WO2020156265A1 - 车辆全地形自动控制方法及装置 - Google Patents
车辆全地形自动控制方法及装置 Download PDFInfo
- Publication number
- WO2020156265A1 WO2020156265A1 PCT/CN2020/072932 CN2020072932W WO2020156265A1 WO 2020156265 A1 WO2020156265 A1 WO 2020156265A1 CN 2020072932 W CN2020072932 W CN 2020072932W WO 2020156265 A1 WO2020156265 A1 WO 2020156265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- mode
- terrain
- road
- road surface
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 239000004576 sand Substances 0.000 claims abstract description 40
- 230000001133 acceleration Effects 0.000 claims description 40
- 238000004364 calculation method Methods 0.000 claims description 31
- 230000003595 spectral effect Effects 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 11
- 230000009194 climbing Effects 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000000875 corresponding effect Effects 0.000 description 34
- 230000008569 process Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 9
- 238000004590 computer program Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011895 specific detection Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- RXQCGGRTAILOIN-UHFFFAOYSA-N mephentermine Chemical compound CNC(C)(C)CC1=CC=CC=C1 RXQCGGRTAILOIN-UHFFFAOYSA-N 0.000 description 1
- 229960002342 mephentermine Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/182—Selecting between different operative modes, e.g. comfort and performance modes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
- B60W40/076—Slope angle of the road
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/105—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/107—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0002—Automatic control, details of type of controller or control system architecture
- B60W2050/0014—Adaptive controllers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0043—Signal treatments, identification of variables or parameters, parameter estimation or state estimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/10—Change speed gearings
- B60W2510/1005—Transmission ratio engaged
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
- B60W2520/105—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/28—Wheel speed
Definitions
- the present invention relates to the field of vehicle technology, in particular to a vehicle all-terrain automatic control method and device.
- Economic mode In this mode, the engine power output is smooth, the transmission shifts actively, the vehicle's power performance is reduced, the economy is increased, and the driving style of the vehicle is gentle and gentle;
- Standard mode This mode takes into account the power and economy of the vehicle, and the driving style of the vehicle is more conventional;
- Sport mode In this mode, the accelerator pedal is sensitive, the transmission delays shifting, the vehicle's power is increased, and the driving style of the vehicle becomes more intense;
- Snow mode This mode is mainly used for driving under low adhesion coefficient conditions or off-road driving.
- the main roads used include snow, ice, grass, gravel roads, etc.;
- Mud mode This mode is mainly used in deep mud and shallow mud driving or off-road driving;
- Sand mode This mode is mainly used for driving in deserts and Gobi or off-road driving;
- 4L mode four-wheel drive low gear mode: The vehicle's four-wheel drive system enters 4L mode, and the TCU then enters low gear. The speed is generally limited to 40 km/h or less. This mode is mainly used for low-speed escape conditions (such as climbing conditions, trapping conditions), and conditions requiring high torque climbing.
- some vehicles in the current related technologies are equipped with corresponding all-terrain control systems, so that the user can switch the terrain mode by manually rotating the knob, which improves the driver's control adaptability to different terrain environments.
- the current related technology has at least the following shortcomings in the process of practicing this application: First, the driver needs to artificially judge the current driving environment working conditions, and cannot complete the automation of the environmental working conditions applicable to the terrain mode. Detection; Second, the current all-terrain control in related technologies generally only supports manual selection, such as manually rotating a knob, but does not support adaptive control switching, and the driver may forget to switch when the vehicle is driving in different terrain Or the misoperation of the switch caused the terrain mode mismatch, which seriously reduced the driving experience of the vehicle.
- the present invention aims to propose a vehicle all-terrain automatic control method to at least solve the problem of poor driving experience caused by artificial judgment of environmental conditions and manual switching of terrain driving modes in the current related technologies.
- a vehicle all-terrain automatic control method wherein the vehicle all-terrain automatic control method includes: receiving an all-terrain automatic control request, and acquiring vehicle driving state parameters based on the all-terrain automatic control request; and based on the acquired vehicle driving state Parameters to determine the type of road surface the vehicle is driving on; and control the vehicle to execute a terrain mode matching the determined road surface type, where the terrain mode includes urban road mode, snow mode, mud mode, sand mode, and 4L mode.
- the determining the type of road surface the vehicle is driving on based on the acquired vehicle driving state parameters includes: detecting whether the type of road driving the vehicle is similar to the 4L mode according to the first calculation model in combination with the first vehicle driving state parameters. Matching road surface type; if it is not a road surface type matching the 4L mode, the second calculation model is combined with the second vehicle driving state parameters to detect whether the road surface type the vehicle is driving is snow mode, mud mode, sand The road surface type corresponding to the mode or city road mode.
- the first vehicle driving state parameters include longitudinal acceleration, vehicle speed, gear, and throttle opening
- the first calculation model is combined with the first vehicle driving state parameters to detect whether the type of road the vehicle is driving on is
- the type of road surface that matches the 4L mode includes: determining the longitudinal gradient of the road on which the vehicle is located based on the longitudinal acceleration; if the longitudinal gradient is greater than a preset gradient threshold, detecting whether the vehicle speed is less than the preset Vehicle speed threshold; if the detected vehicle speed is less than the vehicle speed threshold, it is determined whether the gear is 1 gear and the throttle opening is greater than the preset opening threshold; if the gear is 1 gear and If the throttle opening is greater than the opening threshold, it is determined that the vehicle is on a climbing road type matching the 4L mode.
- the second vehicle driving state parameter includes wheel speed information
- the second calculation model is combined with the second vehicle driving state parameter to detect whether the road surface type the vehicle is driving is snow mode, mud mode,
- the road surface types corresponding to the sand mode and the urban road mode include: calculating the wheel speed difference of the wheels according to the wheel speed information, wherein the wheel speed difference includes one or more of the following: front axle wheel speed difference, The rear axle wheel speed difference and the cross axle wheel speed difference; determine the target power spectral density corresponding to the wheel speed difference; according to the target power spectral density and the reference table of the calibrated road surface, it is determined that the vehicle is in the snow, Mud, sand, or urban roads, wherein the reference table for referenced pavement types pre-stores a plurality of calibrated power spectral densities corresponding to multiple road types including snow, mud, sand and urban roads.
- the vehicle all-terrain automatic control method further includes: When the road surface type driven by the vehicle matches the urban road mode, according to the third calculation model and combined with the third vehicle driving state parameter, it is detected whether the road surface type driven by the vehicle is an economic mode or a standard mode Or the road type corresponding to the sport mode.
- the third vehicle driving state parameter includes accelerator operation information and/or brake pedal operation information
- the third calculation model is combined with the third vehicle driving state parameter to detect whether the type of road the vehicle is driving on is
- the road type corresponding to the economy mode, standard mode or sports mode includes: determining the driver’s intention of the vehicle based on the accelerator operation information and/or the brake pedal operation information; Whether the road type the vehicle is driving on is the road type corresponding to the economy mode, standard mode or sports mode.
- controlling the vehicle to execute a terrain mode matching the determined road surface type includes: detecting whether the vehicle is already in the N gear state; And when not in the N gear state, sending a 4L mode prompt signal to the vehicle display; and when in the N gear state, controlling the vehicle to execute the 4L mode.
- the controlling the vehicle to execute a terrain pattern matching the determined road surface type includes: sending a terrain pattern request signal for indicating the matched terrain pattern to a vehicle subsystem, so that the vehicle sub-system
- the system determines the target operation mode corresponding to the terrain mode request signal according to the all-terrain subsystem response strategy table, and runs in the target operation mode, wherein the all-terrain subsystem response strategy table includes request signals corresponding to different terrain modes
- the operation mode of each vehicle subsystem, and the vehicle subsystem includes one or more of the following: engine control unit, transfer case electronic control unit, transmission electronic control unit, electronic differential lock and electronic stability control system.
- the vehicle all-terrain automatic control method further includes: periodically receiving the vehicle from the vehicle subsystem. In the feedback signal indicating the operating state of the vehicle subsystem; judging whether the vehicle subsystem successfully responds to the operation mode signal based on the periodically received feedback signal; and when the vehicle subsystem does not successfully respond to the When the operation mode signal, the terrain mode error signal is sent to the vehicle display.
- the vehicle all-terrain automatic control method of the present invention has the following advantages:
- the vehicle driving state parameters are obtained to detect the type of road surface the vehicle is driving, without the need for human judgment of the driving environment, which improves the degree of intelligence of the vehicle; in addition, the vehicle can be The terrain mode matching the road surface type is adaptively selected and controlled, without the need for the driver to manually select or switch the driving mode, which improves the driving experience of the vehicle.
- Another object of the present invention is to provide a vehicle all-terrain automatic control device to at least solve the problem of poor driving performance experience caused by artificially judging environmental conditions and manually switching terrain driving modes in the related art.
- An all-terrain automatic control device for a vehicle wherein the all-terrain automatic control device for a vehicle includes: a parameter acquisition unit for receiving an all-terrain automatic control request, and acquiring vehicle driving state parameters based on the all-terrain automatic control request; road surface The type determination unit is used to determine the type of road surface the vehicle is driving on based on the acquired vehicle driving state parameters; and the terrain mode execution unit is used to control the vehicle to execute the terrain mode matching the determined road surface type, wherein The terrain modes include urban road mode, snow mode, mud mode, sand mode and 4L mode.
- a machine-readable storage medium has instructions stored on the machine-readable storage medium, and the instructions are used to make a machine execute the above-mentioned vehicle all-terrain automatic control method.
- a processor for running a program which is used to execute when the program is running: the above-mentioned vehicle all-terrain automatic control method.
