WO2020153422A1 - チタン材および塗装チタン材 - Google Patents

チタン材および塗装チタン材 Download PDF

Info

Publication number
WO2020153422A1
WO2020153422A1 PCT/JP2020/002295 JP2020002295W WO2020153422A1 WO 2020153422 A1 WO2020153422 A1 WO 2020153422A1 JP 2020002295 W JP2020002295 W JP 2020002295W WO 2020153422 A1 WO2020153422 A1 WO 2020153422A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
titanium material
titanium
containing compound
area ratio
Prior art date
Application number
PCT/JP2020/002295
Other languages
English (en)
French (fr)
Inventor
一浩 ▲高▼橋
幸司 秋岡
池田 英次
上仲 秀哉
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US17/295,134 priority Critical patent/US20220002894A1/en
Priority to CN202080007802.9A priority patent/CN113260734B/zh
Priority to JP2020528186A priority patent/JP6766984B1/ja
Priority to EP20744338.3A priority patent/EP3916125A4/en
Publication of WO2020153422A1 publication Critical patent/WO2020153422A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/13Orthophosphates containing zinc cations containing also nitrate or nitrite anions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/106Other heavy metals refractory metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12583Component contains compound of adjacent metal
    • Y10T428/1259Oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component

Definitions

  • the present invention relates to titanium materials and painted titanium materials.
  • the present application claims priority based on Japanese Patent Application No. 2019-009749 filed in Japan on January 23, 2019, the content of which is incorporated herein.
  • Titanium material is lightweight and has excellent strength and corrosion resistance, so it is mainly used for motorcycles, such as motorcycle engine parts and mufflers. Most of these are used unpainted on titanium.
  • a titanium material is applied to body-related members and exterior members (hereinafter referred to as "car body-related members") of automobiles and motorcycles, the design can be further improved by coating titanium. .. Therefore, in the titanium material, it is necessary to improve the adhesion of the coating film, and the following studies have been made.
  • Patent Documents 1 and 2 disclose a titanium material whose coating adhesion is improved by coating the surface of titanium with iron, tin, zinc or the like by using shot blasting or vapor deposition.
  • Patent Document 3 discloses a titanium material in which the adhesion of a coating film is improved by performing anodization to form a porous oxide film on the titanium surface.
  • Patent Document 4 also discloses a titanium material utilizing anodic oxidation. The titanium material disclosed in Patent Document 4 has an oxide film formed on the surface thereof, and then an acrylic resin-based electrodeposition coating film is formed to improve the coating film adhesion.
  • the electrodeposition coating process is particularly important with respect to the paintability of the final product.
  • the electrodeposition coating film formed in the above process is required to have not only peeling property but also peeling resistance, that is, peeling strength.
  • an electric current is applied between the metal material and the electrode plate in a liquid of an electrodeposition coating film containing a resin or the like (hereinafter also referred to as “electrodeposition coating”), Form an electrodeposition coating film.
  • Electrodeposition in which a metal material is used as a cathode and current is applied is called cation electrodeposition
  • electrodeposition in which a metal material is used as an anode and current is applied is called anion electrodeposition.
  • Cationic electrodeposition is generally used in electrodeposition coating for automobiles.
  • a titanium oxide layer having low conductivity is formed on the titanium material disclosed in Patent Documents 3 and 4 by anodic oxidation. Therefore, when an attempt is made to form a coating film on the titanium material by cationic electrodeposition, the conductivity is insufficient and it is difficult for the current to flow uniformly. As a result, it becomes difficult to control the thickness of the electrodeposition coating film, a uniform coating film is not formed, and the coating film adhesion and peeling strength decrease. Furthermore, when the titanium material is electrodeposited using an acrylic resin as in the technique disclosed in Patent Document 4, the heat resistance and solvent resistance of the electrodeposition coating film may be insufficient, and the finish A good coating film may not be formed by painting.
  • An object of the present invention is to solve the above problems and provide a coated titanium material having good coating film adhesion and peeling strength of the coating film and a titanium material used therefor.
  • the present invention has been made in order to solve the above problems, and the gist is the following titanium material and coated titanium material.
  • the Ti-based oxide is one or both of rutile TiO 2 and Ti 2 O 3 ,
  • a cut surface of the coating film is formed under the conditions of a horizontal speed of 2 ⁇ m/second and a vertical speed of 0.1 ⁇ m/second by using the Saikas method, a line of intersection between the cut surface and the interface at the cut surface.
  • the coated titanium material, wherein the area ratio of the Ti-based oxide is 30.0% or more in a region from the reference line specified based on the boundary line to 15 ⁇ m on the coating film side.
  • a titanium base material and a Ti-containing compound that covers a part of the surface of the titanium base material The titanium substrate is made of industrial pure titanium or titanium alloy,
  • the Ti-containing compound has a peak in the range of 320 to 350 cm ⁇ 1 in the spectrum obtained by Raman spectroscopy,
  • a titanium material, wherein the area ratio of the Ti-containing compound coating the surface is 10.0 to 50.0%.
  • the area ratio of the Ti-containing compound is 25.0 to 50.0%, The titanium material described in (3) above.
  • the present invention it is possible to obtain a coated titanium material having a good coating film adhesion and a coating film peeling strength and a titanium material used therefor.
  • FIG. 1A is a photograph of a surface of a titanium material (Example of the present invention) having an area ratio of a Ti-containing compound of 25.0% and a Ti-containing compound having a peak in a range of 320 to 350 cm ⁇ 1 in a spectrum obtained by Raman spectroscopy. It is a figure which shows distribution of a compound.
  • FIG. 1B is a photograph of the surface of a titanium material (comparative example) in which the area ratio of the Ti-containing compound is 0% and the distribution of the Ti-containing compound having a peak in the range of 320 to 350 cm ⁇ 1 in the spectrum obtained by Raman spectroscopy.
  • FIG. 2 is a schematic diagram showing a cut surface of a coating film on a coated titanium material cut by the Saicus method.
  • FIG. 3 is a schematic diagram showing a method of determining a reference line on a cut surface of a coating film of a coated titanium material cut by the sikas method.
  • the present inventors conducted various studies in order to obtain a coated titanium material having good coating adhesion and peel strength of the coating film. As a result, the following findings (a) to (c) were obtained.
  • Ti-containing compound for example, a Ti-containing compound containing two or more elements selected from the group consisting of Fe, C, O, and N
  • Ti-containing compound for example, a Ti-containing compound containing two or more elements selected from the group consisting of Fe, C, O, and N
  • rutile type TiO 2 and Ti 2 O 3 are formed at the interface between the titanium material and the coating film during electrodeposition coating, and these oxides serve as nuclei, so that a uniform oxide is obtained. It is believed that the coating grows.
  • Titanium Material The titanium material according to the present invention includes a titanium base material and a Ti-containing compound that covers a part of the surface of the titanium base material.
  • the titanium base material is made of industrial pure titanium or titanium alloy.
  • the industrial pure titanium means a metal material containing 98.8% or more of Ti and the balance being impurities.
  • Examples of general industrial pure titanium include JIS 1 to 4 types, or ASTM/ASME Grade 1 to 4. In these industrial pure titanium, C, H, O, N, Fe, etc. are contained as impurity elements, and the content of each element is determined as shown below.
  • C 0.08% or less
  • H 0.015% or less
  • O 0.015% or less
  • N 0.05% or less
  • Fe 0.50% or less.
  • the titanium alloy may be a general-purpose titanium alloy.
  • examples of titanium alloys include Ti-3Al-2.5V and Ti-1Fe-0.35O.
  • Ti-3Al-2.5V has JIS 61 class, ASTM Grade 9 official standard.
  • Ti-1Fe-0.35O has been strengthened by adding general-purpose elements Fe and O without adding Al and V.
  • Ti-containing compound has a peak in the range of 320 to 350 cm ⁇ 1 in the spectrum obtained by Raman spectroscopy.
  • the Ti-containing compound may be piezobroccite type Fe 2 TiO 5 or TiCN.
  • the above Ti-containing compound is, in atomic %, Ti: 10 to 14%, Fe: 8 to 9%, C: 27 to 40%, O: 40 to It can be seen that it contains 50%. Further, for example, a small amount of S may be detected at about 1%.
  • N cannot be detected separately from Ti, but it is considered that N is also included from the XPS (X-ray photoelectron spectroscopy) analysis result. Based on the above, it is considered that the Ti-containing compound is a Ti-containing compound containing two or more kinds selected from the group consisting of Fe, C, O, and N.
  • FIGS. 1A and 1B show that the above Ti-containing compound is present on the surface of the titanium material, then a Ti-based oxide, which becomes the nucleus of the growth of the coating film during electrodeposition coating, is likely to form. As a result, the electrodeposition coating film is likely to grow uniformly, and the coated titanium material has improved coating film adhesion and peel strength.
  • FIGS. 1A and 1B show that the area ratio of the Ti-containing compound is 25.0%, and the adhesion of the coating film formed on the coated titanium material thereafter was good.
  • FIG. 1B is an example in which the area ratio of the Ti-containing compound is 0%, and the adhesion of the coating film subsequently formed on the coated titanium material was poor.
  • the Ti-containing compound on the titanium surface is initially dissolved, and immediately thereafter, titanium ions are precipitated on the titanium surface as Ti-based oxide.
  • the deposited Ti-based oxide serves as precipitation nuclei for the particles of the electrodeposition coating material, and a uniform coating film grows, resulting in an electrodeposition coating film having good adhesion and peel strength.
  • the measurement conditions are as follows: excitation wavelength: 532 nm, diffraction grating engraving number: 600 Lines/mm, objective lens: 100 times.
  • the mapping is performed at 0.75 ( ⁇ m step) and 13041 (points) in a region of 120 ( ⁇ m) ⁇ 60 ( ⁇ m) on the surface.
  • the area ratio of the Ti-containing compound coating the surface is 10.0 to 50.0%. If the area ratio of the Ti-containing compound on the surface is less than 10.0%, Ti-based oxides, which are the starting points of the growth of the coating film, are not sufficiently generated, and the coating film adhesion and peel strength are reduced. Therefore, the area ratio of the Ti-containing compound on the surface is 10.0% or more.
  • the area ratio of the Ti-containing compound may be 15.0% or more, 20.0% or more, 25.0% or more, or 30.0% or more.
  • the area ratio of the Ti-containing compound on the surface is 50.0% or less, the area ratio of the Ti-based oxide that is the starting point of the coating film growth exceeds 90%, and the sufficiently high peel strength of the electrodeposition coating film is obtained. can get.
  • the content exceeds 50.0%, the Ti-containing compound remains in part, so that the adhesion and peeling strength of the coating film may rather decrease. Therefore, the area ratio of the Ti-containing compound on the surface is 50.0% or less.
  • the area ratio of the Ti-containing compound may be 45.0% or less, 40.0% or less, or 35.0% or less.
  • the coated titanium material according to the present invention comprises a titanium material and a coating film formed on the surface of the titanium material.
  • Titanium Material As the titanium material, for example, the titanium material described above may be used. Alternatively, a titanium material obtained by subjecting the above titanium material to chemical conversion treatment may be used. Although the chemical conversion treatment will be described later, it may be either a Zr-based chemical conversion treatment or a zinc phosphate-based chemical conversion treatment. In addition, as described above, the Ti-containing compound that covers a part of the surface of the titanium base material may be deteriorated in the coating process. Therefore, the coated titanium material does not need to contain a Ti-containing compound.
  • the coating film is not particularly limited in type, but may be, for example, an electrodeposition coating film.
  • an electrodeposition coating film a modified epoxy resin-based electrodeposition coating film formed by cationic electrodeposition is preferable.
  • Ti-based oxide The coated titanium material according to the present invention contains a Ti-based oxide at the interface between the titanium material and the coating film.
  • the Ti-based oxide contains one or both of rutile TiO 2 and Ti 2 O 3 .
  • the area ratio of Ti-based oxide is specified.
  • the area ratio of the Ti-based oxide is 30.0% or more.
  • the area ratio of the Ti-based oxide may be 35.0% or more, 40.0% or more, 45.0% or more, or 50.0% or more.
  • the area ratio of the Ti-based oxide may be 95.0% or less, 90.0% or less, 80.0% or less, or 70.0% or less.
