitoring device 102 can perform continuous monitoring for about 6 hours during the day (generally from 9:00 to 15:00).
- GSD direct resolution
- the resolution can be improved to about 3 meters by imaging the same monitoring target multiple times and applying the super-resolution technique (the same applies to FIGS. 14 to 16).
- the GSD is about 2.8 meters or more and the super-resolution is about 1.7 meters or more.
- FIG. 14 shows the orbit (3).
- the altitude of orbit (3) is about 14,000 kilometers.
- the artificial satellite 101 orbits the orbit (3) once for eight hours, and orbits (3) three times a day.
- the monitoring device 102 can perform continuous monitoring for about 4 hours during the day (approximately 10 to 14:00 as a guide).
- GSD is about 1.9 meters or more
- super-resolution is about 1.2 meters or more.
- Trajectories (4) are shown in FIGS. 15 and 16, respectively.
- the altitude of orbit (4) is about 10,000 kilometers.
- the artificial satellite 101 orbits the orbit (4) once for about 6 hours, and orbits the orbit (4) four times a day.
- the monitoring device 102 can perform continuous monitoring for about 3 hours during the day (approximately 10:30 to 13:30 as a guide). When converted by the effect of improving GSD due to the difference in orbital altitude, GSD is about 1.5 meters or more and super resolution is about 0.9 meters or more.
- the monitoring device 102 can perform continuous monitoring for about two hours during the day twice (approximately 7:30 to 9:30 and 14:30 to 16:30). When converted by the effect of improving GSD due to the difference in orbital altitude, GSD is about 1.5 meters or more and super resolution is about 0.9 meters or more.
- the artificial satellite 101 can pass over the target area 121 at the same time every day.
- the artificial satellite 101 can pass over Japan at about 12:00 noon every day.
- the artificial satellite 101 orbits the sun-synchronous orbit by utilizing the elliptic effect of the earth.
- This sun-synchronous orbit is a tilted orbit and a circular orbit.
- the orbital plane needs to make one revolution in one year, and it is realistic to use the elliptic effect of the earth.
- a propulsion system a huge amount of thrust is required, and the amount of propellant increases.
- the altitude of the orbit must be below 5700 kilometers.
- the artificial satellite 101 orbits the sun-synchronous orbit an integer number per day. As a result, it is possible to maintain the condition that the northernmost end of the orbital surface is directly under the sun at about 12:00 noon. However, even if the relative relationship between the sun and the orbital plane is maintained, the relative relationship between the target area (for example, Japan) and the satellite flight position (phase within the orbital plane) changes.
- the monitoring control device 110 controls the propulsion device 103 to cause the artificial satellite 101 to fly over the target area in the target time zone.
- FIG. 17 shows an example of the relative relationship among the sun 123, the earth 120, and the orbit 122.
- the orbit 122 orbits the sun-synchronous orbit.
- This sun-synchronous orbit is a tilted orbit and a circular orbit.
- the northernmost end of the orbital surface is directly under the sun at about 12:00 noon.
- the relative relationship (B) does not maintain the relationship that the northernmost end of the orbital surface is directly under the sun at about 12:00 noon.
- Each sun-synchronous orbit is a tilted orbit and a circular orbit.
- the time assigned to each sun-synchronous orbit is Japan Standard Time (JST) when the artificial satellite 101 passes.
- JST Japan Standard Time
- FIG. 18 shows a sun-synchronous orbit whose revolution cycle is eight revolutions a day.
- the artificial satellite 101 orbits the sun-synchronous orbit once in about 3 hours.
- the altitude is about 4163 kilometers and the orbital inclination is 125 degrees.
- the artificial satellite 101 flies over Japan at about 12 noon. Since the altitude is less than 5000 km, the artificial satellite 101 may be affected by the Van Allen belt.
- the monitoring device 102 can perform continuous monitoring three times during the day. Specifically, as a guide, the monitoring device 102 is roughly 45 minutes from 8:15 to 9:00, 90 minutes from 11:15 to 12:45, and 45 minutes from 15:00 to 15:45. Monitoring can be performed for a total of 3 hours including minutes. The observation range is 55 degrees north latitude to 55 degrees south latitude.
- FIG. 19 shows a sun-synchronous orbit whose revolution cycle is 7 orbits a day.
- the artificial satellite 101 orbits the sun-synchronous orbit once in about 3.4 hours.
- the altitude is about 5144 kilometers and the orbital tilt angle is 141.6 degrees.
- the artificial satellite 101 flies over Japan at about 12 noon. Since the altitude exceeds 5000 kilometers, the satellite 101 passes between the inner zone and the outer zone in the Van Allen zone.
- the monitoring device 102 can perform continuous monitoring three times during the day. Specifically, the monitoring device 102 is, as a guide, approximately 45 minutes from 7:45 to 8:30, 90 minutes from 11:15 to 12:45, and 15:30 to 16:15. Up to 45 minutes can be monitored for a total of 3 hours. The observation range is from 38 degrees north latitude to 38 degrees south latitude. When converted by the effect of improving GSD due to the difference in orbital altitude, GSD is about 0.7 m, and super-resolution is about 0.4 m.
- the monitoring device 102 can perform continuous monitoring five times during the day. Specifically, the monitoring device 102 can perform monitoring for a total of 2 hours and 30 minutes from time (1) to time (5) as a guide. The time (1) to the time (5) are approximate times as a guide. Time (1) is 20 minutes from 6:10 to 6:30. Time (2) is 35 minutes from 8:40 to 9:20. Time (3) is 40 minutes from 11:40 to 12:20. Time (4) is 35 minutes from 14:40 to 15:20. Time (5) is 20 minutes from 17:30 to 17:50. The observation range is from 64 degrees north latitude to 64 degrees south latitude.
- the monitoring device 102 can perform continuous monitoring five times during the day. Specifically, the monitoring device 102 can perform monitoring of a total of about 2 hours 30 minutes from time (1) to time (5) as a guide. The time (1) to the time (5) are approximate times as a guide. Time (1) is 20 minutes from 6:40 to 7:00. Time (2) is approximately 35 minutes from 9:00 to 9:36. Time (3) is 40 minutes from 11:40 to 12:20. Time (4) is approximately 35 minutes from 14:24 to 15:00. Time (5) is 20 minutes from 17:00 to 17:20. The observation range is from 70 degrees north latitude to 70 degrees south latitude.
- the monitoring device 102 can perform continuous monitoring five times during the day. Specifically, the monitoring device 102 can perform monitoring of a total of about 2 hours and 20 minutes from time (1) to time (5) as a guide. The time (1) to the time (5) are approximate times as a guide. Time (1) is 20 minutes from 7:10 to 7:30. Time (2) is about 30 minutes from 9:16 to 9:49. Time (3) is 40 minutes from 11:40 to 12:20. Time (4) is approximately 30 minutes from 14:10 to 14:43. Time (5) is 20 minutes from 16:10 to 16:30. The observation range is from 74 degrees north latitude to 74 degrees south latitude.
- the artificial satellite 101 orbits the sun-synchronous orbit.
- This sun-synchronous orbit is a tilted orbit and an elliptical orbit having a high eccentricity. Since the axis of the elliptic major axis that forms the perigee and the apogee rotates in the orbital plane, the direction of the perigee changes even if the sky above Japan is the perigee at a certain moment.
- the orbit that stops the rotation of this elliptical major axis is called the "freezing orbit”. Freezing orbits take advantage of the asymmetry of the earth's equatorial plane. Therefore, the artificial satellite 101 orbits the sun-synchronous orbit by utilizing the asymmetry with respect to the equatorial plane of the earth.
- the combined use of electric propulsion makes it possible to adjust the orbital plane and the relative relationship between the target area and the satellite flight position so as to be suitable for monitoring the target area in the Northern Hemisphere during the daytime.
- the monitoring control device 110 controls the propulsion device 103 to cause the artificial satellite 101 to fly over the target area in the target time zone.
- the monitoring control device 110 controls the propulsion device 103 to cause the artificial satellite 101 to orbit in a frozen orbit. That is, the supervisory control device 110 controls the propulsion device 103 to suppress the rotation of the long axis of the artificial satellite 101 in the orbit.
- the orbit of the artificial satellite 101 has the following attributes.
- the orbit is an orbit whose perigee is about 12:00 (orbit where the northernmost point of the inclined orbit is about 12:00).
- the orbital altitude is about 5,100 kilometers.
- the orbital major radius is about 11478 kilometers.
- the eccentricity is about 0.418.
- the orbital inclination angle is about 121.88 degrees.
- the apogee altitude is about 9899 kilometers.
- the perigee altitude is about 302 kilometers.
- the sun-synchronous orbit that the satellite 101 orbits has the following characteristics.
- the sun-synchronous orbit is a tilted orbit having a high eccentricity and a frozen orbit.
- the orbital altitude is 5100 kilometers.
- the orbital major radius is 11478 kilometers.
- the eccentricity is 0.418.
- the orbital inclination angle is 121.88 degrees.
- the apogee altitude is 9898 kilometers.
- the perigee altitude is 302 kilometers.
- the relative relationship between the target area and the flight position of the satellite is optimized by tuning parameters (orbital long radius, orbital inclination angle) or satellite phase adjustment by electric propulsion.
- FIG. 26 shows a conventional orbit such as a quasi-zenith satellite.
- Orbit (A) is a geostationary orbit.
- the satellite appears to be stationary at a point above the earth.
- the artificial satellite makes an orbit (A) about once a day. That is, the artificial satellite makes one orbit in the orbit (A) in about 24 hours. It is possible to continuously monitor the target area for about 24 hours with one satellite.
- GSD direct resolution
- the resolution can be improved up to about 3 meters by imaging the same monitoring target multiple times and applying the super-resolution technique (the same applies to FIGS. 26 to 32). Then, when converted by the GSD improvement effect due to the difference in the orbital altitude, it is assumed that the GSD is about 5 meters in the geostationary orbit.
- Orbit (B) is a tilted orbit with an eccentricity of zero.
- the artificial satellites appear to move in a figure eight shape over the earth.
- the artificial satellite goes around the orbit (B) about once a day. In other words, the artificial satellite makes one orbit in the orbit (B) in about 24 hours. It is possible to continuously monitor the target area for about 12 hours with one satellite.
- Orbit (C) is a tilted orbit having a high eccentricity.
- the artificial satellites appear to move in a figure eight shape over the earth.
- the artificial satellite makes an orbit (C) about once a day. That is, the artificial satellite makes one orbit in the orbit (C) in about 24 hours. It is possible to continuously monitor the target area for about 8 hours with one satellite.
- GSD is about 10 meters or less when converted by the effect of improving GSD due to the difference in orbital altitude.
- FIG. 27 to 32 show orbits different from the conventional orbits such as the quasi-zenith satellite.
- FIG. 27 shows an example of the sun-synchronous orbit drawn on the map.
- the perigee altitude is about 2000 kilometers and the apogee altitude is about 19000 kilometers.
- the artificial satellite orbits this orbit about four times a day. In other words, the artificial satellite makes one orbit in this orbit in about 6 hours.
- GSD is about 0.3 m
- super-resolution is about 0.2 m or more.
- FIG. 28 shows an example of the sun-synchronous orbit drawn on the map.
- the perigee altitude is about 2000 kilometers and the apogee altitude is about 19000 kilometers.
- the artificial satellite orbits this orbit about four times a day. In other words, the artificial satellite makes one orbit in this orbit in about 6 hours.
- GSD is about 2.6 meters when converted from the altitude difference from the geostationary orbit.
- FIG. 29 shows an example of the sun-synchronous orbit drawn on the map.
- the perigee altitude is about 4000 kilometers and the apogee altitude is about 25,000 kilometers.
- the artificial satellite orbits this orbit about three times a day. That is, the artificial satellite makes one orbit in this orbit in about 8 hours.
- GSD is about 0.6 m and super resolution is 0.4 m or more.
- FIG. 30 shows an example of the sun-synchronous orbit drawn on the map.
- the perigee altitude is about 4000 kilometers and the apogee altitude is about 25,000 kilometers.
- the artificial satellite orbits this orbit three times a day. In other words, the artificial satellite makes one orbit in this orbit in 8 hours.
- GSD is about 3.4 meters.
- FIG. 31 shows an example of the sun-synchronous orbit drawn on the map.
- the perigee altitude is about 7,000 kilometers and the apogee altitude is about 34,000 kilometers.
- the artificial satellite orbits this orbit about two times a day. In other words, the artificial satellite makes one orbit in this orbit in about 12 hours.
- GSD is about 1 meter and super resolution is about 0.6 meter or more.
- FIG. 32 shows an example of the sun-synchronous orbit drawn on the map.
- the perigee altitude is about 7,000 kilometers and the apogee altitude is about 34,000 kilometers.
- the artificial satellite orbits this orbit about two times a day. In other words, the artificial satellite makes one orbit in this orbit in about 12 hours.
- GSD is about 5 meters.
- the orbit of the artificial satellite does not have to be the sun-synchronous orbit. That is, the orbit of the artificial satellite may be a tilted orbit having a high eccentricity without synchronizing with the sun.
- a large thrust equivalent to the elliptic effect of the earth is required. That is, a large amount of propellant is required.
