WO2020155451A1 - 用于液晶面板的混切玻璃基板及其涂胶方法 - Google Patents

用于液晶面板的混切玻璃基板及其涂胶方法 Download PDF

Info

Publication number
WO2020155451A1
WO2020155451A1 PCT/CN2019/085581 CN2019085581W WO2020155451A1 WO 2020155451 A1 WO2020155451 A1 WO 2020155451A1 CN 2019085581 W CN2019085581 W CN 2019085581W WO 2020155451 A1 WO2020155451 A1 WO 2020155451A1
Authority
WO
WIPO (PCT)
Prior art keywords
straight
glass substrate
liquid crystal
mixed
cut glass
Prior art date
Application number
PCT/CN2019/085581
Other languages
English (en)
French (fr)
Inventor
苑甫
胡乾双
宋彦君
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020155451A1 publication Critical patent/WO2020155451A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates

Definitions

  • the present invention relates to a mixed-cut glass substrate used for liquid crystal panels and a glue coating method thereof, and particularly relates to a mixed-cut glass substrate and its glue coating that can prevent product defects due to inversion operations during the liquid crystal panel manufacturing process method.
  • the panel is assembled from two glass substrates containing color filters (CF) and thin film transistors (TFT).
  • CF color filters
  • TFT thin film transistors
  • ODF One Drop Filling
  • VAS Vauum Assembly System
  • SUV Small
  • SMO Small
  • PSVA Poly Stabilized Vertivally Aligned
  • sealant vacuum alignment
  • photo-curing of sealant thermal curing of sealant
  • vertical alignment of liquid crystal etc.
  • the liquid crystal is sealed between the two glass substrates.
  • the sealant coating process can be performed by applying a plurality of sealants E on a glass substrate T with a sealant dripper N for panel assembly after cutting.
  • the glass substrate T will be flipped between the SUV and SMO manufacturing processes.
  • a flip bar B is used to flip the glass substrate T 180 degrees.
  • the mixed cut glass substrate usually contains several areas to be cut of different sizes (A1 to A4 as shown in FIG. 2).
  • the corners between the edges of the frame glue (such as E1 ⁇ E4) of the area to be cut A1 ⁇ A4 (such as M as shown in Figure 2) are easy to withstand greater stress during the above-mentioned turning process, such as: robot Coinciding with the corner splices of the frame glue (as shown in Figure 2), it is easy to cause peeling at the frame glue, resulting in bubbles in the panel product, which will cause abnormal display areas in the panel product during the lighting test. For example: black or blue blocks.
  • the invention provides a mixed-cut glass substrate for a liquid crystal panel and a glue coating method thereof, so as to solve the problem of the mixed-cut glass substrate in the prior art that the panel product has bubbles due to inversion during the manufacturing process.
  • One aspect of the present invention provides a method for applying glue on a mixed cut glass substrate for a liquid crystal panel, which may include the steps of: obtaining a glass sheet with a plurality of sealants on the glass sheet, and forming between the plurality of sealants A plurality of intersecting paths, at least two of the plurality of sealants have different diagonal sizes; a virtual pattern is defined at the path formed between the sealants with different diagonal sizes, so The virtual pattern includes at least one line segment; and a colloid is applied to the virtual pattern; wherein, the at least one line segment is selected from at least one of the following line shapes: straight solid line, straight dotted line , Zigzag line, curve or arc; and the line segment has two ends, and there is a minimum connection distance between the two ends, and the minimum connection distance is greater than that of the sealant on both sides of the virtual pattern
  • the one with the larger diagonal size in has a shorter edge, and the line segment extends from around one of the plurality of sealants to around the other of the plurality of sealants
  • the at least one straight solid line or straight dotted line is parallel to an edge of the sealant.
  • the at least one straight solid line or straight dashed line includes several straight solid lines or straight dashed lines, and the several straight solid lines or straight dashed lines are perpendicular to each other.
  • one end of one of the several straight solid lines or straight dashed lines is connected between the two ends of the other one.
  • one end of one of the several straight solid lines or straight dashed lines is connected to one end of the other one.
  • the several straight solid lines or straight dotted lines cross each other.
  • the plurality of straight solid lines or straight dotted lines include four straight solid lines or straight dotted lines, and the four straight solid lines or straight dotted lines are connected to each other to form a quadrilateral.
  • the minimum distance is greater than 2 mm; and the width of the line segment has a range, the range is 100 to 2000 microns.
  • Another aspect of the present invention provides a glue coating method for a mixed-cut glass substrate for a liquid crystal panel, which may include the steps of: obtaining a glass sheet with a plurality of sealants on the glass sheet, between the plurality of sealants A plurality of intersecting paths are formed, and at least two of the plurality of sealants have different diagonal sizes; a virtual pattern is defined at the path formed between the seals of different diagonal sizes, The virtual pattern includes at least one line segment; and a colloid is coated on the virtual pattern.
  • the at least one line segment may be selected from at least one of the following line shapes: straight solid line, straight dashed line, zigzag line, curve or arc.
