WO2021124510A1 - Sn系めっき鋼板 - Google Patents

Sn系めっき鋼板 Download PDF

Info

Publication number
WO2021124510A1
WO2021124510A1 PCT/JP2019/049820 JP2019049820W WO2021124510A1 WO 2021124510 A1 WO2021124510 A1 WO 2021124510A1 JP 2019049820 W JP2019049820 W JP 2019049820W WO 2021124510 A1 WO2021124510 A1 WO 2021124510A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
steel sheet
metal
oxide
zirconium oxide
Prior art date
Application number
PCT/JP2019/049820
Other languages
English (en)
French (fr)
Inventor
山中 晋太郎
平野 茂
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201980103115.4A priority Critical patent/CN114829675B/zh
Priority to KR1020227020657A priority patent/KR102599384B1/ko
Priority to JP2021565257A priority patent/JP7239020B2/ja
Priority to US17/772,079 priority patent/US11859289B2/en
Priority to EP19956940.1A priority patent/EP4023789A4/en
Priority to PCT/JP2019/049820 priority patent/WO2021124510A1/ja
Publication of WO2021124510A1 publication Critical patent/WO2021124510A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • C25D3/32Electroplating: Baths therefor from solutions of tin characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/42Applications of coated or impregnated materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel

Definitions

  • the present invention relates to a Sn-based plated steel sheet.
  • Tin (Sn) -based plated steel sheets are well known as "tinplate” and are widely used for cans such as beverage cans and food cans. This is because Sn is a beautiful metal that is safe for the human body.
  • This Sn-based plated steel sheet is mainly manufactured by an electroplating method. This is because the electroplating method is more advantageous than the hot-dip plating method in order to control the amount of Sn, which is a relatively expensive metal, to the minimum necessary amount.
  • the Sn-based plated steel sheet is subjected to chromate treatment (electrolytic treatment, dipping treatment, etc.) using a hexavalent chromium salt solution after plating or heat-melting treatment after plating to impart a beautiful metallic luster.
  • a chromate film is often applied on the Sn-based plating layer.
  • the effects of this chromate film are to prevent yellowing of the appearance by suppressing oxidation of the surface of the Sn-based plating layer, and to prevent deterioration of coating film adhesion due to cohesive destruction of tin oxide when used after painting. Improvement of sulfide blackening resistance, etc.
  • the Sn-based galvanized steel sheet without a chromate film has a yellowing appearance due to the growth of tin oxide, a decrease in coating film adhesion, and a decrease in sulfurization blackening resistance.
  • Patent Document 1 proposes a tin-based galvanized steel sheet in which a chemical conversion film containing P and Si is formed by a treatment using a chemical conversion treatment liquid containing a phosphate ion and a silane coupling agent. There is.
  • Patent Document 2 a tin-plated steel sheet having a chemical conversion-treated film containing Al and P, at least one selected from Ni, Co, and Cu, and a reaction product layer with a silane coupling agent. Has been proposed.
  • Patent Document 3 proposes a method for producing a Sn-plated steel sheet, which is obtained by multi-layer plating Zn on Sn plating and then heating until the Zn single plating layer substantially disappears.
  • Patent Document 4 a steel sheet for a container having a Zr film formed on a surface treatment layer containing Sn is proposed, and in Patent Document 5 below, a steel sheet for a container having a Zr compound film layer is proposed.
  • Patent Document 6 proposes a steel sheet for a container having a base Ni layer, an island-shaped Sn plating layer, a chemical conversion treatment layer containing tin oxide and tin phosphate, and a Zr-containing film layer.
  • Patent Document 7 proposes a steel sheet for a container having a tin oxide and a film containing Zr, Ti, and P on the surface of the tin-plated layer. Patent Document 7 also proposes that in forming a film, alternating electrolysis in which cathode electrolysis treatment and anodic electrolysis treatment are alternately performed may be performed.
  • Japanese Unexamined Patent Publication No. 2004-060052 Japanese Unexamined Patent Publication No. 2011-174172 JP-A-63-290292 JP-A-2007-284789 Japanese Unexamined Patent Publication No. 2010-013728 Japanese Unexamined Patent Publication No. 2009-249691 International Publication No. 2015/001598
  • Patent Documents 1 to 7 cannot sufficiently suppress the growth of tin oxide over time, resulting in yellowing resistance and coating adhesion. There was room for improvement in black denaturation resistance.
  • the present invention has been made in view of the above problems, and an object of the present invention is excellent in yellowing resistance, coating film adhesion, and sulfide blackening resistance without performing conventional chromate treatment.
  • the present invention is to provide Sn-based galvanized steel sheets.
  • a metal Sn terms contained per side 0.10 g / m 2 or more 15.00 g / m 2 or less
  • the coating layer contains zirconium oxide and manganese oxide, the zirconium oxide in the coating layer
  • the content of the substance is 0.20 mg / m 2 or more and 50.00 mg / m 2 or less per side in terms of metal Zr, and the content of the manganese oxide in the film layer in terms of metal Mn is as described above.
  • the content of zirconium oxide in terms of metal Zr is 0.01 times or more and 0.50 times or less on a mass basis, and is present as the manganese oxide in the depth direction element analysis by X-ray photoelectron spectroscopy.
  • the depth position A where the element concentration of Mn is maximum is located on the surface side of the film layer and the depth is higher than the depth position B where the element concentration of Zr existing as the zirconium oxide is maximum.
  • a Sn-based plated steel plate in which the distance between the vertical position A and the deep position B in the depth direction is 2 nm or more.
  • the mass of the zirconium oxide in the depth direction elemental analysis by the X-ray photoelectron spectroscopy is the mass of the manganese oxide in the depth direction elemental analysis by the X-ray photoelectron spectroscopy.
  • the Sn-based plated steel sheet according to (1) which is 0.01 times or less of the above.
  • the content of the zirconium oxide in the film layer is 1.00 mg / m 2 or more and 30.00 mg / m 2 or less per side in terms of metal Zr, according to (1) to (3).
  • the content of the zirconium oxide in the film layer is 2.00 mg / m 2 or more and 10.00 mg / m 2 or less per side in terms of metal Zr, according to (1) to (4).
  • the metal Mn-equivalent content of the manganese oxide in the film layer is 0.05 times or more and 0.40 times or less on a mass basis with respect to the metal Zr-equivalent content of the zirconium oxide.
  • the metal Mn-equivalent content of the manganese oxide in the film layer is 0.10 times or more and 0.20 times or less on a mass basis with respect to the metal Zr-equivalent content of the zirconium oxide.
  • process is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used as long as the intended purpose of the process is achieved. Included in the term.
  • steel plate means a base steel plate (so-called plating base plate) to be formed with a Sn-based plating layer and a coating layer.
  • the present invention described below relates to a Sn-based galvanized steel sheet widely used for cans such as food cans and beverage cans. More specifically, the present invention relates to a Sn-based plated steel sheet that is more excellent in yellowing resistance, coating film adhesion, and sulfurization blackening resistance without performing conventional chromate treatment.
  • FIG. 1 is an explanatory view schematically showing an example of the structure of the Sn-based plated steel sheet according to the present embodiment.
  • the Sn-based plated steel sheet 1 includes a steel sheet (base steel sheet) 10 and a Sn-based plated layer 20 located on at least one surface of the steel sheet 10. It has a film layer 30 located on the Sn-based plating layer 20.
  • the coating layer 30 contains a zirconium oxide and manganese oxide ,
  • the content of zirconium oxide in the film layer 30 is 0.20 mg / m 2 or more and 50.00 mg / m 2 or less per side in terms of metal Zr, and the metal Mn of the manganese oxide in the film layer 30.
  • the converted content is 0.01 times or more and 0.50 times or less on a mass basis with respect to the content of zirconium oxide in terms of metal Zr.
  • the depth position A where the element concentration of Mn existing as an oxide is maximum is located closer to the surface side of the film layer than the depth position B where the element concentration of Zr existing as a zirconium oxide is maximum.
  • the distance in the depth direction between the depth position A and the depth position B is 2 nm or more.
  • the steel sheet 10 used as the base material of the Sn-based plated steel sheet 1 according to the present embodiment is not particularly specified, and is arbitrary as long as it is a steel sheet used for a general Sn-based plated steel sheet for containers. Things can be used. Examples of such a steel sheet 10 include low carbon steel and ultra-low carbon steel.
  • Sn-based plating layer 20 At least one surface of the steel sheet 10 as described above is subjected to Sn-based plating to form a Sn-based plating layer 20.
  • the Sn-based plating layer 20 improves the corrosion resistance of the steel sheet 10.
  • the term "Sn-based plating layer" as used herein refers not only to plating with metal Sn, but also to an alloy of metal Sn and metal Fe, metal Ni, and at least one of trace elements and impurities other than metal Sn. The included Sn-based plating layer is also included.
  • Sn content per one side the amount of metal Sn as (i.e. metal Sn equivalent amount), it is 0.10 g / m 2 or more 15.00 g / m 2 or less.
  • the Sn content per side is preferably 1.0 g / m 2 or more in terms of the amount of metal Sn.
  • the content of the Sn-based plating layer 20 per side exceeds 15.00 g / m 2 in terms of the amount of metal Sn, the effect of improving the corrosion resistance by the metal Sn is sufficient, and further increase is preferable from the economical point of view. Absent. In addition, the adhesion of the coating film tends to decrease.
  • the Sn content per side is preferably 13.00 g / m 2 or less in terms of the amount of metal Sn.
  • the amount of metal Sn in the Sn-based plating layer was measured by, for example, the electrolytic method or the fluorescent X-ray method described in JIS G 3303. Let it be a value.
  • the amount of metal Sn in the Sn-based plating layer can be determined by the following method. Prepare a test piece without a film layer. The test piece was immersed in 10% nitric acid to dissolve the Sn-based plating layer, and Sn in the obtained solution was subjected to ICP emission spectrometry (high-frequency inductively coupled plasma emission spectroscopy), for example, as an apparatus as an Agilent.
  • ICP emission spectrometry high-frequency inductively coupled plasma emission spectroscopy
  • the amount of metal Sn can be determined based on the intensity signal obtained by the analysis, the calibration curve prepared from the solution having a known concentration, and the formation area of the Sn-based plating layer of the test piece.
  • the amount of metal Sn can be determined by a calibration curve method using GDS (glow discharge emission spectroscopy), and the method is, for example, as follows. is there.
  • the relationship between the intensity signal of metal Sn and the sputter rate in the reference sample is obtained in advance by GDS, and a calibration curve is prepared. Based on this calibration curve, the amount of metal Sn can be obtained from the intensity signal and the sputtering rate of the test piece whose metal Sn amount is unknown.
  • the Sn-based plating layer is made of Fe because the intensity signal of Zr becomes 1/2 of the maximum value of the intensity signal of Zr when the Sn-based plated steel sheet is analyzed in the depth direction from the surface. It is defined as the part up to the depth where the intensity signal becomes 1/2 of the maximum value of the intensity signal of Fe. From the viewpoint of measurement accuracy and speed, measurement by the fluorescent X-ray method is industrially preferable.
  • a film layer 30 containing a zirconium oxide and a manganese oxide is formed on the Sn-based plating layer 20.
  • the Sn-based plated steel sheet 1 according to the present embodiment has a film layer 30 on the surface of the Sn-based plated layer 20 in which the above-mentioned zirconium oxide and manganese oxide coexist in a quantitative relationship described later. It is possible to further improve yellowing resistance, coating adhesion, and blackening resistance to sulfurization. It should be noted that the film layer containing only zirconium oxide or manganese oxide cannot sufficiently improve yellowing resistance, coating film adhesion, and sulfurization blackening resistance. The reason for this is not clear, but the detailed investigation by the present inventors considers it as follows.
  • Tin oxide is present on the surface of the conventional Sn-based plating layer, and as the amount of tin oxide increases with time, yellowing resistance and coating adhesion are reduced, and sulfide blackening resistance is also reduced. To do.
  • the rate of increase of tin oxide with time tends to be suppressed by the barrier property of the zirconium oxide layer itself.
  • the film layer containing the zirconium oxide is an inhomogeneous film containing the tin oxide, oxygen and sulfur permeate through the fine cracks existing in the brittle tin oxide and Sn. It reaches the system plating surface, and tin oxide and tin sulfide gradually increase.
  • the coating layer 30 containing both zirconium oxide and manganese oxide is present on the surface of the Sn-based plating layer 20, the tin oxide contained in the coating layer 30 is reduced by the manganese oxide and the tin oxide is reduced. Decreases. Further, when the manganese oxide becomes an oxide having a higher oxidation number, a film having a high barrier property is formed, the permeation of oxygen and sulfur is suppressed, and the production of tin oxide and tin sulfide is reduced. As a result, yellowing resistance and coating film adhesion are improved, and sulfurization blackening resistance is also improved.
  • a zirconium oxide having a metal Zr amount of 0.20 mg / m 2 or more and 50.00 mg / m 2 or less per side is required in the film layer 30.
  • the content of the zirconium oxide is less than 0.20 mg / m 2 in terms of the amount of metal Zr, the barrier property of the zirconium oxide is insufficient, and yellowing resistance, coating adhesion, and black sulfide resistance are deteriorated. Does not improve.
  • the content of zirconium oxide per one side, a metal Zr content is preferably at 1.00 mg / m 2 or more, more preferably 2.00 mg / m 2 or more.
  • a metal Zr content is preferably at 30.00mg / m 2 or less, and more preferably 10.00 mg / m 2 or less.
  • the content of manganese oxide in terms of metal Mn in the film layer 30 is 0.01 in terms of mass with respect to the content of zirconium oxide in terms of metal Zr. It is necessary that it is more than double and 0.50 times or less.
  • the amount of manganese oxide per side is less than 1/100 of the metal Zr content of zirconium oxide, the reduction of tin oxide contained in the film and manganese Further oxidation of the oxide is insufficient, and yellowing resistance, coating adhesion, and sulfide blackening resistance cannot be sufficiently improved.
  • the metal Mn-equivalent content of manganese oxide in the film layer 30 is preferably 0.05 times or more, preferably 0.10 times or more, based on the mass, with respect to the metal Zr-equivalent content of zirconium oxide. Is more preferable.
  • the metal Mn-equivalent content of manganese oxide in the film layer 30 is preferably 0.40 times or less, preferably 0.20 times or less, based on the mass, with respect to the metal Zr-equivalent content of zirconium oxide. Is more preferable.
  • the manganese oxide is concentrated on the surface side of the film layer 30 (that is, the concentration of manganese oxide near the surface of the film layer 30 is higher than that of the Sn-based plating layer 20 of the film layer 30. It is necessary that the concentration is higher than the manganese oxide concentration near the interface of.
  • the barrier effect of the manganese oxide is sufficiently exhibited, so that the yellowing resistance, the sulfurization resistance and the blackening resistance, and the corrosion resistance after painting are further improved. Further, since the amount of manganese oxide at the interface between the film layer 30 and the Sn-based plating layer 20 is small, the adhesion to the coating film is further improved.
  • the element concentration of Mn existing as a manganese oxide is the maximum.
