WO2020156426A1 - 一种基于超微孔金属有机框架材料的乙烯乙烷吸附分离方法 - Google Patents
一种基于超微孔金属有机框架材料的乙烯乙烷吸附分离方法 Download PDFInfo
- Publication number
- WO2020156426A1 WO2020156426A1 PCT/CN2020/073776 CN2020073776W WO2020156426A1 WO 2020156426 A1 WO2020156426 A1 WO 2020156426A1 CN 2020073776 W CN2020073776 W CN 2020073776W WO 2020156426 A1 WO2020156426 A1 WO 2020156426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ethylene
- ethane
- adsorption
- metal
- organic framework
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/12—Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/20—Organic adsorbents
- B01D2253/204—Metal organic frameworks (MOF's)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
- B01D2253/308—Pore size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/24—Hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
- B01D2257/7022—Aliphatic hydrocarbons
Definitions
- the invention belongs to the technical field of chemical separation, and specifically relates to a method for separating ethylene/ethane with an ultramicroporous metal organic frame material.
- ethylene is the core of the petrochemical industry and an important indicator of a country’s petrochemical development level.
- the downstream products of ethylene mainly include polyethylene, polyvinyl chloride, ethylene oxide, ethylene glycol, vinyl acetate, etc., which account for more than 75% of petrochemical products and are widely used in various national economic industries such as plastics, pharmaceuticals, textiles, and coatings.
- the industry mainly uses naphtha as a raw material, cracking it into a variety of low-carbon hydrocarbon mixtures and then separating and extracting ethylene from it.
- Ethylene and ethane have similar molecular sizes and similar physical properties. The separation of the two is the key to the preparation of high-purity ethylene, and it is also a technical challenge.
- Cryogenic rectification is the most commonly used technology for separating ethylene/ethane in industrial production, but this technology has high requirements on operating conditions and equipment. Due to the relatively low volatility of ethylene and ethane, it is often necessary to achieve separation under extremely high pressure (22bar), extremely low temperature (-160°C) and large reflux ratio, and the number of plates usually exceeds 100.
- the low-temperature rectification method has high energy consumption, complex process flow, and large investment in equipment, so it is urgent to develop new alternative technologies.
- Adsorption separation is an energy-saving and high-efficiency gas separation technology.
- the separation of ethylene/ethane can be achieved under normal temperature and pressure. It has outstanding advantages such as low energy consumption, high product purity, simple process flow, and small amplification effect. Industrial application prospects.
- the adsorbent is the core of the adsorption and separation process.
- the ideal adsorbent should have a high adsorption capacity and adsorption selectivity, and at the same time exhibit relatively excellent stability.
- the existing ethylene/ethane selective adsorbents often still have the disadvantages of high adsorption capacity and high adsorption selectivity, and poor material stability.
- the all-silicon molecular sieve ITQ-55 shows high kinetic selectivity to ethylene/ethane, but its ethylene adsorption capacity is low, 1 bar, 30°C the only 1.5mmol g -1; Mg-MOF- 74 (Langmuir, 2011,27 (22): 13554-13562.) ethylene adsorption capacity of up to 7.5mmol g -1 (1bar, 298K) , but equimolar
- the separation selectivity of ethylene/ethane mixture does not exceed 10; the adsorbent based on transition metal ions such as molecular sieve AgA (Journal of the American Chemical Society, 2012, 134(36): 14635-14637.), organic porous material PAF- Although 1-SO 3 Ag (Journal of the American Chemical Society,2014,136(24):8654-8660.), CuCl-supported alumina (CN 1048010C), etc
- the invention provides a method for separating ethylene and ethane, which can realize the separation of ethylene and ethane quickly and efficiently.
- a method for adsorbing and separating ethylene and ethane based on an ultra-microporous metal-organic framework material includes the following steps: contacting a mixed gas of ethylene and ethane with an ultra-microporous metal-organic framework material to adsorb ethylene in the mixed gas to achieve ethylene Separation from ethane;
- the chemical formula of the ultramicroporous metal organic framework material is [M 3 L 3 A] ⁇ , where M is a metal cation, L is an organic ligand, A is an oxygen-containing inorganic anion, and ⁇ represents the ultramicroporous metal organic framework
- M is a metal cation
- L is an organic ligand
- A is an oxygen-containing inorganic anion
- ⁇ represents the ultramicroporous metal organic framework
- the material is composed of several structural units composed of M 3 L 3 A arranged regularly;
- the organic ligand is 1,2,4-triazole and its derivatives, the structural formula is Wherein R is one of H, CH 3 , NH 2 , SH, F, Cl, Br;
- the metal cation is one of Cu 2+ , Zn 2+ , Co 2+ and Ni 2+ ;
- the oxygen-containing inorganic anion is PO 4 3- or VO 4 3- .
- the invention realizes the precise control of the pore diameter of the ultra-microporous metal organic framework material through the combination of different anions, cations and organic ligands.
- the mixed gas containing ethylene and ethane is in contact with the ultra-microporous metal organic framework material, due to the ethylene/ethane molecule
- the difference in size causes a significant difference in the diffusion rate of the two in the material pores, and ethylene is faster than ethane.
- the ultra-microporous metal-organic framework material composed of the oxygen-containing inorganic anion A, the metal cation M and the organic ligand L has the specific structure shown in Figs. 9a and b from different angles, wherein, Is an oxygen-containing inorganic anion, Is a metal cation, It is 1,2,4-triazole and its derivatives.
- the organic ligand is coordinated with the metal cation through the nitrogen atom on the triazole ring to form a positively charged two-dimensional layered structure, and some of the organic ligands Combine with two metal cations at the same time in position mode, and some organic ligands combine with three metal cations at the same time in a three-coordinate mode; oxygen-containing anions are connected to metal cations located in different layers through oxygen atoms to form a high-density oxygen atom distribution One-dimensional channel structure. In the extension direction of the pores, the two-coordinated organic ligands are arranged in anti-parallel, so that the pore size changes periodically.
- the size of the narrowest part of the aperture is Specifically refers to the distance between the R groups of the closest organic ligand on both sides of the channel.
- the ultra-microporous metal-organic framework material is prepared by a hydrothermal synthesis method with an inorganic salt or inorganic acid containing the metal cation, oxygen-containing inorganic anion, and an organic ligand under alkaline conditions (7.0 ⁇ pH ⁇ 10.0) So, using a mixed solvent of water and alcohols (such as methanol), the molar ratios of organic ligands to metal cations and organic ligands to oxygen-containing inorganic anions in the initial reaction system are all 1:1-50:1, and the reaction temperature is 65 ⁇ 210°C.