- FIG. 1 is a flowchart of a method for automatic all-terrain vehicle control according to an embodiment of the present invention
- FIG. 2 is a flowchart for determining the type of road surface the vehicle is driving on in the method for automatic all-terrain vehicle control according to the embodiment of the invention
- FIG. 3 is a schematic diagram of a control system architecture principle diagram suitable for applying the all-terrain automatic control method for a vehicle according to an embodiment of the present invention
- Fig. 5 is a structural block diagram of an all-terrain automatic control device according to an embodiment of the present invention.
- FIG. 1 shows a vehicle all-terrain automatic control method according to an embodiment of the present invention, including:
- the execution subject of the embodiment of the present invention may be various controllers or processors suitable for configuration in a vehicle, for example, on the one hand, a controller or processor that comes with the vehicle.
- the corresponding hardware and software are improved to realize the vehicle terrain mode control method in the embodiment of the present invention; on the other hand, it may also be a processor or controller additionally configured on the vehicle, such as ATSCU (All Terrain System Control Unit) , An all-terrain system control unit) to implement the vehicle terrain mode control method as described in this application, and the above embodiments all fall within the protection scope of the present invention.
- ATSCU All Terrain System Control Unit
- An all-terrain system control unit to implement the vehicle terrain mode control method as described in this application, and the above embodiments all fall within the protection scope of the present invention.
- the all-terrain automatic control request may be triggered based on a user operation, for example, it may be a button corresponding to the all-terrain automatic control is set on the vehicle, and when the driver operates the button, the automatic execution of the vehicle in the embodiment of the present invention can be triggered. All-terrain automatic control process.
- the vehicle driving state parameter can be any parameter that can be used to determine the type of road on which the vehicle is driving, and there is no restriction on it. For example, real-time detection of wheel slip rate can determine whether the vehicle is slipping and thus determine where the vehicle is. Whether the road type is low attached road.
- the road surface type can not only include the road surface condition types such as snow, mud, sand, etc., it can also indicate the driving conditions of the vehicle on the road surface type, such as the uphill driving conditions of the vehicle on a sloped road surface. , Vehicle trapping in the mud pit, etc.
- vehicles are suitable for snow mode on snow, city road mode on city roads, and mud mode on mud.
- mud mode on mud.
- sand mode on the sandy ground
- 4L mode four-wheel drive low gear mode
- the vehicle driving state parameters are acquired to detect the type of road the vehicle is driving on, without manual intervention or judging the driving environment, which improves the intelligence of the vehicle; in addition, the vehicle can target terrain patterns that match the road surface type. Carrying out adaptive selection and control without requiring the driver to manually select or switch the driving mode, which improves the driving experience of the vehicle.
- the vehicle driving state parameters required by different road surface types and the calculation model used may also be different. For example, it is used to calculate the vehicle driving of the climbing road type corresponding to the 4L mode.
- the state parameter and the adopted first calculation model are different from the adopted second calculation model of the vehicle driving state parameter of the snow type corresponding to the snow pattern.
- this embodiment also proposes that multiple calculation models for different road surface types can be integrated in the vehicle, and in the process of actually determining the road surface type, multiple calculation models are sequentially called to realize the identification and recognition of different road surface types. distinguish.
- the process for determining the type of road surface the vehicle is driving in the method for automatic all-terrain vehicle control in an embodiment of the present invention includes:
- the detection and automatic conversion of different terrain modes are realized through the application of multiple integrated calculation models.
- the first calculation model for 4L mode is called to complete the detection of the road surface type in 4L mode.
- the second calculation model for snow, mud, sand and urban road surface types to complete the detection of urban road mode, snow mode, mud mode, sand mode and 4L mode.
- the urban road mode may include economic mode, standard mode, and sports mode.
- economic mode When it is determined that the current road type is an urban road, it needs to be adaptively detected and tested for the appropriate economic mode, standard mode, and sports mode. Switch to improve vehicle driving performance experience.
- the third vehicle driving state parameter used in the third calculation model may include accelerator operation information and brake pedal operation information.
- the process of determining the road surface type it may be based on accelerator operation information and brake pedal operation.
- the third vehicle driving state parameter may also include other information besides accelerator operation information and brake pedal operation information, such as vehicle speed, etc., so as to ensure high reliability of the determined economy mode, standard mode or sports mode .
- economy mode, standard mode and sports mode are mainly used on urban roads with good road conditions. These three modes will switch the driving style of the vehicle and enhance the driver's driving experience.
- the identification of these three modes may be mainly based on two indicators, an objective indicator judgment and a subjective indicator judgment.
- the objective indicators are mainly based on the dynamic driving index of the vehicle (using the vehicle speed, longitudinal acceleration, lateral acceleration, etc.
- driver Behavior manipulate the accelerator pedal, brake pedal, turn signal, etc.
- driver's driving intention such as the desire to quickly output power to improve acceleration performance
- the vehicle driving state parameter applied in the process of applying the first calculation model to detect the road surface type for the 4L mode may include longitudinal acceleration
- the specific detection process includes: determining the longitudinal direction of the road on which the vehicle is located based on the longitudinal acceleration Gradient; if the longitudinal gradient is greater than the preset gradient threshold, check whether the vehicle speed is less than the preset vehicle speed threshold; if the detected vehicle speed is less than the vehicle speed threshold, judge whether the gear is in 1st gear and whether the throttle opening is greater than the preset Opening threshold; if the gear is in gear 1 and the throttle opening is greater than the opening threshold, it is determined that the vehicle is on a climbing road type that matches the 4L mode.
- the longitudinal gradient of the road on which the vehicle is located can be directly calculated according to the longitudinal acceleration measured by the longitudinal acceleration sensor; preferably, the longitudinal acceleration can also be determined by the Ulman filtering method, and the longitudinal acceleration determined by the filtering can be used to determine the longitudinal acceleration. Determine the corresponding longitudinal slope.
- the slope detection, vehicle speed threshold comparison, gear and throttle opening monitoring are combined to complete the detection of the climbing conditions, thereby ensuring the reliability of the detection results for the climbing conditions.
- the acceleration method uses an accelerometer installed in the vehicle to measure acceleration, and calculate the road slope after decomposing the gravity acceleration component.
- this method is simple and easy to implement, it has high requirements for the installation method, and the installation error of the vehicle's lateral acceleration and the longitudinal accelerometer will bring great errors to the measurement results. Therefore, only the use of sensor detection to determine the longitudinal acceleration will cause significant measurement noise. Therefore, in the embodiment of the present invention, it is also proposed that the Kalman filter can be used to compensate for it, so as to ensure the high detection result for the longitudinal slope. Accuracy.
- the first vehicle driving state parameter summary applied by the first calculation model includes vehicle speed.
- the corresponding calculated longitudinal acceleration is calculated according to the vehicle speed, which may be calculated according to multiple sampled vehicle speed points within the sampling time. Longitudinal acceleration; then, the measured longitudinal acceleration, lateral acceleration and calculated longitudinal acceleration are Kalman filtered to output the corresponding target longitudinal acceleration, where the measured longitudinal acceleration is measured by the longitudinal acceleration sensor; then, based on the target longitudinal Acceleration determines the longitudinal gradient of the road on which the vehicle is located.
- the sensor detects or the system calculates the longitudinal acceleration
- the target longitudinal acceleration is determined based on the Kalman filtering method combined with the calculation of the longitudinal acceleration and the measurement of the longitudinal acceleration, thereby ensuring the high accuracy of the final longitudinal gradient.
- the determined road surface type matches the 4L mode, for example, it is currently in a climbing or trapped condition, it can be detected whether the vehicle is in the N gear state, and when it is not in the N gear state, the 4L mode is sent A prompt signal is sent to the vehicle display to remind the driver to change the gear to N gear in time; and, when in the N gear state, control the vehicle to execute the 4L mode, so that when the vehicle is in the N gear state, it will automatically switch to the 4L mode, Improved vehicle driving performance experience.
- the vehicle driving state information applied in the process of applying the second calculation model to detect the road surface type for the snow mode, the mud mode, the sand mode and the urban road mode can be wheel speed information, specific detection
- the process includes: First, calculate the wheel speed difference of the wheels according to the wheel speed information, where the wheel speed difference includes one or more of the following: front axle wheel speed difference, rear axle wheel speed difference, and cross axle wheel speed difference; Then, determine the target power spectral density corresponding to the wheel speed difference; then, according to the target power spectral density and the reference table of the calibrated road surface, determine whether the vehicle is on snow, mud, sand or urban roads, and the reference table of the calibrated road surface Pre-store multiple calibrated power spectral densities corresponding to multiple road types including snow, mud, sand and urban roads.
- the calibrated power spectral density can be pre-stored by vehicle testers by placing the vehicle on Calibration reference data obtained from multiple experiments on different road types (such as snow, mud, sand, etc.).
- the snow mode, sand mode, and mud mode are mainly used under specific terrain conditions. Selecting a specific mode under specific terrain conditions (such as selecting a mud mode on a muddy road) can improve the passage of vehicles As well as stability, the main function of these three modes is to improve the passage of vehicles on specific roads. Due to the different physical characteristics of the road surface, the wheel speed of the vehicle will also show different changes when driving on different roads. For example, the wheel speed difference of the wheels on a muddy road may be greater.
- the power spectral density when driving on different roads can be calculated.
- the value range of the power spectral density on mud, snow, sand and urban roads decreases accordingly, so the power spectral density can be effectively Identify urban roads, snow, mud and sand.
- the all-terrain control strategy plan in order to improve the intelligence of the all-terrain control system and to meet the various needs of users to the greatest extent, it is designed to support both manual selection mode and automatic mode selection for the user after the user selects the automatic mode.