  • the at least one straight solid line or straight dotted line is parallel to an edge of the sealant.
  • the at least one straight solid line or straight dashed line includes several straight solid lines or straight dashed lines, and the several straight solid lines or straight dashed lines are perpendicular to each other.
  • one end of one of the several straight solid lines or straight dashed lines is connected between the two ends of the other one.
  • one end of one of the several straight solid lines or straight dashed lines is connected to one end of the other one.
  • the several straight solid lines or straight dotted lines cross each other.
  • the plurality of straight solid lines or straight dotted lines include four straight solid lines or straight dotted lines, and the four straight solid lines or straight dotted lines are connected to each other to form a quadrilateral.
  • the line segment has two ends, and there is a minimum connection distance between the two ends, and the minimum connection distance is larger than a pair of the sealant on both sides of the virtual pattern.
  • One edge of the larger corner size is shorter, and the line segment extends from around one of the plurality of sealants to around the other of the plurality of sealants.
  • the width of the line segment has a range, and the range is 100 to 2000 microns.
  • the mixed-cut glass substrate for a liquid crystal panel is made of the above-mentioned mixed-cut glass substrate coating method for liquid crystal panels. .
  • the mixed-cut glass substrate for liquid crystal panels and the glue coating method of the present invention is to coat the same glue as the frame glue between the frame glue of the glass sheet, which is compared with the prior art.
  • the present invention can strengthen the structural strength between the plurality of seals, and can be turned over during the actual production process of the panel. Avoid excessive stress at the corner joints between the edges of multiple sealants, which can improve the degumming of the existing mixed-cut glass substrates, resulting in bubbles in the panel products, and abnormal display areas during the lighting test.
  • the invention can make the panel products pass the lighting test normally, can effectively improve the product yield, and can reduce the manufacturing cost.
  • FIG. 1 is a schematic diagram of a sealant coating process of a conventional glass substrate.
  • Fig. 2 is a schematic diagram showing the position of a conventional turning clamp in a mixed-cut glass substrate.
  • Fig. 3 is a schematic diagram of glue application of a mixed-cut glass substrate for a liquid crystal panel according to an embodiment of the present invention.
  • 4A is a schematic diagram of a virtual pattern used for glue coating of a mixed cut glass substrate according to an embodiment of the present invention.
  • FIG. 4B is a schematic diagram of another virtual pattern used for glue coating of a mixed cut glass substrate according to an embodiment of the present invention.
  • FIG. 4C is a schematic diagram of another virtual pattern used for glue coating of a mixed cut glass substrate according to an embodiment of the present invention.
  • FIG. 4D is a schematic diagram of another virtual pattern used for glue coating of a mixed cut glass substrate according to an embodiment of the present invention.
  • FIG. 4E is a schematic diagram of another virtual pattern used for glue coating of a mixed cut glass substrate according to an embodiment of the present invention.
  • FIG. 4F is a schematic diagram of another virtual pattern used for glue coating of a mixed cut glass substrate according to an embodiment of the present invention.
  • FIG. 4G is a schematic diagram of another virtual pattern used for glue coating of a mixed cut glass substrate according to an embodiment of the present invention.
  • FIG. 4H is a schematic diagram of another virtual pattern used for glue coating of a mixed cut glass substrate according to an embodiment of the present invention.
  • FIG. 4I is a schematic diagram of another virtual pattern used for glue coating of a mixed cut glass substrate according to an embodiment of the present invention.
  • one aspect of the present invention provides a method for applying glue on a mixed-cut glass substrate for liquid crystal panels, which may include the following steps: Obtain a glass sheet T with a plurality of sealants on the glass sheet T E1 ⁇ E4 (take four as an example, but not limited to this), the plurality of seals E1 ⁇ E4 form a plurality of intersecting paths L1 ⁇ L4, and the plurality of seals E1 ⁇ E4 At least two of them have different diagonal sizes. For example, the diagonal sizes of the sealants E1 and E2 are different, and the diagonal sizes of the sealants E3 and E4 are different; the size of the diagonal seals E1 is different.
  • a dummy pattern P is defined at the path L1 to L4 formed between ⁇ E4, and the dummy pattern P includes at least one line segment; and a colloid, such as the colloid, is applied to the dummy pattern P
  • the material is the same as the material of the frame glue E1 to E4.
  • the material can be an existing frame glue material, but the glue body can also be replaced with other materials according to actual needs, and there is no limitation here.
  • the following examples illustrate the implementation of the above method, but it is not limited thereto.
  • the diagonal size of the frame rubbers E1 and E3 is 32 inches (inches), and the diagonal size of the frame rubbers E2 and E4 is The size is 65 inches, the width of the path L4 between the seals E2 and E4 is greater than the width of the other paths L1 to L3, and the diameter formed between the seals E1 to E4 with different diagonal sizes