- the inorganic oxygen-containing anion is PO 4 3-
- the metal cation is Zn 2+
- the organic ligand is 3-methyl-1,2,4-triazole
- the ultra-microporous metal-organic framework material composed of Zn -Ctz-PO 4 .
- the equilibrium adsorption capacity of ultra-microporous Zn-Ctz-PO 4 for ethylene and ethane at 1 bar and 298K is 1.5 mmol g -1 and 0.5 mmol g -1 , respectively, and the thermodynamic-kinetic composite selectivity is 15.
- the inorganic oxygen-containing anion is PO 4 3-
- the metal cation is Zn 2+
- the organic ligand is 3-amino-1,2,4-triazole, composed of an ultra-microporous metal organic framework material It is Zn-Atz-PO 4 .
- the ultra-microporous material Zn-Atz-PO 4 has an equilibrium adsorption capacity of 2.4 mmol g -1 and 0.9 mmol g -1 for ethylene and ethane at 1 bar and 273 K, respectively, with a kinetic selectivity of 27 and a composite selectivity of approximately Is 20.
- the volume ratio of ethylene to ethane in the mixed gas of ethylene and ethane is 1:99 to 99:1.
- the volume ratio of ethylene and ethane components in the mixed gas is 1:99 to 99:1 (such as 50:50, 90:10), and the mixed gas can contain hydrogen, nitrogen, oxygen, sulfur compounds (such as sulfur dioxide), Nitrogen oxides (such as nitrogen monoxide, nitrogen dioxide, etc.), carbon oxides (such as carbon monoxide, carbon dioxide), moisture and other low-carbon hydrocarbons (such as methane, propylene, propane, etc.) and other impurity components without affecting the ultra-micropores Separation performance of metal organic framework materials for ethylene/ethane components.
- the ultra-microporous metal organic frame material can separate ethane gas with a purity of more than 99% and ethylene gas with a purity of 95-99% from the mixed gas containing ethylene and ethane, and the ethylene recovery rate is not less than 70%.
- the operation mode of the separation method of the present invention is any one of fixed bed adsorption, fluidized bed adsorption, and moving bed adsorption.
- the operation mode of the present invention is preferably fixed bed adsorption, which is characterized in that the fixed bed adsorption includes the following steps:
- the mixed gas containing ethylene and ethane passes through a fixed bed adsorption column filled with ultra-microporous metal organic frame materials at a certain flow rate.
- the ethane component has weak interaction with the ultra-microporous material.
- the diffusion rate in the pores is slow, the adsorption capacity is small, and the fixed bed is preferentially penetrated, and high-purity ethane gas can be directly obtained;
- the ethylene component has a strong force with the ultra-microporous material and diffuses quickly in its pores. It is enriched in the fixed bed. After it penetrates, it is decompressed, heated, purged with inert gas, and purged with product gas. Or a combination of multiple desorption methods will decompose and absorb the adsorbed ethylene group to obtain high-purity ethylene gas.
- the separation method of the present invention is characterized in that the adsorption temperature is -50 to 100°C. Lowering the adsorption temperature is beneficial to increase the ethylene adsorption capacity, while further reducing the ethane diffusion rate to improve separation selectivity, and increasing the adsorption temperature is beneficial to Reduce the temperature difference between the desorption process and reduce the energy consumption required for the separation process. Considering both factors, it is preferably -10 ⁇ 25°C;
- the adsorption pressure is 0-10 bar, preferably 1-5 bar;
- the desorption temperature is 25 to 150°C, preferably 65 to 100°C;
- the desorption pressure is 0 to 1 bar, preferably 0 to 0.2 bar.
- the present invention has the following beneficial effects:
- the ultra-microporous metal-organic framework material used in the present invention has both dynamic and thermodynamic dual preferential adsorption characteristics for ethylene, and has the advantages of high ethylene adsorption capacity and high adsorption selectivity;
- the ultra-microporous metal-organic framework material used in the present invention has the advantages of cheap and easy-to-obtain raw materials, simple synthesis method, excellent desorption performance, reproducibility, etc., especially excellent stability, decomposition temperature near 400 °C, exposure In the air (25°C, relative humidity 70%) for 60 days or immersed in water for 48 hours, the crystal structure can still be kept intact and the ethylene adsorption capacity has not decreased significantly, which has a good industrial application prospect;
- the separation method provided by the present invention can obtain up to 99.0% ethylene gas and 99.999% ethane gas;
- the separation method provided by the present invention has outstanding advantages such as mild operating conditions, energy saving and environmental protection, and small equipment investment, and is expected to bring economic benefits to small and medium petrochemical enterprises.
- Figure 1 is the X-ray diffraction experiment result of Zn-Atz-PO 4 material
- Example 3 is the adsorption isotherm of ethylene and ethane at 298K for the ultramicroporous metal-organic framework material Zn-Atz-PO 4 obtained in Example 1;
- Figure 4 is the dynamic adsorption curve of ethylene and ethane (pressure 0.4bar) of the ultramicroporous metal organic framework material Zn-Atz-PO 4 obtained in Example 1 at 298K;
- Example 5 is the adsorption isotherm of ethylene and ethane at 273K for the ultramicroporous metal-organic framework material Zn-Atz-PO 4 obtained in Example 1;
- Figure 6 is the dynamic adsorption curve of ethylene and ethane (pressure 0.4bar) of the ultramicroporous metal-organic framework material Zn-Atz-PO 4 obtained in Example 1 at 273K;
- Fig. 7 shows the adsorption isotherm of Zn-Atz-PO 4 material obtained in Example 1 after air exposure and water soaking at 298K for ethylene;
- Figure 8 is the breakthrough curve of the ethylene/ethane mixture (volume ratio 50:50) obtained in Example 3;
- Figure 9 is a structure diagram of an ultra-microporous metal organic frame material (where a and b are two different angles).
- the adsorption isotherms and dynamic adsorption curves of Zn-Atz-PO 4 for ethylene and ethane at 273K and 298K were measured, and the results are shown in Figures 3-6.
- the results show that the equilibrium adsorption capacity of ethylene and the diffusion rate of ethylene in the pores of the synthesized Zn-Atz-PO 4 material are significantly higher than that of ethane.