  • the thickness of the coating film is not particularly limited, but when the coating film is an electrodeposition coating film, for example, the film thickness is usually as thin as about 15 ⁇ m. In this case, it is difficult to observe the inside of the coating film or the vicinity of the surface (hereinafter, also referred to as the interface) where the coating film and the titanium material are in contact with each other. Therefore, the area ratio of the Ti-based oxide is calculated by the Cycas method using a surface/interface physical property analyzer described later. At this time, as shown in FIG. 2, the cut surface 5 of the coating film 1 is formed so as to be an oblique surface with respect to the interface 3 between the coating film 1 and the titanium material 2.
  • the coating film cutting means (cutting blade) is moved under the conditions of a horizontal speed of 2 ⁇ m/second and a vertical speed of 0.1 ⁇ m/second to form the cut surface 5 of the coating film 1.
  • the angle between the cutting surface 5 and the interface 3 is ⁇
  • the angle ⁇ is obtained from the geometrical relationship between the horizontal speed and the vertical speed, that is, tan ⁇ which is the ratio between the horizontal speed and the vertical speed. .. Therefore, the angle ⁇ is 2.7° under the conditions of the horizontal velocity of 2 ⁇ m/sec and the vertical velocity of 0.1 ⁇ m/sec.
  • the boundary line 6 is the line of intersection between the cut surface 5 and the interface 3.
  • the cutting edge receives resistance. Therefore, the boundary line 6 is often a curved line instead of a straight line. If the boundary line 6 is a curve, it is difficult to calculate the area ratio. Therefore, the reference line 7 for calculating the area ratio is specified.
  • FIG. 3 is a schematic diagram when the cut surface 5 is observed from the coating film surface side in a direction perpendicular to the interface 3.
  • the point that is perpendicular to the laminating direction of the coating film that is, the advancing direction of the cutting edge
  • the boundary line 6 that is the end portion of the cutting surface 5 is the most coated.
  • a straight line tangent to a point (close to the surface 4 of the film) is specified as the reference line 7.
  • the measuring device is a SAICAS (registered trademark) "DN-GS" manufactured by Daipla Wintens.
  • the measurement conditions at this time were as follows: measurement mode: constant speed mode, cutting edge: diamond cutting edge (blade width: 300 ⁇ m, rake angle: 20°, clearance angle: 10°), and as described above.
  • the horizontal velocity is 2.0 ⁇ m/sec and the vertical velocity is 0.1 ⁇ m/sec.
  • the area ratio of each Ti-based oxide is measured by Raman spectroscopy.
  • the measurement conditions are as follows: excitation wavelength: 532 nm, diffraction grating engraving number: 600 Lines/mm, objective lens: 100 times.
  • the mapping of the measurement result is carried out in the area of 60 ( ⁇ m) ⁇ 30 ( ⁇ m) on the surface at 0.75 ( ⁇ m step) and 3321 (points). From the mapping data, the area of each Ti-based oxide in the region 9 is expressed as a percentage, and the area ratio of each Ti-based oxide is used.
  • the test piece had a shape of 0.5 to 1.0 (mm) ⁇ 5 (mm) ⁇ 50 (mm), but the region 9 was large enough to be within the observation visual field. Any shape is acceptable.
  • the adhesion of the coating film is evaluated by the cross-cut test and the DuPont impact test by the presence or absence of peeling.
  • the peel strength is evaluated to be good when it is about the same as the peel strength when a general chemical conversion treatment is performed on a steel material and an electrodeposition coating film is formed.
  • the peeling strength of the steel material on which the above-mentioned electrodeposition coating film has been formed is measured with the surface/interface physical property analysis device using the Saikas method. Then, the peel strength of the coating film is similarly measured for the coated titanium material. The measured peel strength of the titanium material is divided by the peel strength of the steel material and evaluated by a value (hereinafter, also referred to as "relative peel strength"). If the peel strength is 1.0 or more, good peel strength is obtained. Judging to have
  • the peel strength is also measured using the above-mentioned SAIPAS (registered trademark) "DN-GS" manufactured by Die Pla-Wintens.
  • the measurement conditions at this time are as follows: measurement mode: constant speed mode, cutting edge: diamond cutting edge (blade width: 300 ⁇ m, rake angle: 20°, clearance angle: 10°), horizontal speed: 1
  • the peeling strength is measured by switching the blade to horizontal movement only at a depth at which a peeling phenomenon is confirmed, with a vertical speed of 0.0 ⁇ m/sec and a vertical velocity of 0.1 ⁇ m/sec. From the above horizontal and vertical velocities, the angle ⁇ between the interface and the cut surface is 5.7°.
  • the titanium material and the coated titanium material according to the present invention have the above-mentioned structure regardless of the manufacturing method, and the effect can be obtained.
  • the titanium material according to the present invention is manufactured by the following manufacturing method. Material and painted titanium material can be stably obtained.
  • Method for producing titanium material A titanium ingot having a controlled chemical composition is produced. Then, the obtained titanium ingot is heated and subjected to hot working.
  • the hot working method is not particularly limited, and examples thereof include hot rolling and hot forging. In addition, it is preferable to remove the scale generated by hot working by shot peening, pickling, or the like.
  • the cold working method is not particularly limited, and examples thereof include cold rolling, cold pressing, cold forging, and cold cutting.
  • a plurality of pieces having a predetermined shape after cold working may be joined to form an integral part shape.
  • heat treatment such as annealing may be appropriately performed.
  • the heat treatment is preferably performed in a non-oxynitriding atmosphere of vacuum or Ar and He gas in order to suppress oxidation and nitridation of titanium.
  • the titanium material according to the present embodiment includes a titanium base material and a Ti-containing compound that covers a part of the surface of the titanium base material.
  • the Ti-containing compound is, for example, a Ti-containing compound that contains two or more elements selected from the group consisting of Fe, C, O, and N.
  • the lubricating oil during cold working may contain 20 ppm or more of Fe.
  • the lubricating oil contains Fe at a concentration of 200 ppm or more.
  • the Ti-containing compound can be disposed on the surface of the titanium material.
  • the cause of such a phenomenon is that Fe of the lubricating oil constitutes a Ti-containing compound and/or that Fe or its compound exerts a catalytic action to produce a Ti-containing compound. ..
  • the Fe concentration in the normal titanium cold rolling lubricating oil is about 1 ppm. Therefore, it may be necessary to add iron oxide or the like to the lubricating oil in order to increase the Fe concentration.
  • the roll used for cold rolling is a roll containing Fe and that the roll itself is relatively easily worn. Further, it is desirable that both the reduction rate per pass and the rolling speed are high. Specifically, in cold rolling, the rolling reduction per pass is 10 to 30%, and the rolling speed is 200 mpm or more.
  • the rolling speed is preferably 300 mpm or more and 450 mpm or less. Further, under this condition, cold rolling of multiple passes is performed. The number of passes is preferably 4 or more. As a result, the Ti-containing compound is formed more uniformly. As described above, it is presumed that by strongly depressurizing titanium in a state where the lubricating oil containing Fe is applied, a mechanochemical reaction occurs and the above-mentioned unique surface texture is obtained. After cold working, alkali cleaning, annealing or the like may be appropriately performed as necessary.
  • the titanium material may be appropriately subjected to chemical conversion treatment, if necessary. From the viewpoint of ensuring the peel strength of the coating film, the chemical conversion treatment is not essential. However, by subjecting the titanium material to a chemical conversion treatment before coating, it is possible to further suppress the generation of bubbles during coating and further improve the uniformity of the coating film.
  • preferable chemical conversion treatment conditions will be exemplified.
  • a Zr-based chemical conversion treatment liquid or a zinc phosphate-based chemical conversion treatment liquid is usually used as the chemical liquid.
  • composition of the Zr-based chemical conversion treatment liquid examples include an aqueous solution obtained by neutralizing hexafluorozirconic acid, Zr(SO 4 ) 2 , Zr(NO 3 ) 4 , H 2 ZrF 6 and the like with ammonium or the like.
  • the composition of the zinc phosphate-based chemical conversion treatment solution is based on a saturated aqueous solution of zinc phosphate [Zn 3 (PO 4 ) 2 ] with zinc ions of 2.5 g/L and phosphate ions of 25 g/L( Contains phosphoric acid), nitrate ion: 25 g/L (adjusted by addition of nitric acid), fluorine ion (adjusted by addition of Na fluoride): 500 ppm, free acidity of 1.5 points using sodium hydroxide
  • the prepared liquid and the like can be mentioned.
  • a commercially available Zr-based chemical conversion treatment liquid or a zinc phosphate-based chemical conversion treatment liquid may be used.
  • the surface is adjusted to adsorb the titanium-based and zinc-based colloidal particles so that it becomes a precipitation site for zinc phosphate etc. before the chemical conversion treatment. May be.
  • PL-ZT or PL-XG manufactured by Nippon Parkerizing Co., Ltd. can be used.
  • the treatment temperature and the treatment time of the chemical conversion treatment may be carried out within a range generally carried out, but for example, the chemical conversion treatment temperature is preferably in the range of 30 to 50°C.
  • the chemical conversion treatment time is preferably in the range of 60 to 180 seconds.
  • the treatment temperature and the treatment time for the surface adjustment may be in the range usually carried out, but for example, the surface adjustment temperature is preferably in the range of 25 to 40°C.
  • the surface conditioning time is preferably in the range of 10 to 60 seconds.
  • Coating film formation A coating film is formed on the surface of the titanium material.
  • a method of forming a coating film a case of forming a coating film on the surface of a titanium material by electrodeposition coating will be described as an example.
  • electrodeposition coating it is preferable to perform electrodeposition coating after the chemical conversion treatment.
  • modified epoxy resin-based paint As the electrodeposition paint.
  • a commercially available product may be used, and for example, PN-1010 manufactured by Nippon Paint Co., Ltd. is exemplified.
  • electrodeposition coating that is, cationic electrodeposition, by applying a voltage with a titanium material as a cathode so that the film thickness of the electrodeposition coating film is in the range of 15 to 25 ⁇ m. Then, it is preferable to bake at 160 to 200° C. for 10 to 30 minutes. It is not preferable that the electrodeposition coating is anion electrodeposition (electrodeposition coating in which a current is used with a metal material as an anode).
  • anion electrodeposition forms a titanium oxide layer having low conductivity on the surface of the titanium material by anodic oxidation. In this case, it becomes difficult for the current to flow uniformly, and as a result, it becomes difficult to control the thickness of the electrodeposition coating film, a uniform coating film is not formed, and the coating film adhesion and peel strength are reduced. It is estimated to be.
  • finish coating may be performed after the above baking.
  • the finish coating include an intermediate coating for concealing the surface roughness of electrodeposition coating and improving chipping resistance, a base coating for coloring, and a clear coating for obtaining a beautiful finish and durability.
  • these paints include melanin-based resin for intermediate coating, acrylic resin for base coloring, and acrylic resin for clear coating.
  • a titanium material having the chemical composition shown in Table 1-1 was produced.
  • the titanium ingot having the chemical composition shown in Table 1 was hot-rolled, then shot-blasted and pickled for descaling, and then the cold-rolling conditions are shown in Table 1-2.
  • cold rolling was performed.
  • T1 to T6 and T9 to T12 titanium materials were subjected to cold rolling as described above, then alkali cleaning, and then batch annealing at 650° C. for 240 minutes in vacuum and Ar gas atmosphere. It was
  • T7 titanium material cold rolling was conducted under the conditions that the reduction rate per pass, the speed of cold rolling, and the Fe concentration of the cold rolling oil were the smallest. Then, alkali cleaning and batch annealing were performed under the same conditions as for titanium materials such as T1 to T6.
  • batch annealing was performed at 650° C. for 240 minutes in a vacuum and an Ar gas atmosphere, and thereafter, pickling with nitric hydrofluoric acid was performed, and the ⁇ 11 ⁇ m was ablated.
  • the titanium material having a peak in the range of 320 to 350 cm ⁇ 1 which is the peak of the Ti-containing compound in the spectrum, has an item of presence/absence of a peak, and titanium having no peak in the above range.
  • the above Ti-containing compound of each titanium material was subjected to Auger electron spectroscopic analysis, it contained Ti: 10 to 14%, Fe: 8 to 9%, C: 27 to 40%, O: 40 to 50%.
  • a trace amount of S was detected at about 1%.
  • N cannot be detected separately from Ti, but in view of the analysis results of XPS (X-ray photoelectron spectroscopy), Ti-containing compounds also contain N. It is believed that
  • the area ratio of the Ti-containing compound is calculated by the following procedure. Specifically, in the titanium material, a 50 (mm) ⁇ 50 (mm) test piece for Raman spectroscopic analysis having a surface on which a coating film is formed, that is, a surface perpendicular to the coating film stacking direction as an observation surface, is cut out. Then, the observation surface is measured by Raman spectroscopy.