- monitoring system 101 artificial satellite, 102 monitoring device, 103 propulsion device, 104 communication device, 105 attitude control device, 106 power supply device, 110 monitoring control device, 111 processing circuit, 120 earth, 121 target area, 122 orbit, 123 Sun, 131 inner zone, 132 outer zone, 133 rotating axis, 134 magnetic axis.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Evolutionary Computation (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Navigation (AREA)
Abstract
人工衛星(101)は、監視装置と推進装置と監視制御装置とを備える。監視制御装置は、人工衛星が地球(120)を周回する間に推進装置を制御する。これにより、対象時間帯における対象地域に対する人工衛星の相対位置が調整される。さらに、人工衛星の周回周期が地球の自転周期に合わせられる。
Description
本発明は、宇宙から地球を監視するシステムに関するものである。
人工衛星の軌道は、地球を体積のない質点として計算する場合と比較して、地球の楕円効果(地球扁平効果)、地球の赤道面に対する非対称性、および、高次の成分の影響を受ける。そのため、慣性空間に対して軌道面が回転する等の効果が生じる。
静止軌道を周回する人工衛星(静止軌道衛星)は、赤道上空の約36000キロメートルを飛行し、地球の自転と同期して約1日で地球を周回する。そのため、静止軌道衛星は、地上の特定地点から見て、あたかも上空に静止しているように見える。つまり、静止軌道衛星に搭載した監視手段により、特定地点の常時監視が可能である。
静止軌道衛星は赤道上空の約36000キロメートルを飛行するため、静止軌道衛星による監視は遠距離での監視になる。また、中緯度(例えば、北緯35度付近)を監視する場合、静止軌道衛星による監視は斜視での監視になる。そのため、静止軌道衛星による監視の高分解能化は難しい。
静止軌道衛星は、従来、化学推進により静止軌道へ投入されていた。そのため、大量の推薬を静止軌道衛星に搭載する必要があり、大口径と長焦点距離とを有する撮影手段を静止軌道衛星に搭載することが困難であった。
静止軌道衛星は赤道上空の約36000キロメートルを飛行するため、静止軌道衛星による監視は遠距離での監視になる。また、中緯度(例えば、北緯35度付近)を監視する場合、静止軌道衛星による監視は斜視での監視になる。そのため、静止軌道衛星による監視の高分解能化は難しい。
静止軌道衛星は、従来、化学推進により静止軌道へ投入されていた。そのため、大量の推薬を静止軌道衛星に搭載する必要があり、大口径と長焦点距離とを有する撮影手段を静止軌道衛星に搭載することが困難であった。
人工衛星の推進手段として、化学推進または電気推進が利用される。
例えば、超低高度実証機と呼ばれる人工衛星では、電気推進が利用される。超低高度実証機は、大気抵抗を無視することができない軌道高度(約200キロメートル)を電気推進の増速によって維持し、高分解能な監視という効果を得ている。
超低高度実証機は、静止軌道衛星のように地球の自転との同期性を有さない。そのため、超低空高度実証機による監視では、特定地点を常時監視することができない。
例えば、超低高度実証機と呼ばれる人工衛星では、電気推進が利用される。超低高度実証機は、大気抵抗を無視することができない軌道高度(約200キロメートル)を電気推進の増速によって維持し、高分解能な監視という効果を得ている。
超低高度実証機は、静止軌道衛星のように地球の自転との同期性を有さない。そのため、超低空高度実証機による監視では、特定地点を常時監視することができない。
特許文献1は、複数の観測衛星群を用いて観測計画の立案後に短時間で観測目標地域を観測するためのシステムを開示している。
特許文献1に開示されたシステムには、複数の観測衛星群が必要である。そのため、システムの構築コストが高い。
特許文献1に開示されたシステムには、複数の観測衛星群が必要である。そのため、システムの構築コストが高い。
本発明は、宇宙から地球の対象地域を高分解能で監視できるようにすることを目的とする。
本発明の監視制御装置は、人工衛星に搭載される。
前記人工衛星は、
地球の対象地域を監視するための監視装置と、
前記人工衛星の速度を変化させるための推進装置とを備える。
前記監視制御装置は、
前記人工衛星が地球を周回する間に前記推進装置を制御することによって、対象時間帯における前記対象地域に対する前記人工衛星の相対位置を調整し、且つ、前記人工衛星の周回周期を地球の自転周期に合わせる。
前記人工衛星は、
地球の対象地域を監視するための監視装置と、
前記人工衛星の速度を変化させるための推進装置とを備える。
前記監視制御装置は、
前記人工衛星が地球を周回する間に前記推進装置を制御することによって、対象時間帯における前記対象地域に対する前記人工衛星の相対位置を調整し、且つ、前記人工衛星の周回周期を地球の自転周期に合わせる。
本発明によれば、宇宙から地球の対象地域を高分解能で監視することが可能となる。
実施の形態および図面において、同じ要素または対応する要素には同じ符号を付している。説明した要素と同じ符号が付された要素の説明は適宜に省略または簡略化する。
実施の形態1.
宇宙から地球の対象地域を高分解能で監視するためのシステムについて、図1および図2に基づいて説明する。
宇宙から地球の対象地域を高分解能で監視するためのシステムについて、図1および図2に基づいて説明する。
***構成の説明***
図1に基づいて、監視システム100の構成を説明する。
監視システム100は、宇宙から地球の対象地域を高分解能で監視するためのシステムである。
図1に基づいて、監視システム100の構成を説明する。
監視システム100は、宇宙から地球の対象地域を高分解能で監視するためのシステムである。
監視システム100は、人工衛星101によって実現される。人工衛星101の数は複数であってもよい。
人工衛星101は、監視装置102、推進装置103、通信装置104、姿勢制御装置105および電源装置106などを備える。つまり、監視装置102、推進装置103、通信装置104、姿勢制御装置105および電源装置106などが人工衛星101に搭載される。
監視装置102は、地球の対象地域を監視するための装置である。具体的には、監視装置102は、可視光学センサまたは赤外光学センサである。但し、監視装置102は、合成開口レーダ(SAR)またはその他の装置であってもよい。「監視」は「観測」と読み替えてもよい。
推進装置103は、人工衛星101の速度を変化させるための装置である。具体的には、推進装置103は電気推進機である。例えば、推進装置103は、イオンエンジンまたはホールスラスタである。
通信装置104は、監視データなどを通信するための装置である。監視データは、監視装置102が行う監視によって得られるデータである。監視データは、対象地域が映った画像に相当する。
姿勢制御装置105は、人工衛星101の姿勢と人工衛星101の角速度と監視装置102の視線方向(Line Of Sight)といった姿勢要素を制御するための装置である。姿勢制御装置105は、各姿勢要素を所望の方向に変化させる。もしくは、姿勢制御装置105は、各姿勢要素を所望の方向に維持する。姿勢制御装置105は、姿勢センサとアクチュエータとコントローラとを備える。例えば、姿勢センサは、ジャイロスコープ、地球センサ、太陽センサ、スター・トラッカ、スラスタおよび磁気センサ等である。例えば、アクチュエータは、姿勢制御スラスタ、モーメンタムホイール、リアクションホイールおよびコントロール・モーメント・ジャイロ等である。例えば、コントローラは、姿勢センサの計測データまたは地球からの制御コマンドに基づいて制御プログラムを実行することによって、アクチュエータを制御する。
電源装置106は、太陽電池、バッテリおよび電力制御装置などを備え、人工衛星101に搭載される各機器に電力を供給する。
人工衛星101は、監視装置102、推進装置103、通信装置104、姿勢制御装置105および電源装置106などを備える。つまり、監視装置102、推進装置103、通信装置104、姿勢制御装置105および電源装置106などが人工衛星101に搭載される。
監視装置102は、地球の対象地域を監視するための装置である。具体的には、監視装置102は、可視光学センサまたは赤外光学センサである。但し、監視装置102は、合成開口レーダ(SAR)またはその他の装置であってもよい。「監視」は「観測」と読み替えてもよい。
推進装置103は、人工衛星101の速度を変化させるための装置である。具体的には、推進装置103は電気推進機である。例えば、推進装置103は、イオンエンジンまたはホールスラスタである。
通信装置104は、監視データなどを通信するための装置である。監視データは、監視装置102が行う監視によって得られるデータである。監視データは、対象地域が映った画像に相当する。
姿勢制御装置105は、人工衛星101の姿勢と人工衛星101の角速度と監視装置102の視線方向(Line Of Sight)といった姿勢要素を制御するための装置である。姿勢制御装置105は、各姿勢要素を所望の方向に変化させる。もしくは、姿勢制御装置105は、各姿勢要素を所望の方向に維持する。姿勢制御装置105は、姿勢センサとアクチュエータとコントローラとを備える。例えば、姿勢センサは、ジャイロスコープ、地球センサ、太陽センサ、スター・トラッカ、スラスタおよび磁気センサ等である。例えば、アクチュエータは、姿勢制御スラスタ、モーメンタムホイール、リアクションホイールおよびコントロール・モーメント・ジャイロ等である。例えば、コントローラは、姿勢センサの計測データまたは地球からの制御コマンドに基づいて制御プログラムを実行することによって、アクチュエータを制御する。
電源装置106は、太陽電池、バッテリおよび電力制御装置などを備え、人工衛星101に搭載される各機器に電力を供給する。
人工衛星101は、さらに、監視制御装置110を備える。つまり、監視制御装置110が人工衛星101に搭載される。
監視制御装置110は、監視装置102が対象地域をできるだけ長い時間にわたって高分解能で監視することが可能になるように、推進装置103を制御する装置である。例えば、監視制御装置110はコンピュータである。
監視制御装置110は、監視装置102が対象地域をできるだけ長い時間にわたって高分解能で監視することが可能になるように、推進装置103を制御する装置である。例えば、監視制御装置110はコンピュータである。
監視制御装置110は処理回路111を備える。
処理回路111は、専用のハードウェアであってもよいし、メモリに格納されるプログラムを実行するプロセッサであってもよい。処理回路111は、推進装置103を制御する監視制御部として機能する。
処理回路111において、一部の機能が専用のハードウェアで実現されて、残りの機能がソフトウェアまたはファームウェアで実現されてもよい。つまり、処理回路111は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせで実現することができる。
専用のハードウェアは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGAまたはこれらの組み合わせである。
ASICは、Application Specific Integrated Circuitの略称である。
FPGAは、Field Programmable Gate Arrayの略称である。
処理回路111は、専用のハードウェアであってもよいし、メモリに格納されるプログラムを実行するプロセッサであってもよい。処理回路111は、推進装置103を制御する監視制御部として機能する。
処理回路111において、一部の機能が専用のハードウェアで実現されて、残りの機能がソフトウェアまたはファームウェアで実現されてもよい。つまり、処理回路111は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせで実現することができる。
専用のハードウェアは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGAまたはこれらの組み合わせである。
ASICは、Application Specific Integrated Circuitの略称である。
FPGAは、Field Programmable Gate Arrayの略称である。
***動作の説明***
図2に基づいて、監視制御装置110の動作を説明する。
人工衛星101は、地球120を周回する。人工衛星101が地球120を周回する軌道を周回軌道122と称する。具体的には、周回軌道122は静止軌道である。
図2に基づいて、監視制御装置110の動作を説明する。
人工衛星101は、地球120を周回する。人工衛星101が地球120を周回する軌道を周回軌道122と称する。具体的には、周回軌道122は静止軌道である。
監視制御装置110は、人工衛星101が地球120を周回する間に推進装置103を制御する。
具体的には、監視制御装置110が推力の増加または減少を推進装置103に指示し、推進装置103が指示に従って推力を増加または減少させる。その結果、人工衛星101が増速または減速する。
例えば、監視制御装置110は、監視制御プログラムを実行することによって、決められた時間帯に決められた制御信号を推進装置103に入力する。または、監視制御装置110は、地上局からの制御データを通信装置104を介して受け取り、地上局からの制御データに従って推進装置103に制御信号を入力する。
具体的には、監視制御装置110が推力の増加または減少を推進装置103に指示し、推進装置103が指示に従って推力を増加または減少させる。その結果、人工衛星101が増速または減速する。
例えば、監視制御装置110は、監視制御プログラムを実行することによって、決められた時間帯に決められた制御信号を推進装置103に入力する。または、監視制御装置110は、地上局からの制御データを通信装置104を介して受け取り、地上局からの制御データに従って推進装置103に制御信号を入力する。
監視制御装置110は、推進装置103による推薬の噴射方向、噴射量および噴射時間などを制御する。
監視制御装置110の制御によって、人工衛星101の各種パラメータが変更される。例えば、軌道高度または推力の増減速などのパラメータが変更される。
監視制御装置110の制御によって、人工衛星101の各種パラメータが変更される。例えば、軌道高度または推力の増減速などのパラメータが変更される。
これにより、監視制御装置110は、以下の調整(1-1)(1-2)を実現する。
(1-1)監視制御装置110は、対象時間帯における対象地域121に対する人工衛星101の相対位置を調整する。例えば、対象時間帯は昼間であり、対象地域121は日本である。
(1-2)人工衛星101の周回周期を地球120の自転周期に合わせる。周回周期は、周回軌道122を1周回するために要する時間である。
(1-1)監視制御装置110は、対象時間帯における対象地域121に対する人工衛星101の相対位置を調整する。例えば、対象時間帯は昼間であり、対象地域121は日本である。
(1-2)人工衛星101の周回周期を地球120の自転周期に合わせる。周回周期は、周回軌道122を1周回するために要する時間である。
例えば、可視光学センサによって日本を撮影するのに適した位置を日本時間の昼間に人工衛星101が飛行するように、監視制御装置110は推進装置103を制御する。そして、推進装置103が、日本時間の夜間に人工衛星101の速度を変化させる。
監視制御装置110は、対象地域121に対する人工衛星101の相対位置を以下のように調整する。
例えば、監視制御装置110は、対象時間帯の前に人工衛星101が減速するように、推進装置103を制御する。これにより、対象時間帯における人工衛星101の軌道高度が下降する。人工衛星101の軌道高度は、周回軌道122の高度を意味する。
軌道高度が下降すると、地球120の自転速度に対する人工衛星101の周回速度が上がる。その結果、人工衛星101が対象地域121に対して東方へ移動する。
例えば、監視制御装置110は、対象時間帯の前に人工衛星101が減速するように、推進装置103を制御する。これにより、対象時間帯における人工衛星101の軌道高度が下降する。人工衛星101の軌道高度は、周回軌道122の高度を意味する。
軌道高度が下降すると、地球120の自転速度に対する人工衛星101の周回速度が上がる。その結果、人工衛星101が対象地域121に対して東方へ移動する。
例えば、監視制御装置110は、対象時間帯の前に人工衛星101が増速するように、推進装置103を制御する。これにより、対象時間帯における人工衛星101の軌道高度が上昇する。
軌道高度が上昇すると、地球120の自転速度に対する人工衛星101の周回速度が下がる。その結果、人工衛星101が対象地域121に対して西方へ移動する。
軌道高度が上昇すると、地球120の自転速度に対する人工衛星101の周回速度が下がる。その結果、人工衛星101が対象地域121に対して西方へ移動する。
つまり、監視制御装置110は、推進装置103を制御することにより、軌道高度の上昇と下降とを繰り返す。
***実施例の説明***
イオンエンジンまたはホールスラスタといった電気推進機が人工衛星101に搭載されることにより、化学推進機が搭載される場合と比べて推薬量を減らすことができる。つまり、推薬が搭載される領域が縮小される。
そのため、大口径および長焦点距離を有する撮像機を人工衛星101に搭載することが可能となる。撮像機は監視装置102として使用される。
イオンエンジンまたはホールスラスタといった電気推進機が人工衛星101に搭載されることにより、化学推進機が搭載される場合と比べて推薬量を減らすことができる。つまり、推薬が搭載される領域が縮小される。
そのため、大口径および長焦点距離を有する撮像機を人工衛星101に搭載することが可能となる。撮像機は監視装置102として使用される。
電気推進機によって人工衛星101が減速されると、人工衛星101の軌道高度が下降し、対象地域121に対する人工衛星101の相対速度が上がる。この効果により、周回軌道122における人工衛星101の飛行位置(位相)が東方に移動する。
電気推進機によって人工衛星101が増速されると、人工衛星101の軌道高度が上昇し、対象地域121に対する人工衛星101の相対速度が下がる。この効果により、周回軌道122における人工衛星101の飛行位置(位相)が西方に移動する。
電気推進機によって人工衛星101が増速されると、人工衛星101の軌道高度が上昇し、対象地域121に対する人工衛星101の相対速度が下がる。この効果により、周回軌道122における人工衛星101の飛行位置(位相)が西方に移動する。
静止衛星は、引力による落下が永続的に続く自然現象のみに依存する。一方、人工衛星101は、電気推進による速度の増減により、人為的な操作が可能である。例えば、軌道面の回転、および、軌道面における衛星飛行位置(位相)などを人為的に操作することが可能である。軌道面は、周回軌道が成す円状(または楕円状)の面である。
電気推進によって人工衛星101が増速すれば軌道高度が上昇する。その結果、軌道面の回転は遅くなる。軌道面の回転が遅いままだと、1周回に要する時間が延伸する。
電気推進によって人工衛星101が減速すれば軌道高度が降下する。その結果、軌道面の回転が速くなる。軌道面の回転が速いままだと、1周回に要する時間が短縮する。
但し、1周回の間に増速と減速とを実施することにより、1周回に要する時間を維持することが可能である。
つまり、増速後に減速が実施されれば、軌道面の回転が遅れた後に軌道面の回転が早まり、1周回帰時間が維持される。
また、減速後に増速が実施されれば、軌道面の回転が早まった後に軌道面の回転が遅くれ、1周回帰時間が維持される。
電気推進によって人工衛星101が増速すれば軌道高度が上昇する。その結果、軌道面の回転は遅くなる。軌道面の回転が遅いままだと、1周回に要する時間が延伸する。
電気推進によって人工衛星101が減速すれば軌道高度が降下する。その結果、軌道面の回転が速くなる。軌道面の回転が速いままだと、1周回に要する時間が短縮する。
但し、1周回の間に増速と減速とを実施することにより、1周回に要する時間を維持することが可能である。
つまり、増速後に減速が実施されれば、軌道面の回転が遅れた後に軌道面の回転が早まり、1周回帰時間が維持される。
また、減速後に増速が実施されれば、軌道面の回転が早まった後に軌道面の回転が遅くれ、1周回帰時間が維持される。
1日回帰にこだわらなければ、軌道面の回転を更に増速することが可能となる。
つまり、人工衛星101の1周回の周期が地球の自転周期と一致してもよいし、人工衛星101の複数周回の周期が地球の自転周期と一致してもよい。
つまり、人工衛星101の1周回の周期が地球の自転周期と一致してもよいし、人工衛星101の複数周回の周期が地球の自転周期と一致してもよい。
***実施の形態1の効果***
大口径および長焦点距離を有する撮像機を人工衛星101に搭載して高分解能な監視を行うことが可能になる。
対象地域121に対して人工衛星101を東方または西方に移動できる。したがって、日本近傍のように中緯度に位置する対象地域121を監視する際に視線方向を変更することができる。
増速と減速とを適切に組み合わせることにより、人工衛星101の周回周期を平均的に地球120の自転同期に合わせながら、監視システム100を長期運用することができる。
大口径および長焦点距離を有する撮像機を人工衛星101に搭載して高分解能な監視を行うことが可能になる。
対象地域121に対して人工衛星101を東方または西方に移動できる。したがって、日本近傍のように中緯度に位置する対象地域121を監視する際に視線方向を変更することができる。
増速と減速とを適切に組み合わせることにより、人工衛星101の周回周期を平均的に地球120の自転同期に合わせながら、監視システム100を長期運用することができる。
実施の形態2.