- the thermodynamic selectivity and power of the material to ethylene/ethane at 273K The chemical selectivities are 4 and 27, respectively, and the composite selectivity is nearly 20, which surpasses ITQ-55 ( ⁇ 6), the best material for kinetic separation of ethylene and ethane.
- the obtained Zn-Atz-PO 4 material was exposed to air (25°C, relative humidity 70%) for 60 days or immersed in water for 48 hours, and then the material was analyzed by X-ray diffraction, and the material was measured for ethylene at 298K.
- the results of adsorption isotherms are shown in Figure 1 and Figure 7. The results show that the Zn-Atz-PO 4 material exposed to water and air for a long time can still maintain a complete crystal structure, and compared with the newly synthesized sample, the ethylene adsorption capacity does not decrease significantly, indicating that Zn-Atz-PO 4 has excellent stability.
- the Zn-Atz-PO 4 material obtained in Example 1 was loaded into a 5cm fixed bed adsorption column, and an ethylene/ethane mixed gas (volume ratio 50:50) was passed into the bed at a flow rate of 0.5 mL/min at 273K and 1 bar.
- a fixed bed penetration experiment was performed in the layer. As shown in Figure 8, after 27 minutes of adsorption, the ethane component preferentially penetrates the adsorption column, and high purity ethane gas (99.999%) can be obtained from the outlet of the adsorption column.
- the ethylene component is concentrated in the adsorption column and only penetrates the bed after about 70 minutes.
- Example 2 After the adsorption column reaches equilibrium, stop the gas inlet, use the ethylene product gas obtained in Example 2 to purge the bed for 10 minutes (0.5mL/min), and then apply a vacuum ( ⁇ 0.05bar) and heat (65°C) The adsorption column is desorbed to obtain 99% ethylene gas and the regeneration of the adsorption column is completed.
- nitrogen first penetrates the adsorption column due to the exclusion effect of the Zn-Atz-PO 4 material, and then the ethane component penetrates, and ethane gas with a purity greater than 95% can be obtained at the outlet of the adsorption column.
- Example 2 After the ethylene component broke through, the ethylene product gas obtained in Example 2 was used to purge the bed for 10 minutes (1.0 mL/min), and then vacuum ( ⁇ 0.02bar) was used to remove the ethylene component enriched in the adsorption column. Decomposition and absorption can obtain ethylene gas with a purity of 98%, and complete the regeneration of the adsorption column.
- the obtained Ni-Tz-PO 4 product was loaded into a 5cm fixed bed adsorption column, and an ethylene/ethane mixed gas (volume ratio 85:15) was passed into the bed at a flow rate of 2.0 mL/min at 263K and 10 bar.
- the column outlet can give priority to obtaining high-purity ethane gas (99.999%).
- stop the gas supply and use heating (100°C) and vacuum ( ⁇ 1bar) to decompose and absorb the ethylene group strongly adsorbed in the column layer to obtain ethylene gas with a purity of more than 93% ,
- the recovery rate is 75%.
- the obtained Cu-Brtz-PO 4 product is made into particles and installed on the sieve plate of a fluidized bed adsorber, and the ethylene/ethane mixed gas (volume ratio 10:90) is set at a flow rate of 2.0mL/min at 313K and 5bar. Pass into the adsorber, fully contact with the adsorbent particles, and obtain high-purity ethane gas (99.99%) from the outlet of the adsorber. After the ethylene component has penetrated, stop the air supply, use the ethylene product gas obtained in Example 2 to purge the bed for 10 minutes (1.0 mL/min), and then use a vacuum ( ⁇ 0.1bar) to absorb the The ethylene in the vessel is desorbed to obtain ethylene gas with a purity greater than 95%.
- the obtained Zn-Ftz-PO 4 product is made into granules, and added from the top of the tower to the plate-type moving bed adsorber.
- the ethylene/ethane mixed gas containing a small amount of methane is passed upward from the bottom of the tower under the conditions of 273K and 4bar.
- Exhaust gas containing ethane and methane is directly discharged from the top of the tower.
- the adsorbent enriched with ethylene components leaves the adsorption device from the bottom of the tower and is heated (100°C) to release high-purity ethylene gas (greater than 95%) and complete the adsorption material Of regeneration.
- the regenerated adsorption material enters the adsorption device from the top of the tower again and enters the next adsorption cycle.
- High purity ethane gas 99.9% can be obtained directly from the outlet of the adsorption column.