  • Depth position A (in other words, the position where the detection intensity of Mn element is maximum) is the depth position B where the element concentration of Zr existing as zirconium oxide is maximum (in other words, the detection intensity of Zr element is maximum). It is necessary that the film layer 30 is located on the surface side of the film layer 30 and the distance between the depth position A and the depth position B in the depth direction is 2 nm or more.
  • FIG. 2 is a diagram showing an example of the element concentration profile in the thickness direction (depth direction) of the Sn-based plating layer 20 and the coating layer 30 of the Sn-based plated steel sheet 1 according to the present embodiment.
  • the element concentration profile shown in FIG. 2 measures the distribution of the element concentration from the surface of the film layer 30 to the surface of the steel sheet 10 through the Sn-based plating layer 20 by analysis in the depth direction of XPS.
  • the position where the “sputter depth” on the horizontal axis is 0 is the surface of the film layer 30.
  • the value of "sputter depth" in FIG. 2 is synonymous with "depth position".
  • the depth position A is the position where the sputter depth is 0 nm
  • the depth position B is the position where the sputter depth is 4.0 nm.
  • the depth position A is located on the surface of the film layer 30 (the upper surface of the film layer 30 in FIG. 1)
  • the depth position B is the film layer 30. It is located at a location 4 nm away from the surface of the film layer 30 in the depth direction (in FIG. 1, a location 4 nm downward from the upper surface of the film layer 30). That is, in the example shown in FIG. 2, the distance between the depth directions A and B is 4 nm.
  • the manganese oxide is present in a larger amount than the zirconium oxide on the mass basis.
  • the fact that the depth positions are separated from the depth directions A and B by 2 nm or more means that the manganese oxide is thicker than the zirconium oxide on the surface side of the film layer 30. Therefore, the manganese oxide concentrated on the surface of the film layer 30 becomes an oxide having a higher oxidation number, so that the film has a high barrier property.
  • the film made of manganese oxide suppresses the permeation of oxygen and sulfur, the formation of tin oxide and tin sulfide in the Sn-based plating layer is suppressed. Therefore, the yellowing resistance and the coating film adhesion of the Sn-based plating layer are improved, and the sulfurization blackening resistance is also improved.
  • the depth position A where the element concentration of Mn existing as a manganese oxide is maximum is 4 nm or more more than the depth position B where the element concentration of Zr existing as a zirconium oxide is maximum, and the surface of the film layer. It is preferably located on the side.
  • these depth positions are separated by 4 nm or more, the concentration of manganese oxide on the surface of the film layer 30 becomes more remarkable, and the film made of manganese oxide exerts a further barrier function.
  • the upper limit value of the separation distance at the depth position is not particularly specified, and the farther the distance is, the more preferable the upper limit value is, but the actual upper limit value is about 15 nm.
  • the distribution of zirconium oxide and manganese oxide in the film layer 30 can be specified and quantified by analyzing the film layer 30 from the surface side by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the zirconium oxide in the film layer 30 is 3.0 eV or more and 4.0 eV or less on the higher energy side than the peak position of the binding energy of the metal Zr in the element concentration profile obtained by X-ray photoelectron spectroscopy. It is identified based on the peak of the binding energy of Zr3d5 / 2 at a distant position.
  • the manganese oxide in the film layer 30 exists at a distance of 1.5 eV or more and 3.5 eV or less on the high energy side of the peak position of the binding energy of the metal Mn in the element concentration profile obtained by X-ray photoelectron spectroscopy. It is specified based on the peak of the binding energy of Mn 2p3 / 2.
  • the Zr 3d2 / 5 and Mn 2p3 / 2 represent the energy levels of electrons in Zr or Mn, and for example, P.I. It is interpreted in the same way as the representation of the energy level of the electron in Sn described in 83.
  • the film layer 30 may contain a zirconium oxide, a manganese oxide, or a compound other than the oxide having another structure.
  • a film layer 30 in which a zirconium oxide and a manganese oxide coexist is present on the surface of the Sn-based plated layer 20 containing a metal Sn. You can see that there is.
  • the film layer 30 containing the zirconium oxide and the manganese oxide may be in a mixed state of both or in a solid solution of the oxide, and its existence state does not matter. Further, there is no problem even if any element such as Fe, Ni, Cr, Ca, Na, Mg, Al, Si and the like is contained in the film layer 30.
  • the content of zirconium oxide (amount of metal Zr) and the content of manganese oxide (amount of metal Mn) are determined by the Sn-based plated steel sheet 1 according to the present embodiment, for example, hydrofluoric acid and sulfuric acid. It is dissolved by immersing it in an acidic solution, and the obtained solution is used as a value measured by chemical analysis such as inductively coupled plasma (ICP) emission spectrometry.
  • the zirconium oxide content (metal Zr amount) and the manganese oxide content (metal Mn amount) in the film layer 30 may be determined by fluorescent X-ray measurement. From the viewpoint of measurement accuracy and speed, measurement by the fluorescent X-ray method is industrially preferable.
  • the Sn-based plated steel sheet 1 has a film layer 30 containing a predetermined amount of zirconium oxide and manganese oxide on the Sn-based plated layer 20. Then, the content of the manganese oxide in the film layer 20 is within a predetermined range with respect to the content of the zirconium oxide, and further, in the depth direction element analysis by XPS, Mn existing as the manganese oxide.
  • the depth position A having the maximum element concentration is located closer to the surface side of the film layer 30 than the depth position B having the maximum element concentration of Zr existing as a zirconium oxide, and is defined as the depth position A.
  • the distance in the depth direction from the depth position B is 2 nm or more.
  • the manganese oxide reduces the tin oxide existing in the vicinity of the film layer 30 to reduce the tin oxide, while the manganese oxide becomes an oxide having a higher oxidation number, so that the film has a high barrier property. And suppress the permeation of oxygen and sulfur. Then, in combination with the barrier property of the zirconium oxide in the film layer 30, the formation of tin oxide and tin sulfide is reduced, the yellowing resistance and the coating film adhesion are improved, and the sulfide blackening resistance is also improved.
  • the Sn-based plated steel sheet 1 according to the present embodiment there is no problem even if a known film is formed on the surface of the Sn-based plated steel sheet having the Sn-based plated layer 20 and the film layer 30 as described above.
  • a known film examples include various chemical conversion-treated films made of P-based compounds, Al-based compounds, and the like.
  • the Sn-based plated steel sheet 1 according to the present embodiment is not subjected to chromate treatment. Therefore, it is preferable that the Sn-based plated steel sheet 1 according to the present embodiment does not have a chromate layer.
  • the Sn-based plated steel sheet 1 has been described as having the Sn-based plated layer 20 on only one side, the present invention is not limited to this.
  • the Sn-based plated steel sheet 1 may have Sn-based plated layers 20 on both sides.
  • the above-mentioned film layer 30 may be provided only on at least one Sn-based plating layer 20.
  • the Sn-based plated steel sheet 1 may have a Sn-based plating layer 20 on one surface and various films other than the Sn-based plating layer 20 on the other surface.
  • the Sn-based plated steel sheet according to the present embodiment may be manufactured by any method, and can be manufactured, for example, by the Sn-based plated steel sheet manufacturing method described below.
  • the method for producing the Sn-based plated steel sheet 1 includes a step of forming a Sn-based plated layer 20 on at least one surface of the steel sheet 10 and a zinc oxide and a manganese oxide on the Sn-based plated layer 20. It has a step of forming a film layer 30 to be contained.
  • a step of forming a Sn-based plated layer 20 on at least one surface of the steel sheet 10 and a zinc oxide and a manganese oxide on the Sn-based plated layer 20 It has a step of forming a film layer 30 to be contained.
  • a steel sheet 10 as a base material of the Sn-based plated steel sheet 1 is prepared.
  • the manufacturing method and material of the steel sheet to be used are not particularly specified, and for example, those manufactured through processes such as casting, hot rolling, pickling, cold rolling, annealing, and temper rolling may be used. it can.
  • a Sn-based plating layer (Sn plating) is formed on at least one surface of the steel sheet.
  • the method of applying Sn-based plating to the surface of the steel sheet is not particularly specified, but a known electroplating method is preferable, and the electroplating method includes, for example, electrolysis using a well-known ferrostan bath, halogen bath, alkaline bath, or the like. You can use the law.
  • a melting method may be used in which the steel sheet is immersed in the molten Sn to perform Sn-based plating.
  • a heat-melting treatment may be performed in which the steel sheet having the Sn-based plating layer is heated to 231.9 ° C. or higher, which is the melting point of Sn.
  • the surface of the Sn-based plating layer becomes glossy, and an alloy layer of Sn and Fe is formed between the Sn-based plating layer and the steel sheet, further improving corrosion resistance and adhesion.
  • the film layer containing zirconium oxide and manganese oxide is obtained by dipping the Sn-based plated steel plate in a dipping bath containing zirconium ions and manganese ions, or in a cathode electrolytic solution containing zirconium ions and manganese ions. By performing the electrolytic treatment, it can be formed on the surface of the Sn-based plating layer. However, in the dipping treatment, the surface of the Sn-based plating layer, which is the base, is etched to form a film layer containing a zirconium oxide and a manganese oxide.
  • the cathode electrolysis treatment a uniform film can be obtained in combination with the forced charge transfer, the surface cleaning by hydrogen generation at the steel sheet interface, and the adhesion promoting effect by increasing the pH. Further, in this cathode electrolysis treatment, the nitrate ion and the ammonium ion coexist in the cathode electrolytic solution, so that the treatment can be performed in a short time of about several seconds to several tens of seconds. Therefore, the cathode electrolysis treatment is extremely advantageous industrially.
  • the concentration of zirconium ions in the cathode electrolyte solution to be subjected to the cathode electrolysis treatment may be appropriately adjusted according to the production equipment, production speed (capacity), and the like.
  • the zirconium ion concentration is preferably 100 ppm or more and 4000 ppm or less.
  • the concentration of manganese ions is preferably 0.07 times or more and 2.50 times or less of the zirconium ion concentration.
  • the solution containing zirconium ion and manganese ion contains other components such as fluorine ion, ammonium ion, nitrate ion, sulfate ion and chloride ion.
  • the source of zirconium ions in the catholyte solution may be used, for example, zirconium complexes such as H 2 ZrF 6.
  • Zr in the Zr complex as described above becomes Zr 4+ due to an increase in pH at the cathode electrode interface and exists in the cathode electrolyte.
  • Such zirconium ions further react in the cathode electrolyte to form a zirconium oxide.
  • Examples of the source of manganese ions include manganese sulfate, manganese nitrate, and manganese chloride.
  • the solvent of the cathode electrolytic solution in the cathode electrolytic treatment for example, water such as distilled water can be used.
  • the solvent is not defined in water such as distilled water, and can be appropriately selected depending on the substance to be dissolved, the forming method, and the like.
  • nitric acid, aqueous ammonia, etc. may be added to the cathode electrolytic solution in order to adjust the pH of the cathode electrolytic solution and increase the electrolytic efficiency.
  • the temperature of the cathode electrolytic solution during the cathode electrolytic treatment is not particularly specified, but is preferably in the range of, for example, 10 ° C. or higher and 50 ° C. or lower.
  • the temperature of the cathode electrolytic solution during the cathode electrolytic treatment is not particularly specified, but is preferably in the range of, for example, 10 ° C. or higher and 50 ° C. or lower.
  • the film formed is non-uniform depending on the composition of the cathode electrolytic solution, and defects, cracks, microcracks, etc. occur, making it difficult to form a dense film. It may be the starting point of corrosion.
  • the pH of the cathode electrolytic solution is not particularly specified, but is preferably 3.0 or more and 5.0 or less. If the pH is less than 3.0, the efficiency of film formation may decrease depending on other conditions of the cathode electrolysis treatment, and if the pH is more than 5.0, the cathode electrolyte may decrease depending on the composition of the cathode electrolyte. A large amount of precipitation occurs inside, resulting in poor continuous productivity.
  • the current density during the cathode electrolysis treatment is preferably, for example, 0.05 A / dm 2 or more and 50.00 A / dm 2 or less.
  • the film formation efficiency may be lowered depending on other conditions of the cathode electrolysis treatment, resulting in a sparse film and the yellowing resistance and the sulfide blackening resistance may be lowered.
  • the current density exceeds 50.00 A / dm 2
  • hydrogen generation becomes excessive depending on other conditions of the cathode electrolysis treatment, coarse zirconium oxide and manganese oxide are formed, and yellowing resistance and coating adhesion are achieved.
  • the property and sulfurization resistance blackening may be inferior.
  • a more preferable range of current densities is 1.00 A / dm 2 or more and 10.00 A / dm 2 or less.
  • the time of the cathode electrolysis treatment is not particularly limited.
  • the time of the cathode electrolysis treatment may be appropriately adjusted according to the current density with respect to the content of the zirconium oxide (the amount of metal Zr) in the target film layer. Further, as the energization pattern at the time of the cathode electrolysis treatment, there is no problem whether it is continuous energization or intermittent energization.
  • the peak position where the detection intensity for manganese oxide is maximum is higher than the peak position where the detection intensity for zirconium oxide is maximum.
  • the peak position where the detection intensity for manganese oxide is maximum is more likely to exist on the surface side of the film layer than the peak position where the detection intensity for zirconium oxide is maximum.
  • the Mn oxide precipitated on the surface of the coating layer is dissolved in the cathode electrolyte adhering to the coating layer by sufficiently washing and removing the low pH cathode electrolyte after the cathode electrolysis. It is presumed that it is suppressed.
  • washing with water has the effect of removing the zirconium oxide adhering to the surface of the film layer. If the washing time with water is less than 2 seconds, it is insufficient to concentrate Mn on the surface of the film layer. On the other hand, if the washing time with water exceeds 10 seconds, the surface layer concentration of Mn is already sufficient, and only reduces the productivity in industrial production.
  • the washing time with water is preferably 3 seconds or longer, and more preferably 4 seconds or longer.
  • the depth position A where the element concentration of Mn existing as a manganese oxide is maximum and the depth position B where the element concentration of Zr existing as a zirconium oxide is maximum. Can be more reliably separated to 2 nm or more.
  • the washing time with water is 4 seconds or more, the depth position A at which the element concentration of Mn existing as a manganese oxide is the maximum and the element concentration of Zr existing as a zirconium oxide are not lowered. It is possible to more reliably separate the depth position B from the maximum depth position B to 4 nm or more.
  • the washing time with water is preferably 8 seconds or less, and particularly preferably 6 seconds or less.
  • the depth position A where the element concentration of Mn existing as a manganese oxide is maximum and the depth position B where the element concentration of Zr existing as a zirconium oxide is maximum. Can be more reliably separated to 2 nm or more.