- the all-terrain control strategy plan in addition, because the all-terrain automatic mode is completed by three different algorithm models to recognize the seven modes, through the integration and coordination of these three algorithm models, the all-terrain automatic mode is realized The above-mentioned seven modes can be automatically switched at will.
- an all-terrain control system architecture that can both manually select the all-terrain mode and automatically select the all-terrain mode is disclosed. It not only improves the intelligence of the all-terrain control system, but also satisfies the needs of customers to the greatest extent. kind of demand.
- the all-terrain automatic mode is to complete the recognition of seven modes by three different algorithm models. By integrating and coordinating the three algorithm models, it is provided that the 4L mode is used to detect the road surface type while combining the dynamic characteristics of the vehicle and driving. The driver’s driving intention is disclosed to automatically select the most suitable driving mode for the driver.
- the vehicle can automatically switch among the seven modes: economy mode, standard mode, sports mode, snow mode, sand mode, and 4L mode.
- economy mode standard mode
- sports mode sports mode
- snow mode snow mode
- sand mode 4L mode
- the vehicle will recognize under which conditions it is necessary to request to enter or request to exit 4L mode.
- the instrument will prompt the driver to stop and engage in N gear to successfully enter or exit 4L mode.
- the vehicle will recognize snow, mud, and sand.
- an embodiment of the present invention takes into account the manual selection of the all-terrain mode and the automatic selection of the all-terrain mode control system architecture, including ATSM (all-terrain manual mode selection switch), AUTO (all-terrain automatic mode selection switch) ), BCM (body control unit), ATSCU (all terrain control system unit), IP (combination instrument), and vehicle subsystems.
- the vehicle subsystems involved in all terrain mode control include EMS (engine control unit), TCU (transmission Electronic control unit), TOD (transfer case electronic control unit), EGD (electronic differential lock) and ESP (electronic stability control system).
- ATSM is a manual all-terrain knob, which includes seven modes: economy mode, standard mode, sports mode, snow mode, mud mode, sand mode, 4L mode.
- AUTO is the all-terrain automatic mode selection switch, it sends out the automatic mode switch signal, and its signal state has only two states: active automatic selection mode or inactive automatic selection mode; among them, conventional switch signal and automatic mode switch Signals can be transmitted to BCM via LIN, and BCM continuously sends terrain mode signals or automatic mode signals to the All Terrain System Control Unit (ATSCU) via CAN bus.
- ATSCU All Terrain System Control Unit
- ATSCU will automatically detect whether the vehicle is currently suitable to enter or exit 4L mode, detect the type of road the vehicle is currently driving on, the current dynamic characteristics of the vehicle and the driver's driving intention, and then calculate the most reasonable terrain mode (That is to calculate which of the seven modes is most suitable for the current working condition), and then send the terrain mode request signal to each vehicle subsystem, that is, send the terrain mode request signal indicating the matching terrain mode to Vehicle subsystem.
- the vehicle subsystem After the vehicle subsystem receives the terrain mode request signal, it will determine the target operation mode corresponding to the terrain mode request signal according to the all-terrain subsystem response strategy table (shown in Table 1), and run in the corresponding target operation mode.
- the all-terrain subsystem response strategy table includes the operation modes of each vehicle subsystem corresponding to different terrain mode request signals, that is, the different terrain modes issued by ESP, EMS, TCU, four-wheel drive, EGD, and IP for ATSCU The response strategy of the request signal.
- the ATSCU will send a terrain mode prompt signal to the instrument, prompting the driver to stop and hang N gear for the all-terrain system Enter or exit 4L mode.
- the ATSCU sends a terrain mode request signal to each subsystem according to the terrain mode signal.
- each vehicle subsystem After each vehicle subsystem receives the terrain mode request signal, it enters the corresponding operation mode according to the response strategy table of the all-terrain subsystem, and each system feeds back its terrain mode status signal to the ATSCU via the CAN bus and makes the final judgment. After the ATSCU judges successfully, it sends a terrain mode confirmation signal to the switch and IP to display the current mode of the vehicle.
- the monitoring process of the response effect of the vehicle subsystem may be performed periodically, for example, monitoring once every 60s. Specifically, it may be periodically receiving a feedback signal for indicating the operating state of the vehicle subsystem from the vehicle subsystem, Then, according to the periodically received feedback signal, it is judged whether the vehicle subsystem successfully responds to the operation mode signal, and when the vehicle subsystem does not successfully respond to the operation mode signal, it sends a terrain mode error signal to the vehicle display to prompt the driver of the vehicle in time The response effect of the subsystem for automatic control of all terrain.
- Figure 4 shows the principle flow of the all-terrain control method. It discloses the execution logic of the all-terrain control system after the manual mode is selected, and also describes the all-terrain control system after the automatic mode is selected. The execution logic.
- ATSCU receives the terrain mode signal (DrivingModeReq) and AUTO mode signal (AUTO_STATE).
- the priority of the all-terrain automatic selection mode is higher than the all-terrain manual selection mode.
- ATSCU continuously sends the terrain mode request signal (DrivingModeReq_ATSCU) to each subsystem EMS ⁇ TCU ⁇ four-wheel drive system ⁇ EGD, and starts to judge the return signal for 60 seconds.
- ATSCU judges EMS ⁇ TCU ⁇ four-wheel drive system according to the requirements of the strategy table. Whether the terrain mode status signal sent by the EGD system responds correctly.
- ATSCU While ATSCU sends the terrain mode request signal DrivingModeReq_ATS, ATSCU continues to send the last terrain mode confirmation signal (DrivingModeDis), if the current demand is met, the terrain mode confirmation signal (DrivingModeDis) is set to the current terrain mode signal, if the demand is not met Then the last terrain mode confirmation signal (DrivingModeDis) is continuously sent.
- DrivingModeDis last terrain mode confirmation signal
- a control system architecture that can both manually select the all-terrain mode and automatically select the all-terrain mode is proposed, which not only improves the intelligence of the all-terrain control system, but also satisfies various needs of customers to the greatest extent.
- a method is designed to automatically select the most suitable driving mode for the driver.
- the system can automatically complete the free switching among the seven modes of economy mode, standard mode, sports mode, snow mode, sand mode, and 4L mode; this patent can reduce the driver's continuous mode switching operation, At the same time, it can also ensure that the mode of the current system matches the current driving scene; and the method of the embodiment of the present invention can be completely based on software-level development and improvement, for example, the control strategy is written into the ECU (Electronic Control Unit) program.
- ECU Electronic Control Unit
- a vehicle all-terrain automatic control device 50 includes: a parameter acquisition unit 501, configured to receive an all-terrain automatic control request, and obtain vehicle driving state parameters based on the all-terrain automatic control request
- the road type determination unit 502 is used to determine the type of road surface the vehicle is driving on based on the acquired vehicle driving state parameters
- the terrain mode execution unit 503 is used to control the vehicle to execute the terrain mode that matches the determined road type , Wherein the terrain mode includes urban road mode, snow mode, mud mode, sand mode and 4L mode.
- the embodiment of the present invention provides a machine-readable storage medium having instructions stored on the machine-readable storage medium, and the instructions are used to cause a machine to execute the aforementioned vehicle all-terrain automatic control method.
- the embodiment of the present invention provides a processor, the processor is used to run a program, wherein the program executes the above-mentioned vehicle all-terrain automatic control method when the program is running.
- the embodiment of the present invention provides a device.
- the device includes a processor, a memory, and a program stored on the memory and capable of running on the processor.
- the processor implements the above-mentioned vehicle all-terrain automatic control method when the program is executed.
- the device in the embodiment of the present invention may be an in-vehicle device or a chip device that can be integrated into an MCU of a vehicle or the like.
- the application also provides a computer program product, which when executed on a vehicle, is suitable for executing a program that initializes the steps of the above-mentioned vehicle all-terrain automatic control method.
- this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
- the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
- These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
- the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
- the computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
- processors CPU
- input/output interfaces network interfaces
- memory volatile and non-volatile memory
- the memory may include non-permanent memory in a computer readable medium, random access memory (RAM) and/or non-volatile memory, such as read only memory (ROM) or flash memory (flash RAM).
- RAM random access memory
- ROM read only memory
- flash RAM flash memory
- Computer-readable media includes permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
- the information can be computer-readable instructions, data structures, program modules, or other data.
- Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices.