- Example 2 After the ethylene component penetrates, stop the mixed gas inlet, use the ethylene product gas obtained in Example 2 to purge the bed for 5 minutes (1.0 mL/min), and then use the vacuum method ( ⁇ 0.05bar) to enrich The ethylene and carbon dioxide components in the column are desorbed to obtain ethylene gas with a purity greater than 97%, and the regeneration of the adsorption column is completed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Water Supply & Treatment (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Separation Of Gases By Adsorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
发明公开了一种基于超微孔金属有机框架材料的乙烯乙烷吸附分离方法,包括如下步骤:将乙烯乙烷的混合气体与超微孔金属有机框架材料进行接触,吸附混合气体中的乙烯,实现乙烯与乙烷的分离;所述超微孔金属有机框架材料的化学式为[M 3L 3A] ∞,其中M为金属阳离子,L为有机配体,A为含氧无机阴离子;所述有机配体为1,2,4-三氮唑及其衍生物;所述金属阳离子为Cu 2+、Zn 2+、Co 2+、Ni 2+中的其中一种;所述含氧无机阴离子为PO 4 3-或VO 4 3-。含乙烯乙烷的混合气与超微孔金属有机框架材料接触时,由于乙烯/乙烷分子尺寸及氢键酸性的不同引起二者在材料孔道内扩散速率及吸附容量的显著差异,实现乙烯的选择性吸附,从而获得高纯度乙烯气体及乙烷气体。
Description
本发明属于化工分离技术领域,具体涉及一种超微孔金属有机框架材料用于乙烯/乙烷分离的方法。
乙烯作为世界上产量最大的化学品之一,是石油化工产业的核心,也是衡量一个国家石化发展水平的重要标志。乙烯的下游产品主要包括聚乙烯、聚氯乙烯、环氧乙烷、乙二醇、醋酸乙烯等,占石化产品的75%以上,广泛应用于塑料、制药、纺织品、涂料等各个国民经济行业。目前工业上主要以石脑油为原料,将其裂解为多种低碳烃混合物再从中分离提取乙烯。乙烯与乙烷分子尺寸接近,物理性质相似,二者的分离是制备高纯度乙烯的关键,同时也是一项技术性的挑战。
低温精馏法是工业生产中分离乙烯/乙烷最常用的技术,但该技术对操作条件及装置设备都有很高的要求。由于乙烯和乙烷相对挥发度较小,往往需要在极高的压力(22bar)、极低的温度(-160℃)及大回流比下才能实现分离,且塔板数通常超过100。低温精馏法能耗较高,工艺流程复杂,且装置投资大,因此开发新的替代技术迫在眉睫。
吸附分离是一种节能、高效的气体分离技术,在常温常压下即可实现乙烯/乙烷的分离,具有能耗低、产品纯度高、工艺流程简单、放大效应小等突出优势,具备良好的工业应用前景。吸附剂是吸附分离过程的核心,理想的吸附剂应具有较高的吸附容量和吸附选择性,同时表现出较为出色的稳定性。但目前已有的乙烯/乙烷选择性吸附剂往往还存在着高吸附容量与高吸附选择性不可兼具、材料稳定性差等不足。例如,全硅分子筛ITQ-55(Science,2017,358(6366):1068-1071.)对乙烯/乙烷表现出较高的动力学选择性,但其乙烯吸附容量较低,1bar、30℃下仅为1.5mmol g
-1;Mg-MOF-74(Langmuir,2011,27(22):13554-13562.)对乙烯吸附量高达7.5mmol g
-1(1bar,298K),但其对等摩尔乙烯/乙烷混合气的分离选择性不 超过10;基于过渡金属离子的吸附剂如分子筛AgA(Journal of the American Chemical Society,2012,134(36):14635-14637.)、有机多孔材料PAF-1-SO
3Ag(Journal of the American Chemical Society,2014,136(24):8654-8660.)、CuCl负载型氧化铝(CN 1048010C)等虽然可通过π络合作用选择性识别乙烯,但这类材料容易受到原料气中水分及含硫化合物的污染,稳定性差,使用寿命短,且再生能耗高,不适合于工业化应用。因此,亟待开发新的乙烯/乙烷选择性吸附材料及吸附分离方法。
发明内容
本发明提供一种乙烯乙烷分离方法,可快速高效地实现乙烯乙烷的分离。
一种基于超微孔金属有机框架材料的乙烯乙烷的吸附分离方法,包括如下步骤:将乙烯乙烷的混合气体与超微孔金属有机框架材料进行接触,吸附混合气体中的乙烯,实现乙烯与乙烷的分离;
所述超微孔金属有机框架材料的化学式为[M
3L
3A]
∞,其中M为金属阳离子,L为有机配体,A为含氧无机阴离子,∞表示所述超微孔金属有机框架材料由若干组成为M
3L
3A的结构单元规则排布而成;
所述金属阳离子为Cu
2+、Zn
2+、Co
2+、Ni
2+中的其中一种;
所述含氧无机阴离子为PO
4
3-或VO
4
3-。
本发明通过不同阴、阳离子及有机配体的组合实现超微孔金属有机框架材料孔径的精确调控,含乙烯乙烷的混合气与超微孔金属有机框架材料接触时,由于乙烯/乙烷分子尺寸的不同引起二者在材料孔道内扩散速率的显著差异,乙烯快于乙烷。同时,由于孔道表面分布有高密度含氧阴离子,其对氢键酸性更强的乙烯分子表现出更强的作用力,导致乙烯具有比乙烷更高的吸附容量,进一步增强了金属有机框架材料的分子识别能力,从而可获得高纯度乙烯气体及乙烷气体。
本发明中,由所述含氧无机阴离子A、金属阳离子M及有机配体L 组成的超微孔金属有机框架材料从不同角度观察具有图9a、b所示的具体结构,其中,
为含氧无机阴离子,
为金属阳离子,
为1,2,4-三氮唑及其衍生物。
在所述超微孔金属有机框架材料结构中,有机配体通过三氮唑环上的氮原子与金属阳离子配位,形成带正电的二维层状结构,其中部分有机配体以二配位方式同时与两个金属阳离子结合,部分有机配体以三配位方式同时与三个金属阳离子结合;含氧阴离子通过氧原子连接位于不同层间的金属阳离子,形成具有高密度氧原子分布的一维孔道结构。在孔道延伸方向,二配位的有机配体呈反向平行排列,使孔径呈周期性收缩-扩张变化。孔径最窄处尺寸为
具体指位于孔道两侧距离最近的有机配体所带R基团间的距离。
所述的超微孔金属有机框架材料,以含有所述金属阳离子、含氧无机阴离子的无机盐或无机酸,与有机配体在碱性条件下(7.0<pH<10.0)通过水热合成法制得,采用水与醇类(如甲醇)混合溶剂,初始反应体系中有机配体与金属阳离子以及有机配体与含氧无机阴离子的摩尔比均为1:1~50:1,反应温度为65~210℃。
优选地,无机含氧阴离子为PO
4
3-、金属阳离子为Zn
2+、有机配体为3-甲基-1,2,4-三氮唑,组成的超微孔金属有机框架材料为Zn-Ctz-PO