対象地域121をできるだけ長時間、監視するための形態について、主に実施の形態1と異なる点を図3に基づいて説明する。
対象地域121をできるだけ長時間、監視するための形態について、主に実施の形態1と異なる点を図3に基づいて説明する。
***構成の説明***
監視システム100および人工衛星101の構成は、実施の形態1における構成と同じである(図1参照)。
監視システム100および人工衛星101の構成は、実施の形態1における構成と同じである(図1参照)。
***動作の説明***
図3に基づいて、人工衛星101の周回軌道122と監視制御装置110の動作とを説明する。
周回軌道122は、楕円軌道であり、静止軌道(概略円軌道)と異なる離心率を有する。
図3に基づいて、人工衛星101の周回軌道122と監視制御装置110の動作とを説明する。
周回軌道122は、楕円軌道であり、静止軌道(概略円軌道)と異なる離心率を有する。
周回軌道122において、地球120に最も近い地点を近地点という。近地点を基点とする区間(近地点および近地点の近傍)を近地点区間と称する。
周回軌道122において、地球120から最も遠い地点を遠地点という。遠地点を基点とする区間(遠地点および遠地点の近傍)を遠地点区間と称する。
周回軌道122において、近地点は、地球とヴァン・アレン帯の内帯との間、または、ヴァン・アレン帯の内帯とヴァン・アレン帯の外帯との間に位置することが好ましい(実施の形態6および実施の形態7を参照)。
周回軌道122において、地球120から最も遠い地点を遠地点という。遠地点を基点とする区間(遠地点および遠地点の近傍)を遠地点区間と称する。
周回軌道122において、近地点は、地球とヴァン・アレン帯の内帯との間、または、ヴァン・アレン帯の内帯とヴァン・アレン帯の外帯との間に位置することが好ましい(実施の形態6および実施の形態7を参照)。
図3において、人工衛星101は、おおよそ12時に近地点を通過する。近地点区間は、人工衛星101が昼間(9時から15時)に飛行する区間である。言い換えると、近地点区間は、人工衛星101が対象時間帯に飛行する区間である。
また、人工衛星101は、おおよそ0時に遠地点を通過する。遠地点区間は、人工衛星101が夜間(例えば18時から6時)に飛行する区間である。言い換えると、遠地点区間は、人工衛星101が対象時間帯とは別の時間帯に飛行する区間である。
それぞれの時間は、対象地域121における時間である。
また、人工衛星101は、おおよそ0時に遠地点を通過する。遠地点区間は、人工衛星101が夜間(例えば18時から6時)に飛行する区間である。言い換えると、遠地点区間は、人工衛星101が対象時間帯とは別の時間帯に飛行する区間である。
それぞれの時間は、対象地域121における時間である。
監視制御装置110は、人工衛星101が遠地点区間に滞留する期間(夜間)に推進装置103を制御する。
これにより、監視制御装置110は、実施の形態1で説明した調整(1-1)(1-2)に加えて、以下の調整(2)を実現する。
(2)監視制御装置110は、人工衛星101が近地点区間に滞留する期間を延ばす。
これにより、監視制御装置110は、実施の形態1で説明した調整(1-1)(1-2)に加えて、以下の調整(2)を実現する。
(2)監視制御装置110は、人工衛星101が近地点区間に滞留する期間を延ばす。
***実施の形態2の効果***
近地点では、人工衛星101から対象地域121までの距離が短くなる。したがって、近地点では、監視の高分解能化が可能である。
但し、概略楕円軌道では、軌道面の法線が地球120の自転と同期せずに回転する。そのため、周回軌道122の長径および周回軌道122の短径が地球120の東西方向に回転する。つまり、近地点の位置は地球120の自転と同期しない。その結果、高分解能な監視を行うことが可能な時間帯が限定される。
しかし、監視制御装置110が推進装置103の電気推進を制御することによって、人工衛星101が増速ないし減速する。その結果、同一軌道面における人工衛星101の位置を東西に移動させることができる(実施の形態1を参照)。さらに、周回軌道122(楕円軌道)の法線の回転速度を変更することができる。つまり、楕円軌道の回転速度を人為的に変更することが可能である。したがって、人工衛星101が近地点の付近に滞留する期間を長くできる。その結果、高分解能な監視を行うことが可能な時間が延伸される。
さらに、監視制御装置110は、監視に不向きな遠地点滞留期間における減速ないし増速によって、周回軌道122の法線の回転に逆補正をかけることができる。これにより、人工衛星101の周回と地球120の自転との相対関係が元の関係に回復する。その結果、人工衛星101の周回周期を地球120の自転周期に合わせながら、監視システム100を長期運用することができる。
近地点では、人工衛星101から対象地域121までの距離が短くなる。したがって、近地点では、監視の高分解能化が可能である。
但し、概略楕円軌道では、軌道面の法線が地球120の自転と同期せずに回転する。そのため、周回軌道122の長径および周回軌道122の短径が地球120の東西方向に回転する。つまり、近地点の位置は地球120の自転と同期しない。その結果、高分解能な監視を行うことが可能な時間帯が限定される。
しかし、監視制御装置110が推進装置103の電気推進を制御することによって、人工衛星101が増速ないし減速する。その結果、同一軌道面における人工衛星101の位置を東西に移動させることができる(実施の形態1を参照)。さらに、周回軌道122(楕円軌道)の法線の回転速度を変更することができる。つまり、楕円軌道の回転速度を人為的に変更することが可能である。したがって、人工衛星101が近地点の付近に滞留する期間を長くできる。その結果、高分解能な監視を行うことが可能な時間が延伸される。
さらに、監視制御装置110は、監視に不向きな遠地点滞留期間における減速ないし増速によって、周回軌道122の法線の回転に逆補正をかけることができる。これにより、人工衛星101の周回と地球120の自転との相対関係が元の関係に回復する。その結果、人工衛星101の周回周期を地球120の自転周期に合わせながら、監視システム100を長期運用することができる。
実施の形態3.
対象地域121をより高い分解能で監視するための形態について、主に実施の形態1と異なる点を図4に基づいて説明する。
対象地域121をより高い分解能で監視するための形態について、主に実施の形態1と異なる点を図4に基づいて説明する。
***構成の説明***
監視システム100および人工衛星101の構成は、実施の形態1における構成と同じである(図1参照)。
監視システム100および人工衛星101の構成は、実施の形態1における構成と同じである(図1参照)。
***動作の説明***
図4に基づいて、人工衛星101の周回軌道122と監視制御装置110の動作とを説明する。
周回軌道122は、傾斜軌道であり、対象地域121の緯度に対応する大きさの軌道傾斜角を有する。
そのため、人工衛星101は、赤道上に位置しない対象地域121の真上を通過する。
図4に基づいて、人工衛星101の周回軌道122と監視制御装置110の動作とを説明する。
周回軌道122は、傾斜軌道であり、対象地域121の緯度に対応する大きさの軌道傾斜角を有する。
そのため、人工衛星101は、赤道上に位置しない対象地域121の真上を通過する。
監視制御装置110は、実施の形態1と同じく、人工衛星101が地球120を周回する間に推進装置103を制御する。
これにより、監視制御装置110は、実施の形態1で説明した調整(1-1)(1-2)を実現する。
調整(1-1)について、監視制御装置110は、対象時間帯に人工衛星101を対象地域121の上空(例えば、真上、天頂もしくは60度以上の高仰角方向)に移動させる。
これにより、監視制御装置110は、実施の形態1で説明した調整(1-1)(1-2)を実現する。
調整(1-1)について、監視制御装置110は、対象時間帯に人工衛星101を対象地域121の上空(例えば、真上、天頂もしくは60度以上の高仰角方向)に移動させる。
***実施の形態3の効果***
日本のように中緯度に位置する対象地域121を監視する場合、静止軌道では対象地域121を斜視することになる。
実施の形態3では、軌道傾斜角が対象地域121の緯度に対応する大きさを有する。そのため、人工衛星101が対象地域121から見て天頂付近に滞留する時間帯が存在する。その時間帯には、対象地域121を直下視できるため、高分解能な監視が可能である。
日本のように中緯度に位置する対象地域121を監視する場合、静止軌道では対象地域121を斜視することになる。
実施の形態3では、軌道傾斜角が対象地域121の緯度に対応する大きさを有する。そのため、人工衛星101が対象地域121から見て天頂付近に滞留する時間帯が存在する。その時間帯には、対象地域121を直下視できるため、高分解能な監視が可能である。
但し、傾斜軌道では、軌道面の法線が地球120の自転と同期せずに回転する。そのため、人工衛星101が中緯度を通過する際の経度が地球120の東西方向に回転する。つまり、人工衛星101が対象地域121の天頂を通過する位置が、地球120の自転と同期しない。したがって、高分解能な監視が可能な時間帯が限定される。また、可視光学センサは太陽光の反射を利用して対象地域121を監視するため、中緯度通過タイミングにおいて太陽光の入射角が良好である、という条件が必要である。
実施の形態3では、監視制御装置110が推進装置103の電気推進を制御することによって、人工衛星101が増速ないし減速する。これにより、同一軌道面における衛星位置を東西に移動する効果と共に、楕円軌道の法線の回転速度を変更する効果が得られる。つまり、人為的に傾斜軌道の回転速度を変更することが可能である。そのため、人工衛星101が対象地域121から見て天頂付近に滞留する期間を長くできる。したがって、高分解能な監視が可能な時間を延伸することができる。
実施の形態3では、監視制御装置110が推進装置103の電気推進を制御することによって、人工衛星101が増速ないし減速する。これにより、同一軌道面における衛星位置を東西に移動する効果と共に、楕円軌道の法線の回転速度を変更する効果が得られる。つまり、人為的に傾斜軌道の回転速度を変更することが可能である。そのため、人工衛星101が対象地域121から見て天頂付近に滞留する期間を長くできる。したがって、高分解能な監視が可能な時間を延伸することができる。
また、赤道上空からでは、ビルまたは山などの起伏により遮蔽される箇所を監視することができない。
実施の形態3では、対象地域121をほぼ天頂から監視することができるため、赤道上空からの監視では遮蔽される箇所を監視することができる。
実施の形態3では、対象地域121をほぼ天頂から監視することができるため、赤道上空からの監視では遮蔽される箇所を監視することができる。
実施の形態4.