- PRAM phase change memory
- SRAM static random access memory
- DRAM dynamic random access memory
- RAM random access memory
- ROM read-only memory
- EEPROM electrically erasable programmable read-only memory
- flash memory or other memory technology
- CD-ROM
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Control Of Transmission Device (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
一种车辆全地形自动控制方法及装置,其中车辆全地形自动控制方法包括:接收全地形自动控制请求,并基于全地形自动控制请求获取车辆行驶状态参数(S11);基于所获取的车辆行驶状态参数,确定车辆所驾驶的路面类型(S12);以及控制车辆执行与所确定的路面类型相匹配的地形模式,其中地形模式包括城市道路模式、雪地模式、泥地模式、沙地模式和4L模式(S13)。由此,不需要人为判断驾驶环境,提高了车辆的智能化程度,并能够针对与路面类型相匹配的地形模式进行自适应选择和控制,提高了车辆的驾驶性能体验。
Description
本发明涉及车辆技术领域,特别涉及一种车辆全地形自动控制方法及装置。
随着人们生活水平的不断提升,人们对于车辆也提出了更多的要求,尤其是在车辆的驾驶性能体验上,车企也都在不断丰富和优化车辆功能以提升产品竞争力。
因此具有多种地形模式的全地形控制系统的车辆便应运而生了,例如经济、标准、运动、雪地、泥地、沙地、4L模式,其中各个模式能够实现不同的作用:
经济模式(economic):该模式下发动机动力输出平顺、变速器换挡积极,车辆的动力性降低、经济性增加,整车的驾驶风格偏于平缓温和;
标准模式(standard):该模式下兼顾整车的动力性以及经济性,整车的驾驶风格偏常规;
运动模式(Sport):该模式下加速踏板灵敏,变速器延迟换挡,车辆的动力性增加,整车的驾驶风格趋于激烈;
雪地模式(Snow):该模式主要在低附着系数条件下行驶或越野行驶,主要使用的路面包括雪地、冰面、草地、砾石路等;
泥地模式(Mud):该模式主要应用在深泥和浅泥的行驶或越野行驶;
沙地模式(Sand):该模式主要应用于沙漠以及戈壁的行驶或者越野行驶;
4L模式(四轮驱动低挡位模式):车辆四驱系统进入4L模式,TCU随之进入低速挡,速度一般会限制在40公里/每小时以下,该模式主要用于在低速脱困工况(如爬坡工况、陷车工况),以及需要大扭矩爬坡的工况。
相应地,目前相关技术中的一些车辆配置了相应的全地形控制系统,使得用户通过手动旋转旋钮就能够实现对地形模式的转换,提高了驾驶员对不同地形环境的操控适应性。但是,本申请的发明人在实践本申请的过程中发现目前相关技术中至少存在以下缺陷:其一,需要驾驶员人为判断当前驾驶环境工况,无法完成对地形模式所适用环境工况的自动化检测;其二,目前相关技术中的全地形控制一般只支持手动选择,例如手动旋转旋钮,而并不支持自适应性的控制切换, 而当车辆在不同地形行驶时驾驶员可能会忘记了切换或切换误操作而导致了地形模式不匹配,严重降低了车辆的驾驶性能体验。
发明内容
有鉴于此,本发明旨在提出一种车辆全地形自动控制方法,以至少解决目前相关技术中人为判断环境工况并手动切换地形驾驶模式所导致的驾驶性能体验较差的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种车辆全地形自动控制方法,其中,所述车辆全地形自动控制方法包括:接收全地形自动控制请求,并基于所述全地形自动控制请求获取车辆行驶状态参数;基于所获取的车辆行驶状态参数,确定车辆所驾驶的路面类型;以及控制所述车辆执行与所确定的路面类型相匹配的地形模式,其中所述地形模式包括城市道路模式、雪地模式、泥地模式、沙地模式和4L模式。
进一步的,所述基于所获取的车辆行驶状态参数,确定车辆所驾驶的路面类型包括:依据第一计算模型并结合第一车辆行驶状态参数,检测车辆所驾驶的路面类型是否是与4L模式相匹配的路面类型;若不是与4L模式相匹配的路面类型,则依据第二计算模型并结合第二车辆行驶状态参数,检测车辆所驾驶的路面类型是否是雪地模式、泥地模式、沙地模式或城市道路模式所对应的路面类型。
进一步的,所述第一车辆行驶状态参数包括纵向加速度、车速、挡位和节气门开度,其中所述依据第一计算模型并结合第一车辆行驶状态参数,检测车辆所驾驶的路面类型是否是与4L模式相匹配的路面类型包括:基于所述纵向加速度来确定所述车辆所处路面的纵向坡度;若所述纵向坡度大于预设的坡度阈值,则检测所述车速是否小于预设的车速阈值;若所检测的车速小于所述车速阈值,则判断所述挡位是否为1挡且所述节气门开度是否大于预设的开度阈值;若所述挡位是为1挡且所述节气门开度大于所述开度阈值,则确定所述车辆是处于与4L模式相匹配的爬坡路面类型。
进一步的,所述第二车辆行驶状态参数包括轮速信息,其中所述依据第二计算模型并结合第二车辆行驶状态参数,检测车辆所驾驶的路面类型是否是雪地模式、泥地模式、沙地模式和城市道路模式所对应的路面类型包括:根据所述轮速信息,计算车轮的轮速差,其中所述轮速差包括以下中的一者或多者:前轴轮速差、后轴轮速差、和交叉轴轮速差;确定所述轮速差所对应的目标功率谱密度;根据所述目标功率谱密度和标定路面类型参照表,确定所述车辆是处于雪地、泥地、沙地或城市道路,其中所述标定路面类型参照表预存储与包括雪地、泥地、沙地和城市道路的多种路面类型相对应的多个标定功率谱 密度。
进一步的,在所述检测车辆所驾驶的路面类型是否是雪地模式、泥地模式、沙地模式和城市道路模式所对应的路面类型之后,所述车辆全地形自动控制方法还包括:当检测到所述车辆所驾驶的路面类型是与所述城市道路模式相匹配时,依据第三计算模型并结合第三车辆行驶状态参数,检测所述车辆所驾驶的路面类型是否是经济模式、标准模式或运动模式所对应的路面类型。
进一步的,所述第三车辆行驶状态参数包括油门操作信息和/或制动踏板操作信息,其中所述依据第三计算模型并结合第三车辆行驶状态参数,检测车辆所驾驶的路面类型是否是经济模式、标准模式或运动模式所对应的路面类型包括:基于所述油门操作信息和/或所述制动踏板操作信息,确定所述车辆的驾驶员意图;基于所述驾驶员意图,检测所述车辆所驾驶的路面类型是否是经济模式、标准模式或运动模式所对应的路面类型。
进一步的,当所确定的路面类型是与所述4L模式相匹配时,其中所述控制所述车辆执行与所确定的路面类型相匹配的地形模式包括:检测所述车辆是否已处于N挡状态;以及当不处于N挡状态时,发送4L模式提示信号至车辆显示器;以及当处于N挡状态时,控制所述车辆执行4L模式。
进一步的,所述控制所述车辆执行与所确定的路面类型相匹配的地形模式包括:发送用于指示所述相匹配的地形模式的地形模式请求信号至车辆子系统,以使得所述车辆子系统根据全地形子系统响应策略表确定对应于所述地形模式请求信号的目标操作方式,并以所述目标操作方式运行,其中,所述全地形子系统响应策略表包括对应不同地形模式请求信号的各车辆子系统的操作方式,以及,所述车辆子系统包括以下中的一者或多者:发动机控制单元、分动器电控单元、变速器电控单元、电子差速锁和电子稳定控制系统。
进一步的,在所述发送用于指示所述相匹配的地形模式的地形模式请求信号至车辆子系统之后,所述车辆全地形自动控制方法还包括:周期性地从所述车辆子系统接收用于指示所述车辆子系统的操作状态的反馈信号;根据所周期性接收的反馈信号,判断所述车辆子系统是否成功响应所述操作方式信号;以及当所述车辆子系统未成功响应所述操作方式信号时,发送地形模式错误信号至车辆显示器。
相对于现有技术,本发明所述的车辆全地形自动控制方法具有以下优势:
在本发明所述的车辆全地形自动控制方法中,通过获取车辆行驶状态参数来检测车辆所驾驶的路面类型,不需要人为判断驾驶环境,提高了车辆的智能化程度;另外,车辆能够针对与路面类型相匹配的 地形模式进行自适应选择和控制,而不需要驾驶员手动选择或切换驾驶模式,提高了车辆的驾驶性能体验。
本发明的另一目的在于提出一种车辆全地形自动控制装置,以至少解决目前相关技术中人为判断环境工况并手动切换地形驾驶模式所导致的驾驶性能体验较差的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种车辆全地形自动控制装置,其中,所述车辆全地形自动控制装置包括:参数获取单元,用于接收全地形自动控制请求,并基于所述全地形自动控制请求获取车辆行驶状态参数;路面类型确定单元,用于基于所获取的车辆行驶状态参数,确定车辆所驾驶的路面类型;以及地形模式执行单元,用于控制所述车辆执行与所确定的路面类型相匹配的地形模式,其中所述地形模式包括城市道路模式、雪地模式、泥地模式、沙地模式和4L模式。
一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行上述的车辆全地形自动控制方法。
一种处理器,用于运行程序,所述程序被运行时用于执行:如上述的车辆全地形自动控制方法。
所述车辆全地形自动控制装置与上述车辆全地形自动控制方法相对于现有技术所具有的优势相同,在此不再赘述。本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施方式及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施方式所述的车辆全地形自动控制方法的流程图;
图2为本发明实施方式所述的车辆全地形自动控制方法中用于确定车辆所驾驶的路面类型的流程;
图3为适于应用本发明实施方式所述的车辆全地形自动控制方法的控制系统架构原理示意图;
图4为本发明实施方式所述的车辆全地形自动控制方法的原理流程示意图;
图5是本发明实施方式所述的全地形自动控制装置的结构框图。
附图标记说明:
501 参数获取单元 502 路面类型确定单元
503 地形模式执行单 50 车辆全地形自动控制装置
需要说明的是,在不冲突的情况下,本发明中的实施方式及实施方式中的特征可以相互组合。
下面将参考附图并结合实施方式来详细说明本发明。
如图1,其所示出的是本发明一实施例的车辆全地形自动控制方法,包括:
S11、接收全地形自动控制请求,并基于全地形自动控制请求获取车辆行驶状态参数。