4。超微孔材料Zn-Ctz-PO
4在1bar、298K条件下对乙烯、乙烷的平衡吸附容量分别为1.5mmol g
-1、0.5mmol g
-1,热力学-动力学复合选择性为15。
另一种优选地,无机含氧阴离子为PO
4
3-、金属阳离子为Zn
2+、有机配体为3-氨基-1,2,4-三氮唑,组成的超微孔金属有机框架材料为Zn-Atz-PO
4。超微孔材料Zn-Atz-PO
4在1bar、273K条件下对乙烯、乙烷的平衡吸附容量分别为2.4mmol g
-1、0.9mmol g
-1,动力学选择性达27,复合选择性约为20。
优选地,乙烯乙烷的混合气体中乙烯与乙烷的体积比为1:99~99:1。
混合气中乙烯、乙烷组分的体积比为1:99至99:1(如50:50,90:10),混合气中可包含氢气、氮气、氧气、含硫化合物(如二氧化硫)、氮氧化物(如一氧化氮、二氧化氮等)、碳氧化物(如一氧化碳、二氧化碳)、 水分及其他低碳烃(如甲烷、丙烯、丙烷等)等杂质组分,而不影响超微孔金属有机框架材料对乙烯/乙烷组分的分离性能。
采用超微孔金属有机框架材料可从含乙烯乙烷的混合气中分离出纯度大于99%的乙烷气体及纯度为95~99%的乙烯气体,且乙烯回收率不低于70%。
本发明所述的分离方法操作方式为固定床吸附、流化床吸附、移动床吸附中的任意一种。
本发明所述的操作方式,优选为固定床吸附,其特征在于,固定床吸附包括如下步骤:
(1)含乙烯乙烷的混合气在一定的温度、压力条件下,以一定流速通过装填有超微孔金属有机框架材料的固定床吸附柱,乙烷组分与超微孔材料相互作用弱且在其孔道内扩散速率慢,吸附量少,优先穿透固定床,可直接获得高纯度的乙烷气体;
(2)乙烯组分与超微孔材料作用力强且在其孔道内扩散快,在固定床中富集,待其穿透后,通过减压、升温、惰性气体吹扫、产品气吹扫或多种脱附方法结合的方式将被吸附的乙烯组分解吸出来,获得高纯度的乙烯气体。
本发明所述的分离方法,其特征在于,吸附温度为-50~100℃,降低吸附温度有利于提高乙烯吸附容量,同时进一步降低乙烷扩散速率从而提高分离选择性,升高吸附温度有利于缩小与脱附过程间的温差,减少分离过程所需能耗,综合考虑两方因素,优选为-10~25℃;
吸附压力为0~10bar,优选为1~5bar;
脱附温度为25~150℃,优选为65~100℃;
脱附压力为0~1bar,优选为0~0.2bar。
与现有方法相比,本发明具有如下有益效果:
(1)提供了一种采用超微孔金属有机框架材料吸附分离乙烯乙烷的新方法,该材料在平衡条件下对乙烯的吸附容量高于乙烷,且乙烯在其孔道内扩散速率显著快于乙烷,从而可实现乙烯/乙烷混合气的高效分离,获得高纯度的乙烯气体和乙烷气体;
(2)本发明采用的超微孔金属有机框架材料与常规吸附剂相比,对乙烯兼具动力学、热力学双重优先吸附特性,具有乙烯吸附容量高、吸附 选择性高的优点;
(3)本发明采用的超微孔金属有机框架材料,原料廉价易得、合成方法简便,具有解吸性能优良、可反复再生利用等优点,尤其具有出色的稳定性,分解温度近400℃,暴露于空气中(25℃,相对湿度70%)60天或浸泡在水中48小时后依然可保持晶体结构完整且乙烯吸附量未出现明显下降,具备良好的工业应用前景;
(4)本发明提供的分离方法,最高可获得纯度达99.0%的乙烯气体和99.999%的乙烷气体;
(5)本发明提供的分离方法与常规的低温精馏法相比,具有操作条件温和、节能环保、设备投资小等突出优势,有望为中小型石化企业带来经济效益的提升。
图1为Zn-Atz-PO
4材料的X射线衍射实验结果;
图2为实施例1所得超微孔金属有机框架材料Zn-Atz-PO
4的热重曲线;
图3为实施例1所得超微孔金属有机框架材料Zn-Atz-PO
4在298K下对乙烯、乙烷的吸附等温线;
图4为实施例1所得超微孔金属有机框架材料Zn-Atz-PO
4在298K下对乙烯、乙烷的动态吸附曲线(压力为0.4bar);
图5为实施例1所得超微孔金属有机框架材料Zn-Atz-PO
4在273K下对乙烯、乙烷的吸附等温线;
图6为实施例1所得超微孔金属有机框架材料Zn-Atz-PO
4在273K下对乙烯、乙烷的动态吸附曲线(压力为0.4bar);
图7为实施例1所得经空气暴露及水浸泡后的Zn-Atz-PO
4材料在298K下对乙烯的吸附等温线;
图8为实施例3所得乙烯/乙烷混合气(体积比50:50)的穿透曲线;
图9为超微孔金属有机框架材料结构图(其中a和b为两个不同角度)。
实施例1
采用文献报道所述方法(Angewandte Chemie,2012,124(8):1862-1865.),以磷酸、Zn(OH)
2·2ZnCO
3和3-氨基-1,2,4-三氮唑为原料合成超微孔金属有机框架材料Zn-Atz-PO
4。利用X射线粉末衍射对材料进行分析,结果(图1)与文献报道一致,材料孔径最窄处尺寸为
Zn-Atz-PO
4材料的热重曲线如图2所示,数据表明其具有较高的热稳定性,分解温度接近420℃。
测量Zn-Atz-PO
4材料在273K、298K下对乙烯、乙烷的吸附等温线及动态吸附曲线,结果如图3~6所示。该结果显示,合成的Zn-Atz-PO
4材料对乙烯的平衡吸附量及乙烯在其孔道中扩散的速率均显著高于乙烷,273K下该材料对乙烯/乙烷的热力学选择性和动力学选择性分别为4及27,复合选择性近20,超过目前基于动力学分离乙烯乙烷的最佳材料ITQ-55(~6)。
将所得Zn-Atz-PO
4材料暴露于空气中(25℃,相对湿度70%)60天或浸泡于水中48小时,然后利用X射线衍射对材料进行分析,并再次测定材料在298K下对乙烯的吸附等温线,结果如图1及图7所示。结果表明,长期暴露在水及空气环境中的Zn-Atz-PO
4材料依然可保持完整的晶体结构,且相比于新合成的样品,乙烯吸附量未出现明显下降,说明Zn-Atz-PO
4具有出色的稳定性。
实施例2
将CoCO
3、Na
3VO
4及3-氯-1,2,4-三氮唑按质量比1:1:4加入体积比为1:1的水/甲醇混合溶剂中搅拌均匀,并加入盐酸将反应液pH调节至8.5,再将其置于120℃烘箱中反应48小时。反应结束后,抽滤收集所得固体产物,用甲醇洗涤若干次,再在100℃、真空环境下将样品活化12小时,获得金属有机框架材料Co-Cltz-VO
4。
将所得Co-Cltz-VO
4产品装入5cm固定床吸附柱中,于298K、8bar下将乙烯/乙烷混合气(体积比90:10)以2.0mL/min流速通入床层中进行固定床穿透实验。由于乙烷组分与超微孔材料相互作用弱且在其孔道内扩散速率慢,优先穿透床层,从吸附柱出口可直接获得高纯度乙烷气体(99.99%)。待乙烯组分穿透后,停止混合气进气,用高纯氦气吹扫床层5分钟(1.0mL/min),然后将吸附柱放压至6.5bar,再用抽真空的方式(< 0.2bar)对富集在柱中的乙烯组分进行解吸,可获得纯度大于95%的乙烯气体,并完成吸附柱的再生。
实施例3
将实施例1所得的Zn-Atz-PO
4材料装入5cm固定床吸附柱中,于273K、1bar下将乙烯/乙烷混合气(体积比50:50)以0.5mL/min流速通入床层中进行固定床穿透实验。如图8所示,吸附达27分钟后乙烷组分优先穿透吸附柱,从吸附柱出口可获得高纯度的乙烷气体(99.999%)。乙烯组分在吸附柱中富集,约70分钟后才穿透床层。待吸附柱达到平衡后停止进气,用实施例2获得的乙烯产品气吹扫床层10分钟(0.5mL/min),再用抽真空(<0.05bar)并加热(65℃)的方式对吸附柱进行解吸,可获得纯度达99%的乙烯气体,同时完成吸附柱的再生。