対象地域121をより高い分解能でできるだけ長時間、監視するための形態について、主に実施の形態1から実施の形態3と異なる点を説明する。
対象地域121をより高い分解能でできるだけ長時間、監視するための形態について、主に実施の形態1から実施の形態3と異なる点を説明する。
***構成の説明***
監視システム100および人工衛星101の構成は、実施の形態1における構成と同じである(図1参照)。
監視システム100および人工衛星101の構成は、実施の形態1における構成と同じである(図1参照)。
***動作の説明***
周回軌道122は、楕円軌道であり、静止軌道(概略円軌道)と異なる離心率を有する(実施の形態2と同様)。
さらに、周回軌道122は、傾斜軌道であり、対象地域121の緯度に対応する大きさの軌道傾斜角を有する(実施の形態3と同様)。
周回軌道122は、楕円軌道であり、静止軌道(概略円軌道)と異なる離心率を有する(実施の形態2と同様)。
さらに、周回軌道122は、傾斜軌道であり、対象地域121の緯度に対応する大きさの軌道傾斜角を有する(実施の形態3と同様)。
監視制御装置110は、実施の形態1から実施の形態3と同じく、人工衛星101が地球120を周回する間に推進装置103を制御する。これにより、実施の形態1および実施の形態3で説明した調整(1-1)(1-2)が実現される。
(1-1)監視制御装置110は、対象時間帯における対象地域121に対する人工衛星101の相対位置を調整する。さらに、監視制御装置110は、対象時間帯に人工衛星101を対象地域121の上空(例えば、真上、天頂もしくは60度以上の高仰角方向)に移動させる。
(1-2)人工衛星101の周回周期を地球120の自転周期に合わせる。
さらに、監視制御装置110は、実施の形態2と同じく、人工衛星101が遠地点区間に滞留する期間(夜間)に推進装置103を制御する。これにより、実施の形態2で説明した調整(2)が実現される。
(2)監視制御装置110は、人工衛星101が近地点区間に滞留する期間を延ばす。
(1-1)監視制御装置110は、対象時間帯における対象地域121に対する人工衛星101の相対位置を調整する。さらに、監視制御装置110は、対象時間帯に人工衛星101を対象地域121の上空(例えば、真上、天頂もしくは60度以上の高仰角方向)に移動させる。
(1-2)人工衛星101の周回周期を地球120の自転周期に合わせる。
さらに、監視制御装置110は、実施の形態2と同じく、人工衛星101が遠地点区間に滞留する期間(夜間)に推進装置103を制御する。これにより、実施の形態2で説明した調整(2)が実現される。
(2)監視制御装置110は、人工衛星101が近地点区間に滞留する期間を延ばす。
***実施の形態4の効果***
実施の形態4により、対象地域121を近距離から監視できるという効果(実施の形態2と同様)と、対象地域121を天頂から監視できるという効果(実施の形態3と同様)とが得られる。
実施の形態4により、対象地域121を近距離から監視できるという効果(実施の形態2と同様)と、対象地域121を天頂から監視できるという効果(実施の形態3と同様)とが得られる。
但し、人工衛星101が対象地域121を好条件で監視できるように軌道傾斜角と離心率とを変更するためには、次のような条件を満たす必要がある。つまり、近地点が対象地域121の緯度の付近に位置し、軌道面において人工衛星101が対象地域121の付近に滞留し、太陽光の入射条件が良好な時間帯(昼間)に人工衛星101が対象地域121の付近を通過する必要がある。
このような条件を満たすために複数の人工衛星によって時分割で対象地域121を監視する場合、監視システムの総コストが増加してしまう。
実施の形態4では、監視制御装置110が推進装置103の電気推進を制御することによって、人工衛星101が増速ないし減速する。つまり、軌道面の法線の回転速度が人為的に加減速される。そして、軌道面における人工衛星101の飛行位置が人為的に変更される。これにより、良好な監視条件が維持される時間が延伸され、少ない衛星数での常時監視が可能となる。
このような条件を満たすために複数の人工衛星によって時分割で対象地域121を監視する場合、監視システムの総コストが増加してしまう。
実施の形態4では、監視制御装置110が推進装置103の電気推進を制御することによって、人工衛星101が増速ないし減速する。つまり、軌道面の法線の回転速度が人為的に加減速される。そして、軌道面における人工衛星101の飛行位置が人為的に変更される。これにより、良好な監視条件が維持される時間が延伸され、少ない衛星数での常時監視が可能となる。
実施の形態5.
対象地域121を良好な監視条件で常時監視するための形態について、主に実施の形態1から実施の形態4と異なる点を図5から図8に基づいて説明する。
対象地域121を良好な監視条件で常時監視するための形態について、主に実施の形態1から実施の形態4と異なる点を図5から図8に基づいて説明する。
***構成の説明***
図5に基づいて、監視システム100の構成を説明する。
監視システム100は、複数の人工衛星(101A、101B、・・・)を備える。複数の人工衛星(101A、101B、・・・)のいずれかを特定しない場合、それぞれを人工衛星101と称する。
それぞれの人工衛星101の構成は、実施の形態1における構成と同じである。
図5に基づいて、監視システム100の構成を説明する。
監視システム100は、複数の人工衛星(101A、101B、・・・)を備える。複数の人工衛星(101A、101B、・・・)のいずれかを特定しない場合、それぞれを人工衛星101と称する。
それぞれの人工衛星101の構成は、実施の形態1における構成と同じである。
***動作の説明***
監視制御装置110は、人工衛星101が地球120を周回する間に推進装置103を制御する。これにより、対象時間帯における対象地域121に対する人工衛星101の相対位置が調整される。
例えば、監視制御装置110は、対象時間帯の前に人工衛星101が減速するように監視装置102を制御する。これにより、対象時間帯における人工衛星101の軌道高度が下降する。軌道高度の下降に伴って地球120の自転速度に対する人工衛星101の周回速度が上がる。そして、人工衛星101が対象地域121に対して東方へ移動する。
例えば、監視制御装置110は、対象時間帯の前に人工衛星101が増速するように監視装置102を制御する。これにより、対象時間帯における人工衛星101の軌道高度が上昇する。軌道高度の上昇に伴って地球120の自転速度に対する人工衛星101の周回速度が下がる。そして、人工衛星101が対象地域121に対して西方へ移動する。
例えば、監視制御装置110は、人工衛星101が遠地点区間に滞留する期間に推進装置103を制御する。これにより、人工衛星101が近地点区間に滞留する期間が延びる。
監視制御装置110は、人工衛星101が地球120を周回する間に推進装置103を制御する。これにより、対象時間帯における対象地域121に対する人工衛星101の相対位置が調整される。
例えば、監視制御装置110は、対象時間帯の前に人工衛星101が減速するように監視装置102を制御する。これにより、対象時間帯における人工衛星101の軌道高度が下降する。軌道高度の下降に伴って地球120の自転速度に対する人工衛星101の周回速度が上がる。そして、人工衛星101が対象地域121に対して東方へ移動する。
例えば、監視制御装置110は、対象時間帯の前に人工衛星101が増速するように監視装置102を制御する。これにより、対象時間帯における人工衛星101の軌道高度が上昇する。軌道高度の上昇に伴って地球120の自転速度に対する人工衛星101の周回速度が下がる。そして、人工衛星101が対象地域121に対して西方へ移動する。
例えば、監視制御装置110は、人工衛星101が遠地点区間に滞留する期間に推進装置103を制御する。これにより、人工衛星101が近地点区間に滞留する期間が延びる。
***実施例の説明***
図6に基づいて、1年間の公転に伴う太陽123と地球120と周回軌道122との相対関係を説明する。
対象地域121(図2参照)が日照状態であり、軌道面における近地点の緯度が対象地域121の緯度の近傍であり、且つ、人工衛星101が対象地域121の上空を通過する、という条件を満たせば、好条件の監視ができる。
軌道面は公転周期と非同期で回転し、近地点も軌道傾斜の向きも変動する。そのため、複数の軌道面に対応する複数の人工衛星101を具備することによって、いずれかの人工衛星101が好条件な監視をしながら後続の人工衛星101に役割を引き継ぐ。その結果、常時、好条件の監視が実現する。
図6に基づいて、1年間の公転に伴う太陽123と地球120と周回軌道122との相対関係を説明する。
対象地域121(図2参照)が日照状態であり、軌道面における近地点の緯度が対象地域121の緯度の近傍であり、且つ、人工衛星101が対象地域121の上空を通過する、という条件を満たせば、好条件の監視ができる。
軌道面は公転周期と非同期で回転し、近地点も軌道傾斜の向きも変動する。そのため、複数の軌道面に対応する複数の人工衛星101を具備することによって、いずれかの人工衛星101が好条件な監視をしながら後続の人工衛星101に役割を引き継ぐ。その結果、常時、好条件の監視が実現する。
図7に基づいて、監視システム100における軌道面の配置の具体例を説明する。
図7は、監視システム100において配置される8つの軌道面を南北方向から示している。例えば、監視システム100は、8つの人工衛星101を備えている。人工衛星101の図示は省略している。地球120を囲う8つの楕円は、8つの人工衛星101に対応する8つの周回軌道122(図2または図6参照)に相当する。
図7は、監視システム100において配置される8つの軌道面を南北方向から示している。例えば、監視システム100は、8つの人工衛星101を備えている。人工衛星101の図示は省略している。地球120を囲う8つの楕円は、8つの人工衛星101に対応する8つの周回軌道122(図2または図6参照)に相当する。
監視システム100において、静止軌道の近傍で高離心率と高軌道傾斜角とを有する軌道面が、東西方向に等間隔で配置されている。
それぞれの人工衛星101の監視制御装置110には、電気推進の増減速効果に加えて対象地域121の付近に少なくともいずれかの人工衛星101が通過する効果が得られるように、各種パラメータが設定されている。
それぞれの人工衛星101の監視制御装置110には、電気推進の増減速効果に加えて対象地域121の付近に少なくともいずれかの人工衛星101が通過する効果が得られるように、各種パラメータが設定されている。
図8に基づいて、監視システム100における軌道面の配置の別の具体例を説明する。
図8は、図7と同じく、監視システム100において配置される8つの軌道面を南北方向から示している。
図8は、図7と同じく、監視システム100において配置される8つの軌道面を南北方向から示している。
監視システム100において、それぞれの人工衛星101は、低軌道を周回する人工衛星である。
監視システム100において、高離心率と高軌道傾斜角とを有する軌道面が、東西方向に等間隔で配置されている。
それぞれの人工衛星101の監視制御装置110には、電気推進の増減速効果に加えて対象地域121の付近に少なくともいずれかの人工衛星101が通過する効果が得られるように、各種パラメータが設定されている。
監視システム100において、高離心率と高軌道傾斜角とを有する軌道面が、東西方向に等間隔で配置されている。
それぞれの人工衛星101の監視制御装置110には、電気推進の増減速効果に加えて対象地域121の付近に少なくともいずれかの人工衛星101が通過する効果が得られるように、各種パラメータが設定されている。
例えば、それぞれの人工衛星101は、軌道高度の平均が500キロメートル程度である低軌道衛星である。低軌道衛星は、100分程度で地球120を1周し、一日に約14周、地球120を周回する。一日において、低軌道衛星は、対象地域121の近傍を約4周飛行し、残りの約10周では対象地域121から離れた場所を飛行する。
低軌道衛星の監視制御装置110は、推進装置103の電気推進を制御することにより、低軌道衛星を増減速する。これにより、低軌道衛星が対象地域121の近傍に滞留する時間が延伸される。また、低軌道衛星が対象地域121の近傍以外を短時間で通過する。低軌道衛星がこのように飛行できるように、人工衛星101の各種パラメータが人為的に操作される。その結果、より少ない数の低軌道衛星による常時監視が実現される。
低軌道衛星の監視制御装置110は、推進装置103の電気推進を制御することにより、低軌道衛星を増減速する。これにより、低軌道衛星が対象地域121の近傍に滞留する時間が延伸される。また、低軌道衛星が対象地域121の近傍以外を短時間で通過する。低軌道衛星がこのように飛行できるように、人工衛星101の各種パラメータが人為的に操作される。その結果、より少ない数の低軌道衛星による常時監視が実現される。
***実施の形態5の効果***
静止軌道では、人工衛星の1周回が地球120の自転と同期する。これにより、地上の特定地点から人工衛星があたかも赤道上空に静止しているように見える状態が維持される。
一方、高離心率軌道および高傾斜軌道は高分解能な監視に効果がある。しかし、人工衛星の周回を地球120の自転と同期させながら日照条件が良好な時間帯に近地点で天頂から対象地域121を監視することは困難である。
実施の形態5では、地球120の自転との同期という制約条件を除外し、電気推進による増速と減速とをフレキシブルに適用する。これにより、それぞれの人工衛星101において対象地域121を好条件で監視できる時間が延伸する。そして、複数の人工衛星101を連携させて運用することにより、対象地域121を好条件で常時監視することが実現される。
静止軌道では、人工衛星の1周回が地球120の自転と同期する。これにより、地上の特定地点から人工衛星があたかも赤道上空に静止しているように見える状態が維持される。
一方、高離心率軌道および高傾斜軌道は高分解能な監視に効果がある。しかし、人工衛星の周回を地球120の自転と同期させながら日照条件が良好な時間帯に近地点で天頂から対象地域121を監視することは困難である。
実施の形態5では、地球120の自転との同期という制約条件を除外し、電気推進による増速と減速とをフレキシブルに適用する。これにより、それぞれの人工衛星101において対象地域121を好条件で監視できる時間が延伸する。そして、複数の人工衛星101を連携させて運用することにより、対象地域121を好条件で常時監視することが実現される。
実施の形態1では、増速と減速とが適切に組み合わされることにより、人工衛星101が平均的には地球120の自転との同期を維持しながら長期運用される。
人工衛星101が対象地域121の上空に滞留する時間を延伸させた後、人工衛星101が対象地域121の上空以外を通過する際には滞留時間を縮減するように推進装置103を制御すれば、回帰日数を1日に限定せずにシステム構築が可能となる。具体的には、人工衛星101が地球120の自転に対して1周遅れないし1周先回りして監視装置102が対象地域121の監視を再開すれば、回帰日数を1日に限定せずにシステム構築が可能となる。例えば、モルニア軌道は、回帰日数が1日に限定されない軌道である。
推進手段が積極的に駆使されずに物理現象による自由落下によって地球120を周回する人工衛星は、選択可能な軌道条件によって近地点の位置および軌道面における衛星位置を人為的に操作することができない。そのため、通信サービスのように日照条件の影響を受けないサービスの活用はできるが、監視サービスのように日照条件の影響を受けるサービスの活用が困難である。
人工衛星101が対象地域121の上空に滞留する時間を延伸させた後、人工衛星101が対象地域121の上空以外を通過する際には滞留時間を縮減するように推進装置103を制御すれば、回帰日数を1日に限定せずにシステム構築が可能となる。具体的には、人工衛星101が地球120の自転に対して1周遅れないし1周先回りして監視装置102が対象地域121の監視を再開すれば、回帰日数を1日に限定せずにシステム構築が可能となる。例えば、モルニア軌道は、回帰日数が1日に限定されない軌道である。
推進手段が積極的に駆使されずに物理現象による自由落下によって地球120を周回する人工衛星は、選択可能な軌道条件によって近地点の位置および軌道面における衛星位置を人為的に操作することができない。そのため、通信サービスのように日照条件の影響を受けないサービスの活用はできるが、監視サービスのように日照条件の影響を受けるサービスの活用が困難である。
実施の形態5では、回帰日数の制約をなくすことにより、各種パラメータを可変にできる。具体的には、軌道面の離心率、軌道傾斜角、軌道高度、電気推進による増速ないし減速などのパラメータを可変にできる。その結果、対象地域121を合理的に監視することが可能なパラメータセットの選択肢が大幅に拡大する。
また、電気推進によって人為的に軌道面の回転速度と軌道面における衛星位置とが変更されるので、対象地域121を良好な条件で監視することが可能な時間が延伸される。そして、複数の人工衛星101が時分割で監視サービスを分担する際に、少ない機数で監視システム100を構成できる。その結果、システム構築及びシステム運用の総コストを低減される。
また、電気推進によって人為的に軌道面の回転速度と軌道面における衛星位置とが変更されるので、対象地域121を良好な条件で監視することが可能な時間が延伸される。そして、複数の人工衛星101が時分割で監視サービスを分担する際に、少ない機数で監視システム100を構成できる。その結果、システム構築及びシステム運用の総コストを低減される。
実施の形態6.