  • the measurement conditions are as follows: excitation wavelength: 532 nm, diffraction grating engraving number: 600 Lines/mm, objective lens: 100 times. Further, in order to obtain the area ratio of the detected compound, mapping of the measurement result was performed at 0.75 ( ⁇ m step) and 13041 (points) in the area of 120 ( ⁇ m) ⁇ 60 ( ⁇ m) on the surface. The area of the Ti-containing compound obtained from this mapping data is divided by the area of the observation visual field, and the value expressed in percentage is taken as the area ratio of the Ti-containing compound.
  • a test piece of 50 (mm) ⁇ 80 (mm) was prepared and subjected to zinc phosphate chemical conversion treatment under the conditions described below. Before the chemical conversion treatment, ultrasonic cleaning was performed for 60 seconds. Subsequently, the titanium material was degreased by immersing the titanium material in the solution temperature of 43° C. for 120 seconds using FC-E2001 manufactured by Nippon Parkerizing Co., Ltd. Subsequently, a dipping and rocking treatment was carried out at 25° C. for 20 seconds using PL-ZT, a surface conditioning agent manufactured by Nippon Parkerizing Co. Subsequently, the titanium material was washed with tap water for 120 seconds.
  • a solution of zinc phosphate-based chemical conversion treatment liquid prepared by Nippon Parkerizing PB-L3080 system was adjusted to a solution temperature of 42° C., and a titanium material was immersed for 120 seconds and shaken. Then, the titanium material was washed with water and dried in a constant temperature layer at 45° C. for 10 minutes.
  • electrodeposition coating was performed using each titanium material as a cathode. A modified epoxy resin type PN-1010 manufactured by Nippon Paint Co., Ltd. was used as the electrodeposition paint. The electrodeposition coating was carried out under the condition that the thickness of the electrodeposition coating film was 15 ⁇ m.
  • the steel materials shown in Table 2 were subjected to chemical conversion treatment and electrodeposition coating in the same procedure as the titanium material.
  • the area ratios of rutile TiO 2 , Ti 2 O 3 , and Ti-based oxide in the above-mentioned coated titanium material and steel material on which the electrodeposition coating film was formed were measured. Specifically, it is 0.5 to 1.0 (mm) ⁇ 50 (mm) ⁇ 50 by a sikas method using a surface/interface physical property analyzer (SAICAS (registered trademark) DN-GS manufactured by Daipra Wintens Co., Ltd.). With respect to the sample (mm), a cut surface was formed at the interface of the coating film.
  • SAICAS surface/interface physical property analyzer
  • the measurement conditions at this time were such that the horizontal speed of the cutting edge was 2 ⁇ m/sec, the vertical speed was 0.1 ⁇ m/sec, and the angle ⁇ between the cutting surface and the interface was 2.7°. did.
  • the reference line was specified based on the boundary line, which is the intersection line between the cut surface and the interface, in the procedure described above. Then, on the cut surface, the area ratio of the Ti-based oxide in the region from the reference line to 15 ⁇ m from the reference line was calculated by Raman spectroscopy.
  • the setting conditions of the surface/interface physical property analyzer at that time are as follows: measurement mode: constant velocity mode, cutting edge: diamond cutting edge (blade width: 300 ⁇ m, rake angle: 20°, clearance angle: 10°), As described above, the horizontal velocity was 2.0 ⁇ m/sec and the vertical velocity was 0.1 ⁇ m/sec.
  • the measurement conditions of Raman spectroscopy were as follows: excitation wavelength: 532 nm, diffraction grating engraving number: 600 Lines/mm, objective lens: 100 times. Further, in order to obtain the area ratio of the detected compound, the mapping of the measurement result was performed in the area of 60 ( ⁇ m) ⁇ 30 ( ⁇ m) on the surface at 0.75 ( ⁇ m step) and 3321 (points). The area of each Ti-based oxide in the region in the above-mentioned cut surface obtained by image analysis of this mapping data was expressed as a percentage, and the value was defined as the area ratio of each Ti-based oxide.
  • the formed electrodeposition coating film was subjected to a DuPont impact test and a cross-cut test to evaluate the adhesion of the coating film.
  • the DuPont impact test was performed by dropping the weight in accordance with JIS K 5600-5-3:1999. At this time, the diameter of the shooting die and the pedestal used was 12.7 mm. A 500 g weight was used, and the drop height was 200 mm and 500 mm. After the test, manufactured by Nichiban Co., Ltd. 405 (JIS Z 1522:2009 compliant product) was used, and a tape peeling test was performed to confirm the presence or absence of peeling of the coating film. When there was peeling at the two drop heights, the adhesion of the coating film was judged to be poor.
  • the cross-cut test was performed according to JIS K 5600-5-6:1999. Specifically, using a small cutter, 11 parallel lines that are equally spaced (1 mm) on the substrate and 11 parallel lines that are orthogonal to each other were cut to produce 100 squares. A tape peeling test was performed on this portion with a tape having a width of 25 mm ⁇ 1 mm and having an adhesive strength of 10 ⁇ 1 N per width according to IEC60454-2. The number of intersection points without peeling was investigated from among 100 grids. Here, when the number of peeled intersections was 1 or more, the adhesion of the coating film was determined to be poor.
  • the peel strength of the peel strength Regarding the peel strength, the same as the measurement of the area ratio of the Ti-based oxide, the above-mentioned electrodeposition coating film was formed by using a surface/interface physical property analyzer (SAICAS (registered trademark) manufactured by Daipra Wintens Co.) DN-GS. The peel strength of the steel material was measured. After that, the peel strength of the coating film was similarly measured for the titanium material, and the value obtained by dividing by the peel strength of the steel material (hereinafter, also referred to as “relative peel strength”) was 1.0 or more, the peel strength. Was evaluated as good.
  • SAICAS surface/interface physical property analyzer
  • the measurement conditions are as follows: measurement mode: constant speed mode, cutting edge: diamond cutting edge (blade width: 300 ⁇ m, rake angle: 20°, clearance angle: 10°) ), horizontal speed: 1.0 ⁇ m/sec, vertical speed: 0.1 ⁇ m/sec, and the peel strength was measured by switching the blade only to horizontal movement at a depth where a peeling phenomenon was confirmed. From the horizontal speed and the vertical speed, the angle ⁇ is 5.7°.
  • the titanium material used for the coated titanium material satisfied the regulations of the present invention contained a Ti-containing compound, and had an area ratio of 10.0% or more. It is considered that this is an effect that the area ratio of 30% or more.
  • the test No. In Nos. 1 to 3 and 5 the titanium material contained the Ti-containing compound and the area ratio was 25.0% or more, so the relative peel strength of the coated titanium material was 1.1 or more, and the peel strength was higher. It can be seen that a coating film is formed.
  • the test No. 7 and No. Sample No. 8 did not satisfy the requirements of the present invention and resulted in poor adhesion or peel strength of the coating film.
  • test pieces were prepared from each titanium material (T1 to T8) shown in Table 1, and subjected to Zr-based chemical conversion treatment under the following respective conditions. did. Before the chemical conversion treatment, ultrasonic cleaning was performed for 60 seconds. Then, using FC-E2001 of Nippon Parkerizing Co., Ltd., the solution temperature was set to 43° C. and the test piece was immersed for 120 seconds for degreasing. Subsequently, the test piece was cleaned with tap water for 120 seconds.
  • electrodeposition coating was performed using each titanium material as a cathode.
  • the electrodeposition coating used for the electrodeposition coating and the test conditions were the same as in Example 1.
  • the steel materials shown in Table 2 were subjected to chemical conversion treatment and electrodeposition coating in the same procedure as the titanium material.
  • Example 1 In each coated titanium material on which the electrodeposition coating film was formed, the area ratios of rutile TiO 2 , Ti 2 O 3 and Ti-based oxide were measured by the same procedure as in Example 1. Moreover, the DuPont impact test, the cross-cut test, and the peel strength of the coating film were also measured by the same procedure as in Example 1.
  • Test No. Samples Nos. 10 to 15 were coated titanium materials that satisfied the regulations of the present invention, and thus had good coating film adhesion and had a peel strength of the coating film that was at least about the same as that of steel materials, and thus was good.
  • the titanium material used for the coated titanium material satisfied the regulations of the present invention contained a Ti-containing compound, and had an area ratio of 10.0% or more. It is considered that the area ratio of the product is 30% or more.
  • the test No. In Nos. 10 to 12 and 14 the titanium material contained the Ti-containing compound, and the area ratio thereof was 25.0% or more. Therefore, the relative peel strength of the coated titanium material was 1.1 or more, and the peel strength was higher. It can be seen that a coating film is formed.
  • the test No. 16 and No. Sample No. 17 did not satisfy the requirements of the present invention and resulted in poor adhesion or peel strength of the coating film.
  • Each titanium material (T1 to T8) listed in Table 1 was subjected to electrodeposition coating without chemical conversion treatment.
  • the electrodeposition coating used for the electrodeposition coating and the test conditions were the same as in Example 1.
  • the steel materials shown in Table 2 were subjected to zinc phosphate chemical conversion treatment in the same procedure as the steel materials in Example 1 and then subjected to electrodeposition coating.
  • Example 1 By the same procedure as in Example 1, the area ratios of rutile TiO 2 , Ti 2 O 3 and Ti-based oxide were measured. Moreover, the DuPont impact test, the cross-cut test, and the peel strength of the coating film were also measured by the same procedure as in Example 1.
  • Each titanium material (T9 to T16) shown in Table 1 was subjected to a Zr-based chemical conversion treatment in the same procedure as in Example 2 and was electrodeposited.
  • the steel materials shown in Table 2 were subjected to chemical conversion treatment and electrodeposition coating in the same procedure as the titanium material.
  • Example 1 By the same procedure as in Example 1, the area ratios of rutile TiO 2 , Ti 2 O 3 and Ti-based oxide were measured. Moreover, the DuPont impact test, the cross-cut test, and the peel strength of the coating film were also measured by the same procedure as in Example 1.
  • Test No. Samples Nos. 28 to 31 were coated titanium materials that satisfied the requirements of the present invention, so the coating film adhesion was good, and the peeling strength of the coating film was about the same as or higher than that of the steel material, which was good.
  • the titanium material used for the coated titanium material satisfied the regulations of the present invention, contained a Ti-containing compound, and had an area ratio of 10.0% or more. It is considered that this is an effect that the area ratio of 30% or more.
  • the test No. In Nos. 28 to 31 since the titanium material contained the Ti-containing compound and the area ratio was 25.0% or more, the coating strength of the coated titanium material was 1.1 or more, and the coating film having higher peeling strength was obtained. It can be seen that it is formed.
  • the test No. Nos. 32 to 35 did not satisfy the requirements of the present invention, and resulted in poor adhesion and/or peel strength of the coating film.
  • titanium materials T2, T7, and T8 described in Table 1-2 as starting materials, these materials were anodized under the conditions described in Table 7 to obtain titanium materials T17 to T31. These titanium materials T17 to T31 were not subjected to chemical conversion treatment.
  • electrodeposition coating was performed using each titanium material as a cathode.
  • the electrodeposition coating used for the electrodeposition coating and the test conditions were the same as in Example 1.
  • the area ratios of rutile TiO 2 , Ti 2 O 3 and Ti-based oxide were measured by the same procedure as in Example 1.
  • the DuPont impact test, the cross-cut test, and the peel strength of the coating film were also measured by the same procedure as in Example 1. The results are shown in Table 8 below.
  • the peel strength of the coating film could not be secured in any of the test pieces. It is presumed that this is because a titanium oxide layer having low conductivity was formed by anodic oxidation. When an attempt is made to form a coating film on a titanium material on which a titanium oxide layer having low conductivity is formed by cation electrodeposition, it is difficult to uniformly flow current due to insufficient conductivity. As a result, it was presumed that it became difficult to control the thickness of the electrodeposition coating film, a uniform coating film was not formed, and the coating film adhesion and peel strength were lowered.
  • Zr-based chemical conversion treatment was applied to titanium materials T2, T7, and T8 shown in Table 1-2 by the same procedure as in Example 2, and electrodeposition coating was performed.
  • the electrodeposition coating was carried out in a modified epoxy resin type PN-1010 by using titanium as an anode and applying a voltage (so-called anion electrodeposition).
  • anion electrodeposition a voltage
  • the area ratios of rutile TiO 2 , Ti 2 O 3 and Ti-based oxide were measured by the same procedure as in Example 1.
  • the DuPont impact test, the cross-cut test, and the peel strength of the coating film were also measured by the same procedure as in Example 1. The results are shown in Table 9 below.
  • the peel strength of the coating film could not be secured in any of the test pieces. It is presumed that this is because the electrodeposition coating was anion electrodeposition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