实施例4
在273K、2bar下将含少量氮气的乙烯/乙烷混合气(体积比乙烯:乙烷:氮气=90:5:5)以1.0mL/min流速通入实施例3中完成再生后的吸附柱。吸附开始后,氮气由于Zn-Atz-PO
4材料的排阻效应首先穿透吸附柱,随后乙烷组分穿透,在吸附柱出口可获得纯度大于95%的乙烷气体。待乙烯组分穿透后,用实施例2获得的乙烯产品气吹扫床层10分钟(1.0mL/min),再用抽真空(<0.02bar)的方式将吸附柱中富集的乙烯组分解吸出来,可获得纯度达98%的乙烯气体,并完成吸附柱的再生。
实施例5
将Zn(OH)
2·2ZnCO
3、3-甲基-1,2,4-三氮唑和磷酸(85%水溶液)按质量比1:4:0.35加入体积比为1:1的水/甲醇混合溶剂中搅拌均匀,并加入氨水将反应液pH调节至7.5,再将其置于180℃烘箱中反应48小时。反应结束后,抽滤收集所得固体产物,用甲醇洗涤若干次,再在100℃、真空环境下将样品活化12小时,获得金属有机框架材料Zn-Ctz-PO
4。
对所得产品进行乙烯/乙烷等温吸附线测定,结果表明,Zn-Ctz-PO
4在298K、1bar条件下对乙烯、乙烷的平衡吸附容量分别为1.5mmol g
-1、0.5mmol g
-1。
实施例6
将2NiCO
3·3Ni(OH)
2、1,2,4-三氮唑和磷酸(85%水溶液)按质量比1:4:0.35加入体积比为1:1的水/甲醇混合溶剂中搅拌均匀,并加入氨水将反应液pH调节至7.5,再将其置于180℃烘箱中反应72小时。反应结束后,抽滤收集所得固体产物,用甲醇洗涤若干次,再在100℃、真空环境下将样品活化12小时,获得金属有机框架材料Ni-Tz-PO
4。
将所得Ni-Tz-PO
4产品装入5cm固定床吸附柱中,于263K、10bar下将乙烯/乙烷混合气(体积比85:15)以2.0mL/min流速通入床层,从吸附柱出口可优先获得高纯度的乙烷气体(99.999%)。待乙烯组分穿透后,停止进气,用加热(100℃)并抽真空(<1bar)的方式将强吸附于柱层中的乙烯组分解吸出来,可获得纯度大于93%的乙烯气体,回收率为75%。
实施例7
将Cu
2(OH)
2CO
3、3-溴-1,2,4-三氮唑和磷酸(85%水溶液)按质量比1:4:0.4加入体积比为1:1的水/正丁醇混合溶剂中搅拌均匀,并加入氨水将反应液pH调节至7.5,再将其置于180℃烘箱中反应48小时。反应结束后,抽滤收集所得固体产物,用甲醇洗涤若干次,再在100℃、真空环境下将样品活化12小时,获得金属有机框架材料Cu-Brtz-PO
4。
将所得Cu-Brtz-PO
4产品制成颗粒装于流化床吸附器的筛孔板上,在313K、5bar下将乙烯/乙烷混合气(体积比10:90)以2.0mL/min流速通入吸附器中,与吸附剂颗粒充分接触,从吸附器出口可优先获得高纯度的乙烷气体(99.99%)。待乙烯组分穿透后,停止进气,用实施例2获得的乙烯产品气吹扫床层10分钟(1.0mL/min),再用抽真空的方式(<0.1bar)对富集在吸附器中的乙烯进行解吸,可获得纯度大于95%的乙烯气体。
实施例8
将Zn(OH)
2·2ZnCO
3、3-氟-1,2,4-三氮唑和磷酸(85%水溶液)按质量比1:4:0.35加入体积比为1:1的水/甲醇混合溶剂中搅拌均匀,并加入氨水将反应液pH调节至7.5,再将其置于180℃烘箱中反应48小时。反应结 束后,抽滤收集所得固体产物,用甲醇洗涤若干次,再在100℃、真空环境下将样品活化12小时,获得金属有机框架材料Zn-Ftz-PO
4。将所得Zn-Ftz-PO
4产品制成颗粒,由塔顶向下加入板式移动床吸附器中,同时在273K、4bar条件下自塔底向上通入含少量甲烷的乙烯/乙烷混合气(体积比乙烯:乙烷:甲烷=90:5:5),流速为4.0mL/min。含乙烷及甲烷的废气直接从塔顶排出,富集乙烯组分的吸附剂从塔底离开吸附装置后经加热(100℃)释放出高纯度乙烯气体(大于95%),并完成吸附材料的再生。再生后的吸附材料重新由塔顶进入吸附装置,进入下一吸附循环。
实施例9
将Zn(OH)
2·2ZnCO
3、3-巯基-1,2,4-三氮唑和磷酸(85%水溶液)按质量比1:4:0.35加入体积比为1:1的水/甲醇混合溶剂中搅拌均匀,并加入氨水将反应液pH调节至7.5,再将其置于180℃烘箱中反应48小时。反应结束后,抽滤收集所得固体产物,用甲醇洗涤若干次,再在100℃、真空环境下将样品活化12小时,获得金属有机框架材料Zn-Stz-PO
4。
将所得Zn-Stz-PO
4产品装入5cm固定床吸附柱中,于323K、2bar下将含低浓度二氧化碳的乙烯/乙烷混合气(体积比乙烯:乙烷:二氧化碳=90:9:1)以1.0mL/min流速通入床层中进行固定床穿透实验。从吸附柱出口可直接获得高纯度乙烷气体(99.9%)。待乙烯组分穿透后,停止混合气进气,用实施例2获得的乙烯产品气吹扫床层5分钟(1.0mL/min),再用抽真空的方式(<0.05bar)对富集在柱中的乙烯及二氧化碳组分进行解吸,可获得纯度大于97%的乙烯气体,并完成吸附柱的再生。
以上所述仅为本发明专利的具体实施案例,但本发明专利的技术特征并不局限于此,任何相关领域的技术人员在本发明的领域内,所作的变化或修饰皆涵盖在本发明的专利范围之中。
Claims (10)
- 一种基于超微孔金属有机框架材料的乙烯乙烷的吸附分离方法,其特征在于,包括如下步骤:将乙烯乙烷的混合气体与超微孔金属有机框架材料进行接触,吸附混合气体中的乙烯,实现乙烯与乙烷的分离;所述超微孔金属有机框架材料的化学式为[M 3L 3A] ∞,其中M为金属阳离子,L为有机配体,A为含氧无机阴离子,∞表示所述超微孔金属有机框架材料由若干组成为M 3L 3A的结构单元规则排布而成;所述金属阳离子为Cu 2+、Zn 2+、Co 2+、Ni 2+中的其中一种;所述含氧无机阴离子为PO 4 3-或VO 4 3-。
- 根据权利要求1所述的超微孔金属有机框架材料,其特征在于,超微孔金属有机框架材料由如下方法制备:以金属阳离子、含氧无机阴离子的前驱体与有机配体在碱性条件下通过水热合成法制得,采用水与醇类混合溶剂,初始反应体系中有机配体与金属阳离子的摩尔比以及有机配体与含氧无机阴离子的摩尔比均为1:1~50:1,反应温度为65~210℃。
- 根据权利要求1所述吸附分离方法,其特征在于,含氧无机阴离子为PO 4 3-、金属阳离子为Zn 2+、有机配体为3-甲基-1,2,4-三氮唑。
- 根据权利要求1所述吸附分离方法,其特征在于,含氧无机阴离子为PO 4 3-、金属阳离子为Zn 2+、有机配体为3-氨基-1,2,4-三氮唑。
- 根据权利要求1所述吸附分离方法,其特征在于,乙烯乙烷的混合气体中乙烯与乙烷的体积比为1:99~99:1。
- 根据权利要求1所述吸附分离方法,其特征在于,混合气体与超微孔金属有机框架材料的接触方式为固定床吸附、流化床吸附、移动床吸附中的任意一种。