監視システム100の誤作動を減らすための形態について、主に実施の形態5と異なる点を図9に基づいて説明する。
監視システム100の誤作動を減らすための形態について、主に実施の形態5と異なる点を図9に基づいて説明する。
***構成の説明***
監視システム100および人工衛星101の構成は、実施の形態5における構成と同じである。
監視システム100および人工衛星101の構成は、実施の形態5における構成と同じである。
***動作の説明***
監視システム100の動作は、実施の形態5における動作と同じである。
監視システム100の動作は、実施の形態5における動作と同じである。
***特徴の説明***
図9に基づいて、監視システム100の特徴を説明する。
内帯131は、ヴァン・アレン帯の内帯である。
外帯132は、ヴァン・アレン帯の外帯である。
回転軸133は、地球120の回転軸である。
磁気軸134は、地球120の磁気軸である。
図9に基づいて、監視システム100の特徴を説明する。
内帯131は、ヴァン・アレン帯の内帯である。
外帯132は、ヴァン・アレン帯の外帯である。
回転軸133は、地球120の回転軸である。
磁気軸134は、地球120の磁気軸である。
人工衛星101の周回軌道122において、近地点は、地球120と内帯131との間に位置する。
***実施の形態6の効果***
ヴァン・アレン帯は、内帯131と外帯132との二層構造になっており、地球120を360度、ドーナツ状にとりまいている。ヴァン・アレン帯は、赤道付近において最も厚く、極軸付近では極めて薄い。内帯131は、比較的小さい帯であり、赤道上の高度2000キロメートルから5000キロメートルに位置する。外帯132は、比較的大きな帯であり、赤道上の10000キロメートルから20000キロメートルに位置する。
内帯131には陽子が多く、外帯132には電子が多い。そのため、内帯131または外帯132で監視運用が行われると、人工衛星101の機器が誤動作するというリスクがある。
実施の形態6では、監視運用が行われる近地点が、地球120と内帯131との間に位置する。したがって、監視システム100の誤動作というリスクが軽減される。
ヴァン・アレン帯は、内帯131と外帯132との二層構造になっており、地球120を360度、ドーナツ状にとりまいている。ヴァン・アレン帯は、赤道付近において最も厚く、極軸付近では極めて薄い。内帯131は、比較的小さい帯であり、赤道上の高度2000キロメートルから5000キロメートルに位置する。外帯132は、比較的大きな帯であり、赤道上の10000キロメートルから20000キロメートルに位置する。
内帯131には陽子が多く、外帯132には電子が多い。そのため、内帯131または外帯132で監視運用が行われると、人工衛星101の機器が誤動作するというリスクがある。
実施の形態6では、監視運用が行われる近地点が、地球120と内帯131との間に位置する。したがって、監視システム100の誤動作というリスクが軽減される。
実施の形態7.
監視システム100の誤動作を減らすための形態について、主に実施の形態5および実施の形態6と異なる点を図10に基づいて説明する。
監視システム100の誤動作を減らすための形態について、主に実施の形態5および実施の形態6と異なる点を図10に基づいて説明する。
***構成の説明***
監視システム100および人工衛星101の構成は、実施の形態5における構成と同じである。
監視システム100および人工衛星101の構成は、実施の形態5における構成と同じである。
***動作の説明***
監視システム100の動作は、実施の形態5における動作と同じである。
監視システム100の動作は、実施の形態5における動作と同じである。
***特徴の説明***
図10に基づいて、監視システム100の特徴を説明する。
人工衛星101の周回軌道122において、近地点は、内帯131と外帯132との間に位置する。
図10に基づいて、監視システム100の特徴を説明する。
人工衛星101の周回軌道122において、近地点は、内帯131と外帯132との間に位置する。
***実施の形態7の効果***
内帯131には陽子が多く、外帯132には電子が多い。そのため、内帯131または外帯132で監視運用が行われると、人工衛星101の機器が誤動作するというリスクがある。
実施の形態7では、監視運用が行われる近地点が、内帯131と外帯132との間に位置する。したがって、監視システム100の誤動作というリスクが軽減される。
内帯131には陽子が多く、外帯132には電子が多い。そのため、内帯131または外帯132で監視運用が行われると、人工衛星101の機器が誤動作するというリスクがある。
実施の形態7では、監視運用が行われる近地点が、内帯131と外帯132との間に位置する。したがって、監視システム100の誤動作というリスクが軽減される。
実施の形態8.
監視範囲を拡大するための形態について、主に実施の形態5から実施の形態7と異なる点を図11に基づいて説明する。
監視範囲を拡大するための形態について、主に実施の形態5から実施の形態7と異なる点を図11に基づいて説明する。
***構成の説明***
監視システム100および人工衛星101の構成は、実施の形態5における構成と同じである。
但し、それぞれの人工衛星101の監視装置102は、可視光学センサではなく、合成開口レーダ(SAR)である。
監視システム100および人工衛星101の構成は、実施の形態5における構成と同じである。
但し、それぞれの人工衛星101の監視装置102は、可視光学センサではなく、合成開口レーダ(SAR)である。
***動作の説明***
監視システム100の動作は、実施の形態5における動作と同じである。
但し、それぞれの人工衛星101の監視装置102(SAR)は、サイドルッキングによって対象地域121を監視する(図11を参照)。
監視システム100の動作は、実施の形態5における動作と同じである。
但し、それぞれの人工衛星101の監視装置102(SAR)は、サイドルッキングによって対象地域121を監視する(図11を参照)。
***実施の形態8の効果***
合成開口レーダは、人工衛星の進行方向に対して直交する方向(クロストラック方向)に傾斜したサイドルックを行う。そして、合成開口レーダのサイドルック効果により、高緯度から低緯度まで監視範囲を拡大できるという効果がある。
合成開口レーダは、全天候で監視を行うことが可能であり、日照条件への依存性がない。そのため、日照条件が制約とならず、軌道面の離心率、軌道傾斜角、軌道高度および電気推進による増減速などのパラメータに加えて、合成開口レーダのサイドルック角度を可変にできる。その結果、対象地域121を合理的に監視可能なパラメータセットを選択でき、少ない機数の人工衛星101によって常時監視が可能な監視システム100を構築できる。
例えば、軌道傾斜角が20度程度に設定され、合成開口レーダのオフナディア角が20度から60度の間に設定される。この場合、近地点における軌道高度が適切に設定されれば、中緯度に位置する日本周辺を監視することが可能である。
光学センサによって直下視するために軌道傾斜角が35度程度に設定される場合と比較して軌道傾斜角が浅いため、パラメータセットの選択肢の幅が広がり、好条件での監視を行いやすいという効果が得られる。
合成開口レーダは、人工衛星の進行方向に対して直交する方向(クロストラック方向)に傾斜したサイドルックを行う。そして、合成開口レーダのサイドルック効果により、高緯度から低緯度まで監視範囲を拡大できるという効果がある。
合成開口レーダは、全天候で監視を行うことが可能であり、日照条件への依存性がない。そのため、日照条件が制約とならず、軌道面の離心率、軌道傾斜角、軌道高度および電気推進による増減速などのパラメータに加えて、合成開口レーダのサイドルック角度を可変にできる。その結果、対象地域121を合理的に監視可能なパラメータセットを選択でき、少ない機数の人工衛星101によって常時監視が可能な監視システム100を構築できる。
例えば、軌道傾斜角が20度程度に設定され、合成開口レーダのオフナディア角が20度から60度の間に設定される。この場合、近地点における軌道高度が適切に設定されれば、中緯度に位置する日本周辺を監視することが可能である。
光学センサによって直下視するために軌道傾斜角が35度程度に設定される場合と比較して軌道傾斜角が浅いため、パラメータセットの選択肢の幅が広がり、好条件での監視を行いやすいという効果が得られる。
人工衛星101が昇交点ないし降交点を通過するときに人工衛星101の進行方向と直交する方向に推進力が発生するように推進装置103を動作することで、軌道傾斜角を効果的に変更することができる。N周回の間に意図的に軌道面の回転を加速することによって平均的な回帰周期を維持するには、N周回の前半において、昇交点と降交点とのそれぞれで軌道傾斜角が0度に近づくように面外方向の噴射を行う。その後、N周回の中盤において、軌道傾斜角が元に戻るように昇交点と降交点とのそれぞれで面外方向の噴射を行う。軌道傾斜角が変化し過ぎた後には、軌道傾斜角が元に戻るように昇交点と降交点とのそれぞれで再び面外方向の噴射を行えばよい。つまり、平均的な回帰周期が一定となるように、推進装置103による推薬の噴射量および噴射時間が最適化されればよい。
実施の形態9.
監視制御について、主に実施の形態1から実施の形態8で説明していない点を説明する。
監視制御について、主に実施の形態1から実施の形態8で説明していない点を説明する。
***構成の説明***
監視システム100および人工衛星101の構成は、実施の形態1から実施の形態8における構成と同じである。
但し、人工衛星101は、監視方向を対象地域に向けるためのポインティング機能を備える。ポインティング機能は、監視方向を変更する機能である。
例えば、人工衛星101は、リアクションホイールを備える。リアクションホイールは、人工衛星101の姿勢を制御するための装置である。リアクションホイールによって人工衛星101の姿勢を制御することによって、ボディポインティングが実現される。
例えば、監視装置102は、ポインティング機構を備える。ポインティング機構は、監視する方向を変えるための機構である。例えば、ポインティング機構には、駆動ミラー等が利用される。
また、監視装置102は、分解能可変機能およびオートフォーカス機能を有する。分解能可変機能は、分解能を変える機能である。オートフォーカス機能は、焦点を合わせる機能である。
監視システム100および人工衛星101の構成は、実施の形態1から実施の形態8における構成と同じである。
但し、人工衛星101は、監視方向を対象地域に向けるためのポインティング機能を備える。ポインティング機能は、監視方向を変更する機能である。
例えば、人工衛星101は、リアクションホイールを備える。リアクションホイールは、人工衛星101の姿勢を制御するための装置である。リアクションホイールによって人工衛星101の姿勢を制御することによって、ボディポインティングが実現される。
例えば、監視装置102は、ポインティング機構を備える。ポインティング機構は、監視する方向を変えるための機構である。例えば、ポインティング機構には、駆動ミラー等が利用される。
また、監視装置102は、分解能可変機能およびオートフォーカス機能を有する。分解能可変機能は、分解能を変える機能である。オートフォーカス機能は、焦点を合わせる機能である。
***動作の説明***
静止軌道以外の周回軌道では、つまり、人工衛星101が1日に2周以上する周回する軌道では、対象地域(例えば日本)と人工衛星101との相対距離および相対角度が変化する。
そこで、監視制御装置110は、ポインティング機能を制御することによって、監視装置102の監視方向を対象地域に向ける。これにより、対象地域を指向することができる。具体的には、人工衛星101の周回軌道が太陽同期の傾斜楕円軌道(高離心率を有する傾斜軌道)であり、監視制御装置110は、対象地域を10分以上可視にする可視条件を満たすように、ポインティング機能を制御する。
静止軌道以外の周回軌道では、つまり、人工衛星101が1日に2周以上する周回する軌道では、対象地域(例えば日本)と人工衛星101との相対距離および相対角度が変化する。
そこで、監視制御装置110は、ポインティング機能を制御することによって、監視装置102の監視方向を対象地域に向ける。これにより、対象地域を指向することができる。具体的には、人工衛星101の周回軌道が太陽同期の傾斜楕円軌道(高離心率を有する傾斜軌道)であり、監視制御装置110は、対象地域を10分以上可視にする可視条件を満たすように、ポインティング機能を制御する。
また、対地距離が変化するのに応じて、光学センサの分解能が変化する。
そこで、監視制御装置110は、監視装置102を制御することによって、監視装置102の分解能を調整する。また、監視制御装置110は、監視装置102を制御することによって、対象地域に焦点を合わせる。
そこで、監視制御装置110は、監視装置102を制御することによって、監視装置102の分解能を調整する。また、監視制御装置110は、監視装置102を制御することによって、対象地域に焦点を合わせる。
実施の形態10.