  • the virtual pattern P may be defined at lanes L1 to L4, and the virtual pattern P may be located in a virtual area S between the lanes L1 to L4, so that the virtual pattern P includes at least one line segment, such as straight Straight solid line, straight dashed line (or straight dashed line), zigzag line (or zigzag line), curve, arc or a combination thereof, In order to subsequently coat the colloid on the virtual pattern P.
  • the width w of the line segment has a range, and the range may be 100 to 2000 micrometers, such as 500, 100, 1500 micrometers, etc., so as to prevent the glue range from being too small.
  • the line segment has two ends, and there is a minimum connection distance between the two ends, and the minimum connection distance is located in the sealant (such as E1, E2) on both sides of the virtual pattern P
  • the one with a larger diagonal size (such as the sealant E2) has a shorter edge, and the line segment extends from around one of the plurality of sealants (such as the sealant E2) to the plurality of sealants Around the other (such as the frame glue E4) to ensure that the glue area spans a splicing area between the frame glues of different diagonal lengths.
  • the following examples illustrate some implementations of the virtual pattern P, but are not limited thereto.
  • the virtual pattern P may include the following forms. Taking a single straight line as an example, the single straight line may be combined with one of the sealants E1 to E4. The lateral edges are parallel (as shown in FIG. 4A); or, the single straight solid line may be parallel to a longitudinal edge of the seals E1 to E4 (as shown in FIG. 4B). Alternatively, the single straight solid line can be replaced by multiple straight solid lines, for example: straight solid lines parallel to each other; on the other hand, the straight solid line can also be replaced by the straight dashed line (as shown in the figure). 4C) or curve (as shown in Figure 4D).
  • the glue coated on the virtual pattern P can be applied to a linear path surrounded by only two sealants, or a T-shaped path surrounded by three sealants to strengthen the Describe the structural strength between multiple sealants.
  • the virtual pattern P may include the following forms. Taking a plurality of straight solid lines or straight dotted lines as an example, the plurality of straight solid lines or straight dotted lines may be perpendicular to each other For example, one end of one of the several straight solid lines or straight dashed lines is connected between the two ends of the other, such as forming a T-like shape (as shown in FIG. 4E); alternatively, the several The straight solid lines or straight dashed lines may not be connected to each other; alternatively, one end of one of the several straight solid lines or straight dashed lines is connected to one end of the other, such as forming at least a right angle (as shown in FIG. 4F); Alternatively, the plurality of straight solid lines or straight dotted lines may cross each other, such as forming a cross-like shape (as shown in FIG. 4G).
  • the colloid coated at the virtual pattern P can be applied to a T-like path surrounded by three sealants, or a cross-like path surrounded by four sealants. To strengthen the structural strength between the plurality of sealants.
  • the virtual pattern P may include the following forms. Taking four straight solid lines or straight dotted lines as an example, the four straight solid lines or straight dotted lines are connected to each other to form one A quadrilateral, such as forming a square, etc. (as shown in Figure 4H); alternatively, the line segments in the quadrilateral can also be formed by extending outwards, such as forming a sudoku grid or tic-tac-shaped ( Figure 4I) Shown).
  • the glue coated on the virtual pattern P is not only suitable for a cross-like path surrounded by four sealants, but also can be used to strengthen the structural strength between the plurality of sealants.
  • the mixed-cut glass substrate for a liquid crystal panel is made of the above-mentioned mixed-cut glass substrate coating method for liquid crystal panels. , The effect of strengthening the structural strength between the plurality of sealants can be achieved.
  • the mixed cut glass substrate for liquid crystal panels and the glue coating method of the present invention can also be implemented on a glass substrate with a plurality of sealants with the same diagonal size, and it can also be used to strengthen the gap between the plurality of sealants. The effect of structural strength.
  • the mixed-cut glass substrate for liquid crystal panels and the glue coating method of the above-mentioned embodiment of the present invention is by coating the same glue as the glue between the glue of the glass sheet
  • the embodiment of the present invention can strengthen the structural strength between the multiple frame seals, and is used in the actual panel production process. It can avoid excessive stress at the corner splices between the edges of multiple sealants, and can improve the degumming of the existing mixed-cut glass substrate, resulting in air bubbles in the panel product, and abnormal display during the lighting test.
  • the embodiment of the present invention can make the panel product pass the lighting test normally, can effectively improve the product yield, and reduce the manufacturing cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种用于液晶面板的混切玻璃基板及其涂胶方法,方法包括步骤:获取一玻璃板材(T),玻璃板材(T)上具有数个框胶(E1~E4),数个框胶(E1~E4)之间形成数个相互交会的径道(L1~L4),数个框胶(E1~E4)中的至少两个的对角线尺寸不同;在对角线尺寸不同的框胶(E1~E4)之间形成的径道(L1~L4)处定义一虚拟图案(P),虚拟图案(P)包括至少一条线段;及在虚拟图案(P)处涂布一胶体,胶体与框胶(E1~E4)的材料相同。