チタン材と、チタン材の表面に形成された塗膜と、を備え、チタン材と塗膜との界面に、Ti系酸化物を含み、Ti系酸化物は、ルチル型TiO2およびTi2O3の一方または両方であり、サイカス法を用い、水平速度を2μm/秒、垂直速度を0.1μm/秒の条件で、塗膜の切断面を形成させる場合に、切断面において切断面と界面との交線である境界線に基づき特定される基準線から塗膜側に15μmの距離までの領域におけるTi系酸化物の面積率が、30.0%以上である、塗装チタン材。

Description

チタン材および塗装チタン材
 本発明は、チタン材および塗装チタン材に関する。
 本願は、2019年1月23日に、日本に出願された特願2019-009749号に基づき優先権を主張し、その内容をここに援用する。
 チタン材は、軽量であり、強度、耐食性にも優れることから、自動二輪車を中心に自動車のエンジン部品、マフラーに使用されている。これらのほとんどがチタンに塗装することなく使用されている。一方、自動車、自動二輪車のボディー関連部材および外装部材(以下、「自動車ボディー関連部材」と記載する。)にチタン材を適用する場合、チタンに塗装を施すことでデザイン性をより高めることができる。このため、チタン材においては、塗膜の密着性を向上させる必要があり、以下のような検討がなされている。
 例えば、特許文献1および2では、ショットブラストまたは蒸着を利用し、鉄、スズ、亜鉛等を、チタン表面に被覆させることで、塗装密着性を向上させたチタン材が開示されている。
 また、特許文献3では、陽極酸化を行い、チタン表面に多孔質の酸化皮膜を形成させることで、塗膜密着性を向上させたチタン材が開示されている。同様に、特許文献4においても、陽極酸化を利用したチタン材が開示されている。特許文献4で開示されたチタン材は、その表面に酸化皮膜を形成させた後、アクリル樹脂系の電着塗膜を形成させ、塗膜密着性を向上させている。
日本国特開平5-263265号公報 日本国特開平6-81112号公報 日本国特開昭63-14898号公報 日本国特開平6-228797号公報
 自動車ボディー関連部材の中には、複雑な形状を有する部材がある。このような複雑形状の部材に、特許文献1および2に開示されたチタンショットブラスト等を用いる方法を適用した場合、ショットブラスト等を十分行うことができない箇所が生じうる。このため、塗膜の密着性が低下する場合がある。
 ところで、鋼材等からなる自動車用の部材は、化成処理工程、電着塗装工程、仕上塗装工程と呼ばれる塗装工程を順に経て、塗装されるのが一般的である。チタン材においては、腐食されにくく、化成処理反応が生じにくい。このため、最終製品の塗装性に関し、電着塗装工程が特に重要である。また、自動車用の部材という用途から、上記工程で形成した電着塗膜には、密着性に加えて、剥離しにくさ、つまり剥離強度も要求される。
 ここで、電着塗装工程では、樹脂等を含む電着塗膜の塗料(以下、「電着塗料」ともいう。)の液中で、金属材料と極板間との間に電流を流し、電着塗膜を形成させる。そして、金属材料を陰極として電流を流す電着をカチオン電着、金属材料を陽極として電流を流す電着をアニオン電着と呼ぶ。自動車用途の電着塗装においては、カチオン電着が一般的である。
 特許文献3および4に開示されたチタン材には、陽極酸化により導電性の低い酸化チタン層が形成される。そのため、カチオン電着にて該チタン材に塗膜を形成させようとすると、導電性が不十分で、均一に電流が流れにくい。この結果、電着塗膜の厚さを制御することが困難になり、均一な塗膜が形成せず、塗膜密着性、剥離強度が低下する。さらに、特許文献4に開示された技術のように、アクリル樹脂を使用してチタン材に電着塗装した場合、電着塗膜の耐熱性および耐溶剤性が不十分となる場合があり、仕上塗装などで良好な塗膜が形成しない場合がある。
 本発明は、上記の問題を解決し、良好な塗膜密着性と塗膜の剥離強度とを有する塗装チタン材およびそれに用いるチタン材を提供することを目的とする。
 本発明は、上記の課題を解決するためになされたものであり、下記のチタン材および塗装チタン材を要旨とする。
 (1)チタン材と、前記チタン材の表面に形成された塗膜と、を備え、
 前記チタン材と前記塗膜との界面に、Ti系酸化物を含み、
 前記Ti系酸化物は、ルチル型TiOおよびTiの一方または両方であり、
 サイカス法を用い、水平速度を2μm/秒、垂直速度を0.1μm/秒の条件で、前記塗膜の切断面を形成させる場合に、前記切断面において前記切断面と前記界面との交線である境界線に基づき特定される基準線から塗膜側に15μmの距離までの領域における前記Ti系酸化物の面積率が、30.0%以上である、塗装チタン材。
 (2)前記塗膜が変性エポキシ樹脂からなる電着塗膜である、上記(1)に記載の塗装チタン材。
 (3)チタン基材と、前記チタン基材の表面の一部を被覆するTi含有化合物と、を備え、
 前記チタン基材は、工業用純チタンまたはチタン合金からなり、
 前記Ti含有化合物は、ラマン分光法により得られるスペクトルにおいて、320~350cm-1の範囲に、ピークを有し、
 前記表面を被覆する前記Ti含有化合物の面積率が、10.0~50.0%である、チタン材。
 (4)前記Ti含有化合物を面積率が、25.0~50.0%である、
 上記(3)に記載のチタン材。
 (5)
 前記Ti含有化合物が、Fe、C、O、及びNからなる群から選択される二種以上の元素を含む
 上記(3)又は(4)に記載のチタン材。
 本発明によれば、良好な塗膜密着性と塗膜の剥離強度とを有する塗装チタン材およびそれに用いるチタン材を得ることができる。
図1Aは、Ti含有化合物の面積率が25.0%であるチタン材(本発明例)の表面の写真およびラマン分光法により得られるスペクトルにおいて320~350cm-1の範囲にピークを有するTi含有化合物の分布を示す図である。 図1Bは、Ti含有化合物の面積率が0%であるチタン材(比較例)の表面の写真およびラマン分光法により得られるスペクトルにおいて320~350cm-1の範囲にピークを有するTi含有化合物の分布を示す図である。 図2は、サイカス法により切断した塗装チタン材における塗膜の切断面を示す模式図である。 図3は、サイカス法により切断した塗装チタン材の塗膜の切断面において、基準線の決定方法を示す模式図である。
 本発明者らは、良好な塗装密着性と塗膜の剥離強度とを有する塗装チタン材を得るために、種々の検討を行った。その結果、以下の(a)~(c)の知見を得た。
 (a)密着性、剥離強度の低かった塗装チタン材では、微小ではあるが電着塗膜が形成されていない穴状の部分が観察される場合があった。この原因として、チタン材の表面に形成している不働態皮膜が考えられる。この不働態皮膜は、pH1~12といった広い範囲の液性で安定な皮膜であり、例えば、化成処理、電着塗装時においてもその皮膜構造を維持する。
 (b)鋼材を化成処理する際には、素地金属がエッチングされながら、反応層(いわゆる化成皮膜)が形成されるか、またはくさび効果を引き起こす粗面化が生じる。そして、このような反応層および粗面化した表面を起点にして、均一に塗膜が成長すると考えられる。一方、非常に安定な不働態皮膜に覆われたチタン材の表面では、上述の反応層の形成または粗面化が生じず、均一な電着塗膜が形成しにくい。
 (c)チタン材表面に予め、Ti含有化合物(例えば、Fe、C、O、及びNからなる群から選択される二種以上の元素を含むTi含有化合物)を形成させておくことで、電着塗膜が成長しやすくなる。上記Ti含有化合物に起因して、電着塗装時にルチル型のTiO、Tiが、チタン材と塗膜との界面に形成され、これらの酸化物が核となることで、均一な塗膜が成長すると考えられる。
 本発明は上記の知見に基づいてなされたものである。以下、本発明の好ましい一実施形態を詳細に説明し、その際、本発明の好ましい一実施形態を本発明として記載する。
 1.チタン材
 本発明に係るチタン材は、チタン基材と、チタン基材の表面の一部を被覆するTi含有化合物とを備える。
 1-1.チタン基材の化学組成
 チタン基材は、工業用純チタンまたはチタン合金からなる。ここで、工業用純チタンとは、98.8%以上のTiを含有し、残部が不純物からなる金属材を意味する。一般的な工業用純チタンとして、例えば、JIS1~4種、またはASTM/ASME Grade1~4が例示される。これら、工業用純チタンでは、不純物元素として、C、H、O、N、Fe、等を含み、各元素の含有量は以下に示すように定められている。
 具体的には、C:0.08%以下、H:0.015%以下、O:0.40%以下、N:0.05%以下、Fe:0.50%以下である。
 また、チタン合金は、汎用のチタン合金であればよい。チタン合金の一例としては、Ti-3Al-2.5V、Ti-1Fe-0.35O、等が挙げられる。Ti-3Al-2.5Vは、JIS61種、ASTM Grade9の公的規格がある。Ti-1Fe-0.35OはAl、Vを添加せずに、汎用元素であるFe、Oを添加し高強度化されている。
 1-2.Ti含有化合物
 Ti含有化合物は、ラマン分光法により得られるスペクトルにおいて、320~350cm-1の範囲に、ピークを有する。
 Ti含有化合物について、具体的な相の同定はなされていないが、上記ピークは、ピエゾブロッカイト型FeTiOまたはTiCNのシフトピークと一致する。このことから、上記Ti含有化合物は、ピエゾブロッカイト型FeTiOまたはTiCNである可能性がある。
 同様に、オージェ電子分光分析を用いて分析を行うと、上記Ti含有化合物は、原子%で、Ti:10~14%、Fe:8~9%、C:27~40%、O:40~50%、を含むことが分かる。また、例えば、微量のSが1%程度検出される場合がある。なお、オージェ電子分光分析では、NはTiと分離して検出することができないが、XPS(X線光電子分光、X-ray photoelectron spectroscopy)の分析結果からNも含まれると考えられる。以上を踏まえ、上記Ti含有化合物は、Fe、C、O、及びNからなる群から選択される二種以上を含有するTi含有化合物であると考えられる。
 上記Ti含有化合物がチタン材の表面に存在すると、その後、電着塗装時の塗膜の成長の核となるTi系酸化物が形成しやすくなる。この結果、電着塗膜が均一に成長しやすくなり、塗装チタン材は、塗膜の密着性と剥離強度とが向上する。これは、図1A及び図1Bを用いて、説明することができる。図1Aは、Ti含有化合物の面積率が25.0%である例であり、その後、塗装チタン材に形成する塗膜の密着性が良好であった。一方、図1Bは、Ti含有化合物の面積率が0%である例であり、その後、塗装チタン材に形成する塗膜の密着性が不良であった。