赤道上空の円軌道を周回する人工衛星101について、主に実施の形態1から実施の形態9で説明していない点を図12から図16に基づいて説明する。
赤道上空の円軌道を周回する人工衛星101について、主に実施の形態1から実施の形態9で説明していない点を図12から図16に基づいて説明する。
人工衛星101は、赤道上空の円軌道を周回する。
監視制御装置110は、推進装置103を制御することによって、人工衛星101の軌道高度を静止軌道の高度(約36000キロメートル)よりも下げる。
これにより、静止軌道を周回する人工衛星が1日に1周回するのに対して、人工衛星101は1日に複数周回する。
監視制御装置110は、推進装置103を制御することによって、人工衛星101の軌道高度を静止軌道の高度(約36000キロメートル)よりも下げる。
これにより、静止軌道を周回する人工衛星が1日に1周回するのに対して、人工衛星101は1日に複数周回する。
図12から図16に基づいて、人工衛星101が赤道上空の円軌道を1日に整数周回する実施例を説明する。
各軌道に付された時刻は、人工衛星101が通過するときの日本標準時刻(JST)である。
GSDは、Ground Sampling Distanceの略称である。
各軌道に付された時刻は、人工衛星101が通過するときの日本標準時刻(JST)である。
GSDは、Ground Sampling Distanceの略称である。
図12に、軌道(1)から軌道(4)を示す。
軌道(1)は、高度が約36000キロメートルの円軌道(静止軌道)である。人工衛星101が軌道(1)を周回する場合、人工衛星101は軌道(1)を約24時間で1周する。つまり、人工衛星101は、軌道(1)を約1日に1周回する。
軌道(2)は、高度が約20000キロメートルの円軌道である。人工衛星101が軌道(2)を周回する場合、人工衛星101は軌道(2)を約12時間で1周する。つまり、人工衛星101は、軌道(2)を約1日に2周回する。
軌道(3)は、高度が約14000キロメートルの円軌道である。人工衛星101が軌道(3)を周回する場合、人工衛星101は軌道(3)を約8時間で1周する。つまり、人工衛星101は、軌道(3)を約1日に3周回する。
軌道(4)は、高度が約10000キロメートルの円軌道である。人工衛星101が軌道(4)を周回する場合、人工衛星101は軌道(4)を約6時間で1周する。つまり、人工衛星101は、軌道(4)を約1日に4周回する。
軌道(1)は、高度が約36000キロメートルの円軌道(静止軌道)である。人工衛星101が軌道(1)を周回する場合、人工衛星101は軌道(1)を約24時間で1周する。つまり、人工衛星101は、軌道(1)を約1日に1周回する。
軌道(2)は、高度が約20000キロメートルの円軌道である。人工衛星101が軌道(2)を周回する場合、人工衛星101は軌道(2)を約12時間で1周する。つまり、人工衛星101は、軌道(2)を約1日に2周回する。
軌道(3)は、高度が約14000キロメートルの円軌道である。人工衛星101が軌道(3)を周回する場合、人工衛星101は軌道(3)を約8時間で1周する。つまり、人工衛星101は、軌道(3)を約1日に3周回する。
軌道(4)は、高度が約10000キロメートルの円軌道である。人工衛星101が軌道(4)を周回する場合、人工衛星101は軌道(4)を約6時間で1周する。つまり、人工衛星101は、軌道(4)を約1日に4周回する。
図13に、軌道(2)を示す。
軌道(2)の高度は約20000キロメートルである。
人工衛星101は、軌道(2)を約12時間かけて1周し、軌道(2)を約1日に2周回する。
監視装置102は、日中約6時間(目安として概ね9時から15時)の連続監視を行うことができる。
現状の技術水準から類推して、将来、静止軌道から直下分解能(GSD)5メートル程度の望遠鏡が実現できると想定する(図14から図16において同じ)。さらに、同一の監視対象を複数回撮像して超解像技術を適用することにより3メートル程度まで分解能を向上できると仮定する(図14から図16において同じ)。すると、軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは約2.8メートル以上となり、超解像は約1.7メートル以上となる。
軌道(2)の高度は約20000キロメートルである。
人工衛星101は、軌道(2)を約12時間かけて1周し、軌道(2)を約1日に2周回する。
監視装置102は、日中約6時間(目安として概ね9時から15時)の連続監視を行うことができる。
現状の技術水準から類推して、将来、静止軌道から直下分解能(GSD)5メートル程度の望遠鏡が実現できると想定する(図14から図16において同じ)。さらに、同一の監視対象を複数回撮像して超解像技術を適用することにより3メートル程度まで分解能を向上できると仮定する(図14から図16において同じ)。すると、軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは約2.8メートル以上となり、超解像は約1.7メートル以上となる。
図14に、軌道(3)を示す。
軌道(3)の高度は約14000キロメートルである。
人工衛星101は、軌道(3)を8時間かけて1周し、軌道(3)を1日に3周回する。
監視装置102は、日中約4時間(目安として概ね10時から14時)の連続監視を行うことができる。
軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは約1.9メートル以上となり、超解像は約1.2メートル以上となる。
軌道(3)の高度は約14000キロメートルである。
人工衛星101は、軌道(3)を8時間かけて1周し、軌道(3)を1日に3周回する。
監視装置102は、日中約4時間(目安として概ね10時から14時)の連続監視を行うことができる。
軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは約1.9メートル以上となり、超解像は約1.2メートル以上となる。
図15と図16とのそれぞれに、軌道(4)を示す。
軌道(4)の高度は約10000キロメートルである。
人工衛星101は、軌道(4)を約6時間かけて1周し、軌道(4)を約1日に4周回する。
図15において、監視装置102は、日中約3時間(目安として概ね10時半から13時半)の連続監視を行うことができる。
軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは約1.5メートル以上となり、超解像は約0.9メートル以上となる。
図16において、監視装置102は、日中約2時間の連続監視を2回(目安として概ね7時半から9時半および14時半から16時半)行うことができる。
軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは約1.5メートル以上となり、超解像は約0.9メートル以上となる。
軌道(4)の高度は約10000キロメートルである。
人工衛星101は、軌道(4)を約6時間かけて1周し、軌道(4)を約1日に4周回する。
図15において、監視装置102は、日中約3時間(目安として概ね10時半から13時半)の連続監視を行うことができる。
軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは約1.5メートル以上となり、超解像は約0.9メートル以上となる。
図16において、監視装置102は、日中約2時間の連続監視を2回(目安として概ね7時半から9時半および14時半から16時半)行うことができる。
軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは約1.5メートル以上となり、超解像は約0.9メートル以上となる。
人工衛星101が1日に整数周回することにより、人工衛星101が対象地域121の上空を毎日同じ時刻に通過することができる。例えば、人工衛星101は、毎日約正午12時に日本上空を通過できる。
実施の形態11.
太陽同期の傾斜円軌道を周回する人工衛星101について、主に実施の形態1から実施の形態10で説明していない点を図17から図25に基づいて説明する。
太陽同期の傾斜円軌道を周回する人工衛星101について、主に実施の形態1から実施の形態10で説明していない点を図17から図25に基づいて説明する。
人工衛星101は、地球の楕円効果を利用して太陽同期軌道を周回する。この太陽同期軌道は、傾斜軌道あり、且つ、円軌道である。
太陽同期するには1年間に軌道面が1回転する必要があり、地球の楕円効果を利用するのが現実的である。推進系を利用する場合、巨大な推力が必要となるため、推薬の量が増大する。
地球の楕円効果を利用する場合、軌道の高度は5700キロメートル以下でなければならない。
太陽同期するには1年間に軌道面が1回転する必要があり、地球の楕円効果を利用するのが現実的である。推進系を利用する場合、巨大な推力が必要となるため、推薬の量が増大する。
地球の楕円効果を利用する場合、軌道の高度は5700キロメートル以下でなければならない。
人工衛星101は、太陽同期軌道を1日に整数周回する。これにより、約正午12時に軌道面の最北端が太陽直下となる条件を維持することができる。
但し、太陽と軌道面の相対関係を維持しても、対象地域(例えば日本)と衛星飛翔位置(軌道面内の位相)の相対関係は変動する。
但し、太陽と軌道面の相対関係を維持しても、対象地域(例えば日本)と衛星飛翔位置(軌道面内の位相)の相対関係は変動する。
電気推進を併用することにより、日中に北半球の対象地域を監視することに適するように、軌道面と、対象地域と衛星飛翔位置の相対関係とを調整することが可能となる。
監視制御装置110は、推進装置103を制御することによって、対象時間帯に対象地域の上空を人工衛星101に飛行させる。
監視制御装置110は、推進装置103を制御することによって、対象時間帯に対象地域の上空を人工衛星101に飛行させる。
図17に、太陽123と地球120と周回軌道122との相対関係の例を示す。
周回軌道122は、太陽同期軌道を周回する。この太陽同期軌道は、傾斜軌道あり、且つ、円軌道である。
相対関係(A)では、約正午12時に軌道面の最北端が太陽直下となる関係が維持されている。
相対関係(B)では、約正午12時に軌道面の最北端が太陽直下となる関係が維持されていない。
周回軌道122は、太陽同期軌道を周回する。この太陽同期軌道は、傾斜軌道あり、且つ、円軌道である。
相対関係(A)では、約正午12時に軌道面の最北端が太陽直下となる関係が維持されている。
相対関係(B)では、約正午12時に軌道面の最北端が太陽直下となる関係が維持されていない。
図18から図25に基づいて、人工衛星101が太陽同期軌道を1日に整数周回する実施例を説明する。
各太陽同期軌道は、傾斜軌道であり、且つ、円軌道である。
各太陽同期軌道に付された時刻は、人工衛星101が通過するときの日本標準時刻(JST)である。
各太陽同期軌道は、傾斜軌道であり、且つ、円軌道である。
各太陽同期軌道に付された時刻は、人工衛星101が通過するときの日本標準時刻(JST)である。
図18に、公転周期が1日8周回である太陽同期軌道を示す。
人工衛星101は、太陽同期軌道を約3時間で1周する。高度は約4163キロメートルであり、軌道傾斜角は125度である。
人工衛星101は、約正午12時に日本上空を飛行する。高度が5000キロメートル以下であるため、人工衛星101はヴァン・アレン帯の影響を受ける可能性がある。
監視装置102は、日中に3回、連続監視を行うことができる。
具体的には、監視装置102は、目安として概ね、8時15分から9時までの45分間と、11時15分から12時45分までの90分間と、15時から15時45分までの45分間との合計3時間の監視を行うことができる。
観測範囲は北緯55度から南緯55度の範囲である。
現状の技術水準から類推して、将来、静止軌道から直下分解能(GSD)5メートル程度の望遠鏡が実現できると想定する(図19から図25において同じ)。さらに、同一の監視対象を複数回撮像して超解像技術を適用することにより3メートル程度まで分解能を向上できると仮定する(図19から図25において同じ)。すると、軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは0.6メートル程度であり、超解像は0.35メートル程度である。
人工衛星101は、太陽同期軌道を約3時間で1周する。高度は約4163キロメートルであり、軌道傾斜角は125度である。
人工衛星101は、約正午12時に日本上空を飛行する。高度が5000キロメートル以下であるため、人工衛星101はヴァン・アレン帯の影響を受ける可能性がある。
監視装置102は、日中に3回、連続監視を行うことができる。
具体的には、監視装置102は、目安として概ね、8時15分から9時までの45分間と、11時15分から12時45分までの90分間と、15時から15時45分までの45分間との合計3時間の監視を行うことができる。
観測範囲は北緯55度から南緯55度の範囲である。
現状の技術水準から類推して、将来、静止軌道から直下分解能(GSD)5メートル程度の望遠鏡が実現できると想定する(図19から図25において同じ)。さらに、同一の監視対象を複数回撮像して超解像技術を適用することにより3メートル程度まで分解能を向上できると仮定する(図19から図25において同じ)。すると、軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは0.6メートル程度であり、超解像は0.35メートル程度である。
図19に、公転周期が1日7周回である太陽同期軌道を示す。
人工衛星101は、太陽同期軌道を約3.4時間で1周する。高度は約5144キロメートルであり、軌道傾斜角は141.6度である。
人工衛星101は、約正午12時に日本上空を飛行する。高度が5000キロメートルを超えているため、ヴァン・アレン帯において人工衛星101は内帯と外帯との間を通過する。
監視装置102は、日中に3回、連続監視を行うことができる。
具体的には、監視装置102は、目安として概ね、7時45分から8時30分までの45分間と、11時15分から12時45分までの90分間と、15時30分から16時15分までの45分間との合計3時間の監視を行うことができる。
観測範囲は北緯38度から南緯38度の範囲である。
軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは0.7メートル程度であり、超解像は0.4メートル程度である。
人工衛星101は、太陽同期軌道を約3.4時間で1周する。高度は約5144キロメートルであり、軌道傾斜角は141.6度である。
人工衛星101は、約正午12時に日本上空を飛行する。高度が5000キロメートルを超えているため、ヴァン・アレン帯において人工衛星101は内帯と外帯との間を通過する。
監視装置102は、日中に3回、連続監視を行うことができる。
具体的には、監視装置102は、目安として概ね、7時45分から8時30分までの45分間と、11時15分から12時45分までの90分間と、15時30分から16時15分までの45分間との合計3時間の監視を行うことができる。
観測範囲は北緯38度から南緯38度の範囲である。
軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは0.7メートル程度であり、超解像は0.4メートル程度である。
図20および図21に、公転周期が1日9周回である太陽同期軌道を示す。
人工衛星101は、太陽同期軌道を約2.7時間で1周する。高度は約3367キロメートルであり、軌道傾斜角は116度である。
監視装置102は、日中に5回、連続監視を行うことができる。
具体的には、監視装置102は、目安として、時間(1)から時間(5)の合計2時間30分の監視を行うことができる。時間(1)から時間(5)は、目安となる概ねの時間である。時間(1)は6時10分から6時30分までの20分間である。時間(2)は8時40分から9時20分までの35分間である。時間(3)は11時40分から12時20分までの40分間である。時間(4)は14時40分から15時20分までの35分間である。時間(5)は17時30分から17時50分までの20分間である。
観測範囲は約北緯64度から約南緯64度の範囲である。
人工衛星101は、太陽同期軌道を約2.7時間で1周する。高度は約3367キロメートルであり、軌道傾斜角は116度である。
監視装置102は、日中に5回、連続監視を行うことができる。
具体的には、監視装置102は、目安として、時間(1)から時間(5)の合計2時間30分の監視を行うことができる。時間(1)から時間(5)は、目安となる概ねの時間である。時間(1)は6時10分から6時30分までの20分間である。時間(2)は8時40分から9時20分までの35分間である。時間(3)は11時40分から12時20分までの40分間である。時間(4)は14時40分から15時20分までの35分間である。時間(5)は17時30分から17時50分までの20分間である。
観測範囲は約北緯64度から約南緯64度の範囲である。
図22および図23に、公転周期が1日10周回である太陽同期軌道を示す。
人工衛星101は、太陽同期軌道を約2.4時間で1周する。高度は2706キロメートルであり、軌道傾斜角は110度である。
監視装置102は、日中に5回、連続監視を行うことができる。
具体的には、監視装置102は、目安として、時間(1)から時間(5)の合計約2時間30分の監視を行うことができる。時間(1)から時間(5)は、目安となる概ねの時間である。時間(1)は6時40分から7時までの20分間である。時間(2)は9時から9時36分までの約35分間である。時間(3)は11時40分から12時20分までの40分間である。時間(4)は14時24分から15時までの約35分間である。時間(5)は17時から17時20分までの20分間である。
観測範囲は約北緯70度から約南緯70度の範囲である。
人工衛星101は、太陽同期軌道を約2.4時間で1周する。高度は2706キロメートルであり、軌道傾斜角は110度である。
監視装置102は、日中に5回、連続監視を行うことができる。
具体的には、監視装置102は、目安として、時間(1)から時間(5)の合計約2時間30分の監視を行うことができる。時間(1)から時間(5)は、目安となる概ねの時間である。時間(1)は6時40分から7時までの20分間である。時間(2)は9時から9時36分までの約35分間である。時間(3)は11時40分から12時20分までの40分間である。時間(4)は14時24分から15時までの約35分間である。時間(5)は17時から17時20分までの20分間である。
観測範囲は約北緯70度から約南緯70度の範囲である。
図24および図25に、公転周期が1日11周回である太陽同期軌道を示す。
人工衛星101は、太陽同期軌道を約2.2時間で1周する。高度は約2146キロメートルであり、軌道傾斜角は106度である。
監視装置102は、日中に5回、連続監視を行うことができる。
具体的には、監視装置102は、目安として、時間(1)から時間(5)の合計約2時間20分の監視を行うことができる。時間(1)から時間(5)は、目安となる概ねの時間である。時間(1)は7時10分から7時30分までの20分間である。時間(2)は9時16分から9時49分までの約30分間である。時間(3)は11時40分から12時20分までの40分間である。時間(4)は14時10分から14時43分までの約30分間である。時間(5)は16時10分から16時30分までの20分間である。
観測範囲は約北緯74度から約南緯74度の範囲である。
人工衛星101は、太陽同期軌道を約2.2時間で1周する。高度は約2146キロメートルであり、軌道傾斜角は106度である。
監視装置102は、日中に5回、連続監視を行うことができる。
具体的には、監視装置102は、目安として、時間(1)から時間(5)の合計約2時間20分の監視を行うことができる。時間(1)から時間(5)は、目安となる概ねの時間である。時間(1)は7時10分から7時30分までの20分間である。時間(2)は9時16分から9時49分までの約30分間である。時間(3)は11時40分から12時20分までの40分間である。時間(4)は14時10分から14時43分までの約30分間である。時間(5)は16時10分から16時30分までの20分間である。
観測範囲は約北緯74度から約南緯74度の範囲である。
実施の形態12.