Description

用于液晶面板的混切玻璃基板及其涂胶方法 技术领域
本发明是有关于一种用于液晶面板的混切玻璃基板及其涂胶方法,特别是有关于一种能够防止在液晶面板制程中因翻转作业导致产品不良的混切玻璃基板及其涂胶方法。
背景技术
在液晶面板制作过程中,面板(panel)由分别含有彩色滤光片(CF)与薄膜晶体管(TFT)的两片玻璃基板组装而成。例如:依序进行ODF(One Drop Filling)、VAS(Vacuum Assembly System)、SUV、SMO、PSVA(Polmer Stabilized Vertivally Aligned)等制程,以便进行框胶涂布、真空对组、框胶照光固化、框胶热固化及垂直排列液晶等过程,使液晶被密封在所述两片玻璃基板之间。
举例而言,如图1所示,框胶涂布过程可由一框胶滴头N在一玻璃基板T涂布多个框胶E,用于裁切后进行面板组装。在实际生产过程中,玻璃基板T会在SUV与SMO制程之间进行翻转,如图2所示,利用一翻转夹棍(bar)B将所述玻璃基板T进行翻转180度。
但是,对于待切割为不同面板尺寸的混切玻璃基板而言,所述混切玻璃基板上通常包含不同尺寸的数个待切区域(如图2所示的A1~A4),在所述数个待切区域A1~A4的框胶(如E1~E4) 的边缘之间的角落处(如图2所示的M),容易在上述翻转过程承受较大应力,如:机器手臂(robot)与框胶的角落拼接处重合(如图2所示),易导致框胶处脱胶(peeling),致使面板产品存在气泡(bubble),这将使得面板产品在点灯测试时出现异常显示区块,例如:黑色或蓝色区块。
因此,现有技术存在缺陷,急需改进。
技术问题
本发明提供一种用于液晶面板的混切玻璃基板及其涂胶方法,以解决现有技术所存在的混切玻璃基板在制造过程中因翻转致使面板产品存在气泡的问题。
技术解决方案
本发明的一方面提供一种用于液晶面板的混切玻璃基板涂胶方法,可包括步骤:获取一玻璃板材,所述玻璃板材上具有数个框胶,所述数个框胶之间形成数个相互交会的径道,所述数个框胶中的至少两个的对角线尺寸不同;在所述对角线尺寸不同的框胶之间形成的径道处定义一虚拟图案,所述虚拟图案包括至少一条线段;及在所述虚拟图案处涂布一胶体;其中,所述至少一条线段选自于由下列线形所组成的群组中的至少一种:直实线、直虚线、锯齿线、曲线或弧线;及所述线段具有二端,所述二端之间具有一最小连线距离,所述最小连线距离比位在所述虚拟图案两侧的所述框胶中的一对角线尺寸较大者的一边缘更短,且所述线段从所述数个框胶中的一个周围延伸到所述数个框胶中的另一个周围。
在一些实施例中,所述至少一条直实线或直虚线与所述框胶的一边缘平行。
在一些实施例中,所述至少一条直实线或直虚线包含数条直实线或直虚线,所述数条直实线或直虚线相互垂直。
在一些实施例中,所述数条直实线或直虚线中的一条的一端连接在另一条的两端之间。
在一些实施例中,所述数条直实线或直虚线中的一条的一端连接在另一条的一端。
在一些实施例中,所述数条直实线或直虚线相互交叉。
在一些实施例中,所述数条直实线或直虚线包含四条直实线或直虚线,所述四条直实线或直虚线相互连接而形成一个四边形。
在一些实施例中,所述线段与所述框胶的边缘之间具有一最小间距,所述最小间距大于2毫米;及所述线段的宽度具有一范围,所述范围为100至2000微米。
本发明的另一方面提供一种用于液晶面板的混切玻璃基板涂胶方法,可包括步骤:获取一玻璃板材,所述玻璃板材上具有数个框胶,所述数个框胶之间形成数个相互交会的径道,所述数个框胶中的至少两个的对角线尺寸不同;在所述对角线尺寸不同的框胶之间形成的径道处定义一虚拟图案,所述虚拟图案包括至少一条线段;及在所述虚拟图案处涂布一胶体。
在一些实施例中,所述至少一条线段可选自于由下列线形所组成的群组中的至少一种:直实线、直虚线、锯齿线、曲线或弧线。
在一些实施例中,所述至少一条直实线或直虚线与所述框胶的一边缘平行。
在一些实施例中,所述至少一条直实线或直虚线包含数条直实线或直虚线,所述数条直实线或直虚线相互垂直。