  • the washing time with water is 6 seconds or less, the depth position A at which the element concentration of Mn existing as a manganese oxide is the maximum and the element concentration of Zr existing as a zirconium oxide are not lowered. It is possible to separate the depth position B, which has the maximum value, from the depth position B to 4 nm.
  • the method of forming the film layer by the one-step cathode electrolysis treatment or the immersion treatment has been described above.
  • the method for forming the film layer is not limited to the above method, and it is preferable to form the film layer by a plurality of stages of cathode electrolysis treatment.
  • this step includes (a) a first treatment in which a Sn-based galvanized steel sheet is immersed in a first bath containing zirconium ions, or a Sn-based galvanized steel sheet is subjected to a cathode electrolysis treatment in a first bath. Then, (b) a second treatment of immersing the Sn-based galvanized steel sheet in a second bath containing manganese ions or performing a cathode electrolysis treatment on the Sn-based galvanized steel sheet in the second bath. Is preferable.
  • the film layer is analyzed in the depth direction by X-ray photoelectron spectroscopy, it is possible to realize a film layer in which the abundance ratio of zirconium oxide to manganese oxide on the surface is 0 to 0.01 on a mass basis. .. That is, in the first treatment, a layer mainly composed of zirconium oxide is formed in the vicinity of the Sn-based plating layer, and further, in the second treatment, manganese oxide is mainly contained on the layer mainly composed of zirconium oxide. The layer can be formed.
  • the film layer has a structure in which a film containing a zirconium oxide and a film containing a manganese oxide are laminated, the formation of zirconium oxide on the surface of the film layer is prevented, and the barrier property made of manganese oxide is high.
  • the structure is covered with a film. That is, in the film layer, a concentration gradient of zirconium oxide and manganese oxide is generated in the thickness direction. Therefore, by combining the first treatment and the second treatment as described above, in the film layer containing the zirconium oxide and the manganese oxide, the manganese oxide and the zirconium oxide are ordered from the surface side of the film layer. It is also possible to form a large number of existing film layers.
  • the film layer has a structure in which a film containing a zirconium oxide and a film containing a manganese oxide are laminated. Therefore, in the thickness direction of the film layer, the depth position A where the element concentration of Mn existing as a manganese oxide is the maximum and the depth position B where the element concentration of Zr existing as a zirconium oxide is the maximum are set. , It can be separated more reliably to 4 nm or more.
  • the concentration of zirconium ions in the first bath (first cathode electrolyte) containing the zirconium ions to be used may be appropriately adjusted according to the production equipment, production speed (capacity), and the like.
  • the zirconium ion concentration is preferably 100 ppm or more and 4000 ppm or less.
  • the first bath preferably does not contain manganese ions or has a small content of manganese ions in order to increase the concentration of zirconium oxide in the formed film layer.
  • the manganese ion concentration in the first bath is preferably 10 ppm or less.
  • the other components of the first bath and various conditions of the first treatment can be the same as those of the cathode electrolysis treatment described above, and thus the description thereof will be omitted.
  • the concentration of manganese ions in the second bath (second cathode electrolyte) containing manganese ions to be used may be appropriately adjusted according to the production equipment, production speed (capacity), and the like.
  • the concentration of manganese ions is preferably 30 ppm or more and 10000 ppm or less.
  • the second bath preferably does not contain manganese ions or has a small content of zirconium ions in order to increase the concentration of manganese oxide in the formed film layer.
  • the zirconium ion concentration in the second bath is preferably 100 ppm or less.
  • the other components of the second bath and various conditions of the second treatment can be the same as those of the cathode electrolysis treatment described above, and thus the description thereof will be omitted. Further, after the first treatment and the second treatment, water washing treatment may be performed respectively.
  • the Sn-based plated steel sheet according to the present embodiment can be manufactured. After each of the above steps, a well-known treatment such as cleaning may be appropriately performed.
  • the Sn-based plated steel sheet according to the present invention will be specifically described with reference to Examples.
  • the examples shown below are merely examples of the Sn-based plated steel sheet according to the present invention, and the Sn-based plated steel sheet according to the present invention is not limited to the following examples.
  • test material ⁇ 1. How to make test material> The standard manufacturing method of the test material will be described. The test materials of each example described later were produced according to the method for producing the test materials.
  • a low-carbon cold-rolled steel sheet having a thickness of 0.2 mm is subjected to electrolytic alkali degreasing, water washing, dilute sulfuric acid immersion pickling, water washing, and then electro-Sn-based plating using a phenol sulfonic acid bath. After that, heat melting treatment was performed. Through these treatments, Sn-based plating layers were formed on both sides of the steel sheet.
  • the standard adhesion amount of the Sn-based plating layer was about 2.8 g / m 2 per side. The amount of adhesion of the Sn-based plating layer was adjusted by changing the energization time.
  • the steel sheet on which the Sn-based plating layer is formed is subjected to cathodic electrolysis treatment in an aqueous solution (cathode electrolytic solution) containing zirconium fluoride and manganese nitrate, and zirconium oxide and manganese oxide are applied to the surface of the Sn-based plating layer.
  • a film layer containing the film was formed.
  • the temperature of the cathode electrolytic solution is adjusted to 35 ° C.
  • the pH of the cathode electrolytic solution is adjusted to 3.0 or more and 5.0 or less
  • the current density of the cathode electrolytic treatment and the cathode electrolytic treatment time are aimed at. It was appropriately adjusted according to the content of zirconium oxide (amount of metal Zr) in the film layer.
  • the amount of adhesion of the Sn-based plating layer per side was measured as follows. A plurality of test pieces of a steel sheet with a Sn-based plating layer having a known metal Sn content are prepared. Next, for each test piece, the intensity of fluorescent X-rays derived from metal Sn is measured in advance from the surface of the Sn-based plating layer of the test piece by a fluorescent X-ray analyzer (ZSX Primus manufactured by Rigaku Co., Ltd.).
  • a calibration curve showing the relationship between the measured intensity of the fluorescent X-ray and the amount of metal Sn is prepared.
  • the film layer is removed, and a test piece in which the film layer is not formed and the Sn-based plated layer is exposed is prepared.
  • the intensity of fluorescent X-rays derived from metal Sn is measured on the exposed surface of the Sn-based plating layer by a fluorescent X-ray apparatus.
  • the measurement conditions were X-ray source Rh, tube voltage 50 kV, tube current 60 mA, spectroscopic crystal LiF1, and measurement diameter 30 mm.
  • manganese exists as an oxide. Defined to be.
  • the content of the zirconium oxide (the amount of metal Zr) in the film layer was measured according to the method for measuring the amount of adhesion per side of the Sn-based plating layer (the amount of metal Sn in the Sn-based plating layer). That is, a test piece of a Sn-based plated steel sheet to be measured is prepared. The surface of the film layer of this test piece is measured for the intensity of fluorescent X-rays derived from metal Zr with a fluorescent X-ray analyzer (ZSX Primus manufactured by Rigaku Corporation). The content of zirconium oxide in the film layer (metal Zr amount) was calculated by using the obtained fluorescent X-ray intensity and the calibration curve for the metal Zr prepared in advance.
  • the content of manganese oxide (metal Mn amount) in the film layer was measured according to the method for measuring the amount of adhesion per side of the Sn-based plating layer (metal Sn amount of the Sn-based plating layer). That is, a test piece of a Sn-based plated steel sheet to be measured is prepared. The surface of the film layer of this test piece is measured for the intensity of fluorescent X-rays derived from metal Mn by a fluorescent X-ray analyzer (ZSX Primus manufactured by Rigaku Co., Ltd.). The content of manganese oxide (metal Mn amount) in the film layer was calculated by using the obtained fluorescent X-ray intensity and the calibration curve for the metal Zr prepared in advance.
  • the distribution of zirconium oxide and manganese oxide in the film layer was measured by XPS (PHI Quantera SXM manufactured by ULVAC-PHI). Specifically, a test piece of a Sn-based plated steel sheet to be measured is prepared. From the surface of the film layer of this test piece, analysis in the thickness direction (depth direction) by XPS (PHI Quantera SXM manufactured by ULVAC-PHI) was carried out, and Sn existing as a tin oxide, Sn existing as a metal Sn, and zirconium were analyzed.
  • the gun was 1.0 V, 20 ⁇ A, the sputtering conditions were Ar +, the acceleration voltage was 1 kV, and the sputtering speed was 1.5 nm / min (SiO 2 conversion value).
  • the case where the peak position where the detection intensity for manganese oxide is maximum exists on the surface side of the film layer by 4 nm or more from the peak position where the detection intensity for zirconium oxide is maximum is "A".
  • the case where it exists on the surface side of the film layer of 2 nm or more and less than 4 nm is described as "B", and the case where it is not present is described as "C”.
  • the coating film adhesion was evaluated as follows. After a wet test of a test material of a Sn-based galvanized steel sheet by the method described in [Yellow Degeneration], a commercially available epoxy resin paint for cans is applied to the surface at a dry mass of 7 g / m 2 for 10 minutes at 200 ° C. It was baked and left at room temperature for 24 hours. Then, the obtained Sn-based plated steel sheet was evaluated by making scratches reaching the surface of the steel sheet in a grid pattern (7 scratches in each of the vertical and horizontal directions at 3 mm intervals) and performing a tape peeling test at that portion.
  • Sulfide-resistant black denaturation Sulfide blackening resistance was evaluated as follows. A commercially available epoxy resin paint for cans is applied to the surface of a test material of a Sn-based galvanized steel sheet prepared and wet-tested by the method described in the above [yellowing resistance] at a dry mass of 7 g / m 2 , and then 10 at 200 ° C. It was baked separately and left at room temperature for 24 hours. Then, the obtained Sn-based plated steel sheet is cut into a predetermined size, and the content is composed of 0.3% sodium dihydrogen phosphate, 0.7% sodium hydrogen phosphate, and 0.6% L-cysteine hydrochloride.
  • Corrosion resistance after painting was evaluated as follows. A commercially available epoxy resin paint for cans is applied to the surface of a test material of a Sn-based galvanized steel sheet prepared and wet-tested by the method described in the above [yellowing resistance] at a dry mass of 7 g / m 2 , and then 10 at 200 ° C. It was baked separately and left at room temperature for 24 hours. Then, the obtained Sn-based plated steel sheet was cut into a predetermined size and immersed in commercially available tomato juice at 60 ° C. for 7 days, and then the presence or absence of rust was visually evaluated. If no rust is found, it is rated as "A”. If rust is found at an area ratio of 10% or less of the entire test surface, it is rated as "B”. NG ". Evaluations "A" and "B” were accepted.
  • a Sn-based plated steel sheet was manufactured while changing the amount of adhesion between the zirconium oxide and the manganese oxide based on the method described in> Method for Producing Test Material>.
  • Sn plating was prepared from a known ferrostan bath by an electrolytic method.
  • the amount of energization during electrolysis was changed so that the amount of Sn adhered was in the range of 0.05 g / m 2 or more and 20 g / m 2.
  • both a test piece subjected to the heat melting treatment after Sn plating and a test piece not subjected to the heat melting treatment were prepared.
  • the Sn-based plated steel plate is used as a cathode in an aqueous solution having a zirconium ion concentration of 50 ppm or more and 5000 ppm or less and a manganese ion concentration of 3.5 ppm or more and 12500 ppm or less.
  • a film layer containing various zirconium oxides and manganese oxides was formed on the Sn-based plated steel plate.
  • the pH of the treatment liquid forming the film was 3.8, the liquid temperature was 35 ° C., and the amount of energization was appropriately changed.
  • the immersion water washing time after the cathode electrolysis treatment was changed from 1 to 10 seconds.
  • test pieces of Sn-based plated steel sheets according to A1 to A25 and a1 to a7 in which the adhesion amounts of zirconium oxide and manganese oxide were changed were obtained.
  • XPS confirmed that the zirconium and manganese contained in the film were the zirconium oxide and the manganese oxide specified in the present invention, respectively.
  • Table 1 shows the evaluation results of various performances performed on the above test pieces.
  • the Sn-based plated steel sheets A1 to A25 according to the present invention have good performance.
  • the performance is further excellent.
  • a1 to a7, which are comparative examples, are inferior in any of yellowing resistance, coating film adhesion, sulfurization blackening resistance, and corrosion resistance after coating.
  • Example 2> Next, the above ⁇ 1.
  • a Sn-based plated steel sheet was produced while changing the distribution of zirconium oxide and manganese oxide in the film layer based on the method described in> Method for producing test material>.
  • Sn plating was prepared from a known ferrostan bath by an electrolytic method so that the amount of Sn adhered was 2.8 g / m 2.
  • the Sn-based plated steel sheet was cathodically electrolyzed (first treatment) in an aqueous solution containing zirconium ions without containing manganese ions, and then washed with water for the washing time shown in Table 2 below, and further, manganese containing no zirconium ions.
  • Cathode electrolysis (second treatment) was performed in an aqueous solution containing ions to prepare test pieces B1 to B6.
  • the test piece B7 was prepared by cathodic electrolysis in an aqueous solution containing zirconium ions and manganese ions and washing with water at the washing time shown in Table 2 below.
  • test pieces of Sn-based plated steel sheets according to B1 to B7 in which the distributions of zirconium oxide and manganese oxide were changed in the film layer were obtained.
  • the distribution of zirconium oxide and manganese oxide in the film layer of the prepared test piece was measured by XPS (PHI Quantera SXM manufactured by ULVAC-PHI). Specifically, a test piece of a Sn-based plated steel sheet to be measured is prepared. From the surface of the film layer of this test piece, analysis in the thickness direction (depth direction) by XPS (PHI Quantera SXM manufactured by ULVAC-PHI) was carried out, and Sn existing as a tin oxide, Sn existing as a metal Sn, and zirconium were analyzed.
  • the case where the peak position where the detection intensity for manganese oxide is maximum exists on the surface side of the film layer by 4 nm or more from the peak position where the detection intensity for zirconium oxide is maximum is "A”.
  • “B” was used when it was present on the surface side of the film layer of 2 nm or more and less than 4 nm, and "C” was used when it was not.
  • the gun was 1.0 V, 20 ⁇ A, the sputtering conditions were Ar +, the acceleration voltage was 1 kV, and the sputtering speed was 1.5 nm / min (SiO 2 conversion value). Table 2 shows the evaluation results of various performances performed on the above test pieces.
  • the Sn-based galvanized steel sheet according to the present invention is excellent in yellowing resistance, coating film adhesion, and sulfide blackening resistance without requiring conventional chromate treatment, and therefore, as an environment-friendly can material. It can be widely used for food cans, beverage cans, etc., and has extremely high industrial utility value.