太陽同期の傾斜楕円軌道を周回する人工衛星101について、主に実施の形態1から実施の形態11で説明していない点を説明する。
太陽同期の傾斜楕円軌道を周回する人工衛星101について、主に実施の形態1から実施の形態11で説明していない点を説明する。
人工衛星101は、太陽同期軌道を周回する。この太陽同期軌道は、傾斜軌道であり、且つ、高離心率を有する楕円軌道である。
近地点と遠地点とを形成する楕円長径の軸が軌道面内で回転するため、ある瞬間に日本上空が近地点であったとしても、近地点の方向が変化してしまう。
この楕円長径の軸の回転を止める軌道は「凍結軌道」と呼ばれる。凍結軌道は、地球の赤道面に対する非対称性を利用する。
そこで、人工衛星101は、地球の赤道面に対する非対称性を利用して太陽同期軌道を周回する。
近地点と遠地点とを形成する楕円長径の軸が軌道面内で回転するため、ある瞬間に日本上空が近地点であったとしても、近地点の方向が変化してしまう。
この楕円長径の軸の回転を止める軌道は「凍結軌道」と呼ばれる。凍結軌道は、地球の赤道面に対する非対称性を利用する。
そこで、人工衛星101は、地球の赤道面に対する非対称性を利用して太陽同期軌道を周回する。
地球の楕円効果と地球の赤道面に対する非対称性とを最適化することにより、太陽と軌道面の相対関係を維持することを実現すると共に、日中における北半球の近地点(ないし遠地点)を維持することを実現することができる。
但し、対象地域(例えば日本)と衛星飛翔位置(軌道面内の位相)の相対関係は変動する。
但し、対象地域(例えば日本)と衛星飛翔位置(軌道面内の位相)の相対関係は変動する。
電気推進を併用することにより、日中に北半球の対象地域を監視することに適するように、軌道面と、対象地域と衛星飛翔位置の相対関係を調整することが可能となる。
監視制御装置110は、推進装置103を制御することによって、対象時間帯に対象地域の上空を人工衛星101に飛行させる。
監視制御装置110は、推進装置103を制御することによって、対象時間帯に対象地域の上空を人工衛星101に飛行させる。
地球の楕円効果と比較して地球の赤道面に対する非対称性は2桁ほど寄与が小さい。そのため、物理現象に基づいて軌道パラメータを設定する方法以外に、電気推進等によって凍結軌道を実現することが可能性である。
監視制御装置110は、推進装置103を制御することによって、人工衛星101に凍結軌道を周回させる。つまり、監視制御装置110は、推進装置103を制御することによって、人工衛星101の周回軌道における長軸の回転を抑止する。例えば、人工衛星101の周回軌道は、次のような属性を有する。周回軌道は、近地点が約12時の軌道(傾斜軌道の最北点が約12時の軌道)である。軌道高度が約5100キロメートルである。軌道長半径が約11478キロメートルである。離心率が約0.418である。軌道傾斜角が約121.88度である。遠地点高度が約9899キロメートルである。近地点高度が約302キロメートルである。
監視制御装置110は、推進装置103を制御することによって、人工衛星101に凍結軌道を周回させる。つまり、監視制御装置110は、推進装置103を制御することによって、人工衛星101の周回軌道における長軸の回転を抑止する。例えば、人工衛星101の周回軌道は、次のような属性を有する。周回軌道は、近地点が約12時の軌道(傾斜軌道の最北点が約12時の軌道)である。軌道高度が約5100キロメートルである。軌道長半径が約11478キロメートルである。離心率が約0.418である。軌道傾斜角が約121.88度である。遠地点高度が約9899キロメートルである。近地点高度が約302キロメートルである。
人工衛星101が周回する太陽同期軌道は、以下のような特徴を有する。
太陽同期軌道は、高離心率を有する傾斜軌道であり、且つ、凍結軌道である。
軌道高度は、5100キロメートルである。
軌道長半径は、11478キロメートルである。
離心率は、0.418である。
軌道傾斜角は、121.88度である。
遠地点高度は、9898キロメートルである。
近地点高度は、302キロメートルである。
太陽同期軌道は、高離心率を有する傾斜軌道であり、且つ、凍結軌道である。
軌道高度は、5100キロメートルである。
軌道長半径は、11478キロメートルである。
離心率は、0.418である。
軌道傾斜角は、121.88度である。
遠地点高度は、9898キロメートルである。
近地点高度は、302キロメートルである。
対象地域と衛星飛翔位置の相対関係は、パラメータ(軌道長半径、軌道傾斜角)のチューニング、または、電気推進による衛星位相調整によって最適化される。
実施の形態13.
各種の太陽同期軌道について、主に実施の形態1から実施の形態13で説明していない点を図26から図32に基づいて説明する。
各種の太陽同期軌道について、主に実施の形態1から実施の形態13で説明していない点を図26から図32に基づいて説明する。
図26に、準天頂衛星等の従来の軌道を示す。
軌道(A)は、静止軌道である。人工衛星は地球上空の1点に静止しているように見える。人工衛星は軌道(A)を1日に約1周する。つまり、人工衛星は軌道(A)を約24時間で1周する。1機の人工衛星によって対象地域を約24時間継続して監視することが可能である。
現状の技術水準から類推して、将来、静止軌道から直下分解能(GSD)5メートル程度の望遠鏡が実現できると想定する(図26から図32において同じ)。さらに、同一の監視対象を複数回撮像して超解像技術を適用することにより3メートル程度まで分解能を向上できると仮定する(図26から図32において同じ)。すると、軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは静止軌道では5メートル程度であると想定される。
軌道(A)は、静止軌道である。人工衛星は地球上空の1点に静止しているように見える。人工衛星は軌道(A)を1日に約1周する。つまり、人工衛星は軌道(A)を約24時間で1周する。1機の人工衛星によって対象地域を約24時間継続して監視することが可能である。
現状の技術水準から類推して、将来、静止軌道から直下分解能(GSD)5メートル程度の望遠鏡が実現できると想定する(図26から図32において同じ)。さらに、同一の監視対象を複数回撮像して超解像技術を適用することにより3メートル程度まで分解能を向上できると仮定する(図26から図32において同じ)。すると、軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは静止軌道では5メートル程度であると想定される。
軌道(B)は、離心率がゼロである傾斜軌道である。人工衛星は地球の上空を8の字状に移動しているように見える。人工衛星は軌道(B)を1日に約1周する。つまり、人工衛星は軌道(B)を約24時間で1周する。1機の人工衛星によって対象地域を約12時間継続して監視することが可能である。
軌道(C)は、高離心率を有する傾斜軌道である。人工衛星は地球の上空を8の字状に移動しているように見える。人工衛星は軌道(C)を1日に約1周する。つまり、人工衛星は軌道(C)を約24時間で1周する。1機の人工衛星によって対象地域を約8時間継続して監視することが可能である。軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは約10メートル以下である。
軌道(C)は、高離心率を有する傾斜軌道である。人工衛星は地球の上空を8の字状に移動しているように見える。人工衛星は軌道(C)を1日に約1周する。つまり、人工衛星は軌道(C)を約24時間で1周する。1機の人工衛星によって対象地域を約8時間継続して監視することが可能である。軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは約10メートル以下である。
図27から図32に、準天頂衛星等の従来の軌道とは異なる軌道を示す。
図27に、地図に描いた太陽同期軌道の例を示す。
近地点高度は約2000キロメートルであり、遠地点高度は約19000キロメートルである。
人工衛星は、この軌道を1日に約4周する。つまり、人工衛星は、この軌道を約6時間で1周する。
軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは0.3メートル程度であり、超解像は約0.2メートル以上である。
図27に、地図に描いた太陽同期軌道の例を示す。
近地点高度は約2000キロメートルであり、遠地点高度は約19000キロメートルである。
人工衛星は、この軌道を1日に約4周する。つまり、人工衛星は、この軌道を約6時間で1周する。
軌道高度の相違に伴うGSDの向上効果で換算した場合、GSDは0.3メートル程度であり、超解像は約0.2メートル以上である。
図28に、地図に描いた太陽同期軌道の例を示す。
近地点高度は約2000キロメートルであり、遠地点高度は約19000キロメートルである。
人工衛星は、この軌道を1日に約4周する。つまり、人工衛星は、この軌道を約6時間で1周する。
静止軌道からの高度差で換算した場合、GSDは2.6メートル程度である。
近地点高度は約2000キロメートルであり、遠地点高度は約19000キロメートルである。
人工衛星は、この軌道を1日に約4周する。つまり、人工衛星は、この軌道を約6時間で1周する。
静止軌道からの高度差で換算した場合、GSDは2.6メートル程度である。
図29に、地図に描いた太陽同期軌道の例を示す。
近地点高度は約4000キロメートルであり、遠地点高度は約25000キロメートルである。
人工衛星は、この軌道を1日に約3周する。つまり、人工衛星は、この軌道を約8時間で1周する。
静止軌道からの高度差で換算した場合、GSDは0.6メートル程度であり、超解像は0.4メートル以上である。
近地点高度は約4000キロメートルであり、遠地点高度は約25000キロメートルである。
人工衛星は、この軌道を1日に約3周する。つまり、人工衛星は、この軌道を約8時間で1周する。
静止軌道からの高度差で換算した場合、GSDは0.6メートル程度であり、超解像は0.4メートル以上である。
図30に、地図に描いた太陽同期軌道の例を示す。
近地点高度は約4000キロメートルであり、遠地点高度は約25000キロメートルである。
人工衛星は、この軌道を1日に3周する。つまり、人工衛星は、この軌道を8時間で1周する。
静止軌道からの高度差で換算した場合、GSDは3.4メートル程度である。
近地点高度は約4000キロメートルであり、遠地点高度は約25000キロメートルである。
人工衛星は、この軌道を1日に3周する。つまり、人工衛星は、この軌道を8時間で1周する。
静止軌道からの高度差で換算した場合、GSDは3.4メートル程度である。
図31に、地図に描いた太陽同期軌道の例を示す。
近地点高度は約7000キロメートルであり、遠地点高度は約34000キロメートルである。
人工衛星は、この軌道を1日に約2周する。つまり、人工衛星は、この軌道を約12時間で1周する。
静止軌道からの高度差で換算した場合、GSDは1メートル程度であり、超解像は約0.6メートル以上である。
近地点高度は約7000キロメートルであり、遠地点高度は約34000キロメートルである。
人工衛星は、この軌道を1日に約2周する。つまり、人工衛星は、この軌道を約12時間で1周する。
静止軌道からの高度差で換算した場合、GSDは1メートル程度であり、超解像は約0.6メートル以上である。
図32に、地図に描いた太陽同期軌道の例を示す。
近地点高度は約7000キロメートルであり、遠地点高度は約34000キロメートルである。
人工衛星は、この軌道を1日に約2周する。つまり、人工衛星は、この軌道を約12時間で1周する。
静止軌道からの高度差で換算した場合、GSDは5メートル程度である。
近地点高度は約7000キロメートルであり、遠地点高度は約34000キロメートルである。
人工衛星は、この軌道を1日に約2周する。つまり、人工衛星は、この軌道を約12時間で1周する。
静止軌道からの高度差で換算した場合、GSDは5メートル程度である。
人工衛星の周回軌道は、太陽同期軌道でなくてもよい。つまり、人工衛星の周回軌道は、太陽同期せず高離心率を有する傾斜軌道であってもよい。
但し、人工衛星が日中に対象地域の上空を飛行するためには、地球の楕円効果に匹敵する大推力が必要となる。つまり、大量の推薬が必要となる。
但し、人工衛星が日中に対象地域の上空を飛行するためには、地球の楕円効果に匹敵する大推力が必要となる。つまり、大量の推薬が必要となる。
***実施の形態の補足***
実施の形態は、好ましい形態の例示であり、本発明の技術的範囲を制限することを意図するものではない。実施の形態は、部分的に実施してもよいし、他の形態と組み合わせて実施してもよい。
実施の形態は、好ましい形態の例示であり、本発明の技術的範囲を制限することを意図するものではない。実施の形態は、部分的に実施してもよいし、他の形態と組み合わせて実施してもよい。
100 監視システム、101 人工衛星、102 監視装置、103 推進装置、104 通信装置、105 姿勢制御装置、106 電源装置、110 監視制御装置、111 処理回路、120 地球、121 対象地域、122 周回軌道、123 太陽、131 内帯、132 外帯、133 回転軸、134 磁気軸。
Claims (28)
- 人工衛星に搭載される監視制御装置であって、
前記人工衛星が、
地球の対象地域を監視するための監視装置と、
前記人工衛星の速度を変化させるための推進装置とを備え、
前記監視制御装置が、
前記人工衛星が地球を周回する間に前記推進装置を制御することによって、対象時間帯における前記対象地域に対する前記人工衛星の相対位置を調整し、且つ、前記人工衛星の周回周期を地球の自転周期に合わせる
監視制御装置。 - 前記監視制御装置は、前記対象時間帯の前に前記人工衛星が減速するように前記推進装置を制御することによって、前記対象時間帯における前記人工衛星の軌道高度を下降させ、
前記軌道高度の下降に伴って地球の自転速度に対する前記人工衛星の周回速度が上がることによって、前記人工衛星が前記対象地域に対して東方へ移動する
請求項1に記載の監視制御装置。 - 前記監視制御装置は、前記対象時間帯の前に前記人工衛星が増速するように前記推進装置を制御することによって、前記対象時間帯における前記人工衛星の軌道高度を上昇させ、
前記軌道高度の上昇に伴って地球の自転速度に対する前記人工衛星の周回速度が下がることによって、前記人工衛星が前記対象地域に対して西方へ移動する
請求項1に記載の監視制御装置。 - 前記人工衛星の周回軌道が、静止軌道とは異なる離心率を有し、
前記監視制御装置は、前記人工衛星が遠地点区間に滞留する期間に前記推進装置を制御することによって、前記人工衛星が近地点区間に滞留する期間を延ばす
請求項1から請求項3のいずれか1項に記載の監視制御装置。 - 前記人工衛星の周回軌道において、近地点が、地球とヴァン・アレン帯の内帯との間に位置する
請求項4に記載の監視制御装置。 - 前記人工衛星の周回軌道において、近地点が、ヴァン・アレン帯の内帯とヴァン・アレン帯の外帯との間に位置する
請求項4に記載の監視制御装置。 - 前記人工衛星の周回軌道が、前記対象地域の緯度に対応する大きさの軌道傾斜角を有する傾斜軌道であり、
前記監視制御装置は、前記人工衛星が地球を周回する間に前記推進装置を制御することによって、前記対象時間帯に前記人工衛星を前記対象地域の上空に移動させる
請求項1から請求項6のいずれか1項に記載の監視制御装置。 - 前記人工衛星が、ポインティング機能を備え、
前記監視制御装置は、前記ポインティング機能を制御することによって、前記監視装置の監視方向を前記対象地域に向ける
請求項1から請求項7のいずれか1項に記載の監視制御装置。 - 前記人工衛星の周回軌道が、太陽同期の傾斜楕円軌道であり、
前記監視制御装置は、前記対象地域を10分以上可視にする可視条件を満たすように、前記ポインティング機能を制御する
請求項8に記載の監視制御装置。 - 前記監視装置は、分解能可変機能を有し、
前記監視制御装置は、前記監視装置を制御することによって、前記監視装置の分解能を調整する
請求項1から請求項9のいずれか1項に記載の監視制御装置。 - 前記監視装置は、オートフォーカス機能を有し、
前記監視制御装置は、前記監視装置を制御することによって、前記対象地域に焦点を合わせる
請求項1から請求項10のいずれか1項に記載の監視制御装置。 - 前記人工衛星の周回軌道が、太陽同期の傾斜楕円軌道であり、
前記監視制御装置は、前記推進装置を制御することによって、前記周回軌道の長軸の回転を抑止する
請求項1から請求項11のいずれか1項に記載の監視制御装置。 - 請求項1から請求項12のいずれか1項に記載の監視制御装置を備える人工衛星。
- 請求項13に記載の人工衛星を1機以上備える監視システム。
- 人工衛星に搭載される監視制御装置であって、
前記人工衛星が、
地球の対象地域を監視するための監視装置と、
前記人工衛星の速度を変化させるための推進装置とを備え、
前記人工衛星の周回軌道が、静止軌道とは異なる離心率と前記対象地域の緯度に対応する大きさの軌道傾斜角とを有し、
前記監視制御装置が、
前記人工衛星が地球を周回する間に前記推進装置を制御することによって、対象時間帯における前記対象地域に対する前記人工衛星の相対位置を調整する
監視制御装置。 - 前記監視制御装置は、前記対象時間帯の前に前記人工衛星が減速するように前記推進装置を制御することによって、前記対象時間帯における前記人工衛星の軌道高度を下降させ、
前記軌道高度の下降に伴って地球の自転速度に対する前記人工衛星の周回速度が上がることによって、前記人工衛星が前記対象地域に対して東方へ移動する
請求項15に記載の監視制御装置。 - 前記監視制御装置は、前記対象時間帯の前に前記人工衛星が増速するように前記推進装置を制御することによって、前記対象時間帯における前記人工衛星の軌道高度を上昇させ、