在一些实施例中,所述数条直实线或直虚线中的一条的一端连接在另一条的两端之间。
在一些实施例中,所述数条直实线或直虚线中的一条的一端连接在另一条的一端。
在一些实施例中,所述数条直实线或直虚线相互交叉。
在一些实施例中,所述数条直实线或直虚线包含四条直实线或直虚线,所述四条直实线或直虚线相互连接而形成一个四边形。
在一些实施例中,所述线段与所述框胶的边缘之间具有一最小间距,所述最小间距大于2毫米。
在一些实施例中,所述线段具有二端,所述二端之间具有一最小连线距离,所述最小连线距离比位在所述虚拟图案两侧的所述框胶中的一对角线尺寸较大者的一边缘更短,且所述线段从所述数个框胶中的一个周围延伸到所述数个框胶中的另一个周围。
在一些实施例中,所述线段的宽度具有一范围,所述范围为100至2000微米。
本发明的另一方面提供一种用于液晶面板的混切玻璃基板,所述用于液晶面板的混切玻璃基板是由如上所述的用于液晶面板的混切玻璃基板涂胶方法制成。
有益效果
与现有技术相比较,本发明用于液晶面板的混切玻璃基板及其涂胶方法通过在所述玻璃板材的框胶之间涂布与所述框胶相同的胶体,相较于现有未在所述对角线尺寸不同的框胶之间涂布胶体的混切玻璃基板,本发明可以加强所述多个框胶之间的结构强度,在面板实际生产过程中进行翻转时,可避免多个框胶的边缘之间的角落拼接处承受过大应力,可改善现有混切玻璃基板发生脱胶,致使面板产品存在气泡,在点灯测试时产生不正常的显示区块的问题,本发明可以使得面板产品可以正常通过点灯测试,可以有效改善产品良率,并可降低制造成本。
附图说明
图1是现有玻璃基板的框胶涂布过程的示意图。
图2是现有的翻转夹棍在混切玻璃基板中的位置示意图。
图3是本发明实施例的用于液晶面板的混切玻璃基板的涂胶示意图。
图4A是本发明实施例的混切玻璃基板用于涂胶的一种虚拟图案的示意图。
图4B是本发明实施例的混切玻璃基板用于涂胶的另一种虚拟图案的示意图。
图4C是本发明实施例的混切玻璃基板用于涂胶的另一种虚拟图案的示意图。
图4D是本发明实施例的混切玻璃基板用于涂胶的另一种虚拟图案的示意图。
图4E是本发明实施例的混切玻璃基板用于涂胶的另一种虚拟图案的示意图。
图4F是本发明实施例的混切玻璃基板用于涂胶的另一种虚拟图案的示意图。
图4G是本发明实施例的混切玻璃基板用于涂胶的另一种虚拟图案的示意图。
图4H是本发明实施例的混切玻璃基板用于涂胶的另一种虚拟图案的示意图。
图4I是本发明实施例的混切玻璃基板用于涂胶的另一种虚拟图案的示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。再者,本发明所提到的方向用语,例如上、下、顶、底、前、后、左、右、内、外、侧面、周围、中央、水平、横向、垂直、纵向、轴向、径向、最上层或最下层等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参照图3所示,本发明的一方面提供一种用于液晶面板的混切玻璃基板涂胶方法,可包括以下步骤:获取一玻璃板材T,所述玻璃板材T上具有数个框胶E1~E4(以四个为例,但不以此为限),所述数个框胶E1~E4之间形成数个相互交会的径道L1~L4,所述数个框胶E1~E4中的至少两个的对角线尺寸不同,例如:框胶E1、E2的对角线尺寸不同,框胶E3、E4的对角线尺寸不同;在所述对角线尺寸不同的框胶E1~E4之间形成的径道L1~L4处定义一虚拟图案(dummy pattern)P,所述虚拟图案P包括至少一条线段;及在所述虚拟图案P处涂布一胶体,例如:所述胶体与所述框胶E1~E4的材料相同,所述的材料可为现有框胶材料,但是所述胶体也可依实际需求换成其他材料,在此并不设限。以下举例说明上述方法的实施方式,但不以此为限。