Abstract

【課題】従来のクロメート処理を行うことなく、耐黄変性、塗膜密着性及び耐硫化黒変性に優れるSn系めっき鋼板を提供する。 【解決手段】本発明のSn系めっき鋼板は、鋼板と、鋼板の少なくとも一方の面上に位置するSn系めっき層と、Sn系めっき層の上に位置する皮膜層と、を有し、Sn系めっき層は、Snを金属Sn換算にて片面当たり0.10~15.00g/m2含有し、皮膜層は、Zr酸化物及びMn酸化物を含有し、Zr酸化物の含有量は、金属Zr換算で片面当たり0.20~50.00mg/m2であり、Mn酸化物の金属Mn換算の含有量は、Zr酸化物の金属Zr換算の含有量に対し、質量基準で0.01~0.50倍であり、XPSによる深さ方向元素分析において、Mnの元素濃度が最大である深さ位置Aが、Zrの元素濃度が最大である深さ位置Bよりも皮膜層の表面側に位置し、深さ位置Aと深さ位置Bとの間の深さ方向の距離が2nm以上である。

Description

Sn系めっき鋼板
 本発明は、Sn系めっき鋼板に関する。
 錫(Sn)系めっき鋼板は、「ブリキ」としてよく知られており、飲料缶や食缶などの缶用途その他に、広く用いられている。これは、Snが人体に安全であり、かつ、美麗な金属であることによる。このSn系めっき鋼板は、主に電気めっき法によって製造される。これは、比較的高価な金属であるSnの使用量を必要最小限の量に制御するには、溶融めっき法よりも電気めっき法が有利であることによる。Sn系めっき鋼板は、めっき後、又は、めっき後の加熱溶融処理により美麗な金属光沢が付与された後に、6価クロム酸塩の溶液を用いたクロメート処理(電解処理、浸漬処理など)によって、Sn系めっき層上にクロメート皮膜が施されることが多い。このクロメート皮膜の効果は、Sn系めっき層の表面の酸化を抑えることによる外観の黄変の防止、塗装されて使用される場合における錫酸化物の凝集破壊による塗膜密着性の劣化の防止、耐硫化黒変性の向上、などである。
 一方、近年、環境及び安全に対する意識の高まりから、最終製品に6価クロムが含まれないのみならず、クロメート処理自体を行わないことが求められている。しかしながら、クロメート皮膜がないSn系めっき鋼板は、上述の如く、錫酸化物の成長により外観が黄変したり塗膜密着性が低下したり、耐硫化黒変性が低下したりする。
 このため、クロメート皮膜に替わる皮膜処理が施されたSn系めっき鋼板が、いくつか提案されている。
 例えば、以下の特許文献1では、リン酸イオンとシランカップリング剤とを含有する化成処理液を用いた処理によって、PとSiを含有する化成皮膜を形成させた錫系めっき鋼板が提案されている。
 以下の特許文献2では、Al及びPと、Ni、Co及びCuのうちから選ばれた少なくとも1種とを含有する化成処理皮膜と、シランカップリング剤との反応物層とを有する錫めっき鋼板が提案されている。
 以下の特許文献3では、Snめっき上にZnを重層めっきした後、Zn単独めっき層が実質的に消失するまで加熱した、Snめっき鋼板の製造方法が提案されている。
 以下の特許文献4では、Snを含む表面処理層上にZr皮膜を付与した容器用鋼板が、以下の特許文献5では、Zr化合物皮膜層を有する容器用鋼板が、それぞれ提案されている。
 以下の特許文献6では、下地Ni層と、島状のSnめっき層と、酸化錫及びリン酸錫を含む化成処理層と、Zr含有皮膜層とを有する容器用鋼板が提案されている。
 以下の特許文献7では、錫めっき層の表面上に錫酸化物、並びに、Zr、Ti及びPを含有する皮膜を有する容器用鋼板が提案されている。特許文献7では、皮膜を形成するに当たり、陰極電解処理と陽極電解処理とを交互に行う交番電解を実施してもよいことも提案されている。
特開2004-060052号公報 特開2011-174172号公報 特開昭63-290292号公報 特開2007-284789号公報 特開2010-013728号公報 特開2009-249691号公報 国際公開第2015/001598号
日本表面科学会編、「表面分析化学選書 X線光電子分光法」、丸善出版株式会社、1998年7月、P.83
 しかしながら、上記特許文献1~特許文献7で提案されているSn系めっき鋼板及びその製造方法では、経時による錫酸化物の成長を十分に抑制することができず、耐黄変性、塗膜密着性及び耐硫化黒変性について改善の余地があった。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、従来のクロメート処理を行うことなく、耐黄変性、塗膜密着性及び耐硫化黒変性に優れるSn系めっき鋼板を提供することにある。
 上記課題を解決するために、本発明者らが鋭意検討した結果、Sn系めっき鋼板の表面に、ジルコニウム酸化物とマンガン酸化物とを含有する皮膜層を形成させることで、クロメート処理を行わずに、耐黄変性、塗膜密着性及び耐硫化黒変により一層優れるSn系めっき鋼板を実現可能であることを見出した。
 上記知見に基づき完成された本発明の要旨は、以下の通りである。
(1)鋼板と、前記鋼板の少なくとも一方の面上に位置するSn系めっき層と、前記Sn系めっき層の上に位置する皮膜層と、を有し、前記Sn系めっき層は、Snを、金属Sn換算にて、片面当たり0.10g/m以上15.00g/m以下含有し、前記皮膜層は、ジルコニウム酸化物及びマンガン酸化物を含有し、前記皮膜層中における前記ジルコニウム酸化物の含有量は、金属Zr換算にて、片面当たり0.20mg/m以上50.00mg/m以下であり、前記皮膜層中における前記マンガン酸化物の金属Mn換算の含有量は、前記ジルコニウム酸化物の金属Zr換算の含有量に対し、質量基準で、0.01倍以上0.50倍以下であり、X線光電子分光法による深さ方向元素分析において、前記マンガン酸化物として存在するMnの元素濃度が最大である深さ位置Aが、前記ジルコニウム酸化物として存在するZrの元素濃度が最大である深さ位置Bよりも、前記皮膜層の表面側に位置し、かつ、前記深さ位置Aと前記深さ位置Bとの間の深さ方向の距離が、2nm以上である、Sn系めっき鋼板。
(2)前記皮膜層の表面において、前記X線光電子分光法による深さ方向元素分析における前記ジルコニウム酸化物の質量が、前記X線光電子分光法による深さ方向元素分析における前記マンガン酸化物の質量の0.01倍以下である、(1)に記載のSn系めっき鋼板。
(3)前記深さ位置Aと前記深さ位置Bとの間の深さ方向の距離が、4nm以上である、(1)又は(2)に記載のSn系めっき鋼板。
(4)前記皮膜層中における前記ジルコニウム酸化物の含有量は、金属Zr換算にて、片面当たり1.00mg/m以上30.00mg/m以下である、(1)~(3)の何れか1つに記載のSn系めっき鋼板。
(5)前記皮膜層中における前記ジルコニウム酸化物の含有量は、金属Zr換算にて、片面当たり2.00mg/m以上10.00mg/m以下である、(1)~(4)の何れか1つに記載のSn系めっき鋼板。
(6)前記皮膜層中における前記マンガン酸化物の金属Mn換算の含有量は、前記ジルコニウム酸化物の金属Zr換算の含有量に対し、質量基準で、0.05倍以上0.40倍以下である、(1)~(5)の何れか1つに記載のSn系めっき鋼板。
(7)前記皮膜層中における前記マンガン酸化物の金属Mn換算の含有量は、前記ジルコニウム酸化物の金属Zr換算の含有量に対し、質量基準で、0.10倍以上0.20倍以下である、(1)~(6)の何れか1つに記載のSn系めっき鋼板。
 以上説明したように本発明によれば、従来のクロメート処理を行うことなく、耐黄変性、塗膜密着性及び耐硫化黒変性に優れるSn系めっき鋼板を提供することが可能となる。
本発明の一実施形態に係るSn系めっき鋼板の構造の一例を模式的に示した説明図である。 本発明の一実施形態に係るSnめっき鋼板のSn系めっき層及び皮膜層のX線光電子分光法によって測定された厚み方向(深さ方向)の元素濃度プロファイルの一例である。
 以下に、本発明の好適な実施の形態について詳細に説明する。
 なお、本明細書において、「工程」という用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されるのであれば、本用語に含まれる。本明細書において、「鋼板」という用語は、Sn系めっき層及び皮膜層を形成する対象の母材鋼板(いわゆるめっき原板)を意味する。
また、以下で説明する本発明は、食缶、飲料缶などの缶用途その他に広く用いられるSn系めっき鋼板に関するものである。より詳細には、従来のクロメート処理を行うことなく、耐黄変性、塗膜密着性及び耐硫化黒変性により一層優れるSn系めっき鋼板に関するものである。
<1. Sn系めっき鋼板>
 まず、本実施形態に係るSn系めっき鋼板について、図1を参照しながら説明する。図1は、本実施形態に係るSn系めっき鋼板の構造の一例を模式的に示した説明図である。
 図1に模式的に示したように、本実施形態に係るSn系めっき鋼板1は、鋼板(母材鋼板)10と、鋼板10の少なくとも一方の面上に位置するSn系めっき層20と、Sn系めっき層20の上に位置する皮膜層30とを有する。Sn系めっき層20は、Snを、金属Sn換算にて、片面当たり0.10g/m以上15.00g/m以下含有し、皮膜層30は、ジルコニウム酸化物及びマンガン酸化物を含有し、皮膜層30中におけるジルコニウム酸化物の含有量が、金属Zr換算にて、片面当たり0.20mg/m以上50.00mg/m以下であり、皮膜層30中におけるマンガン酸化物の金属Mn換算の含有量が、ジルコニウム酸化物の金属Zr換算の含有量に対し、質量基準で、0.01倍以上0.50倍以下であり、X線光電子分光法による深さ方向元素分析において、マンガン酸化物として存在するMnの元素濃度が最大である深さ位置Aが、ジルコニウム酸化物として存在するZrの元素濃度が最大である深さ位置Bよりも、皮膜層の表面側に位置し、かつ、深さ位置Aと深さ位置Bとの間の深さ方向の距離が、2nm以上である。
(1.1 鋼板)
 本実施形態に係るSn系めっき鋼板1の母材として用いられる鋼板10は、特に規定されるものではなく、一般的な容器用のSn系めっき鋼板に用いられている鋼板であれば、任意のものを使用可能である。このような鋼板10として、例えば、低炭素鋼や極低炭素鋼などが挙げられる。
(1.2 Sn系めっき層20)
 上記のような鋼板10の少なくとも片面には、Sn系めっきが施されて、Sn系めっき層20が生成される。かかるSn系めっき層20によって、鋼板10の耐食性は向上する。なお、本明細書における「Sn系めっき層」とは、金属Snによるめっきだけでなく、金属Snと金属Feの合金や、金属Ni、また、金属Sn以外の微量元素及び不純物の少なくとも一方とを含有したSn系めっき層も含む。
 本実施形態に係るSn系めっき層20において、片面当たりのSn含有量は、金属Sn量(すなわち金属Sn換算量)として、0.10g/m以上15.00g/m以下である。Sn系めっき層20の片面当たりの含有量が金属Sn量で0.10g/m未満である場合には、耐食性に劣り、好ましくない。片面当たりのSnの含有量は、好ましくは、金属Sn量で、1.0g/m以上である。一方、Sn系めっき層20の片面当たりの含有量が金属Sn量で15.00g/mを超える場合、金属Snによる耐食性の向上効果は十分であり、更なる増加は経済的な観点から好ましくない。また、塗膜密着性も低下する傾向にある。片面当たりのSnの含有量は、好ましくは、金属Sn量で、13.00g/m以下である。
 ここで、Sn系めっき層の金属Sn量(つまり、Sn系めっき層の片面当たりのSnの含有量)は、例えば、JIS G 3303に記載された電解法、又は蛍光X線法によって測定された値とする。あるいは、例えば、次の方法でもSn系めっき層中の金属Sn量を求めることが出来る。皮膜層が形成されていない試験片を準備する。その試験片を10%硝酸に浸漬して、Sn系めっき層を溶解し、得られた溶解液中のSnをICP発光分析法(高周波誘導結合プラズマ発光分光分析法)により、例えば装置としてアジレント・テクノロジー社製799ce(キャリアガスにArを使用)を用いて、求める。そして、分析で得た強度信号と、濃度が既知の溶液から作成した検量線と、試験片のSn系めっき層の形成面積とに基づいて、金属Sn量を求めることが出来る。あるいは、皮膜層が形成されている試験片の場合は、GDS(グロー放電発光分光法)を用いた検量線法にて、金属Sn量を求めることが出来、その方法は例えば、次の通りである。金属Sn量が既知であるめっき試料(基準試料)を用い、GDSにより基準試料中における金属Snの強度信号およびスパッタ速度との関係を予め求め、検量線を作っておく。この検量線をもとに、金属Sn量が未知の試験片の強度信号、スパッタ速度から金属Snの量を求めることが出来る。ここで、Sn系めっき層は、Sn系めっき鋼板を表面から深さ方向に分析する際に、Zrの強度信号が、Zrの強度信号の最大値の1/2になる深さから、Feの強度信号が、Feの強度信号の最大値の1/2になる深さまでの部分と定義する。測定精度及び迅速性の観点からは、工業的には蛍光X線法による測定が好ましい。