前記軌道高度の上昇に伴って地球の自転速度に対する前記人工衛星の周回速度が下がることによって、前記人工衛星が前記対象地域に対して西方へ移動する
請求項15に記載の監視制御装置。 - 前記監視制御装置は、前記人工衛星が遠地点区間に滞留する期間に前記推進装置を制御することによって、前記人工衛星が近地点区間に滞留する期間を延ばす
請求項15から請求項17のいずれか1項に記載の監視制御装置。 - 前記人工衛星の周回軌道において、近地点が、地球とヴァン・アレン帯の内帯との間に位置する
請求項15から請求項18のいずれか1項に記載の監視制御装置。 - 前記人工衛星の周回軌道において、近地点が、ヴァン・アレン帯の内帯とヴァン・アレン帯の外帯との間に位置する
請求項15から請求項18のいずれか1項に記載の監視制御装置。 - 前記人工衛星が合成開口レーダを前記監視装置として備える
請求項15から請求項18のいずれか1項に記載の監視制御装置。 - 前記人工衛星が、ポインティング機能を備え、
前記監視制御装置は、前記ポインティング機能を制御することによって、前記監視装置の監視方向を前記対象地域に向ける
請求項15から請求項21のいずれか1項に記載の監視制御装置。 - 前記人工衛星の周回軌道が、太陽同期の傾斜楕円軌道であり、
前記監視制御装置は、前記対象地域を10分以上可視にする可視条件を満たすように、前記ポインティング機能を制御する
請求項22に記載の監視制御装置。 - 前記監視装置は、分解能可変機能を有し、
前記監視制御装置は、前記監視装置を制御することによって、前記監視装置の分解能を調整する
請求項15から請求項23のいずれか1項に記載の監視制御装置。 - 前記監視装置は、オートフォーカス機能を有し、
前記監視制御装置は、前記監視装置を制御することによって、前記対象地域に焦点を合わせる
請求項15から請求項24のいずれか1項に記載の監視制御装置。 - 前記人工衛星の周回軌道が、太陽同期の傾斜楕円軌道であり、
前記監視制御装置は、前記推進装置を制御することによって、前記周回軌道の長軸の回転を抑止する
請求項15から請求項25のいずれか1項に記載の監視制御装置。 - 請求項15から請求項26のいずれか1項に記載の監視制御装置を備える人工衛星。
- 請求項27に記載の人工衛星を複数備える監視システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19913258.0A EP3919391B1 (en) | 2019-01-28 | 2019-04-04 | Artificial satellite and monitoring system |
JP2020569343A JP7023389B2 (ja) | 2019-01-28 | 2019-04-04 | 監視制御装置、人工衛星および監視システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2019/002747 | 2019-01-28 | ||
PCT/JP2019/002747 WO2020157802A1 (ja) | 2019-01-28 | 2019-01-28 | 監視制御装置、人工衛星および監視システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020158000A1 true WO2020158000A1 (ja) | 2020-08-06 |
Family
ID=71840056
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/002747 WO2020157802A1 (ja) | 2019-01-28 | 2019-01-28 | 監視制御装置、人工衛星および監視システム |
PCT/JP2019/014988 WO2020158000A1 (ja) | 2019-01-28 | 2019-04-04 | 監視制御装置、人工衛星および監視システム |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/002747 WO2020157802A1 (ja) | 2019-01-28 | 2019-01-28 | 監視制御装置、人工衛星および監視システム |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3919391B1 (ja) |
JP (1) | JP7023389B2 (ja) |
WO (2) | WO2020157802A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114995204A (zh) * | 2022-07-18 | 2022-09-02 | 中国西安卫星测控中心 | 一种统一测控设备自动化运行方法 |
JP2022138046A (ja) * | 2021-03-09 | 2022-09-22 | 三菱電機株式会社 | 監視装置および監視衛星 |
JP2022137368A (ja) * | 2021-03-09 | 2022-09-22 | 三菱電機株式会社 | 観測衛星 |
GB2608851A (en) * | 2021-07-14 | 2023-01-18 | Iceye Oy | Satellite with spot light mode for extended duration target imaging |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7446130B2 (ja) * | 2020-03-04 | 2024-03-08 | 三菱電機株式会社 | 監視制御装置、人工衛星および地上設備 |
WO2024073438A2 (en) * | 2022-09-28 | 2024-04-04 | Albedo Space Corp. | Satellite for high-performance remote sensing |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000111359A (ja) * | 1998-10-05 | 2000-04-18 | Hitachi Ltd | 地球観測システム |
JP2008126876A (ja) | 2006-11-22 | 2008-06-05 | Mitsubishi Electric Corp | 観測衛星群管制システム、観測衛星、地上局、及び観測衛星群管制方法 |
JP2008236156A (ja) * | 2007-03-19 | 2008-10-02 | Mitsubishi Electric Corp | 光検出器及び人工衛星搭載光学センサ |
JP2013540639A (ja) * | 2010-10-01 | 2013-11-07 | テレサット カナダ | 周極緯度用の衛星システム及び方法 |
JP2014141108A (ja) * | 2013-01-22 | 2014-08-07 | Univ Of Tokyo | 人工衛星の軌道面制御方法 |
US20170247123A1 (en) * | 2016-02-26 | 2017-08-31 | Space Systems/Loral, Llc | Inclined geosynchronous orbit spacecraft constellations |
JP2017161339A (ja) * | 2016-03-09 | 2017-09-14 | 日本電気株式会社 | レーダ装置、方法及びプログラム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2527895B2 (ja) * | 1992-12-14 | 1996-08-28 | 通信・放送機構 | 衛星管制方法 |
JP3797219B2 (ja) * | 2001-09-18 | 2006-07-12 | 三菱電機株式会社 | 監視装置 |
RU2670081C1 (ru) * | 2016-04-04 | 2018-10-17 | Федеральное государственное бюджетное образовательное учреждение высшего образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") | Способ наблюдения земной поверхности из космоса |
FR3061481A1 (fr) * | 2017-01-05 | 2018-07-06 | Thales | Systeme spatial |
US10059470B1 (en) * | 2018-02-09 | 2018-08-28 | Launchspace Technologies Corporation | Apparatus and methods for creating artificial geosynchronous orbits |
-
2019
- 2019-01-28 WO PCT/JP2019/002747 patent/WO2020157802A1/ja active Application Filing
- 2019-04-04 WO PCT/JP2019/014988 patent/WO2020158000A1/ja unknown
- 2019-04-04 JP JP2020569343A patent/JP7023389B2/ja active Active
- 2019-04-04 EP EP19913258.0A patent/EP3919391B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000111359A (ja) * | 1998-10-05 | 2000-04-18 | Hitachi Ltd | 地球観測システム |
JP2008126876A (ja) | 2006-11-22 | 2008-06-05 | Mitsubishi Electric Corp | 観測衛星群管制システム、観測衛星、地上局、及び観測衛星群管制方法 |
JP2008236156A (ja) * | 2007-03-19 | 2008-10-02 | Mitsubishi Electric Corp | 光検出器及び人工衛星搭載光学センサ |
JP2013540639A (ja) * | 2010-10-01 | 2013-11-07 | テレサット カナダ | 周極緯度用の衛星システム及び方法 |
JP2014141108A (ja) * | 2013-01-22 | 2014-08-07 | Univ Of Tokyo | 人工衛星の軌道面制御方法 |
US20170247123A1 (en) * | 2016-02-26 | 2017-08-31 | Space Systems/Loral, Llc | Inclined geosynchronous orbit spacecraft constellations |
JP2017161339A (ja) * | 2016-03-09 | 2017-09-14 | 日本電気株式会社 | レーダ装置、方法及びプログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3919391A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022138046A (ja) * | 2021-03-09 | 2022-09-22 | 三菱電機株式会社 | 監視装置および監視衛星 |
JP2022137368A (ja) * | 2021-03-09 | 2022-09-22 | 三菱電機株式会社 | 観測衛星 |
JP7479316B2 (ja) | 2021-03-09 | 2024-05-08 | 三菱電機株式会社 | 観測衛星 |
JP7499720B2 (ja) | 2021-03-09 | 2024-06-14 | 三菱電機株式会社 | 監視装置および監視衛星 |
GB2608851A (en) * | 2021-07-14 | 2023-01-18 | Iceye Oy | Satellite with spot light mode for extended duration target imaging |
GB2608851B (en) * | 2021-07-14 | 2024-04-10 | Iceye Oy | Satellite with spot light mode for extended duration target imaging |
CN114995204A (zh) * | 2022-07-18 | 2022-09-02 | 中国西安卫星测控中心 | 一种统一测控设备自动化运行方法 |
CN114995204B (zh) * | 2022-07-18 | 2022-11-08 | 中国西安卫星测控中心 | 一种统一测控设备自动化运行方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3919391A1 (en) | 2021-12-08 |
EP3919391B1 (en) | 2024-03-27 |
EP3919391A4 (en) | 2022-03-09 |
JP7023389B2 (ja) | 2022-02-21 |
JPWO2020158000A1 (ja) | 2021-09-09 |
WO2020157802A1 (ja) | 2020-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020158000A1 (ja) | 監視制御装置、人工衛星および監視システム | |
JP7086294B2 (ja) | 衛星コンステレーション、地上設備および人工衛星 | |
D'Amario et al. | Galileo trajectory design | |
WO2021172182A1 (ja) | 衛星コンステレーション、地上設備および飛翔体追跡システム | |
US8706322B2 (en) | Method and computer program product for controlling inertial attitude of an artificial satellite by applying gyroscopic precession to maintain the spin axis perpendicular to sun lines | |
US6082677A (en) | Satellite orbiting toward west in the equatorial plane and meteorological satellite system using the satellite | |
EP2641833A1 (en) | A method of solar occultation | |
KR20170002286A (ko) | 혼합 연료 시스템을 위한 효율적인 위도 궤도 수정 설계 | |
KR20170002287A (ko) | 전기 스러스터의 고장에 응답하여 혼합 연료 시스템을 위한 효율적인 위도 궤도 수정 설계 | |
US7784740B2 (en) | Star blanking method, device and assembly therefor | |
US7806369B2 (en) | Ultrahigh altitude sun-synchronous orbit satellite system | |
JP2021070342A (ja) | 衛星コンステレーション | |
JP2024003118A (ja) | 観測システム、通信衛星、観測衛星および地上設備 | |
JP7139089B2 (ja) | 衛星コンステレーション、地上設備および人工衛星 | |
JP2023099748A (ja) | 監視制御装置、人工衛星、地上設備および監視システム | |
Canady Jr et al. | Illumination from space with orbiting solar-reflector spacecraft | |
JP7329483B2 (ja) | 観測衛星 | |
JP7573684B2 (ja) | 観測衛星および地上設備 | |
JP7455018B2 (ja) | 宇宙物体管理システム、地上設備、宇宙物体管理装置および監視衛星 | |
JP7349945B2 (ja) | 観測システム、通信衛星および地上設備 | |
JP2022138046A (ja) | 監視装置および監視衛星 | |
Li et al. | Space Orbit Design of Remote Sensing Satellite | |
McAdams | MESSENGER Mercury orbit trajectory design | |
McInnes | Near-term, low cost missions for solar sails | |
Design | 13 th AAS/AIAA Space Flight Mechanics Meeting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19913258 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020569343 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019913258 Country of ref document: EP Effective date: 20210830 |