举例来说,如图3所示,在所述玻璃板材T中,假设所述框胶E1、E3的对角线尺寸为32吋(inches),且所述框胶E2、E4的对角线尺寸为65吋,在所述框胶E2、E4之间的径道L4的宽度大于其它径道L1~L3的宽度,在所述对角线尺寸不同的框胶E1~E4之间形成的径道L1~L4处可定义所述虚拟图案P,所述虚拟图案P可位于所述径道L1~L4之间的一虚拟区域S内,使得所述虚拟图案P包括至少一条线段,诸如:直实线(straight solid line)、直虚线(或称直的间断线,straight dashed line)、锯齿线(或称迂回连接线,zigzag line)、曲线(curve)、弧线(arc)或其结合,以便后续在所述虚拟图案P处涂布所述胶体。
例如:所述线段与所述框胶E1~E4的边缘之间具有一最小间距d,所述最小间距大于2毫米,以避免所述虚拟图案P与面板的切割线重合。另,所述线段的宽度w具有一范围,所述范围可为100至2000微米,诸如:500、100、1500微米等,以避免涂胶范围过小。又,所述线段具有二端,所述二端之间具有一最小连线距离,所述最小连线距离比位在所述虚拟图案P两侧的所述框胶(如E1、E2)中的一对角线尺寸较大者(如框胶E2)的一边缘更短,且所述线段从所述数个框胶中的一个(如框胶E2)周围延伸到所述数个框胶中的另一个(如框胶E4)周围,以确保涂胶区域横跨不同对角线长度的框胶之间的一拼接区域。以下举例说明所述虚拟图案P的一些实施方式,但不以此为限。
在一些实施例中,如图4A及图4B所示,所述虚拟图案P可包括下列形态,以单一直实线为例,所述单一直实线可与所述框胶E1~E4的一横向边缘平行(如图4A所示);或者,所述单一直实线可与所述框胶E1~E4的一纵向边缘平行(如图4B所示)。替代地,所述单一直实线可被换成多条直实线,例如:相互平行的直实线;另一方面,所述直实线也可被换成所述的直虚线(如图4C所示)或曲线(如图4D所示)。
从而,所述虚拟图案P处涂布的胶体可适用于只有两个框胶所围成的直线状径道,或由三个框胶所围成的类T字状径道,用以加强所述多个框胶之间的结构强度。
在一些实施例中,如图4E至图4G所示,所述虚拟图案P可包括下列形态,以数条直实线或直虚线为例,所述数条直实线或直虚线可相互垂直,例如:所述数条直实线或直虚线中的一条的一端连接在另一条的两端之间,诸如形成一个类T字状(如图4E所示);替代地,所述数条直实线或直虚线也可互不连接;替代地,所述数条直实线或直虚线中的一条的一端连接在另一条的一端,诸如形成至少一直角(如图4F所示);替代地,所述数条直实线或直虚线可相互交叉,诸如形成一个类十字状(如图4G所示)。
从而,所述虚拟图案P处涂布的胶体可适用于由三个框胶所围成的类T字状的径道,或由四个框胶所围成的类十字状的径道,用以加强所述多个框胶之间的结构强度。
在一些实施例中,如图4H及图4I所示,所述虚拟图案P可包括下列形态,以四条直实线或直虚线为例,所述四条直实线或直虚线相互连接而形成一个四边形,诸如形成一正方形等(如图4H所示);替代地,所述四边形中的线段也可向外延伸形成,诸如形成用于数独(sudoku)的九宫格或井字状(如图4I所示)。
从而,所述虚拟图案P处涂布的胶体除可适用于由四个框胶所围成的类十字状的径道,更可用以加强所述多个框胶之间的结构强度。
本发明的另一方面提供一种用于液晶面板的混切玻璃基板,所述用于液晶面板的混切玻璃基板是由如上所述的用于液晶面板的混切玻璃基板涂胶方法制成,可以完成加强所述多个框胶之间的结构强度的效果。
此外,本发明的用于液晶面板的混切玻璃基板及其涂胶方法也可以实施在一玻璃基板具有多个对角线尺寸相同的框胶,同样可以完成加强所述多个框胶之间的结构强度的效果。
与现有技术相比较,本发明上述实施例的用于液晶面板的混切玻璃基板及其涂胶方法通过在所述玻璃板材的框胶之间涂布与所述框胶相同的胶体,相较于现有未在所述对角线尺寸不同的框胶之间涂布胶体的混切玻璃基板,本发明实施例可以加强所述多个框胶之间的结构强度,在面板实际生产过程中进行翻转时,可避免多个框胶的边缘之间的角落拼接处承受过大应力,可改善现有混切玻璃基板发生脱胶,致使面板产品存在气泡,在点灯测试时产生不正常的显示区块的问题,本发明实施例可以使得面板产品可以正常通过点灯测试,可以有效改善产品良率,并可降低制造成本。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。