(1.3 皮膜層30)
 上述したようにSn系めっき層20上には、ジルコニウム酸化物とマンガン酸化物とを含有する皮膜層30が形成されている。本実施形態に係るSn系めっき鋼板1は、Sn系めっき層20の表面に、上記のようなジルコニウム酸化物とマンガン酸化物とが後述する量的関係で共存する皮膜層30を有することで、耐黄変性、塗膜密着性及び耐硫化黒変性をより一層向上させることができる。なお、ジルコニウム酸化物又はマンガン酸化物のみの皮膜層では、耐黄変性、塗膜密着性及び耐硫化黒変性を十分に改善出来ない。この理由は定かではないが、本発明者らの詳細な調査により以下のように考えている。
 従来のSn系めっき層の表面には、錫酸化物が存在し、経時により錫酸化物量が増加することで耐黄変性や塗膜密着性が低下するようになり、また耐硫化黒変性も低下する。
 Sn系めっき層の表面にマンガン酸化物を含まずジルコニウム酸化物を含む皮膜が存在する場合、ジルコニウム酸化物層自体のバリア性によって、経時による錫酸化物の増加速度が抑制される傾向にある。しかしながら、製造工程上、ジルコニウム酸化物を有する皮膜層中は、錫酸化物が含む不均質な皮膜であるため、脆い錫酸化物に存在する微細な割れの部分を酸素及び硫黄が透過してSn系めっき表面に到達し、次第に錫酸化物及び硫化錫が増加してしまう。
 一方、Sn系めっき層の表面にジルコニウム酸化物を含まずマンガン酸化物を含む皮膜が存在する場合は、マンガン酸化物とSn系めっきの密着性が不十分であるため、塗膜密着性が低下する。
 しかしながら、Sn系めっき層20の表面に、ジルコニウム酸化物とマンガン酸化物の両方を含む皮膜層30が存在する場合、皮膜層30中に含まれる錫酸化物がマンガン酸化物によって還元され錫酸化物が減少する。更に、マンガン酸化物が更なる高酸化数の酸化物となることによって、バリア性の高い皮膜が形成され、酸素及び硫黄の透過を抑制して、錫酸化物及び硫化錫の生成を低減する。その結果、耐黄変性や塗膜密着性が向上するとともに、耐硫化黒変性も向上する。
 上述の効果を実現するには、片面当たり金属Zr量で0.20mg/m以上50.00mg/m以下のジルコニウム酸化物が、皮膜層30中に必要である。ジルコニウム酸化物の含有量が、金属Zr量で0.20mg/mに満たない場合には、ジルコニウム酸化物のバリア性が不十分で、耐黄変性、塗膜密着性、耐硫化黒変性が向上しない。片面当たりのジルコニウム酸化物の含有量は、金属Zr量で、1.00mg/m以上であることが好ましく、2.00mg/m以上であることがより好ましい。一方、片面当たりのジルコニウム酸化物の含有量が、金属Zr量で50.00mg/mを超える場合は、ジルコニウム酸化物が過剰なために、塗膜密着性を劣化させる。片面当たりのジルコニウム酸化物の含有量は、金属Zr量で、30.00mg/m以下であることが好ましく、10.00mg/m以下であることがより好ましい。
 また、上述の効果を実現するには、更に、皮膜層30中におけるマンガン酸化物の金属Mn換算の含有量が、ジルコニウム酸化物の金属Zr換算の含有量に対し、質量基準で、0.01倍以上0.50倍以下であることが必要である。ジルコニウム酸化物の金属Zr換算の含有量に対し、片面当たりのマンガン酸化物の量が、金属Mn量で1/100に満たない場合は、皮膜中に含まれる錫酸化物の還元、及び、マンガン酸化物の更なる酸化が不十分で、耐黄変性や塗膜密着性、耐硫化黒変性を十分に向上出来ない。皮膜層30中におけるマンガン酸化物の金属Mn換算の含有量は、ジルコニウム酸化物の金属Zr換算の含有量に対し、質量基準で、0.05倍以上であることが好ましく、0.10倍以上であることがより好ましい。一方、ジルコニウム酸化物の金属Zr換算の含有量に対し、片面当たりのマンガン酸化物の量が、金属Mn量で1/2を超える場合は、マンガン酸化物が過剰となり、脆化しやすくなるために塗膜密着性が劣る。皮膜層30中におけるマンガン酸化物の金属Mn換算の含有量は、ジルコニウム酸化物の金属Zr換算の含有量に対し、質量基準で、0.40倍以下であることが好ましく、0.20倍以下であることがより好ましい。
 また、皮膜層30において、マンガン酸化物は、皮膜層30の表面側に濃化していること(すなわち、皮膜層30の表面付近のマンガン酸化物濃度が、皮膜層30のSn系めっき層20との界面付近のマンガン酸化物濃度よりも大きいこと)が必要である。
 これにより、マンガン酸化物によるバリア効果が十分に発揮されるために、耐黄変性、耐硫化黒変性、塗装後耐食性がより一層向上する。また、皮膜層30とSn系めっき層20の界面におけるマンガン酸化物の量が少ないことから、塗膜密着性もより一層向上する。
 このような状態としては、具体的には、例えば、皮膜層30を深さ方向にX線光電子分光法(XPS)により分析した際に、マンガン酸化物として存在するMnの元素濃度が最大である深さ位置A(換言すれば、Mn元素の検出強度が最大となる位置)が、ジルコニウム酸化物として存在するZrの元素濃度が最大となる深さ位置B(換言すれば、Zr元素の検出強度が最大となる位置)よりも、皮膜層30の表面側に位置し、かつ、深さ位置Aと深さ位置Bとの間の深さ方向の距離が、2nm以上である必要がある。
 図2は、本実施形態に係るSn系めっき鋼板1のSn系めっき層20及び皮膜層30の厚み方向(深さ方向)の元素濃度プロファイルの一例を示す図である。図2に示す元素濃度プロファイルは、XPSの深さ方向の分析により、皮膜層30の表面からSn系めっき層20を経て鋼板10の表面までの元素濃度の分布を測定したものである。図2においては、横軸の「スパッタ深さ」が0の位置が皮膜層30の表面である。図2における「スパッタ深さ」の値は、「深さ位置」と同義である。
 図2に示す例においては、深さ位置Aはスパッタ深さ0nmの位置であり、深さ位置Bはスパッタ深さ4.0nmの位置である。この図2の例を図1に即して説明すると、深さ位置Aは、皮膜層30の表面(図1においては皮膜層30の上面)に位置し、深さ位置Bは、皮膜層30の表面から深さ方向に4nm離れた箇所(図1においては皮膜層30の上面から下方に4nm離れた箇所)に位置する。すなわち、図2に示す例においては、深さ方向AとBとの間の距離は、4nmとなっている。
 この場合、通常、ジルコニウム酸化物とマンガン酸化物とを含有する皮膜層30の表面側において、質量基準にて、マンガン酸化物の方がジルコニウム酸化物よりも多く存在することとなる。これら深さ方向AとBと深さ位置が2nm以上離れているということは、マンガン酸化物が皮膜層30の表面側においてジルコニウム酸化物よりも濃化していることを意味する。このため、皮膜層30の表面において濃化しているマンガン酸化物が、更なる高酸化数の酸化物となることによって、バリア性の高い皮膜となる。このマンガン酸化物からなる皮膜は酸素及び硫黄の透過を抑制するため、Sn系めっき層における錫酸化物及び硫化錫の生成が抑制される。このため、Sn系めっき層における耐黄変性や塗膜密着性を向上させるとともに、耐硫化黒変性も向上させる。
 なお、マンガン酸化物として存在するMnの元素濃度が最大となる深さ位置Aは、ジルコニウム酸化物として存在するZrの元素濃度が最大となる深さ位置Bよりも、4nm以上、皮膜層の表面側に位置することが好ましい。これら深さ位置が4nm以上離れていることにより、皮膜層30の表面におけるマンガン酸化物の濃化がより顕著となり、マンガン酸化物からなる皮膜は、更なるバリア機能を発揮する。ここで、深さ位置の離隔距離の上限値は、特に規定するものではなく、離れていれば離れているほど好ましいが、実質的な上限値は、15nm程度となる。
 皮膜層30中におけるジルコニウム酸化物及びマンガン酸化物の分布は、皮膜層30を表面側からX線光電子分光法(XPS)により分析することにより特定及び定量できる。具体的には、皮膜層30中におけるジルコニウム酸化物は、X線光電子分光法により得られる元素濃度プロファイルにおいて、金属Zrの結合エネルギーのピーク位置よりも高エネルギー側に3.0eV以上4.0eV以下離れた位置にある、Zr 3d5/2の結合エネルギーのピークに基づき特定される。また、皮膜層30中におけるマンガン酸化物は、X線光電子分光法により得られる元素濃度プロファイルにおいて、金属Mnの結合エネルギーのピーク位置よりも高エネルギー側に1.5eV以上3.5eV以下離れて存在する、Mn 2p3/2の結合エネルギーのピークに基づき特定される。
 なお、上記Zr 3d2/5やMn 2p3/2とは、Zr又はMnの中の電子のエネルギー準位を表しており、例えば、非特許文献1のP.83に記載されている、Snの中の電子のエネルギー準位の表現と同様に解釈される。
 ここで、上述した測定方法により、ジルコニウム酸化物に関する「金属Zrの結合エネルギーのピーク位置よりも高エネルギー側に3.0eV以上4.0eV以下離れた位置にあるZr 3d5/2の結合エネルギーのピーク」、及び、マンガン酸化物に関する「金属Mnの結合エネルギーのピーク位置よりも高エネルギー側に1.5eV以上3.5eV以下離れて存在するMn 2p3/2の結合エネルギーのピーク」が測定されれば、皮膜層30には、その他の構造のジルコニウム酸化物やマンガン酸化物、あるいは、酸化物以外の化合物が含まれていても問題ない。
 図2に示すように、本実施形態に係るSn系めっき鋼板1は、金属Snを含むSn系めっき層20の表面に、ジルコニウム酸化物とマンガン酸化物とが共存した皮膜層30が存在していることがわかる。
 なお、ジルコニウム酸化物とマンガン酸化物とを含有する皮膜層30は、両者の混合状態であっても酸化物の固溶体であってもよく、その存在状態を問わない。また、皮膜層30中に、Fe、Ni、Cr、Ca、Na、Mg、Al、Si等のような、いかなる元素が含まれていても何ら問題ない。
 皮膜層30において、ジルコニウム酸化物の含有量(金属Zr量)及びマンガン酸化物の含有量(金属Mn量)は、本実施形態に係るSn系めっき鋼板1を、例えば、フッ酸と硫酸などの酸性溶液に浸漬して溶解し、得られた溶解液を高周波誘導結合プラズマ(Inductively Coupled Plasma:ICP)発光分析法などの化学分析によって測定された値とする。あるいは、皮膜層30におけるジルコニウム酸化物の含有量(金属Zr量)及びマンガン酸化物の含有量(金属Mn量)は、蛍光X線測定によって求めても構わない。測定精度及び迅速性の観点からは、工業的には蛍光X線法による測定が好ましい。
 以上説明した本実施形態に係るSn系めっき鋼板1は、Sn系めっき層20上に所定量のジルコニウム酸化物及びマンガン酸化物を含有する皮膜層30を有している。そして、皮膜層20中におけるマンガン酸化物の含有量がジルコニウム酸化物の含有量に対して所定量の範囲内にあり、更に、XPSによる深さ方向元素分析において、マンガン酸化物として存在するMnの元素濃度が最大である深さ位置Aが、ジルコニウム酸化物として存在するZrの元素濃度が最大である深さ位置Bよりも、皮膜層30の表面側に位置し、かつ、深さ位置Aと深さ位置Bとの間の深さ方向の距離が、2nm以上となっている。このため、マンガン酸化物が皮膜層30付近に存在する錫酸化物を還元して錫酸化物が減少する一方、マンガン酸化物が更なる高酸化数の酸化物となることによってバリア性の高い皮膜を形成し、酸素及び硫黄の透過を抑制する。そして、皮膜層30中のジルコニウム酸化物によるバリア性とも相まって、錫酸化物及び硫化錫の生成を低減し、耐黄変性や塗膜密着性を向上するとともに、耐硫化黒変性も向上させる。
 また、本実施形態に係るSn系めっき鋼板1は、上記のようなSn系めっき層20及び皮膜層30を有するSn系めっき鋼板の表面に、公知の皮膜が形成されていても何ら問題ない。このような皮膜の例としては、例えば、P系化合物、Al系化合物などによる各種化成処理皮膜を挙げることが出来る。ただし、本実施形態に係るSn系めっき鋼板1には、クロメート処理が施されていないことが好ましい。したがって、本実施形態に係るSn系めっき鋼板1は、クロメート層を有しないことが好ましい。
 更に、Sn系めっき鋼板1は、片面のみにSn系めっき層20を有するものとして説明したが、本発明はこれに限定されない。例えば、Sn系めっき鋼板1は、両面にSn系めっき層20を有していてもよい。この場合、少なくとも一方のSn系めっき層20上にのみ上述した皮膜層30を有してもよい。更に、Sn系めっき鋼板1は、一方の面にSn系めっき層20を有し、他方の面にSn系めっき層20以外の各種の皮膜を有していてもよい。
<2. Sn系めっき鋼板の製造方法>
 本実施形態に係るSn系めっき鋼板は、いかなる方法により製造されてもよいが、例えば、以下に説明するSn系めっき鋼板の製造方法により、製造することができる。
 本実施形態に係るSn系めっき鋼板1の製造方法は、鋼板10の少なくとも一方の表面上にSn系めっき層20を形成する工程と、Sn系めっき層20上にジルコニウム酸化物及びマンガン酸化物を含有する皮膜層30を形成する工程と、を有する。以下、詳細に説明する。
(2.1 鋼板の準備)