 これらのメカニズムについては、詳細には明らかになっていないが、以下のメカニズムによるものと推定される。具体的には、電着塗装時において、初期にチタン表面のTi含有化合物が溶解し、その後、すぐにチタンイオンがチタン表面にTi系酸化物として析出する。析出したTi系酸化物が電着塗料の粒子の析出核となり、均一の塗膜が成長し、良好な密着性と剥離強度とを有する電着塗膜となる。
 ラマン分光法による測定に際し、測定条件は、以下に示すように、励起波長:532nm、回折格子刻線数:600 Lines/mm、対物レンズ:100倍とする。また、マッピングは、チタン材においては、表面の120(μm)×60(μm)の領域で、0.75(μmステップ)、13041(points)で実施する。
 1-3.Ti含有化合物の面積率
 本発明に係るチタン材では、表面を被覆する上記Ti含有化合物の面積率は、10.0~50.0%とする。表面における上記Ti含有化合物の面積率が、10.0%未満であると、塗膜の成長の起点となるTi系酸化物が十分に生成せず、塗膜密着性および剥離強度が低下する。このため、表面における上記Ti含有化合物の面積率は、10.0%以上とする。上記Ti含有化合物の面積率を、15.0%以上、20.0%以上、25.0%以上、又は30.0%以上としてもよい。
 表面における上記Ti含有化合物の面積率が50.0%以下であると、塗膜成長の起点となるTi系酸化物の面積率が90%を超え、十分に高い電着塗膜の剥離強度が得られる。一方、50.0%を超えると、このTi含有化合物が一部に残存してしまうため、却って塗膜の密着性および剥離強度が低下する場合がある。このため、表面における上記Ti含有化合物の面積率は、50.0%以下とする。上記Ti含有化合物の面積率を、45.0%以下、40.0%以下、又は35.0%以下としてもよい。
 Ti含有化合物の面積率は、以下の手順で算出する。具体的には、チタン材から、塗膜を形成することとなる面、つまり塗膜積層方向に垂直な面を観察面とするラマン分光分析用の50(mm)×50(mm)の試験片を切り出す。続いて、ラマン分光法にて該観察面を測定する。なお、ラマン分光法による測定条件は上述のとおりである。測定により得られたマッピングデータを画像解析して得られるTi含有化合物の面積を、観察視野の面積で除して、百分率で表記した値をTi含有化合物の面積率とする。
 2.塗装チタン材
 本発明に係る塗装チタン材は、チタン材と、チタン材の表面に形成された塗膜と、を備える。
 2-1.チタン材
 チタン材は、例えば、上述のチタン材を用いればよい。また、上述のチタン材に化成処理を施したチタン材を用いてもよい。化成処理については、後述するが、Zr系化成処理、またはりん酸亜鉛系化成処理のいずれでもよい。なお、上述した通り、チタン基材の表面の一部を被覆するTi含有化合物は、塗装工程で変質しうる。そのため、塗装チタン材はTi含有化合物を含まなくともよい。
 2-2.塗膜
 塗膜は、特にその種類を限定するものではないが、例えば、電着塗膜であればよい。電着塗膜の場合は、カチオン電着により形成された変性エポキシ樹脂系の電着塗膜であるのが好ましい。
 2-3.Ti系酸化物
 本発明に係る塗装チタン材は、チタン材と塗膜との界面に、Ti系酸化物を含む。Ti系酸化物は、ルチル型TiO、およびTiの一方、または両方を含有する。なお、TiOには、ルチル型およびアナターゼ型の二種類があり、本発明に係る塗装チタン材では、ルチル型のTiOを含む。
 2-4.Ti系酸化物の面積率
 本発明に係る塗装チタン材では、Ti系酸化物の面積率を規定する。本発明に係る塗装チタン材では、Ti系酸化物の面積率は、30.0%以上とする。Ti系酸化物の面積率を35.0%以上、40.0%以上、45.0%以上、又は50.0%以上としてもよい。なお、Ti系酸化物の形成量は多ければ、多いほど好ましいため、上限は特に定めない。従って、Ti系酸化物の面積率は100%以下である。Ti系酸化物の面積率を95.0%以下、90.0%以下、80.0%以下、又は70.0%以下としてもよい。
 塗膜の厚さは特に限定されないが、例えば塗膜が電着塗膜である場合、その膜厚は15μm程度と非常に薄いことが通常である。この場合、塗膜内部、または塗膜とチタン材とが接している面(以下、界面ともいう。)付近を観察することは難しい。このため、後述する表面・界面物性解析装置を用いて、サイカス法により、Ti系酸化物の面積率を算出する。この際、図2に示すような、塗膜1とチタン材2との界面3に対し斜めの面となるように、塗膜1の切断面5を形成させる。具体的には、水平速度を2μm/秒、垂直速度を0.1μm/秒の条件で塗膜切断手段(切刃)を動かして、塗膜1の切断面5を形成させる。切断面5と界面3とのなす角をθとするとき、上記の角θは、この水平速度と垂直速度との幾何学的な関係、つまり水平速度と垂直速度との比であるtanθから求まる。したがって、水平速度を2μm/秒、垂直速度を0.1μm/秒の条件では、角θは2.7°となる。
 上記切断面5と界面3との交線を境界線6とする。サイカス法を用いて、塗膜1をせん断する際、切刃は抵抗を受ける。このため、境界線6は、直線とならず、曲線となる場合が多い。境界線6が曲線である場合、面積率を算出しにくい。そのため、面積率を算出するための基準線7を特定する。
 以下、図3を用い、サイカス法により切断した塗装チタン材の塗膜の切断面において、基準線の決定方法を示す。図3は、塗膜表面側から、界面3に垂直な方向に切断面5を観察した際の模式図である。境界線の中で、塗膜の積層方向(即ち、切刃の進行方向)に垂直で、最も塗膜側の点(即ち、切断面5の端部である境界線6の中で、最も塗膜の表面4に近い点)に接する直線を基準線7として特定する。
 再度、図2を用い、説明する。続いて、切断面5において、基準線7から塗膜側に15μmの距離の直線8を特定する。そして、切断面5において基準線7および直線8の間の領域9におけるTi系酸化物の面積率をラマン分光法により算出する。
 ここで、塗装チタン材にて上記ラマン分光法で、各Ti系酸化物の面積率を測定するための観察面を得るサイカス法の条件を記す。測定装置は、ダイプラウィンテンス社製 SAICAS(登録商標) 「DN-GS」を用いて測定する。この際の測定条件は、以下に示すように、測定モード:定速度モード、切刃:ダイヤモンド製 切刃(刃幅:300μm、すくい角:20°、逃げ角:10°)とし、上述したように、水平速度:2.0μm/秒、垂直速度0.1μm/秒とする。
 また、上述したように、各Ti系酸化物の面積率は、ラマン分光法にて測定する。測定条件は、上述したように励起波長:532nm、回折格子刻線数:600 Lines/mm、対物レンズ:100倍とする。また、検出された化合物の面積率を求めるため、測定結果のマッピングを、表面の60(μm)×30(μm)の領域で、0.75(μmステップ)、3321(points)で実施する。このマッピングデータから、領域9にて各Ti系酸化物の面積を、百分率で表記した値を各Ti系酸化物の面積率とする。
 なお、本発明に係る塗装チタン材では、試験片を0.5~1.0(mm)×5(mm)×50(mm)の形状としたが、領域9が十分観察視野内に入る大きさ、形状であればよい。
 3.特性評価
 本発明に係るチタン材において、塗膜の密着性については、碁盤目試験およびデュポン式衝撃試験で、剥離の有無により評価する。また、剥離強度については、鋼材に一般的な化成処理、および電着塗膜を形成させた場合の剥離強度と同程度の場合を、剥離強度が良好であると評価する。
 具体的には、サイカス法を用い、表面・界面物性解析装置で、上述の電着塗膜を形成させた鋼材の剥離強度を測定する。その後、塗装チタン材についても同様に、塗膜の剥離強度を測定する。測定したチタン材の剥離強度を、鋼材の剥離強度で、除した値(以下、「相対剥離強度」ともいう。)で評価を行い、剥離強度が1.0以上であれば、良好な剥離強度を有すると判断する。
 なお、剥離強度の測定にも、上述したダイプラウィンテンス社製 SAICAS(登録商標) 「DN-GS」を用いて測定する。この際の測定条件は、以下に示すように、測定モード:定速度モード、切刃:ダイヤモンド製切刃(刃幅:300μm、すくい角:20°、逃げ角:10°)、水平速度:1.0μm/秒、垂直速度0.1μm/秒とし、剥離現象が確認された深さで、刃を水平移動のみに切り替え剥離強度を測定する。なお、上記水平速度および垂直速度から、界面と切断面とのなす角θは5.7°となる。
 4.製造方法
 以下に、本発明に係るチタン材および塗装チタン材の好ましい製造方法について説明する。本発明に係るチタン材および塗装チタン材は、製造方法によらず、上述の構成を有していれば、その効果を得られるが、例えば、以下のような製造方法により、本発明に係るチタン材および塗装チタン材を安定して得ることができる。
 4-1.チタン材の製造方法
 化学組成を調整したチタン鋳塊を作製する。続いて、得られたチタン鋳塊を加熱し、熱間加工を施す。熱間加工方法は、特に限定しないが、例えば、熱間圧延、熱間鍛造等が挙げられる。なお、熱間加工で生じたスケールをショットピーニング、酸洗等により除去するのが好ましい。
 その後、冷間加工を行ない、所定の形状にする。冷間加工方法は特に限定しないが、例えば、冷間圧延、冷間プレス、冷間鍛造、冷間切削等が挙げられる。加えて、冷間加工後の所定形状をなす複数のピースを接合して、一体の部品形状を成してもよい。なお、熱間、冷間の加工後、適宜、焼鈍等の熱処理を施してもよい。前記熱処理は、チタンの酸化や窒化を抑制するために、非酸窒化性雰囲気である真空あるいはArおよびHeガス中で行うことが好ましい。
 本実施形態に係るチタン材は、チタン基材と、前記チタン基材の表面の一部を被覆するTi含有化合物とを含む。Ti含有化合物とは例えば、Fe、C、O、及びNからなる群から選択される二種以上の元素を含有するような、Ti含有化合物である。Ti含有化合物をチタン材の表面に配するために、チタン材の表面に例えばFe、C、O、及びN等の元素を濃化させる必要がある。本発明者らが見出したところでは、例えば、冷間加工時の潤滑油を、20ppm以上のFeを含むものとすればよい。好ましくは、潤滑油が含むFeの濃度は200ppm以上である。これにより、Ti含有化合物をチタン材の表面に配することができる。このような現象が生じる原因は、潤滑油のFeがTi含有化合物を構成するため、及び/又は、Feやその化合物が触媒作用を発揮してTi含有化合物を生成するためであると推定される。