Claims (20)

  1. 一种用于液晶面板的混切玻璃基板涂胶方法,其包括步骤:
    获取一玻璃板材,所述玻璃板材上具有数个框胶,所述数个框胶之间形成数个相互交会的径道,所述数个框胶中的至少两个的对角线尺寸不同;
    在所述对角线尺寸不同的框胶之间形成的径道处定义一虚拟图案,所述虚拟图案包括至少一条线段;及
    在所述虚拟图案处涂布一胶体;
    其中,所述至少一条线段选自于由下列线形所组成的群组中的至少一种:直实线、直虚线、锯齿线、曲线或弧线;及
    所述线段具有二端,所述二端之间具有一最小连线距离,所述最小连线距离比位在所述虚拟图案两侧的所述框胶中的一对角线尺寸较大者的一边缘更短,且所述线段从所述数个框胶中的一个周围延伸到所述数个框胶中的另一个周围。
  2. 如权利要求1所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述至少一条直实线或直虚线与所述框胶的一边缘平行。
  3. 如权利要求2所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述至少一条直实线或直虚线包含数条直实线或直虚线,所述数条直实线或直虚线相互垂直。
  4. 如权利要求3所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述数条直实线或直虚线中的一条的一端连接在另一条的两端之间。
  5. 如权利要求3所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述数条直实线或直虚线中的一条的一端连接在另一条的一端。
  6. 如权利要求3所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述数条直实线或直虚线相互交叉。
  7. 如权利要求6所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述数条直实线或直虚线包含四条直实线或直虚线,所述四条直实线或直虚线相互连接而形成一个四边形。
  8. 如权利要求1所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述线段与所述框胶的边缘之间具有一最小间距,所述最小间距大于2毫米;及所述线段的宽度具有一范围,所述范围为100至2000微米。
  9. 一种用于液晶面板的混切玻璃基板涂胶方法,其包括步骤:
    获取一玻璃板材,所述玻璃板材上具有数个框胶,所述数个框胶之间形成数个相互交会的径道,所述数个框胶中的至少两个的对角线尺寸不同;
    在所述对角线尺寸不同的框胶之间形成的径道处定义一虚拟图案,所述虚拟图案包括至少一条线段;及
    在所述虚拟图案处涂布一胶体。
  10. 如权利要求9所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述至少一条线段选自于由下列线形所组成的群组中的至少一种:直实线、直虚线、锯齿线、曲线或弧线。
  11. 如权利要求10所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述至少一条直实线或直虚线与所述框胶的一边缘平行。
  12. 如权利要求11所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述至少一条直实线或直虚线包含数条直实线或直虚线,所述数条直实线或直虚线相互垂直。
  13. 如权利要求12所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述数条直实线或直虚线中的一条的一端连接在另一条的两端之间。
  14. 如权利要求12所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述数条直实线或直虚线中的一条的一端连接在另一条的一端。
  15. 如权利要求12所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述数条直实线或直虚线相互交叉。
  16. 如权利要求15所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述数条直实线或直虚线包含四条直实线或直虚线,所述四条直实线或直虚线相互连接而形成一个四边形。
  17. 如权利要求9所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述线段与所述框胶的边缘之间具有一最小间距,所述最小间距大于2毫米。
  18. 如权利要求9所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述线段具有二端,所述二端之间具有一最小连线距离,所述最小连线距离比位在所述虚拟图案两侧的所述框胶中的一对角线尺寸较大者的一边缘更短,且所述线段从所述数个框胶中的一个周围延伸到所述数个框胶中的另一个周围。
  19. 如权利要求9所述的用于液晶面板的混切玻璃基板涂胶方法,其中所述线段的宽度具有一范围,所述范围为100至2000微米。
  20. 一种用于液晶面板的混切玻璃基板,其是由如权利要求9所述的用于液晶面板的混切玻璃基板涂胶方法制成。
PCT/CN2019/085581 2019-01-28 2019-05-05 用于液晶面板的混切玻璃基板及其涂胶方法 WO2020155451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910080662.7A CN109613762A (zh) 2019-01-28 2019-01-28 用于液晶面板的混切玻璃基板及其涂胶方法
CN201910080662.7 2019-01-28

Publications (1)

Publication Number Publication Date
WO2020155451A1 true WO2020155451A1 (zh) 2020-08-06