 まず、Sn系めっき鋼板1の母材となる鋼板10を準備する。用いる鋼板の製造方法や材質は、特に規定されるものではなく、例えば、鋳造から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造されたものを用いることができる。
(2.2 Sn系めっき層の形成)
 次いで、鋼板の少なくとも一方の表面上に、Sn系めっき層(Snめっき)を形成する。Sn系めっきを鋼板表面に施す方法は、特に規定するものではないが、公知の電気めっき法が好ましく、電気めっき法としては、例えば、周知のフェロスタン浴、ハロゲン浴、アルカリ浴などを用いた電解法を利用することができる。なお、溶融したSnに鋼板を浸漬することでSn系めっきする、溶融法を用いてもよい。
 また、Sn系めっき後に、Sn系めっき層を有する鋼板をSnの融点である231.9℃以上に加熱する加熱溶融処理を施しても構わない。この加熱溶融処理によって、Sn系めっき層の表面に光沢が出るとともに、Sn系めっき層と鋼板の間に、SnとFeとの合金層が形成され、耐食性や密着性が更に向上する。
(2.3 皮膜層の形成)
 次に、Sn系めっき層の表面の少なくとも一部に、ジルコニウム酸化物とマンガン酸化物とを含有する皮膜層を形成する。これにより、本実施形態に係るSn系めっき鋼板が得られる。
 ジルコニウム酸化物とマンガン酸化物とを含有する皮膜層は、ジルコニウムイオン及びマンガンイオンを含む浸漬浴中にSn系めっき鋼板を浸漬処理する、又は、ジルコニウムイオン及びマンガンイオンを含む陰極電解液中で陰極電解処理を行うことにより、Sn系めっき層の表面に形成することができる。ただし、浸漬処理では、下地であるSn系めっき層の表面がエッチングされることでジルコニウム酸化物とマンガン酸化物を含有する皮膜層が形成される。そのため、Sn系めっき層の付着量が不均一になりやすく、また、処理時間も長くなるため、工業生産的には不利である。一方、陰極電解処理では、強制的な電荷移動及び鋼板界面での水素発生による表面清浄化とpH上昇による付着促進効果も相まって、均一な皮膜を得ることができる。更に、この陰極電解処理は、陰極電解液中に硝酸イオンとアンモニウムイオンとが共存することにより、数秒から数十秒程度の短時間処理が可能である。そのため、陰極電解処理は、工業的には極めて有利である。
 従って、ジルコニウム酸化物とマンガン酸化物とを含有する皮膜層の形成には、陰極電解処理による方法を利用することが好ましい。
 陰極電解処理を実施する陰極電解液中のジルコニウムイオンの濃度は、生産設備、生産速度(能力)などに応じて適宜調整すればよい。例えば、ジルコニウムイオン濃度は、100ppm以上4000ppm以下であることが好ましい。マンガンイオンの濃度は、ジルコニウムイオン濃度の0.07倍以上2.50倍以下とすることが好ましい。マンガンイオンの濃度を前記の範囲とすることで、ジルコニウム酸化物(金属Zr)の付着量を上述した範囲となるように皮膜層を形成することにより、マンガン酸化物(金属Mn)の付着量も、上述した範囲内となる。
 また、ジルコニウムイオンとマンガンイオンを含む溶液中には、フッ素イオン、アンモニウムイオン、硝酸イオン、硫酸イオン、塩化物イオンなどの他の成分が含まれていても何ら問題ない。
 陰極電解液中のジルコニウムイオンの供給源は、例えば、HZrFのようなジルコニウム錯体を使用できる。上記のようなZr錯体中のZrは、陰極電極界面におけるpHの上昇によりZr4+となって陰極電解液中に存在する。このようなジルコニウムイオンは、陰極電解液中で更に反応し、ジルコニウム酸化物となる。マンガンイオンの供給源は、例えば、硫酸マンガンや硝酸マンガン、塩化マンガンなどを挙げることが出来る。
 また、陰極電解処理する際の陰極電解液の溶媒としては、例えば、蒸留水等の水を使用することができる。ただし、溶媒は、蒸留水等の水に規定されるものではなく、溶解する物質、形成方法等に応じて、適宜選択することが可能である。
 なお、陰極電解液のpHを調整したり電解効率を上げたりするために、陰極電解液中に、例えば硝酸、アンモニア水等を添加してもよい。
 ここで、陰極電解処理する際の陰極電解液の液温は、特に規定するものではないが、例えば、10℃以上50℃以下の範囲とすることが好ましい。50℃以下で陰極電解を行うことにより、非常に細かい粒子により形成された、緻密で均一な皮膜層の組織の形成が可能となる。一方、液温が10℃未満である場合には、皮膜の形成効率が悪く、夏場など外気温が高い場合に溶液の冷却が必要となり、経済的ではないだけでなく、その陰極電解液の組成によっては耐硫化黒変性が低下する場合がある。また、液温が50℃を超える場合には、その陰極電解液の組成によっては形成される皮膜が不均一であり、欠陥、割れ、マイクロクラック等が発生して緻密な皮膜形成が困難となり、腐食等の起点となる場合がある。
 また、陰極電解液のpHは、特に規定するものではないが、3.0以上5.0以下であることが好ましい。pHが3.0未満であれば、陰極電解処理の他の条件によっては皮膜の生成効率が低下する場合があり、pHが5.0超であれば、陰極電解液の組成によっては陰極電解液中に沈殿が多量に発生し、連続生産性に劣る。
 また、陰極電解処理する際の電流密度は、例えば、0.05A/dm以上50.00A/dm以下にすることが好ましい。電流密度が0.05A/dm未満である場合には、陰極電解処理の他の条件によっては皮膜の形成効率の低下を招き、疎な皮膜となり耐黄変性および耐硫化黒変性が低下する場合がある。電流密度が50.00A/dmを超える場合には、陰極電解処理の他の条件によっては水素発生が過剰となり、粗大なジルコニウム酸化物及びマンガン酸化物が形成され、耐黄変性及び塗膜密着性、耐硫化黒変性が劣る場合がある。より好ましい電流密度の範囲は、1.00A/dm以上10.00A/dm以下である。
 なお、皮膜層の形成に際して、陰極電解処理の時間は、特に限定されない。狙いとする皮膜層中のジルコニウム酸化物の含有量(金属Zr量)に対し、電流密度に応じて、陰極電解処理の時間を適宜調整すればよい。また、陰極電解処理する際の通電パターンとしては、連続通電であっても断続通電であっても何ら問題はない。
 また、皮膜層を深さ方向にX線光電子分光法により分析した際に、マンガン酸化物についての検出強度が最大となるピーク位置が、ジルコニウム酸化物についての検出強度が最大となるピーク位置よりも2nm以上前記皮膜層の表層側に存在するためには、陰極電解処理後に、浸漬処理又はスプレー処理による水洗を2~10秒間行う必要がある。
 この水洗によって、マンガン酸化物についての検出強度が最大となるピーク位置が、ジルコニウム酸化物についての検出強度が最大となるピーク位置よりも皮膜層の表面側に存在しやすくなる。このメカニズムについては、陰極電解後の低pHの陰極電解液を十分に水洗除去することにより、皮膜層の表面に析出したMn酸化物が、皮膜層に付着した陰極電解液に溶解することを、抑制していると推定される。また、水洗により皮膜層の表面に付着したジルコニウム酸化物を除去する効果があると推定される。水洗時間が2秒未満であれば、Mnを皮膜層の表面において濃化させるには不十分である。一方、水洗時間が10秒超であれば、Mnの表層濃化はすでに十分であり、工業生産上の生産性を低下させるのみである。
 なお、上記の水洗時間は、3秒以上であることが好ましく、4秒以上であることがより好ましい。水洗時間が3秒以上であることで、マンガン酸化物として存在するMnの元素濃度が最大である深さ位置Aと、ジルコニウム酸化物として存在するZrの元素濃度が最大である深さ位置Bとを、より確実に2nm以上に離隔させることが可能となる。また、水洗時間が4秒以上であることで、歩留まりを低下させることなく、マンガン酸化物として存在するMnの元素濃度が最大である深さ位置Aと、ジルコニウム酸化物として存在するZrの元素濃度が最大である深さ位置Bとを、より確実に4nm以上に離隔させることが可能となる。
 また、水洗時間は、8秒以下であることが好ましく、6秒以下であることが特に好ましい。水洗時間が8秒以下であることで、マンガン酸化物として存在するMnの元素濃度が最大である深さ位置Aと、ジルコニウム酸化物として存在するZrの元素濃度が最大である深さ位置Bとを、より確実に2nm以上に離隔させることが可能となる。また、水洗時間が6秒以下であることで、歩留まりを低下させることなく、マンガン酸化物として存在するMnの元素濃度が最大である深さ位置Aと、ジルコニウム酸化物として存在するZrの元素濃度が最大である深さ位置Bとを、4nmに離隔させることが可能となる。
 以上、一段階の陰極電解処理又は浸漬処理により皮膜層を形成する方法を説明した。しかしながら、本発明において、皮膜層の形成方法は上記方法のみに限定されず、複数段の陰極電解処理により皮膜層を形成することが好ましい。
 例えば、本工程は、(a)Sn系めっき鋼板をジルコニウムイオンを含む第1の浴中に浸漬する、又は、Sn系めっき鋼板について第1の浴中で陰極電解処理を行う第1の処理と、次いで、(b)Sn系めっき鋼板をマンガンイオンを含む第2の浴中に浸漬する、又は、Sn系めっき鋼板について第2の浴中で陰極電解処理を行う第2の処理と、を有することが好ましい。
 これにより、皮膜層を深さ方向にX線光電子分光法により分析した際に、表面におけるマンガン酸化物に対するジルコニウム酸化物の存在比率が、質量基準で0~0.01である皮膜層を実現できる。すなわち、第1の処理において、Sn系めっき層付近にジルコニウム酸化物を主体とした層を形成し、更に、第2の処理において、ジルコニウム酸化物を主体とした層上に、マンガン酸化物を主体とした層を形成することができる。皮膜層は、ジルコニウム酸化物を含む膜とマンガン酸化物を含む膜とが積層した構成となるため、皮膜層の表面におけるジルコニウム酸化物の生成が防がれ、マンガン酸化物からなるバリア性の高い皮膜で覆われた構成となる。すなわち、皮膜層において、ジルコニウム酸化物及びマンガン酸化物の濃度勾配が、厚さ方向に生じることとなる。従って、上記のような第1の処理及び第2の処理を組み合わせることにより、ジルコニウム酸化物とマンガン酸化物とを含有する皮膜層において、皮膜層の表面側からマンガン酸化物、ジルコニウム酸化物の順に多く存在する皮膜層を形成させることも可能となる。
 また、このように陰極電解処理を複数回の段階で行うことにより、皮膜層は、ジルコニウム酸化物を含む膜とマンガン酸化物を含む膜とが積層した構成となる。そのため、皮膜層の厚さ方向において、マンガン酸化物として存在するMnの元素濃度が最大である深さ位置Aと、ジルコニウム酸化物として存在するZrの元素濃度が最大である深さ位置Bとを、より一層確実に4nm以上に離隔させることができる。
 第1の処理において、用いるジルコニウムイオンを含む第1の浴(第1の陰極電解液)中のジルコニウムイオンの濃度は、生産設備、生産速度(能力)などに応じて適宜調整すればよい。例えば、ジルコニウムイオン濃度は、100ppm以上4000ppm以下であることが好ましい。
 また、第1の浴は、形成される皮膜層中においてジルコニウム酸化物の濃度を大きくするために、マンガンイオンを含まないか、マンガンイオンの含有量が小さいことが好ましい。具体的には、第1の浴中におけるマンガンイオン濃度は、10ppm以下であることが好ましい。
 第1の浴のその他の成分や、第1の処理の各種条件については、上述した陰極電解処理と同様とすることができるため、説明を省略する。
 第2の処理において、用いるマンガンイオンを含む第2の浴(第2の陰極電解液)中のマンガンイオンの濃度は、生産設備、生産速度(能力)などに応じて適宜調整すればよい。マンガンイオンの濃度は30ppm以上10000ppm以下であることが好ましい。
 また、第2の浴は、形成される皮膜層中においてマンガン酸化物の濃度を大きくするために、マンガンイオンを含まないか、ジルコニウムイオンの含有量が小さいことが好ましい。具体的には、第2の浴中におけるジルコニウムイオン濃度は、100ppm以下であることが好ましい。
 第2の浴のその他の成分や、第2の処理の各種条件については、上述した陰極電解処理と同様とすることができるため、説明を省略する。また、第1の処理と第2の処理の後には、それぞれ水洗処理をしてもかまわない。
 以上のようにして、本実施形態に係るSn系めっき鋼板を製造することができる。なお、上記の各工程後、周知の処理、例えば洗浄等を適宜行ってもよい。
 続いて、実施例を示しながら、本発明に係るSn系めっき鋼板について、具体的に説明する。なお、以下に示す実施例は、あくまでも本発明に係るSn系めっき鋼板の一例にすぎず、本発明に係るSn系めっき鋼板が下記の例に限定されるものではない。
<1.試験材の作製方法>
 試験材の標準的な作製方法について説明する。なお、後述する各例の試験材は、この試験材の作製方法に準じて作製した。