关于本发明实施例的执行主体,其可以是各种适于配置在车辆中的控制器或处理器,例如一方面车辆所自带的控制器或处理器,通过对这些控制器或处理器进行相应的硬件和软件的改进,以实现本发明实施例中的车辆地形模式控制方法;另一方面,其还可以是额外配置在车辆上的处理器或控制器,例如ATSCU(All terrain system control unit,全地形系统控制单元),以实现如本申请中所描述的车辆地形模式控制方法,且以上实施方式都属于本发明的保护范围内。
其中,全地形自动控制请求可以是基于用户操作而触发的,例如可以是在车辆上设置对应全地形自动控制的按键,并当驾驶员操作该按键便能够触发本发明实施例中的车辆自动执行全地形的自动控制过程。
S12、基于所获取的车辆行驶状态参数,确定车辆所驾驶的路面类型。
其中,车辆行驶状态参数可以是任意的能够用于判断车辆所驾驶路面的路面类型的参数,对其可不作限制,例如通过对车轮滑移率的实时检测能够判断车辆是否打滑从而判断车辆所处路面类型是否为低附路面。另外,路面类型除了可以包括如雪地、泥地、沙地等路面状况类型之外,其还可以是表示车辆在路面类型上的驾驶工况,例如车辆在坡道路面的上坡驾驶工况、车辆在泥坑中的陷车工况等等。
S13、控制车辆执行与所确定的路面类型相匹配的地形模式,其中该地形模式包括城市道路模式、雪地模式、泥地模式、沙地模式和4L模式。
可以理解的是,不同的地形模式适于车辆在不同路面类型的路面上行驶,例如车辆在雪地上适宜执行雪地模式、在城市道路上适宜执行城市道路模式、在泥地上适宜执行泥地模式、在沙地上适宜执行沙地模式、以及在陷车或爬坡的脱困工况中适宜执行4L模式(四轮驱动低挡位模式)。
在本发明实施例中,通过获取车辆行驶状态参数来检测车辆所驾驶路面类型,不需要人工干预或判断驾驶环境,提高了车辆的智能程 度;另外,车辆能够针对与路面类型相匹配的地形模式进行自适应选择和控制,而不需要驾驶员手动选择或切换驾驶模式,提高了车辆的驾驶性能体验。
需说明的是,在确定路面类型的过程中,不同路面类型所需求的车辆行驶状态参数和所采用的计算模型可能也是不一样的,例如用于计算对应4L模式的爬坡路面类型的车辆行驶状态参数和所采用的第一计算模型是不同于对应雪地模式的雪地类型的车辆行驶状态参数的所采用的第二计算模型。
鉴于此,本实施例还提出,可以是在车辆中集成针对不同路面类型的多个计算模型,并在实际确定路面类型的过程中,依次调用多个计算模型以实现对不同路面类型的识别与区分。如图2所示,本发明一实施例的车辆全地形自动控制方法中用于确定车辆所驾驶的路面类型的流程,包括:
S21、依据第一计算模型并结合第一车辆行驶状态参数,检测车辆所驾驶的路面类型是否是与4L模式相匹配的路面类型。
S22、若不是与4L模式相匹配的路面类型,则依据第二计算模型并结合第二车辆行驶状态参数,检测车辆所驾驶的路面类型是否是雪地模式、泥地模式、沙地模式或城市道路模式所对应的路面类型。
在目前具有全地形驾驶功能的车辆中,无法实现对4L模式的自动检测,也无法实现针对4L模式和其他模式之间的自适应切换。在本实施例中,通过应用所集成的多个计算模型,实现了对不同地形模式的检测和自动转换,其中先通过调用针对4L模式的第一计算模型来完成对4L模式下路面类型的检测,之后再调用针对雪地、泥地、沙地和城市道路路面类型的第二计算模型来完成对城市道路模式、雪地模式、泥地模式、沙地模式和4L模式的检测。
进一步的,还可以是在地形模式中加入更多的细分控制模式,并通过额外的检测过程以实现对这些细分控制模式的切换。具体的,城市道路模式可以是包括经济模式、标准模式及运动模式,在确定了当前路面类型为城市道路时,还需要对其所适宜的经济模式、标准模式及运动模式进行自适应的检测和切换,从而提高车辆驾驶性能体验。
S23、当检测到车辆所驾驶的路面类型是与城市道路模式相匹配时,依据第三计算模型并结合第三车辆行驶状态参数,检测车辆所驾驶的路面类型是否是经济模式、标准模式或运动模式所对应的路面类型。
具体的,第三计算模型中所采用的第三车辆行驶状态参数可以是包括油门操作信息和制动踏板操作信息,在确定路面类型的过程中,其可以是基于油门操作信息和制动踏板操作信息,确定车辆的驾驶员意图,之后,基于驾驶员意图,检测车辆所驾驶的路面类型是否是经 济模式、标准模式或运动模式所对应的路面类型。例如,可以是当油门操作信息指示油门操作频繁或油门深度长时间较大时,说明驾驶员比较期望加速行驶,则可以是确定当前路面类型是对应运动模式的目标城市道路模式的路面类型。优选地,第三车辆行驶状态参数还可以是包括除油门操作信息和制动踏板操作信息之外的其他信息,例如车速等,从而保障所确定的经济模式、标准模式或运动模式的高可靠性。其中,经济模式、标准模式以及运动模式主要应用在路况良好的城市道路,这三种模式会切换车辆的驾驶风格,提升驾驶员的驾驶体验。优选地,在识别这三种模式时可以是主要依据两个指标,一个客观指标判断,一个主观指标判断。客观指标主要是根据整车的动态驾驶指数(利用整车的车速、纵向加速度、侧向加速度等评估出来整车激烈驾驶的程度)来判断当前最合适的驾驶模式;主观指标是通过驾驶员的行为(操纵加速踏板、制动踏板、转向灯等)来判断驾驶员的驾驶意图(如希望车辆快速输出动力提升加速性能),然后根据驾驶员的驾驶意图给驾驶员自动选择最合适的驾驶模式。
在一些实施方式中,应用第一计算模型来检测针对4L模式的路面类型的过程中所应用的车辆驾驶状态参数可以包括纵向加速度,具体检测过程包括:基于纵向加速度来确定车辆所处路面的纵向坡度;若纵向坡度大于预设的坡度阈值,则检测车速是否小于预设的车速阈值;若所检测的车速小于车速阈值,则判断挡位是否为1挡且节气门开度是否大于预设的开度阈值;若挡位是为1挡且节气门开度大于开度阈值,则确定车辆是处于与4L模式相匹配的爬坡路面类型。
其中,可以是直接根据纵向加速度传感器所测量的纵向加速度来推算车辆所处路面的纵向坡度;优选地,还可以是通过尔曼滤波方法来确定纵向加速度,并由经滤波所确定的纵向加速度来确定相应的纵向坡度。
在本发明实施例中,结合坡度检测、车速阈值比较、挡位和节气门开度监测,来完成对爬坡工况的检测,从而保障了针对爬坡工况的检测结果的可靠性。
需说明的是,加速度法利用安装在车辆的加速度计测量加速度,分解出重力加速度分量后计算路面坡度。该方法虽然简单易行,但对于安装方式的要求很高,车辆的横向加速度及纵向加速度计的安装误差会对测量结果带来很大误差。因此,仅利用传感器检测确定纵向加速度会导致明显的量测噪声,所以在本发明实施例中还提出了可以是利用卡尔曼滤波的方式对其进行补偿,从而保障针对纵向坡度的检测结果的高精确度。
具体的,第一计算模型所应用的第一车辆行驶状态参数汇总包括车速,首先根据车速计算相对应的计算纵向加速度,其中可以是根据 采样时间内的多个采样车速点来计算相对应的计算纵向加速度;然后,将测量纵向加速度、侧向加速度和计算纵向加速度进行卡尔曼滤波,以输出相应的目标纵向加速度,其中测量纵向加速度是由纵向加速度传感器经测量而得到的;之后,基于目标纵向加速度,确定车辆所处路面的纵向坡度。
需说明的是,在传感器检测或系统计算纵向加速度时,都会存在相应的量测噪声或系统计算噪声,因此可以是实现通过多次实验标定量测噪声基数和系统噪声基数,并进行相应的卡尔曼滤波。其中,可以是依据预设的量测噪声基数和预设的系统噪声基数对测量纵向加速度和计算纵向加速度进行卡尔曼协方差计算,以得出相对应的噪声误差补偿值;依据噪声误差补偿值对测量纵向加速度和计算纵向加速度进行卡尔曼增益计算,以得出相对应的卡尔曼增益值;依据卡尔曼增益值对侧向加速度、测量纵向加速度和计算纵向加速度预测相对应的卡尔曼最优值,并将所预测的卡尔曼最优值确定为目标纵向加速度。
在本实施例中,基于卡尔曼滤波方式并结合计算纵向加速度和测量纵向加速来确定目标纵向加速度,从而保障了所最终确定的纵向坡度的高精确度。
进一步的,当所确定的路面类型是与4L模式相匹配时,例如当前处于爬坡或陷车工况,可以是检测车辆是否已处于N挡状态,以及当不处于N挡状态时,发送4L模式提示信号至车辆显示器,由此提醒驾驶员及时将挡位换至N挡;以及,当处于N挡状态时,控制车辆执行4L模式,由此当车辆处于N挡状态时自动转换为4L模式,提高了车辆驾驶性能体验。
在一些实施方式中,应用第二计算模型来检测针对雪地模式、泥地模式、沙地模式和城市道路模式的路面类型的过程中所应用的车辆驾驶状态信息可以轮速信息,具体的检测过程包括:首先,根据轮速信息,计算车轮的轮速差,其中轮速差包括以下中的一者或多者:前轴轮速差、后轴轮速差、和交叉轴轮速差;然后,确定轮速差所对应的目标功率谱密度;之后,根据目标功率谱密度和标定路面类型参照表,确定车辆是处于雪地、泥地、沙地或城市道路,其中标定路面类型参照表预存储与包括雪地、泥地、沙地和城市道路的多种路面类型相对应的多个标定功率谱密度,可以理解的是,标定功率谱密度可以是车辆测试人员预先通过将车辆置于不同路面类型(例如雪地、泥地、沙地等)下进行多次实验所得到的标定参考数据。其中,雪地模式、沙地模式以及泥地模式主要应用于特定的地形条件下,在特定的地形条件下选择特定的模式(如在泥地路面上选择泥地模式)能提升车辆的通过性以及稳定性,这三种模式的主要作用是提升车辆在特定路面上的通过性。由于道路表面的物理特性不同,车辆在不同的路面上行 驶时轮速也会呈现不同的变化,比如在泥泞的路面上车轮的轮速差可能会更大。基于轮速差能够计算出在不同路面上行驶时的功率谱密度,在泥地、雪地、沙地和城市道路上的功率谱密度其数值范围依此递减,所以根据功率谱密度能够有效的识别城市道路、雪地、泥地和沙地。
在本发明实施例中,为了提升全地形控制系统的智能程度同时为最大程度上满足用户的各种需求,设计了既能支持手动选择模式也能支持在用户选择自动模式后自动给用户选择模式的全地形控制策略方案;另外,由于全地形自动模式是由三种不同的算法模型完成对七种模式的识别,通过对这三种算法模型进行了集成和统筹,使得全地形自动模式实现了在上述这七种模式间能够任意自动地进行切换。
在本发明实施例中,公开了能兼顾手动选择全地形模式和自动选择全地形模式的全地形控制系统架构,它不仅提升了全地形控制系统的智能程度,同时最大程度上满足了客户的各种需求。另外,全地形自动模式是由三种不同的算法模型完成对七种模式的识别,通过对三种算法模型进行集成和统筹,给出了通过检测4L模式检测路面类型同时结合车辆动态特性以及驾驶员驾驶意图,公开了自动为驾驶员选择最合适的驾驶模式的方法。