 なお、通常のチタン冷延用の潤滑油におけるFe濃度は約1ppmである。従って、Fe濃度を上昇させるために、潤滑油に酸化鉄などを添加することが必要となる場合がある。
 また、冷間圧延を行う場合は、冷間圧延に使用するロールを、Feを含むロールとし、さらにロール自体を比較的磨耗しやすいものとするのが望ましい。さらに、1パス当たりの圧下率、及び圧延の速度のいずれもが大きいことが望ましい。具体的には、冷間圧延において、1パス当たりの圧下率を10~30%とし、圧延速度を200mpm以上とする。圧延速度は、好ましくは300mpm以上450mpm以下である。さらに、この条件で、複数パスの冷間圧延を行うこととする。パス数は、好ましくは4以上である。これにより、Ti含有化合物が一層均一に形成されることとなる。このように、Feが含まれる潤滑油を塗布した状態でチタンを強圧下することにより、メカノケミカル反応が生じ、上述した特有の表面性状が得られると推定される。
 なお、冷間加工後において、必要に応じて、適宜、アルカリ洗浄、焼鈍等を実施すればよい。
 4-2.塗装チタン材の製造方法
 4-2-1.アルカリ脱脂
 チタン材に、アルカリ脱脂を行う。アルカリ脱脂には、例えば、日本パーカライジング社 FC-E2001を用いてもよい。
 4-2-2.化成処理
 上記チタン材に、必要に応じて、適宜、化成処理を施してもよい。塗膜の剥離強度を確保する観点からは、化成処理は必須ではない。しかしながら、チタン材を塗装前に化成処理することにより、塗装中の気泡発生を一層抑制し、塗膜の均一性を一層向上させることができる。以下、好ましい化成処理条件を例示する。
 化成処理では、通常、薬液として、Zr系化成処理液またはりん酸亜鉛系化成処理液が用いられる。Zr系化成処理液の組成としては、例えば、ヘキサフルオロジルコニウム酸、Zr(SO、Zr(NO、HZrFとなどをアンモニウム等で中和した水溶液が挙げられる。
 また、りん酸亜鉛系化成処理液の組成としては、りん酸亜鉛[Zn(PO]の飽和水溶液をベースに、亜鉛イオン:2.5g/L、りん酸イオン:25g/L(りん酸添加で調整)、硝酸イオン:25g/L(硝酸添加で調整)、ふっ素イオン(ふっ化Na添加で調整):500ppmを含有し、水酸化ナトリウムを用いて遊離酸度を1.5ポイントに調整した液等が挙げられる。その他、市販されているZr系化成処理液、またはりん酸亜鉛系化成処理液を用いてもよい。
 なお、化成処理液にりん酸亜鉛系化成処理液を用いる場合は、化成処理の前にりん酸亜鉛などの析出サイトになるように、チタン系および亜鉛系のコロイド粒子を吸着させる表面調整を行ってもよい。この際の表面調整には、日本パーカライジング社のPL-ZTまたはPL-XGを用いることができる。
 また、化成処理の処理温度および処理時間は、通常、実施される範囲で行えばよいが、例えば、化成処理温度は30~50℃の範囲とするのが好ましい。化成処理時間については、60~180秒の範囲とするのが好ましい。表面調整の処理温度および処理時間も、通常、実施される範囲で行えばよいが、例えば、表面調整温度は25~40℃の範囲とするのが好ましい。表面調整時間については、10~60秒の範囲とするのが好ましい。
 4-2-3.塗膜形成
 チタン材の表面に塗膜を形成させる。以下、塗膜の形成方法の一例として、電着塗装により、チタン材表面に塗膜を形成させる場合を例にとり、説明する。化成処理を行う場合は、化成処理の後、電着塗装を施すのが好ましい。
 電着塗料としては、変性エポキシ樹脂系の塗料を用いるのが望ましい。なお、市販のものでよく、例えば、日本ペイント社製 PN-1010が例示される。また、電着塗装膜の膜厚が15~25μmの範囲となるように、チタン材を陰極として電圧を印加し、電着塗装、つまりカチオン電着を行うのが好ましい。その後、160~200℃で、10~30分焼付けを行うのが好ましい。電着塗装をアニオン電着(金属材料を陽極として電流を流す電着塗装)とすることは好ましくない。何故なら、アニオン電着では、チタン材の表面に陽極酸化によって導電性の低い酸化チタン層が形成されるからであると考えられる。この場合、均一に電流が流れにくくなり、この結果、電着塗膜の厚さを制御することが困難になり、均一な塗膜が形成せず、塗膜密着性、剥離強度が低下するものと推定される。
 なお、上記焼付け後、仕上塗装を行ってもよい。仕上塗装としては、電着塗装の表面粗さを隠蔽し、耐チッピング性を向上させる中塗塗装、着色のためのベース塗装、及び美麗な仕上がりと耐久性を得るためのクリア塗装等が挙げられる。なお、これらの塗料としては、例えば、中塗り用のメラニン系樹脂、ベース着色用アクリル系樹脂、クリア塗装用のアクリル樹脂が挙げられる。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1-1に示す化学組成のチタン材を作製した。なお、この際、表1の化学組成を有するチタン鋳塊を、熱間圧延し、その後、脱スケールのためショットブラストと酸洗を行った後、冷間圧延条件を表1-2に記載されるものとして、冷間圧延を行った。T1~T6およびT9~T12のチタン材については、上述の冷間圧延を行った後、アルカリ洗浄を行い、その後、真空およびArガス雰囲気の中で、650℃で、240分のバッチ焼鈍を行った。
 T7のチタン材については、冷間圧延にて、1パス当たりの圧下率、冷間圧延の速度、及び冷間圧延油のFe濃度のいずれもが最も小さい条件とした。その後、T1~T6等のチタン材と同様の条件で、アルカリ洗浄およびバッチ焼鈍を行った。T8、およびT13~T16のチタン材については、冷間圧延後、真空およびArガス雰囲気で、650℃、240分のバッチ焼鈍を行い、その後、硝ふっ酸を用いて酸洗し、表面から8~11μmを溶削した。
 これらのチタン材について、50(mm)×50(mm)の試料を作製し、ラマン分光法によりスペクトルを測定した。測定には、堀場製作所社製 顕微レーザーラマン分光測定装置 LabRAM HR Evolutionを用いた。また、測定条件は、励起波長:532nm、回折格子刻線数:600 Lines/mm、対物レンズ:100倍とした。また、マッピングは、チタン材においては、表面の120(μm)×60(μm)の領域で、0.75(μmステップ)、13041(points)で実施した。
 表1においては、スペクトルにおいて、Ti含有化合物のピークである、320~350cm-1の範囲に、ピークを有するチタン材については、ピークの有無の項目を有とし、上記範囲にピークを有しないチタン材については、無と記載した。なお、各チタン材の上記Ti含有化合物について、オージェ電子分光分析したところ、Ti:10~14%、Fe:8~9%、C:27~40%、O:40~50%を含み、併せて、微量のSが1%程度検出された。なお、オージェ電子分光分析では、NはTiと分離して検出することができないが、XPS(X線光電子分光、X-ray photoelectron spectroscopy)の分析結果に鑑みて、Ti含有化合物にはNも含まれると考えられる。
 なお、Ti含有化合物の面積率は、以下の手順で算出する。具体的には、チタン材において、塗膜を形成する面、つまり塗膜積層方向に垂直な面を観察面とするラマン分光分析用の50(mm)×50(mm)の試験片を切り出す。続いて、ラマン分光法にて該観察面を測定する。
 測定条件は、以下に示すように、励起波長:532nm、回折格子刻線数:600 Lines/mm、対物レンズ:100倍とする。また、検出された化合物の面積率を求めるため、測定結果のマッピングを、表面の120(μm)×60(μm)の領域で、0.75(μmステップ)、13041(points)で実施した。このマッピングデータから得られるTi含有化合物の面積を、観察視野の面積で除して、百分率で表記した値をTi含有化合物の面積率とする。
 また、後述するが塗膜の剥離強度を、鋼材を用いて処理を行った場合と比較するため、表2に示す化学組成を有する市販の鋼材を用意した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 各チタン材(T1~T8)について、50(mm)×80(mm)の試験片を作製し、以下記載の条件でりん酸亜鉛系化成処理を施した。化成処理の前に、60秒間の超音波洗浄を行った。続いて、日本パーカライジング社 FC-E2001を用い、溶液温度を43℃とし、チタン材を120秒浸漬することで、チタン材の脱脂を行った。続いて、日本パーカライジング社 表面調整剤 PL-ZTを用い25℃で20秒浸漬揺動処理を行った。引き続き水道水で120秒、チタン材を洗浄した。その後、化成処理液として、日本パーカライジング社PB-L3080系を調整したりん酸亜鉛系化成処理液に、溶液温度42℃とし、チタン材を120秒浸漬し揺動させた。その後、チタン材を水洗し、45℃の恒温層で10分乾燥させた。
 上記化成処理の後、各チタン材を陰極とし、電着塗装を行った。電着塗料は、変性エポキシ樹脂系の日本ペイント社製 PN-1010を用いた。また、電着塗装は、電着塗膜の厚さが15μmとなるような条件で実施した。なお、表2に記載の鋼材に、上記チタン材と同様の手順で、化成処理、および電着塗装を施した。
 (Ti系酸化物の面積率の測定)
 電着塗膜が形成した上記塗装チタン材および鋼材における、ルチル型TiO、Ti、およびTi系酸化物の面積率を測定した。具体的には、表面・界面物性解析装置(ダイプラウィンテンス社製 SAICAS(登録商標)DN-GS)を用いたサイカス法により、0.5~1.0(mm)×50(mm)×50(mm)の試料について、塗膜を界面に対し、切断面を形成させた。この際の測定条件は、切刃の水平速度を2μm/秒、垂直速度を0.1μm/秒の条件とし、切断面と界面とのなす角θが、2.7°となるような条件とした。なお、上述した手順で、切断面と界面との交線である、境界線に基づき、基準線を特定した。続いて、切断面において、基準線から塗膜側に15μmまでの領域におけるTi系酸化物の面積率をラマン分光法により算出した。
 なお、その際の表面・界面物性解析装置の設定条件は、測定モード:定速度モード、切刃:ダイヤモンド製切刃(刃幅:300μm、すくい角:20°、逃げ角:10°)とし、上述したように、水平速度は2.0μm/秒、垂直速度は0.1μm/秒とした。