 まず、板厚0.2mmの低炭素冷延鋼板に対し、前処理として、電解アルカリ脱脂、水洗、希硫酸浸漬酸洗、水洗した後、フェノールスルホン酸浴を用いて電気Sn系めっきを施し、更にその後、加熱溶融処理をした。これらの処理を経て、鋼板の両面にSn系めっき層を形成した。Sn系めっき層の付着量は、片面当たり約2.8g/mを標準とした。Sn系めっき層の付着量は、通電時間を変えることで調整した。
 次に、Sn系めっき層を形成した鋼板を、フッ化ジルコニウムと硝酸マンガンを含む水溶液(陰極電解液)中で陰極電解処理し、Sn系めっき層の表面にジルコニウム酸化物とマンガン酸化物とを含む皮膜層を形成した。陰極電解液の液温は35℃とし、かつ、陰極電解液のpHは3.0以上5.0以下となるように調整し、陰極電解処理の電流密度及び陰極電解処理時間を、狙いとする皮膜層中のジルコニウム酸化物の含有量(金属Zr量)に応じて適宜調整した。
<2.評価方法>
 このように作製したSn系めっき鋼板について、以下に示す種々の評価をした。
[Sn系めっき層の片面当たりの付着量(Sn系めっき層の金属Sn量)]
 Sn系めっき層の片面当たりの付着量(Sn系めっき層の金属Sn量)を、次の通り測定した。金属Snの含有量が既知である複数のSn系めっき層付き鋼板の試験片を準備する。次に、各試験片について、蛍光X線分析装置(リガク社製ZSX Primus)により、試験片のSn系めっき層の表面から、金属Snに由来する蛍光X線の強度を事前に測定する。そして、測定した蛍光X線の強度と金属Sn量との関係を示した検量線を準備しておく。その上で、測定対象となるSn系めっき鋼板について、皮膜層を除去し、皮膜層が形成されておらず、Sn系めっき層を露出させた試験片を準備する。このSn系めっき層を露出させた表面を蛍光X線装置により、金属Snに由来する蛍光X線の強度を測定する。得られた蛍光X線強度と予め準備した検量線とを利用することで、Sn系めっき層の片面当たりの付着量(つまり、金属Snの含有量)を算出した。
 なお、測定条件は、X線源Rh、管電圧50kV、管電流60mA、分光結晶LiF1、測定径30mmとした。
[皮膜層中のジルコニウムとマンガンの存在形態]
 皮膜層中のZr及びMnがそれぞれ、ジルコニウム酸化物、マンガン酸化物として存在していることを確認するために、皮膜層の表面に対して、XPS(ULVAC-PHI製PHI Quantera SXM)による測定を実施し、皮膜層中におけるジルコニウム酸化物のZr 3d5/2、及び、Mn 2p3/2の結合エネルギーのピーク位置を調べた。測定条件は、X線源mono-AlKα線(hν=1466.6eV、100.8W)、X線径100μmφ、検出深さ数nm(取出し角45°)、分析範囲1400×100μmとした。そして、Zr 3d5/2の結合エネルギーのピーク位置が金属Zrの結合エネルギーのピーク位置(=484.9eV)よりも高エネルギー側に3.0eV以上4.0eV以下離れた位置であれば、ジルコニウムは酸化物として存在していると定義した。また、Mn 2p3/2の結合エネルギーのピーク位置が金属Mnの結合エネルギーのピーク位置よりも高エネルギー側に1.5eV以上3.5eV以下離れた位置であれば、マンガンは酸化物として存在していると定義した。
[皮膜層のジルコニウム酸化物の含有量(金属Zr量)]
 皮膜層中のジルコニウム酸化物の含有量(金属Zr量)は、Sn系めっき層の片面当たりの付着量(Sn系めっき層の金属Sn量)の測定方法に準じて測定した。つまり、測定対象となるSn系めっき鋼板の試験片を準備する。この試験片の皮膜層の表面を蛍光X線分析装置(リガク社製ZSX Primus)により、金属Zrに由来する蛍光X線の強度を測定する。得られた蛍光X線強度と予め準備した金属Zrに関する検量線とを利用することで、皮膜層中のジルコニウム酸化物の含有量(金属Zr量)を算出した。
[皮膜層のマンガン酸化物の含有量(金属Mn量)]
 皮膜層中のマンガン酸化物の含有量(金属Mn量)は、Sn系めっき層の片面当たりの付着量(Sn系めっき層の金属Sn量)の測定方法に準じて測定した。つまり、測定対象となるSn系めっき鋼板の試験片を準備する。この試験片の皮膜層の表面を蛍光X線分析装置(リガク社製ZSX Primus)により、金属Mnに由来する蛍光X線の強度を測定する。得られた蛍光X線強度と予め準備した金属Zrに関する検量線とを利用することで、皮膜層中のマンガン酸化物の含有量(金属Mn量)を算出した。
[ジルコニウム酸化物とマンガン酸化物の皮膜層中での分布]
 ジルコニウム酸化物とマンガン酸化物の皮膜層中での分布は、XPS(ULVAC-PHI製PHI Quantera SXM)により測定した。具体的には、測定対象となるSn系めっき鋼板の試験片を準備する。この試験片の皮膜層の表面から、XPS(ULVAC-PHI製PHI Quantera SXM)による厚み方向(深さ方向)の分析を実施し、錫酸化物として存在するSn、金属Snとして存在するSn、ジルコニウム酸化物として存在するZr、金属Zrとして存在するZr、マンガン酸化物として存在するMn、金属Mnとして存在するMn、の各元素濃度の合計が100%となるように、各酸化物及び金属の元素マンガン酸化物の元素濃度を求めた。
 なお、測定条件は、X線源mono-AlKα線(hν=1466.6eV、100.8W)、X線径100μmφ、検出深さ数nm(取出し角45°)、分析範囲1400×100μm、中和銃1.0V,20μA、スパッタ条件Ar+、加速電圧1kV、スパッタ速度1.5nm/min(SiO換算値)とした。上記のXPS測定において、マンガン酸化物についての検出強度が最大となるピーク位置が、ジルコニウム酸化物についての検出強度が最大となるピーク位置よりも4nm以上皮膜層の表面側に存在する場合を「A」と記載し、2nm以上4nm未満皮膜層の表面側に存在する場合を「B」と記載し、そうでない場合を「C」と記載した。
[耐黄変性]
 Sn系めっき鋼板の試験材を、40℃、相対湿度80%に保持した恒温恒湿槽中に4週間載置する湿潤試験を行い、湿潤試験前後における色差b*値の変化量△b*を求めて、評価した。△b*が1以下であれば「A」とし、1超過2以下であれば「B」とし、2超過3以下であれば「C」とし、3を超過していれば「NG」とした。評価「A」、「B」及び「C」を合格とした。b*は、市販の色差計であるスガ試験機製SC-GV5を用いて測定した。b*の測定条件は、光源C、全反射、測定径30mmである。
[塗膜密着性]
 塗膜密着性は、以下のようにして評価した。
 Sn系めっき鋼板の試験材を、[耐黄変性]に記載の方法で湿潤試験した後、表面に、市販の缶用エポキシ樹脂塗料を乾燥質量で7g/m塗布し、200℃で10分焼き付け、24時間室温に置いた。その後、得られたSn系めっき鋼板に対し、鋼板表面に達する傷を碁盤目状に入れ(3mm間隔で縦横7本ずつの傷)、その部位のテープ剥離試験をすることで評価した。テープ貼り付け部位の塗膜が全て剥離していなければ「A」とし、碁盤目の傷部周囲で塗膜剥離が認められれば「B」とし、碁盤目の枡内に塗膜剥離が認められれば「NG」とした。評価「A」及び「B」を合格とした。
[耐硫化黒変性]
 耐硫化黒変性は、以下のようにして評価した。
 上記[耐黄変性]に記載の方法で作製及び湿潤試験したSn系めっき鋼板の試験材の表面に、市販の缶用エポキシ樹脂塗料を乾燥質量で7g/m塗布した後、200℃で10分焼き付け、24時間室温に置いた。その後、得られたSn系めっき鋼板を所定のサイズに切断し、リン酸二水素ナトリウムを0.3%、リン酸水素ナトリウムを0.7%、L-システイン塩酸塩を0.6%からなる水溶液中に浸漬し、密封容器中で121℃・60分のレトルト処理を行い、試験後の外観から評価した。試験前後で外観の変化が全く認められなければ「A」とし、僅かに(10%以下)黒変が認められれば「B」とし、試験面の10%超過の領域に黒変が認められれば「NG」とした。評価「A」、「B」を合格とした。
[塗装後耐食性]
 塗装後耐食性は、以下のようにして評価した。
 上記[耐黄変性]に記載の方法で作製及び湿潤試験したSn系めっき鋼板の試験材の表面に、市販の缶用エポキシ樹脂塗料を乾燥質量で7g/m塗布した後、200℃で10分焼き付け、24時間室温に置いた。その後、得られたSn系めっき鋼板を所定のサイズに切断し、市販のトマトジュースに60℃で7日間浸漬した後の錆の発生有無を、目視にて評価した。錆が全く認められなければ「A」とし、試験面全体の10%以下の面積率で錆が認められれば「B」とし、試験面全体の10%超えの面積率で錆が認められれば「NG」とした。評価「A」及び「B」を合格とした。
<3.実施例1>
 上記<1.試験材の作製方法>に記載の方法に基づき、ジルコニウム酸化物とマンガン酸化物の付着量を変化させつつ、Sn系めっき鋼板を製造した。
 Snめっきは、公知のフェロスタン浴から電解法によって作製した。Sn付着量が0.05g/m以上20g/mの範囲となるように、電解時の通電量を変化させた。また、Snめっき後の加熱溶融処理を実施した試験片と実施しない試験片の両方を作製した。
 Snめっき表面にジルコニウム酸化物とマンガン酸化物とを含む皮膜の形成に当たっては、ジルコニウムイオン濃度が50ppm以上5000ppm以下、マンガンイオン濃度が3.5ppm以上12500ppm以下である水溶液中でSn系めっき鋼板を陰極電解し、種々のジルコニウム酸化物とマンガン酸化物とを含む皮膜層をSn系めっき鋼板上に形成した。皮膜を形成する前記処理液のpHは3.8、液温は35℃とし、通電量を適宜変更した。また、陰極電解処理後の浸漬水洗時間を、1~10秒の間で変化させた。
 以上により、ジルコニウム酸化物とマンガン酸化物の付着量を変化させたA1~A25及びa1~a7に係るSn系めっき鋼板の試験片を得た。なお、いずれの試験片においても、皮膜中に含まれるジルコニウム及びマンガンは、それぞれ本発明で規定するジルコニウム酸化物、マンガン酸化物であることを、XPSで確認した。
 表1に、上記試験片について行った各種性能の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 
 上記表1から明らかなように、本発明に係るA1~A25のSn系めっき鋼板は、いずれの性能も良好である。特に、Snめっき付着量、Zr酸化物量、マンガン酸化物量が好ましい範囲である場合は、一層性能が優れる。一方、比較例であるa1~a7は、耐黄変性、塗膜密着性、耐硫化黒変性、塗装後耐食性のいずれかが劣ることがわかる。
<4.実施例2>
 次に、上記<1.試験材の作製方法>に記載の方法に基づき、ジルコニウム酸化物とマンガン酸化物の皮膜層中での分布を変化させつつ、Sn系めっき鋼板を製造した。
 Snめっきは公知のフェロスタン浴から電解法によって、Sn付着量が2.8g/mとなるように作製した。
 その後、マンガンイオンを含まずジルコニウムイオンを含む水溶液中でSn系めっき鋼板を陰極電解(第1の処理)した後、以下の表2に示した水洗時間で水洗し、更にジルコニウムイオンを含まずマンガンイオンを含む水溶液中で陰極電解(第2の処理)し、試験片B1~B6を作製した。また、実施例1と同様に、ジルコニウムイオン及びマンガンイオンを含む水溶液中で陰極電解し、以下の表2に示した水洗時間で水洗して、試験片B7を作製した。
 以上により、ジルコニウム酸化物とマンガン酸化物の皮膜層中での分布を変化させたB1~B7に係るSn系めっき鋼板の試験片を得た。
 作製した試験片における、ジルコニウム酸化物とマンガン酸化物の皮膜層中での分布を、XPS(ULVAC-PHI製PHI Quantera SXM)により測定した。具体的には、測定対象となるSn系めっき鋼板の試験片を準備する。この試験片の皮膜層の表面から、XPS(ULVAC-PHI製PHI Quantera SXM)による厚み方向(深さ方向)の分析を実施し、錫酸化物として存在するSn、金属Snとして存在するSn、ジルコニウム酸化物として存在するZr、金属Zrとして存在するZr、マンガン酸化物として存在するMn、金属Mnとして存在するMn、の各元素濃度の合計が100%となるように、各酸化物及び金属の元素マンガン酸化物の元素濃度を求めた。
 上記のXPS測定において、マンガン酸化物についての検出強度が最大となるピーク位置が、ジルコニウム酸化物についての検出強度が最大となるピーク位置よりも4nm以上皮膜層の表面側に存在する場合を「A」とし、2nm以上4nm未満皮膜層の表面側に存在する場合を「B」とし、そうでない場合を「C」とした。
 更に、最表層における前記マンガン酸化物に対する前記ジルコニウム酸化物の存在比率が、質量基準で0~0.01である場合を「A」とし、そうでない場合を「B」とした。
 また、測定条件は、X線源mono-AlKα線(hν=1466.6eV、100.8W)、X線径100μmφ、検出深さ数nm(取出し角45°)、分析範囲1400×100μm、中和銃1.0V,20μA、スパッタ条件Ar+、加速電圧1kV、スパッタ速度1.5nm/min(SiO換算値)とした。
 表2に、上記試験片について行った各種性能の評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
 