在自动模式(AUTO)下车辆可自动完成经济模式、标准模式、运动模式、雪地模式、沙地模式、4L模式七种模式间的自由切换。首先,车辆会识别在何种工况下需要请求进入或者请求退出4L模式同时会通过仪表提示驾驶员停车挂N档以便成功进入或者退出4L模式,其次车辆会识别雪地、泥地、沙地以及城市道路这四种道路类型,在雪地、泥地、沙地下车辆会对应的自动选择雪地模式、泥地模式和沙地模式;当车辆识别到当前地形是城市道路时,车辆会结合驾驶员的意图自动从经济模式、标准模式、运动模式三种模式下选择一种最适合当前工况的模式。因此,通过本发明实施例,能够减少驾驶员不断切换模式的操作,同时也能保证当前的系统所处的模式与当前的驾驶场景相匹配。
如图3所示,本发明一实施例的兼顾手动选择全地形模式和自动选择全地形模式的控制系统架构,包括ATSM(全地形的手动模式选择开关)、AUTO(全地形的自动模式选择开关)、BCM(车身控制单元)、ATSCU(全地形控制系统单元)、IP(组合仪表)以及车辆子系统,其中全地形模式控制所涉及的车辆子系统包括EMS(发动机控制单元)、TCU(变速器电控单元)、TOD(分动器电控单元)、EGD(电子差速锁)和ESP(电子稳定控制系统)。
其中,ATSM是手动全地形旋钮,它包括七种模式:经济模式、标准模式、运动模式、雪地模式、泥地模式、沙地模式、4L模式,在手动选择不同的模式时开关会发送不同的开关请求信号;AUTO是 全地形的自动模式选择开关,它发出自动模式开关信号,它信号的状态只有两种:激活自动选择模式或者未激活自动选择模式;其中,常规开关信号和自动模式开关信号都可以通过LIN传送至BCM,BCM将地形模式信号或者自动模式信号通过CAN总线持续发送给全地形系统控制单元(ATSCU)。
如果自动模式信号处于激活状态那么ATSCU会自动检测车辆当前是否适合进入或者退出4L模式、检测车辆当前行驶的路面类型、车辆当前的动态特性以及驾驶员的驾驶意图,然后会计算出最合理的地形模式(即计算出当前工况最适合应用七种模式中的哪一种),然后通过地形模式请求信号发送给各个车辆子系统,也就是发送用于指示相匹配的地形模式的地形模式请求信号至车辆子系统。
在车辆子系统接收到地形模式请求信号之后,会根据全地形子系统响应策略表(如表1所示)确定对应于地形模式请求信号的目标操作方式,并以相应的目标操作方式运行。其中,在全地形子系统响应策略表中包括对应不同地形模式请求信号的各车辆子系统的操作方式,也就是ESP、EMS、TCU、四驱、EGD和IP针对ATSCU所发出的不同的地形模式请求信号的响应策略。
具体的,在车辆全地形自动控制方法流程中,如果当前在自动模式下并且系统推荐进入或者退出4L模式,那么ATSCU会发送地形模式提示信号给仪表,提示驾驶员停车挂N档以便全地形系统进入或者退出4L模式。
如果自动模式信号处于未激活状态,那么ATSCU根据地形模式信号发送地形模式请求信号给各子系统。
各车辆子系统接收到地形模式请求信号后,根据全地形子系统响应策略表分别进入相应的操作模式运行,同时各系统将各自的地形模式状态信号经CAN总线反馈到ATSCU并做出最终的判断,ATSCU判断成功后发送地形模式确认信号给开关与IP,用于显示当前车辆所在的模式。
优选地,可以是周期性地执行对车辆子系统响应效果的监控过程,例如每60s监控一次,具体的可以是周期性地从车辆子系统接收用于指示车辆子系统的操作状态的反馈信号,然后根据所周期性接收的反馈信号,判断车辆子系统是否成功响应操作方式信号,以及当车辆子系统未成功响应操作方式信号时,发送地形模式错误信号至车辆显示器,从而及时向驾驶员提示车辆子系统针对全地形自动控制的响应效果。
表1全地形子系统响应策略表
如图4,其所示出的是全地形控制方法的原理流程,其公开了在描述手动选择模式后全地形控制系统的执行逻辑的同时,也还描述了在选择自动模式后全地形控制系统的执行逻辑。
ATSCU接收到地形模式信号(DrivingModeReq)、AUTO模式信号(AUTO_STATE),在ATSCU逻辑中,全地形自动选择模式的优先级要高于全地形手动选择模式。
一)全地形自动选择模式模块判断逻辑
1)首先根据4L请求进入或者退出模块判断当前是否请求进入4L模式(4LRequest=1?),如果条件满足那么自动模式请求信号AUTOReq=4L。
2)如果不满足条件则继续根据路面类型识别模块判断,首先判断地形识别信号SurfaceReco是否为城市道路(CityRoad),如果当前不在城市道路上那么就进行如下判断:判断路面类型是否为雪地,即SurfaceReco=Snow是否成立,如果条件成立则标记自动模式请求信号AUTOReq=Snow,如果条件不成立则继续判断路面类型是否为沙地,即SurfaceReco=Sand是否成立,如果条件成立则标记自动模式请求信号AUTOReq=Sand;如果条件不成立则标记自动模式请求信号路面类型为泥地,即AUTOReq=Mud。
3)如果路面类型为城市道路,即SurfaceReco为CityRoad,则根据驾驶模式自动识别模块进行判断,判断DrivingMode=ECO是否成立,如果条件成立则标记自动模式请求信号AUTOReq=ECO,如果条件不成立则继续判断DrivingMode=Standard是否成立,如果条件成立则标记自动模式请求信号AUTOReq=Standard;如果条件不成立则标记自动模式请求信号AUTOReq=Sport。
二)全地形地形模式请求信号以及各子系统执行请求的逻辑
1)首先判断自动模式开关信号是否激活,如果激活了那么地形模式请求信号当前发送的值就和自动模式请求信号保持一致,即DrivingModeReq_ATS=AUTOReq。
如果自动模式开关信号未激活那么地形模式请求信号当前发送 的值就和地形模式信号保持一致,即DrivingModeReq_ATS=DrivingModeReq。
2)若地形模式请求信号DrivingModeReq_ATS=4L,则继续判断当前的档位是否为N档,如果不为N档则发送N档提示信号(shift_Warn_N),仪表接收到N档提示信号后会显示“为完成4L模式切换,请停车挂N档”。
3)ATSCU持续发送地形模式请求信号(DrivingModeReq_ATSCU)给各子系统EMS\TCU\四驱系统\EGD,开始进行60秒的返回信号判断,ATSCU依据策略表要求,判断EMS\TCU\四驱系统\EGD系统发送的地形模式状态信号是否正确响应。
4)若60秒内各子系统未完成响应,则ATSCU发送地形模式错误信号DrivingModeDis=Failed给IP和BCM,此时ATSCU仍然保留全地形的判断功能,地形模式请求信号变化后ATSCU重新开始60s监控。
5)ATSCU发送地形模式请求信号DrivingModeReq_ATS的同时,ATSCU持续发送上一地形模式确认信号(DrivingModeDis),如果满足当前需求,则将地形模式确认信号(DrivingModeDis)设置为当前地形模式信号,如果不满足需求则持续发送上一地形模式确认信号(DrivingModeDis)。
通过本发明实施例,提出了能兼顾手动选择全地形模式和自动选择全地形模式的控制系统架构,它不仅提升了全地形控制系统的智能程度同时最大程度上满足了客户的各种需求。其中,通过检测4L模式,检测路面类型同时结合车辆动态特性以及驾驶员驾驶意图,设计出了自动为驾驶员选择最合适的驾驶模式的方法。在自动模式(AUTO)下系统可自动完成经济模式、标准模式、运动模式、雪地模式、沙地模式、4L模式七种模式间的自由切换;该专利能够减少驾驶员不断切换模式的操作,同时也能保证当前的系统所处的模式与当前的驾驶场景相匹配;并且,本发明实施例方法可以完全基于软件层面的开发和改进,例如将控制策略写入ECU(电子控制单元)程序即可实现对底盘性能的优化,操作方便且还能够节省开发成本。
如图5所示,本发明一实施例的车辆全地形自动控制装置50,包括:参数获取单元501,用于接收全地形自动控制请求,并基于所述全地形自动控制请求获取车辆行驶状态参数;路面类型确定单元502,用于基于所获取的车辆行驶状态参数,确定车辆所驾驶的路面类型;地形模式执行单元503,用于控制所述车辆执行与所确定的路面类型相匹配的地形模式,其中所述地形模式包括城市道路模式、雪地模式、泥地模式、沙地模式和4L模式。
关于本发明实施例的全地形自动控制装置的更多的细节,可以参照上文关于全地形自动控制方法实施例的描述,并能够取得与上述全地形自动控制方法实施例相同或相应的效果。
本发明实施例提供了一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行上述车辆全地形自动控制方法。
本发明实施例提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行实现上述车辆全地形自动控制方法。
本发明实施例提供了一种设备,设备包括处理器、存储器及存储在存储器上并可在处理器上运行的程序,处理器执行程序时实现上述车辆全地形自动控制方法。本发明实施例中的设备可以是车载设备或可集成至车辆等的MCU中的芯片设备等。
本申请还提供了一种计算机程序产品,当在车辆上执行时,适于执行初始化有上述车辆全地形自动控制方法的步骤的程序。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (12)
- 一种车辆全地形自动控制方法,其特征在于,所述车辆全地形自动控制方法包括:接收全地形自动控制请求,并基于所述全地形自动控制请求获取车辆行驶状态参数;基于所获取的车辆行驶状态参数,确定车辆所驾驶的路面类型;以及控制所述车辆执行与所确定的路面类型相匹配的地形模式,其中所述地形模式包括城市道路模式、雪地模式、泥地模式、沙地模式和4L模式。
- 根据权利要求1所述的车辆全地形自动控制方法,其特征在于,所述基于所获取的车辆行驶状态参数,确定车辆所驾驶的路面类型包括:依据第一计算模型并结合第一车辆行驶状态参数,检测车辆所驾驶的路面类型是否是与4L模式相匹配的路面类型;若不是与4L模式相匹配的路面类型,则依据第二计算模型并结合第二车辆行驶状态参数,检测车辆所驾驶的路面类型是否是雪地模式、泥地模式、沙地模式或城市道路模式所对应的路面类型。
- 根据权利要求2所述的车辆全地形自动控制方法,其特征在于,所述第一车辆行驶状态参数包括纵向加速度、车速、挡位和节气门开度,其中所述依据第一计算模型并结合第一车辆行驶状态参数,检测车辆所驾驶的路面类型是否是与4L模式相匹配的路面类型包括:基于所述纵向加速度来确定所述车辆所处路面的纵向坡度;若所述纵向坡度大于预设的坡度阈值,则检测所述车速是否小于预设的车速阈值;若所检测的车速小于所述车速阈值,则判断所述挡位是否为1挡且所述节气门开度是否大于预设的开度阈值;若所述挡位是为1挡且所述节气门开度大于所述开度阈值,则确定所述车辆是处于与4L模式相匹配的爬坡路面类型。