- 根据权利要求1所述吸附分离方法,其特征在于,混合气体与超微孔金属有机框架材料的接触方式为固定床吸附,包括:(1)在设定的吸附温度及压力下,含乙烯乙烷的混合气体以设定流速进入装填有超微孔金属有机框架材料的固定床吸附柱,乙烷组分优先穿透床层,从吸附柱出口可直接获得乙烷气体;(2)乙烯组分在床层中富集,待其穿透后,通过脱附获得乙烯气体。
- 根据权利要求8所述吸附分离方法,其特征在于,吸附温度为-50~100℃;吸附压力为0~10bar。
- 根据权利要求8所述吸附分离方法,其特征在于,脱附温度为25~150℃;脱附压力为0~1bar。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/426,587 US12102956B2 (en) | 2019-01-29 | 2020-01-22 | Method for the adsorptive separation of ethylene and ethane using ultramicroporous metal-organic framework |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910084873.8 | 2019-01-29 | ||
CN201910084873.8A CN109748770B (zh) | 2019-01-29 | 2019-01-29 | 一种基于超微孔金属有机框架材料的乙烯乙烷吸附分离方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020156426A1 true WO2020156426A1 (zh) | 2020-08-06 |
Family
ID=66407021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/073776 WO2020156426A1 (zh) | 2019-01-29 | 2020-01-22 | 一种基于超微孔金属有机框架材料的乙烯乙烷吸附分离方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12102956B2 (zh) |
CN (1) | CN109748770B (zh) |
WO (1) | WO2020156426A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115505084A (zh) * | 2022-11-16 | 2022-12-23 | 吉林中科研伸科技有限公司 | 一种共价有机框架材料、配体以及应用 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111298772B (zh) * | 2020-02-27 | 2021-03-30 | 浙江大学 | 一种用于吸附分离丙炔丙烯的层状多孔材料及其制备方法和应用 |
CN111944160B (zh) * | 2020-07-31 | 2021-05-11 | 浙江大学 | 一种草酸功能化微孔配位聚合物材料及其制备方法和应用 |
CN112717888B (zh) * | 2021-01-18 | 2022-06-07 | 太原理工大学 | 超微孔mof吸附剂材料在烃类气体分离中的应用 |
CN113801337B (zh) * | 2021-10-15 | 2022-09-20 | 陕西延长石油(集团)有限责任公司 | 一种吸附分离乙烯乙烷的金属有机框架材料及其制备方法与应用 |
CN114452938B (zh) * | 2021-12-30 | 2023-03-28 | 浙江大学 | 一种烷烃优先吸附微孔材料及其制备方法和应用 |
CN116408051A (zh) * | 2021-12-31 | 2023-07-11 | 中国石油天然气股份有限公司 | 磺酸阴离子杂化多孔材料及制备方法、乙烯乙烷分离方法 |
CN114181403B (zh) * | 2022-01-04 | 2023-03-28 | 南昌大学 | 四齿配体构筑的阴离子柱撑金属有机框架材料及其应用 |
CN116003809B (zh) * | 2022-10-08 | 2023-12-08 | 南昌大学 | 一种金属有机框架材料及其制备方法、应用 |
CN116586037A (zh) * | 2023-04-26 | 2023-08-15 | 浙江大学 | 一种成型超微孔金属-有机框架材料及其制备方法和选择性吸附六氟化硫的应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105037403A (zh) * | 2015-07-08 | 2015-11-11 | 中山大学 | 一种配位聚合物多孔材料maf-49及其制备方法和应用 |
US20160159713A1 (en) * | 2014-12-03 | 2016-06-09 | The Regents Of The University Of California | Metal-organic frameworks for aromatic hydrocarbon separations |
WO2016162834A1 (en) * | 2015-04-07 | 2016-10-13 | King Abdullah University Of Science And Technology | Highly stable ni-m f6-nh2o/onpyrazine2(solvent)x metal organic frameworks and methods of use |
CN108329484A (zh) * | 2018-03-01 | 2018-07-27 | 华南理工大学 | 一种优先吸附乙烷的铁基双配体金属有机骨架材料及其制备方法与应用 |
CN108579686A (zh) * | 2018-05-30 | 2018-09-28 | 天津工业大学 | 超微孔金属-有机骨架材料在氢的同位素分离中的应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11517878B2 (en) * | 2016-03-31 | 2022-12-06 | The Regents Of The University Of California | Selective, adsorbate-induced spin state changes in transition metal-based metal-organic frameworks |
CN108014752B (zh) * | 2016-11-03 | 2019-09-20 | 浙江大学 | 一种用于分离乙烷和乙烯的金属有机框架材料及乙烯乙烷的分离方法 |
-
2019
- 2019-01-29 CN CN201910084873.8A patent/CN109748770B/zh active Active
-
2020
- 2020-01-22 US US17/426,587 patent/US12102956B2/en active Active