Family

ID=66018415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085581 WO2020155451A1 (zh) 2019-01-28 2019-05-05 用于液晶面板的混切玻璃基板及其涂胶方法

Country Status (2)

Country Link
CN (1) CN109613762A (zh)
WO (1) WO2020155451A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613762A (zh) * 2019-01-28 2019-04-12 深圳市华星光电半导体显示技术有限公司 用于液晶面板的混切玻璃基板及其涂胶方法
CN111177962B (zh) * 2019-12-20 2023-04-07 惠州市华星光电技术有限公司 一种曲面显示面板及其涂胶方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540580A (zh) * 2012-01-11 2012-07-04 友达光电股份有限公司 一种液晶显示面板
US20140184059A1 (en) * 2012-05-18 2014-07-03 Panasonic Corporation Display panel and display panel manufacturing method
CN108364981A (zh) * 2018-01-31 2018-08-03 昆山国显光电有限公司 一种显示面板、子显示面板及显示面板的切割方法
CN108873496A (zh) * 2018-08-13 2018-11-23 深圳市华星光电技术有限公司 一种液晶面板母板及液晶面板的制作方法
CN109116604A (zh) * 2018-09-11 2019-01-01 深圳市华星光电技术有限公司 混切制作显示面板的方法、显示面板
CN109613762A (zh) * 2019-01-28 2019-04-12 深圳市华星光电半导体显示技术有限公司 用于液晶面板的混切玻璃基板及其涂胶方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101850151B1 (ko) * 2011-10-17 2018-04-19 엘지디스플레이 주식회사 평판표시패널의 절단장치 및 절단방법
CN103293742A (zh) * 2013-05-22 2013-09-11 京东方科技集团股份有限公司 一种显示面板的切割方法及显示装置
CN103779356A (zh) * 2014-01-21 2014-05-07 北京京东方光电科技有限公司 一种显示面板母板及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540580A (zh) * 2012-01-11 2012-07-04 友达光电股份有限公司 一种液晶显示面板
US20140184059A1 (en) * 2012-05-18 2014-07-03 Panasonic Corporation Display panel and display panel manufacturing method
CN108364981A (zh) * 2018-01-31 2018-08-03 昆山国显光电有限公司 一种显示面板、子显示面板及显示面板的切割方法
CN108873496A (zh) * 2018-08-13 2018-11-23 深圳市华星光电技术有限公司 一种液晶面板母板及液晶面板的制作方法
CN109116604A (zh) * 2018-09-11 2019-01-01 深圳市华星光电技术有限公司 混切制作显示面板的方法、显示面板
CN109613762A (zh) * 2019-01-28 2019-04-12 深圳市华星光电半导体显示技术有限公司 用于液晶面板的混切玻璃基板及其涂胶方法

Also Published As

Publication number Publication date
CN109613762A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN201917747U (zh) 液晶面板
WO2020087658A1 (zh) 显示面板和显示装置
US9346248B2 (en) Liquid crystal sealant forming device and display panel assembly apparatus using the same
JPWO2013172040A1 (ja) 表示パネルと表示パネルの製造方法
WO2020155451A1 (zh) 用于液晶面板的混切玻璃基板及其涂胶方法
CN108628039A (zh) 液晶显示基板及其制备方法、液晶显示装置
CN104102051A (zh) 一种液晶显示母板的对盒方法、非标准尺寸的液晶显示基板
CN104865723A (zh) 一种曲面液晶显示面板的制程方法
JP2009116214A (ja) 液晶パネル及びその製造方法
WO2010143878A2 (ko) 액정 패널 절단 방법 및 이를 이용하는 액정 패널 제조 방법
CN110205037A (zh) 封框胶及液晶显示装置
WO2015021703A1 (zh) 一种显示面板的封框胶涂布方法和显示面板
WO2020087597A1 (zh) 显示面板和显示装置
CN109491149A (zh) 胶框的制作方法及显示面板
TW201341192A (zh) 雙基板裝置及雙基板貼合方法
JP5317445B2 (ja) 液晶表示装置及びその製造方法
CN103278956A (zh) 显示面板及其制造方法
WO2021051632A1 (zh) 显示面板及显示装置
WO2020087807A1 (zh) 显示面板以及显示装置
CN107479241A (zh) 显示面板及其制造方法
WO2019021946A1 (ja) 液晶表示装置
JP2008203518A (ja) 表示素子の製造方法
CN103728787A (zh) 液晶面板及其制作方法
CN105137669B (zh) 涂胶方法及显示面板
WO2007108151A1 (ja) 液晶表示装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912387

Country of ref document: EP

Kind code of ref document: A1