 ラマン分光法の測定条件は、以下に示すように、励起波長:532nm、回折格子刻線数:600 Lines/mm、対物レンズ:100倍とした。また、検出された化合物の面積率を求めるため、測定結果のマッピングを、表面の60(μm)×30(μm)の領域で、0.75(μmステップ)、3321(points)で実施した。このマッピングデータを画像解析することにより得られる、上述の切断面の中の領域における各Ti系酸化物の面積を、百分率で表記した値を各Ti系酸化物の面積率とした。
 (密着性の評価)
 形成した電着塗膜について、デュポン式衝撃試験と、碁盤目試験とを行い、塗膜の密着性を評価した。デュポン式衝撃試験は、JIS K 5600-5-3:1999に準拠しておもりを落下させることにより行った。この際、用いた撃ち型と受け台の直径は、12.7mmとした。また、500gのおもりを使用し、落下高さは200mmおよび500mmとした。試験後に、ニチバン社製 No.405(JIS Z 1522:2009適合品)を使用し、テープ剥離試験を行い、塗膜の剥離の有無を確認した。上記2つの落下高さにおいて、剥離がある場合、塗膜の密着性が不良であると判断した。
 碁盤目試験は、JIS K 5600-5-6:1999に準拠して行った。具体的には、小型カッタを用いて、素地に帯する等間隔(1mm)の平行線11本と、これら直交する平行線11本の切り込みにて碁盤の目100個を作製した。この部分について幅25mm±1mmで、IEC60454-2に従い、幅あたり10±1Nの付着強さを持つテープで、テープ剥離試験を実施した。100個の碁盤目のうち、剥離がない交点個数について調査した。ここで、剥離した交点個数が1個以上である場合、塗膜の密着性が不良であると判断した。
 (剥離強度の測定)
 剥離強度についても、Ti系酸化物の面積率の測定と同様、表面・界面物性解析装置(ダイプラウィンテンス社製 SAICAS(登録商標)) DN-GSを用いて、上述の電着塗膜を形成させた鋼材の剥離強度を測定した。その後、チタン材についても同様に塗膜の剥離強度を測定し、鋼材の剥離強度で、除した値(以下、「相対剥離強度」ともいう。)が、1.0以上であれば、剥離強度が良好であると評価した。
 なお、剥離強度の測定には、測定条件は、以下に示すように、測定モード:定速度モード、切刃:ダイヤモンド製切刃(刃幅:300μm、すくい角:20°、逃げ角:10°)、水平速度:1.0μm/秒、垂直速度0.1μm/秒とし、剥離現象が確認された深さで、刃を水平移動のみに切り替え剥離強度を測定した。なお、上記水平速度および垂直速度から、角θは5.7°となる。
 以下、結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 試験No.1~6は、本発明の規定を満足する、塗装チタン材であるため、塗膜密着性が良好であり、塗膜の剥離強度も鋼材と同程度以上となり、良好であった。これは、塗装チタン材に用いたチタン材が、本発明の規定を満足し、Ti含有化合物を含み、その面積率が10.0%以上であったため、その結果、塗装後のTi系酸化物の面積率が30%以上となった効果と考えられる。その中でも特に、試験No.1~3、および5は、チタン材が、Ti含有化合物を含み、その面積率が25.0%以上であったため、塗装チタン材の相対剥離強度が1.1以上と、より剥離強度が高い塗膜が形成されていることがわかる。一方、試験No.7およびNo.8は、本発明の規定を満足せず、塗膜の密着性、剥離強度の少なくもいずれかが劣る結果となった。
 実施例1と同様に、表1に記載の各チタン材(T1~T8)にて、50(mm)×80(mm)の試験片を作製し、以降の各条件でZr系化成処理を施した。化成処理の前に、60秒間の超音波洗浄を行った。続いて、日本パーカライジング社 FC-E2001を用い、溶液温度を43℃とし、試験片を120秒浸漬することで脱脂を行った。続いて、試験片を水道水で120秒、清浄した。その後、化成処理液として、ヘキサフルオロジルコニウム酸アンモニウム10mM/L、アンモニア、硝酸でpH=4に調整した化成処理液を用い、溶液温度45℃として120秒、試験片を浸漬した。その後、試験片を水洗し、45℃の恒温層で10分乾燥させた。
 上記化成処理の後、各チタン材を陰極とし、電着塗装を行った。電着塗装に用いた電着塗料および試験条件は、実施例1と同様とした。なお、表2に記載の鋼材に、上記チタン材と同様の手順で、化成処理、および電着塗装を施した。
 電着塗膜が形成した各塗装チタン材において、実施例1と同様の手順で、ルチル型TiO、Ti、およびTi系酸化物の面積率を測定した。また、デュポン式衝撃試験および碁盤目試験、および塗膜の剥離強度も実施例1と同様の手順で測定した。
 以下、結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 試験No.10~15は、本発明の規定を満足する、塗装チタン材であるため、塗膜密着性が良好であり、塗膜の剥離強度も鋼材と同程度以上となり、良好であった。これは、塗装チタン材に用いたチタン材が、本発明の規定を満足し、Ti含有化合物を含み、その面積率が10.0%以上であったため、その結果、塗装後の各Ti系酸化物の面積率が30%以上となった効果と考えられる。その中でも特に、試験No.10~12、および14は、チタン材が、Ti含有化合物を含み、その面積率が25.0%以上であったため、塗装チタン材の相対剥離強度が1.1以上と、より剥離強度が高い塗膜が形成されていることがわかる。一方、試験No.16およびNo.17は、本発明の規定を満足せず、塗膜の密着性、剥離強度の少なくもいずれかが劣る結果となった。
 表1に記載の各チタン材(T1~T8)に、化成処理を実施せずに、電着塗装を行った。電着塗装に用いた電着塗料および試験条件は、実施例1と同様とした。なお、表2に記載の鋼材に、実施例1における鋼材と同様の手順で、りん酸亜鉛系化成処理を行った後、電着塗装を施した。
 実施例1と同様の手順で、ルチル型TiO、Ti、およびTi系酸化物の面積率を測定した。また、デュポン式衝撃試験および碁盤目試験、および塗膜の剥離強度も実施例1と同様の手順で測定した。
 以下、結果を表5に示す。
Figure JPOXMLDOC01-appb-T000006
 試験No.19~24は、本発明の規定を満足する、塗装チタン材であるため、塗膜密着性が良好であり、塗膜の剥離強度も鋼材と同程度以上となり、良好であった。これは、塗装チタン材に用いたチタン材が、本発明の規定を満足し、Ti含有化合物を含み、その面積率が10.0%以上であったため、その結果、塗装後のTi系酸化物の面積率が30%以上となった効果と考えられる。その中でも特に、試験No.19~21、および23は、チタン材が、Ti含有化合物を含み、その面積率が25.0%以上であったため、塗装チタン材の相対剥離強度が1.1以上と、より剥離強度が高い塗膜が形成されていることがわかる。一方、試験No.25およびNo.26は、本発明の規定を満足せず、塗膜の密着性、剥離強度の少なくともいずれかが劣る結果となった。
 表1に記載の各チタン材(T9~T16)に、実施例2の手順と同様の手順で、Zr系化成処理を施し、電着塗装を行った。なお、表2に記載の鋼材に、上記チタン材と同様の手順で、化成処理、および電着塗装を施した。
 実施例1と同様の手順で、ルチル型TiO、Ti、およびTi系酸化物の面積率を測定した。また、デュポン式衝撃試験および碁盤目試験、および塗膜の剥離強度も実施例1と同様の手順で測定した。
 以下、結果を表6に示す。
Figure JPOXMLDOC01-appb-T000007
 試験No.28~31は、本発明の規定を満足する、塗装チタン材であるため、塗膜密着性が良好であり、塗膜の剥離強度も鋼材と同程度以上となり、良好であった。これは、塗装チタン材に用いたチタン材が、本発明の規定を満足し、Ti含有化合物を含み、その面積率が10.0%以上であったため、その結果、塗装後のTi系酸化物の面積率が30%以上となった効果と考えられる。また、試験No.28~31は、チタン材が、Ti含有化合物を含み、その面積率が25.0%以上であったため、塗装チタン材の対剥離強度が1.1以上と、より剥離強度が高い塗膜が形成されていることがわかる。一方、試験No.32~35は、本発明の規定を満足せず、塗膜の密着性、剥離強度の少なくともいずれかが劣る結果となった。
 表1-2に記載のチタン材T2、T7、及びT8をスタート材として、これらに、表7に記載の条件で陽極酸化処理などを行って、チタン材T17~T31を得た。これらチタン材T17~T31に、化成処理は行わなかった。上記陽極酸化処理の後、各チタン材を陰極とし、電着塗装を行った。電着塗装に用いた電着塗料および試験条件は、実施例1と同様とした。
 電着塗膜が形成した各塗装チタン材について、実施例1と同様の手順で、ルチル型TiO、Ti、およびTi系酸化物の面積率を測定した。また、デュポン式衝撃試験および碁盤目試験、および塗膜の剥離強度も実施例1と同様の手順で測定した。以下、結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 いずれの試験片においても、塗膜の剥離強度が確保できなかった。これは、陽極酸化により導電性の低い酸化チタン層が形成されたからであると推定される。導電性が低い酸化チタン層が形成されたチタン材に、カチオン電着にて塗膜を形成させようとすると、導電性が不十分であることに起因して、均一に電流が流れにくい。この結果、電着塗膜の厚さを制御することが困難になり、均一な塗膜が形成せず、塗膜密着性、剥離強度が低下するものと推定された。
 表1-2に記載のチタン材T2、T7、及びT8に、実施例2の手順と同様の手順で、Zr系化成処理を施し、電着塗装を行った。ここで、電着塗装は、変性エポキシ樹脂系PN-1010中で、チタンを陽極にして電圧印加をすることにより実施した(いわゆるアニオン電着)。
 電着塗膜が形成した各塗装チタン材について、実施例1と同様の手順で、ルチル型TiO、Ti、およびTi系酸化物の面積率を測定した。また、デュポン式衝撃試験および碁盤目試験、および塗膜の剥離強度も実施例1と同様の手順で測定した。以下、結果を表9に示す。
Figure JPOXMLDOC01-appb-T000010
 いずれの試験片においても、塗膜の剥離強度が確保できなかった。これは、電着塗装がアニオン電着であったからであると推定される。
 1 塗膜
 2 チタン材
 3 界面
 4 塗膜の表面
 5 切断面
 6 境界線
 7 基準線
 8 基準線7から塗膜側に15μmの距離の直線
 9 面積率を算出する領域