- 根据权利要求2所述的车辆全地形自动控制方法,其特征在于,所述第二车辆行驶状态参数包括轮速信息,其中所述依据第二计算模型并结合第二车辆行驶状态参数,检测车辆所驾驶的路面类型是否是雪地模式、泥地模式、沙地模式和城市道路模式所对应的路面类型包括:根据所述轮速信息,计算车轮的轮速差,其中所述轮速差包括以下中的一者或多者:前轴轮速差、后轴轮速差、和交叉轴轮速差;确定所述轮速差所对应的目标功率谱密度;根据所述目标功率谱密度和标定路面类型参照表,确定所述车辆是处于雪地、泥地、沙地或城市道路,其中所述标定路面类型参照表预存储与包括雪地、泥地、沙地和城市道路的多种路面类型相对应的多个标定功率谱密度。
- 根据权利要求2所述的车辆全地形自动控制方法,其特征在于,在所述检测车辆所驾驶的路面类型是否是雪地模式、泥地模式、沙地模式和城市道路模式所对应的路面类型之后,所述车辆全地形自动控制方法还包括:当检测到所述车辆所驾驶的路面类型是与所述城市道路模式相匹配时,依据第三计算模型并结合第三车辆行驶状态参数,检测所述 车辆所驾驶的路面类型是否是经济模式、标准模式或运动模式所对应的路面类型。
- 根据权利要求5所述的车辆全地形自动控制方法,其特征在于,所述第三车辆行驶状态参数包括油门操作信息和/或制动踏板操作信息,其中所述依据第三计算模型并结合第三车辆行驶状态参数,检测车辆所驾驶的路面类型是否是经济模式、标准模式或运动模式所对应的路面类型包括:基于所述油门操作信息和/或所述制动踏板操作信息,确定所述车辆的驾驶员意图;基于所述驾驶员意图,检测所述车辆所驾驶的路面类型是否是经济模式、标准模式或运动模式所对应的路面类型。
- 根据权利要求1所述的车辆全地形自动控制方法,其特征在于,当所确定的路面类型是与所述4L模式相匹配时,其中所述控制所述车辆执行与所确定的路面类型相匹配的地形模式包括:检测所述车辆是否已处于N挡状态;以及当不处于N挡状态时,发送4L模式提示信号至车辆显示器;以及当处于N挡状态时,控制所述车辆执行4L模式。
- 根据权利要求1所述的车辆全地形自动控制方法,其特征在于,所述控制所述车辆执行与所确定的路面类型相匹配的地形模式包括:发送用于指示所述相匹配的地形模式的地形模式请求信号至车辆子系统,以使得所述车辆子系统根据全地形子系统响应策略表确定 对应于所述地形模式请求信号的目标操作方式,并以所述目标操作方式运行,其中,所述全地形子系统响应策略表包括对应不同地形模式请求信号的各车辆子系统的操作方式,以及,所述车辆子系统包括以下中的一者或多者:发动机控制单元、分动器电控单元、变速器电控单元、电子差速锁和电子稳定控制系统。
- 根据权利要求8所述的车辆全地形自动控制方法,其特征在于,在所述发送用于指示所述相匹配的地形模式的地形模式请求信号至车辆子系统之后,所述车辆全地形自动控制方法还包括:周期性地从所述车辆子系统接收用于指示所述车辆子系统的操作状态的反馈信号;根据所周期性接收的反馈信号,判断所述车辆子系统是否成功响应所述操作方式信号;以及当所述车辆子系统未成功响应所述操作方式信号时,发送地形模式错误信号至车辆显示器。
- 一种车辆全地形自动控制装置,其特征在于,所述车辆全地形自动控制装置包括:参数获取单元,用于接收全地形自动控制请求,并基于所述全地形自动控制请求获取车辆行驶状态参数;路面类型确定单元,用于基于所获取的车辆行驶状态参数,确定车辆所驾驶的路面类型;以及地形模式执行单元,用于控制所述车辆执行与所确定的路面类型相匹配的地形模式,其中所述地形模式包括城市道路模式、雪地模式、泥地模式、沙地模式和4L模式。
- 一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行权利要求1至9中任意一项所述的车辆全地形自动控制方法。
- 一种处理器,其特征在于,用于运行程序,所述程序被运行时用于执行:如权利要求1至9中任意一项所述的车辆全地形自动控制方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910088060.6A CN110789527A (zh) | 2019-01-29 | 2019-01-29 | 车辆全地形自动控制方法及装置 |
CN201910088060.6 | 2019-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020156265A1 true WO2020156265A1 (zh) | 2020-08-06 |
Family
ID=69426890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/072932 WO2020156265A1 (zh) | 2019-01-29 | 2020-01-19 | 车辆全地形自动控制方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110789527A (zh) |
WO (1) | WO2020156265A1 (zh) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111497614A (zh) * | 2020-04-27 | 2020-08-07 | 江铃汽车股份有限公司 | 驾驶模式切换的仪表显示方法及系统 |
CN112805170B (zh) * | 2020-05-19 | 2022-04-29 | 华为技术有限公司 | 驱动装置、双电机驱动系统、汽车、驱动装置的控制方法 |
CN111532277B (zh) * | 2020-06-01 | 2021-11-30 | 中国第一汽车股份有限公司 | 车辆地形识别系统、方法及车辆 |
CN111703426A (zh) * | 2020-06-05 | 2020-09-25 | 中国第一汽车股份有限公司 | 一种车辆驾驶模式控制方法、装置、车载设备及存储介质 |
CN111942403B (zh) * | 2020-08-12 | 2022-02-22 | 中国第一汽车股份有限公司 | 一种模式切换方法、装置、设备及存储介质 |
CN112046498A (zh) * | 2020-09-11 | 2020-12-08 | 中国第一汽车股份有限公司 | 一种驾驶模式的切换提示方法、装置、车辆和存储介质 |
CN111994068B (zh) * | 2020-10-29 | 2021-03-16 | 北京航空航天大学 | 一种基于智能轮胎触觉感知的智能驾驶汽车控制系统 |
CN114604264B (zh) * | 2020-12-03 | 2024-08-23 | 北京新能源汽车股份有限公司 | 一种行驶控制方法、装置及电动汽车 |
CN112628392A (zh) * | 2021-01-29 | 2021-04-09 | 效俊林 | 双离合自动变速器控制方法 |
CN114670838B (zh) * | 2021-02-22 | 2024-08-20 | 北京新能源汽车股份有限公司 | 一种驾驶模式控制方法、装置及设备 |
CN114590242A (zh) * | 2021-03-31 | 2022-06-07 | 长城汽车股份有限公司 | 一种车辆控制方法及装置 |
CN114670664A (zh) * | 2021-04-27 | 2022-06-28 | 北京新能源汽车股份有限公司 | 一种全地形驾驶模式的驾驶控制方法及装置 |
CN114763130A (zh) * | 2021-06-17 | 2022-07-19 | 长城汽车股份有限公司 | 一种全地形控制方法、装置、存储介质及车辆 |
CN114834452A (zh) * | 2021-07-07 | 2022-08-02 | 长城汽车股份有限公司 | 驾驶模式切换方法、关系确定方法、装置、系统及车辆 |
CN113492861B (zh) * | 2021-07-26 | 2022-12-16 | 中汽创智科技有限公司 | 车辆控制方法和装置 |
CN113954855B (zh) * | 2021-12-07 | 2023-04-07 | 吉林大学 | 一种汽车驾驶模式自适应匹配方法 |
CN114291047B (zh) * | 2021-12-29 | 2023-03-28 | 奇瑞汽车股份有限公司 | 用于汽车的辅助限滑方法、装置及设备 |
US20230227046A1 (en) * | 2022-01-14 | 2023-07-20 | Toyota Motor North America, Inc. | Mobility index determination |
CN114332825B (zh) * | 2022-03-10 | 2022-06-17 | 中汽信息科技(天津)有限公司 | 基于深度学习的道路地形分布识别方法、设备和存储介质 |
CN115230649A (zh) * | 2022-08-22 | 2022-10-25 | 北京汽车集团越野车有限公司 | 集成式线控制动系统和具有其的车辆 |
CN118220155B (zh) * | 2024-05-27 | 2024-09-20 | 长城汽车股份有限公司 | 一种行驶模式的控制方法、系统及车辆 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4889015A (en) * | 1987-07-02 | 1989-12-26 | Mitsubishi Denki Kabushiki Kaisha | Automatic transmission control device |
US5776031A (en) * | 1994-09-02 | 1998-07-07 | Hitachi, Ltd. | Power train controller and control method |
EP1371524A2 (en) * | 2002-06-10 | 2003-12-17 | CNH Belgium N.V. | Vehicle control system and apparatus therefor. |
CN1908471A (zh) * | 2006-08-03 | 2007-02-07 | 同济大学 | 汽车自动变速器的电控装置 |
CN101553377A (zh) * | 2006-11-27 | 2009-10-07 | 标致·雪铁龙汽车公司 | 提高车辆牵引力的控制设备 |