- 2020-01-22 WO PCT/CN2020/073776 patent/WO2020156426A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160159713A1 (en) * | 2014-12-03 | 2016-06-09 | The Regents Of The University Of California | Metal-organic frameworks for aromatic hydrocarbon separations |
WO2016162834A1 (en) * | 2015-04-07 | 2016-10-13 | King Abdullah University Of Science And Technology | Highly stable ni-m f6-nh2o/onpyrazine2(solvent)x metal organic frameworks and methods of use |
CN105037403A (zh) * | 2015-07-08 | 2015-11-11 | 中山大学 | 一种配位聚合物多孔材料maf-49及其制备方法和应用 |
CN108329484A (zh) * | 2018-03-01 | 2018-07-27 | 华南理工大学 | 一种优先吸附乙烷的铁基双配体金属有机骨架材料及其制备方法与应用 |
CN108579686A (zh) * | 2018-05-30 | 2018-09-28 | 天津工业大学 | 超微孔金属-有机骨架材料在氢的同位素分离中的应用 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115505084A (zh) * | 2022-11-16 | 2022-12-23 | 吉林中科研伸科技有限公司 | 一种共价有机框架材料、配体以及应用 |
CN115505084B (zh) * | 2022-11-16 | 2023-05-16 | 吉林中科研伸科技有限公司 | 一种共价有机框架材料、配体以及应用 |
Also Published As
Publication number | Publication date |
---|---|
CN109748770B (zh) | 2020-06-30 |
CN109748770A (zh) | 2019-05-14 |
US12102956B2 (en) | 2024-10-01 |
US20220096992A1 (en) | 2022-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020156426A1 (zh) | 一种基于超微孔金属有机框架材料的乙烯乙烷吸附分离方法 | |
Ma et al. | CO adsorption on activated carbon-supported Cu-based adsorbent prepared by a facile route | |
KR101728809B1 (ko) | 질소 선택적 흡착능을 갖는 유무기 하이브리드 나노세공체 및 이를 이용한 질소 함유 혼합기체의 분리 방법 | |
Guo et al. | Scalable solvent-free preparation of [Ni3 (HCOO) 6] frameworks for highly efficient separation of CH4 from N2 | |
Wu et al. | An indium-based ethane-trapping MOF for efficient selective separation of C2H6/C2H4 mixture | |
WO2017198096A1 (zh) | 一种吸附分离丙烯丙炔的方法 | |
WO2021169764A1 (zh) | 一种用于吸附分离丙炔丙烯的层状多孔材料及其制备方法和应用 | |
KR102100896B1 (ko) | 분자내 산무수물 작용기를 포함하는 유무기 하이브리드 나노세공체, 이를 포함하는 흡착용 조성물 및 이의 탄화수소 기체 혼합물의 분리 용도 | |
WO2021197211A1 (zh) | 一种碳八芳烃同分异构体混合物的分离方法 | |
Cho et al. | Effect of framework rigidity in metal-organic frameworks for adsorptive separation of ethane/ethylene | |
CN105833662A (zh) | 一种吸附分离含硫酸性气体的方法 | |
WO2019183635A1 (en) | Metal-organic frameworks for molecular sieving and compositions and methods of use thereof | |
WO2020156423A1 (zh) | 一种乙烯乙烷的分离方法 | |
KR20160045223A (ko) | 결정성 하이브리드 나노세공체 흡착제의 올레핀 및 아세틸렌 함유 혼합기체의 분리 정제 방법 | |
CN108654564B (zh) | 一种配位聚合物多孔材料的制备方法及其应用 | |
Li et al. | Recent progresses on metal-organic frameworks for separation of gaseous hydrocarbons | |
CN114682231B (zh) | 选择性吸附乙炔的氰基MOFs吸附剂、制备方法和应用 | |
CN114452938B (zh) | 一种烷烃优先吸附微孔材料及其制备方法和应用 | |
KR102090173B1 (ko) | 결정성 하이브리드 나노세공체 흡착제의 올레핀 및 아세틸렌 함유 혼합기체의 분리 정제 방법 | |
KR102583047B1 (ko) | 메탄 선택성 흡착제 및 이를 이용한 메탄의 선택적 분리방법 | |
JP2004074025A (ja) | ガス吸着材ならびにこれを用いたガス分離装置およびガス貯蔵装置 | |
CN115947949B (zh) | 一种多孔金属有机骨架材料及其合成方法,吸附剂及提纯乙烯的方法 | |
CN117126419B (zh) | 一种用于气体分离的钴金属有机框架晶体材料及其制备方法与应用 | |
CN115612116B (zh) | 一种多孔mof材料及其合成方法,丙烯/丙烷吸附剂及分离提纯方法 | |
US20230399277A1 (en) | Microporous hydrogen-bonded organic framework for separating propylene from propane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20747895 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20747895 Country of ref document: EP Kind code of ref document: A1 |