Claims (5)

  1.  チタン材と、前記チタン材の表面に形成された塗膜と、を備え、
     前記チタン材と前記塗膜との界面に、Ti系酸化物を含み、
     前記Ti系酸化物は、ルチル型TiOおよびTiの一方または両方であり、
     サイカス法を用い、水平速度を2μm/秒、垂直速度を0.1μm/秒の条件で、前記塗膜の切断面を形成させる場合に、前記切断面において前記切断面と前記界面との交線である境界線に基づき特定される基準線から塗膜側に15μmの距離までの領域における前記Ti系酸化物の面積率が、30.0%以上である、塗装チタン材。
  2.  前記塗膜が変性エポキシ樹脂からなる電着塗膜である、請求項1に記載の塗装チタン材。
  3.  チタン基材と、前記チタン基材の表面の一部を被覆するTi含有化合物と、を備え、
     前記チタン基材は、工業用純チタンまたはチタン合金からなり、
     前記Ti含有化合物は、ラマン分光法により得られるスペクトルにおいて、320~350cm-1の範囲に、ピークを有し、
     前記表面を被覆する前記Ti含有化合物の面積率が、10.0~50.0%である、チタン材。
  4.  前記Ti含有化合物を面積率が、25.0~50.0%である、
     請求項3に記載のチタン材。
  5.  前記Ti含有化合物が、Fe、C、O、及びNからなる群から選択される二種以上の元素を含む
     請求項3又は4に記載のチタン材。
PCT/JP2020/002295 2019-01-23 2020-01-23 チタン材および塗装チタン材 WO2020153422A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/295,134 US20220002894A1 (en) 2019-01-23 2020-01-23 Titanium material and coated titanium material
CN202080007802.9A CN113260734B (zh) 2019-01-23 2020-01-23 钛材和涂装钛材
JP2020528186A JP6766984B1 (ja) 2019-01-23 2020-01-23 チタン材および塗装チタン材
EP20744338.3A EP3916125A4 (en) 2019-01-23 2020-01-23 TITANIUM MATERIAL AND TITANIUM COATED MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019009749 2019-01-23
JP2019-009749 2019-01-23

Publications (1)

Publication Number Publication Date
WO2020153422A1 true WO2020153422A1 (ja) 2020-07-30

Family

ID=71735522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002295 WO2020153422A1 (ja) 2019-01-23 2020-01-23 チタン材および塗装チタン材

Country Status (5)

Country Link
US (1) US20220002894A1 (ja)
EP (1) EP3916125A4 (ja)
JP (1) JP6766984B1 (ja)
CN (1) CN113260734B (ja)
WO (1) WO2020153422A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779879B (zh) 2021-10-15 2022-10-01 羽鈦有限公司 抗菌防沾黏鈦金屬餐飲用具及其製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276996A (ja) * 1985-05-31 1986-12-06 Pentel Kk チタニウム又はその合金の表面処理法
JPS6314898A (ja) 1986-07-07 1988-01-22 Olympus Optical Co Ltd チタン材への塗装方法
JPH05263265A (ja) 1992-01-24 1993-10-12 Nippon Steel Corp 塗装性の優れたチタン板およびチタン合金板の製造法
JPH0681112A (ja) 1992-01-24 1994-03-22 Nippon Steel Corp 塗装性の優れたチタン板およびチタン合金板の製造法
JPH06228797A (ja) 1993-02-03 1994-08-16 Nippon Alum Co Ltd チタン部材の塗装方法
JP2002187399A (ja) * 2000-12-20 2002-07-02 Seiko Epson Corp 表面処理方法および装飾品
JP2003236604A (ja) * 2002-02-19 2003-08-26 Sumitomo Metal Ind Ltd チタン材の製造方法と潤滑剤
WO2014025059A1 (ja) * 2012-08-10 2014-02-13 新日鐵住金株式会社 チタン合金材
JP2018104806A (ja) * 2016-12-28 2018-07-05 新日鐵住金株式会社 チタン材、セパレータ、セル、および固体高分子形燃料電池
JP2019009749A (ja) 2017-06-28 2019-01-17 日本放送協会 符号化器、復号器、送信装置及び受信装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782244B2 (ja) * 2008-09-30 2011-09-28 新日本製鐵株式会社 低い接触抵抗を有する固体高分子型燃料電池セパレータ用チタン材およびその製造方法
CN106521466B (zh) * 2016-09-18 2019-06-04 山东大学 利用电偶合诱导钛或钛合金表面化学转化膜的制备方法
JP2018104808A (ja) * 2016-12-28 2018-07-05 新日鐵住金株式会社 チタン材、セパレータ、セル、および固体高分子形燃料電池
CN106902390A (zh) * 2016-12-30 2017-06-30 浙江工业大学 一种钛合金植入体复合材料及其制备与应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276996A (ja) * 1985-05-31 1986-12-06 Pentel Kk チタニウム又はその合金の表面処理法
JPS6314898A (ja) 1986-07-07 1988-01-22 Olympus Optical Co Ltd チタン材への塗装方法
JPH05263265A (ja) 1992-01-24 1993-10-12 Nippon Steel Corp 塗装性の優れたチタン板およびチタン合金板の製造法
JPH0681112A (ja) 1992-01-24 1994-03-22 Nippon Steel Corp 塗装性の優れたチタン板およびチタン合金板の製造法
JPH06228797A (ja) 1993-02-03 1994-08-16 Nippon Alum Co Ltd チタン部材の塗装方法
JP2002187399A (ja) * 2000-12-20 2002-07-02 Seiko Epson Corp 表面処理方法および装飾品
JP2003236604A (ja) * 2002-02-19 2003-08-26 Sumitomo Metal Ind Ltd チタン材の製造方法と潤滑剤
WO2014025059A1 (ja) * 2012-08-10 2014-02-13 新日鐵住金株式会社 チタン合金材
JP2018104806A (ja) * 2016-12-28 2018-07-05 新日鐵住金株式会社 チタン材、セパレータ、セル、および固体高分子形燃料電池
JP2019009749A (ja) 2017-06-28 2019-01-17 日本放送協会 符号化器、復号器、送信装置及び受信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916125A4

Also Published As

Publication number Publication date
EP3916125A1 (en) 2021-12-01
JPWO2020153422A1 (ja) 2021-02-18
EP3916125A4 (en) 2022-11-16
CN113260734A (zh) 2021-08-13
US20220002894A1 (en) 2022-01-06
CN113260734B (zh) 2024-01-05
JP6766984B1 (ja) 2020-10-14

Similar Documents

Publication Publication Date Title
US8956468B2 (en) Zr-/Ti-containing phosphating solution for passivation of metal composite surfaces
EP1486585B1 (en) Method of treating metal surfaces
KR100674778B1 (ko) 금속의 표면처리용 처리액, 표면처리 방법 및 금속 재료
EP2154266B1 (en) Surface treatment liquid for zinc-based metal material and method for surface-treating zinc-based metal material
JP5462467B2 (ja) 金属材料用化成処理液および処理方法
WO2003074761A1 (fr) Liquide de traitement pour le traitement de surface de metal a base d'aluminium ou de magnesium et procede de traitement de surface
JP5215043B2 (ja) 金属の表面処理用処理液及び表面処理方法
EP1859930B1 (en) Surface-treated metallic material
WO2020153422A1 (ja) チタン材および塗装チタン材
JP6747634B1 (ja) チタン複合材
EP0562115B1 (en) Aluminum alloy plate with excellent formability and production thereof
JP2000256873A (ja) リン酸塩処理用アルミニウム合金材およびアルミニウム合金材のリン酸塩処理方法
JP2005281717A (ja) マグネシウム合金の化成処理皮膜の形成方法
JP2001303162A (ja) 自動車用アルミニウム合金板及びその製造方法
JP4829412B2 (ja) 耐糸錆性に優れたアルミニウム合金材
JP2004043913A (ja) 金属化成処理方法
WO2021124510A1 (ja) Sn系めっき鋼板
Gralak et al. The effect of hexafluorozirconic acid concentration on the formation and corrosion resistance of trivalent chromium conversion coatings on AlSi12Cu1 (Fe) cast alloy
JPH08144064A (ja) 自動車用アルミニウム及びアルミニウム合金材料の表面処理方法
JP2004124241A (ja) 金属表面処理方法及び金属製品
JP2007314888A (ja) 多層塗膜構造
JP2002206175A (ja) プレス成型性に優れたAl合金板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020528186

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020744338

Country of ref document: EP

Effective date: 20210823