US20090319146A1 (en) * | 2008-06-20 | 2009-12-24 | Graham Toby E | Traction control system for diesel powered vehicles |
CN103192832A (zh) * | 2013-04-28 | 2013-07-10 | 长城汽车股份有限公司 | 车辆雪地模式控制系统及相应的控制方法 |
CN103523018A (zh) * | 2013-10-29 | 2014-01-22 | 中国人民解放军军事交通学院 | 一种能适应湿滑路面的自动变速器控制系统及控制方法 |
CN104755348A (zh) * | 2012-09-06 | 2015-07-01 | 捷豹路虎有限公司 | 车辆控制系统和方法 |
CN107054376A (zh) * | 2011-02-18 | 2017-08-18 | 捷豹路虎有限公司 | 车辆和控制车辆的方法 |
CN107813824A (zh) * | 2016-08-30 | 2018-03-20 | 长城汽车股份有限公司 | 车辆的全地形模式自动切换方法、系统及车辆 |
CN108382387A (zh) * | 2018-01-12 | 2018-08-10 | 上海汽车集团股份有限公司 | 车辆驱动控制方法 |
CN108791293A (zh) * | 2017-04-28 | 2018-11-13 | 长城汽车股份有限公司 | 车辆驾驶模式的控制方法、系统及车辆 |
CN109263643A (zh) * | 2018-08-17 | 2019-01-25 | 上海汽车集团股份有限公司 | 车辆雪地地形模式自动识别方法及装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2499252A (en) * | 2012-02-13 | 2013-08-14 | Jaguar Cars | Driver advice system for a vehicle |
CN106092600B (zh) * | 2016-05-31 | 2018-12-14 | 东南大学 | 一种针对汽车试验场强化道路的路面识别方法 |
KR20180061713A (ko) * | 2016-11-30 | 2018-06-08 | 쌍용자동차 주식회사 | 터레인 모드 스위치를 이용한 주행 제어장치 및 그 방법 |
DE102017201613A1 (de) * | 2017-02-01 | 2018-08-02 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren, Vorrichtung und Computerprogramm zur Beeinflussung der Führung eines Fahrzeugs abhängig von vertikaldynamischen Einflüssen auf das Fahrzeug |
CN108657182B (zh) * | 2017-03-29 | 2019-12-20 | 长城汽车股份有限公司 | 汽车的全地形控制方法和系统 |
-
2019
- 2019-01-29 CN CN201910088060.6A patent/CN110789527A/zh active Pending
-
2020
- 2020-01-19 WO PCT/CN2020/072932 patent/WO2020156265A1/zh active Application Filing
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4889015A (en) * | 1987-07-02 | 1989-12-26 | Mitsubishi Denki Kabushiki Kaisha | Automatic transmission control device |
US5776031A (en) * | 1994-09-02 | 1998-07-07 | Hitachi, Ltd. | Power train controller and control method |
EP1371524A2 (en) * | 2002-06-10 | 2003-12-17 | CNH Belgium N.V. | Vehicle control system and apparatus therefor. |
CN1908471A (zh) * | 2006-08-03 | 2007-02-07 | 同济大学 | 汽车自动变速器的电控装置 |
CN101553377A (zh) * | 2006-11-27 | 2009-10-07 | 标致·雪铁龙汽车公司 | 提高车辆牵引力的控制设备 |
US20090319146A1 (en) * | 2008-06-20 | 2009-12-24 | Graham Toby E | Traction control system for diesel powered vehicles |
CN107054376A (zh) * | 2011-02-18 | 2017-08-18 | 捷豹路虎有限公司 | 车辆和控制车辆的方法 |
CN104755348A (zh) * | 2012-09-06 | 2015-07-01 | 捷豹路虎有限公司 | 车辆控制系统和方法 |
CN103192832A (zh) * | 2013-04-28 | 2013-07-10 | 长城汽车股份有限公司 | 车辆雪地模式控制系统及相应的控制方法 |
CN103523018A (zh) * | 2013-10-29 | 2014-01-22 | 中国人民解放军军事交通学院 | 一种能适应湿滑路面的自动变速器控制系统及控制方法 |
CN107813824A (zh) * | 2016-08-30 | 2018-03-20 | 长城汽车股份有限公司 | 车辆的全地形模式自动切换方法、系统及车辆 |
CN108791293A (zh) * | 2017-04-28 | 2018-11-13 | 长城汽车股份有限公司 | 车辆驾驶模式的控制方法、系统及车辆 |
CN108382387A (zh) * | 2018-01-12 | 2018-08-10 | 上海汽车集团股份有限公司 | 车辆驱动控制方法 |
CN109263643A (zh) * | 2018-08-17 | 2019-01-25 | 上海汽车集团股份有限公司 | 车辆雪地地形模式自动识别方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110789527A (zh) | 2020-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020156265A1 (zh) | 车辆全地形自动控制方法及装置 | |
US10414404B2 (en) | Vehicle control system and method for controlling a vehicle | |
US9062762B2 (en) | Method for controlling shift of automatic transmission in vehicle | |
CN102910172B (zh) | 使用车载加速度计估计车辆移动时的车辆坡度和质量 | |
US6571162B2 (en) | Controller for automatic transmission | |
KR101461878B1 (ko) | 운전자의 장기 운전 성향을 판단하는 장치 및 방법 | |
CN111497860A (zh) | 车辆地形模式控制方法及装置 | |
US20140032068A1 (en) | Estimation of road inclination | |
US9168831B2 (en) | System and method of controlling starting of vehicle | |
JP2000322695A (ja) | 車両制御装置 | |
US20110106368A1 (en) | Guidance control device, guidance control method, and guidance control program | |
JP2014532003A (ja) | 車両のドライバ勧告システム | |
KR20140145267A (ko) | 운전자의 단기 운전 성향을 판단하는 장치 및 방법 | |
US11485371B2 (en) | Method of estimating a vehicle load | |
CN111497814A (zh) | 车辆控制方法及装置 | |
KR101484218B1 (ko) | 차량 변속 제어 장치 및 방법 | |
JP2007283882A (ja) | 道路勾配推定装置 | |
CN110834633B (zh) | 一种车辆速度的控制方法、装置、车辆及存储介质 | |
JP2006312414A (ja) | 運転指向推定装置 | |
EP1302357B1 (en) | Method and system for controlling the cruising speed of a vehicle | |
JP4935065B2 (ja) | 車両用駆動力制御装置 | |
JP2007137278A (ja) | 運転指向推定装置 | |
BRPI0507115B1 (pt) | método para determinar a velocidade de um veículo e veículo | |
KR101593830B1 (ko) | 엔진 출력 예측 방법 및 장치 | |
US9037367B2 (en) | System and method for inhibiting top gear at winding road driving |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20747961 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20747961 Country of ref document: EP Kind code of ref document: A1 |