 上記表2から明らかなように、2回の陰極電解処理により皮膜層を形成した場合(B1~B6)は、1回の陰極電解処理により皮膜層を形成した場合(B7)に比べ、耐黄変性、塗膜密着性、耐硫化黒変性、塗装後耐食性が良好であることがわかる。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 以上のように、本発明に係るSn系めっき鋼板は、従来のクロメート処理を必要とせずに、耐黄変性、塗膜密着性及び耐硫化黒変性に優れることから、環境にやさしい缶用材料として、食缶、飲料缶などに広く用いることができ、産業上の利用価値が極めて高いものである。
  1  Sn系めっき鋼板
 10  鋼板
 20  Sn系めっき層
 30  皮膜層
 

Claims (7)

  1.  鋼板と、
     前記鋼板の少なくとも一方の面上に位置するSn系めっき層と、
     前記Sn系めっき層の上に位置する皮膜層と、
    を有し、
     前記Sn系めっき層は、Snを、金属Sn換算にて、片面当たり0.10g/m以上15.00g/m以下含有し、
     前記皮膜層は、ジルコニウム酸化物及びマンガン酸化物を含有し、
     前記皮膜層中における前記ジルコニウム酸化物の含有量は、金属Zr換算にて、片面当たり0.20mg/m以上50.00mg/m以下であり、
     前記皮膜層中における前記マンガン酸化物の金属Mn換算の含有量は、前記ジルコニウム酸化物の金属Zr換算の含有量に対し、質量基準で、0.01倍以上0.50倍以下であり、
     X線光電子分光法による深さ方向元素分析において、前記マンガン酸化物として存在するMnの元素濃度が最大である深さ位置Aが、前記ジルコニウム酸化物として存在するZrの元素濃度が最大である深さ位置Bよりも、前記皮膜層の表面側に位置し、かつ、前記深さ位置Aと前記深さ位置Bとの間の深さ方向の距離が、2nm以上である、Sn系めっき鋼板。
  2.  前記皮膜層の表面において、前記X線光電子分光法による深さ方向元素分析における前記ジルコニウム酸化物の質量が、前記X線光電子分光法による深さ方向元素分析における前記マンガン酸化物の質量の0.01倍以下である、請求項1に記載のSn系めっき鋼板。
  3.  前記深さ位置Aと前記深さ位置Bとの間の深さ方向の距離が、4nm以上である、請求項1又は2に記載のSn系めっき鋼板。
  4.  前記皮膜層中における前記ジルコニウム酸化物の含有量は、金属Zr換算にて、片面当たり1.00mg/m以上30.00mg/m以下である、請求項1~3の何れか1項に記載のSn系めっき鋼板。
  5.  前記皮膜層中における前記ジルコニウム酸化物の含有量は、金属Zr換算にて、片面当たり2.00mg/m以上10.00mg/m以下である、請求項1~4の何れか1項に記載のSn系めっき鋼板。
  6.  前記皮膜層中における前記マンガン酸化物の金属Mn換算の含有量は、前記ジルコニウム酸化物の金属Zr換算の含有量に対し、質量基準で、0.05倍以上0.40倍以下である、請求項1~5の何れか1項に記載のSn系めっき鋼板。
  7.  前記皮膜層中における前記マンガン酸化物の金属Mn換算の含有量は、前記ジルコニウム酸化物の金属Zr換算の含有量に対し、質量基準で、0.10倍以上0.20倍以下である、請求項1~6の何れか1項に記載のSn系めっき鋼板。
     
PCT/JP2019/049820 2019-12-19 2019-12-19 Sn系めっき鋼板 WO2021124510A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980103115.4A CN114829675B (zh) 2019-12-19 2019-12-19 Sn系镀覆钢板
KR1020227020657A KR102599384B1 (ko) 2019-12-19 2019-12-19 Sn계 도금 강판
JP2021565257A JP7239020B2 (ja) 2019-12-19 2019-12-19 Sn系めっき鋼板
US17/772,079 US11859289B2 (en) 2019-12-19 2019-12-19 Sn-based plated steel sheet
EP19956940.1A EP4023789A4 (en) 2019-12-19 2019-12-19 SN-PLATED STEEL SHEET
PCT/JP2019/049820 WO2021124510A1 (ja) 2019-12-19 2019-12-19 Sn系めっき鋼板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/049820 WO2021124510A1 (ja) 2019-12-19 2019-12-19 Sn系めっき鋼板

Publications (1)

Publication Number Publication Date
WO2021124510A1 true WO2021124510A1 (ja) 2021-06-24

Family

ID=76478614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049820 WO2021124510A1 (ja) 2019-12-19 2019-12-19 Sn系めっき鋼板

Country Status (6)

Country Link
US (1) US11859289B2 (ja)
EP (1) EP4023789A4 (ja)
JP (1) JP7239020B2 (ja)
KR (1) KR102599384B1 (ja)
CN (1) CN114829675B (ja)
WO (1) WO2021124510A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290292A (ja) 1987-05-20 1988-11-28 Nippon Steel Corp 耐錆性、溶接性に優れた薄Snメツキ鋼板の製造方法
JP2004060052A (ja) 2002-06-05 2004-02-26 Jfe Steel Kk Si含有化成皮膜を有する錫系めっき鋼板の製造方法
JP2007284789A (ja) 2006-03-24 2007-11-01 Nippon Steel Corp 製缶加工性に優れた容器用鋼板
JP2009249691A (ja) 2008-04-07 2009-10-29 Nippon Steel Corp 溶接性、外観、製缶加工密着性に優れた容器用鋼板
JP2010013728A (ja) 2008-06-05 2010-01-21 Nippon Steel Corp 有機皮膜性能に優れた容器用鋼板およびその製造方法
JP2011174172A (ja) 2010-01-28 2011-09-08 Jfe Steel Corp 錫めっき鋼板およびその製造方法
WO2015001598A1 (ja) 2013-07-01 2015-01-08 Jfeスチール株式会社 容器用鋼板
JP2015180782A (ja) * 2010-03-25 2015-10-15 Jfeスチール株式会社 表面処理鋼板、その製造方法およびそれを用いた樹脂被覆鋼板
JP2018012857A (ja) * 2016-07-21 2018-01-25 日本パーカライジング株式会社 電解処理用金属表面処理剤、電解処理用金属表面処理剤の製造方法、及び、金属材料の表面処理方法
WO2019168179A1 (ja) * 2018-03-01 2019-09-06 日本製鉄株式会社 Snめっき鋼板及びSnめっき鋼板の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458031B1 (en) * 2009-07-02 2019-08-07 Henkel AG & Co. KGaA Chromium- and fluorine-free chemical conversion treatment solution for metal surfaces, metal surface treatment method, and metal surface coating method
JP5786296B2 (ja) * 2010-03-25 2015-09-30 Jfeスチール株式会社 表面処理鋼板、その製造方法およびそれを用いた樹脂被覆鋼板
CN104357825B (zh) * 2014-11-14 2017-01-18 深圳市祥盛兴科技有限公司 一种镀锡钢板表面处理液及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290292A (ja) 1987-05-20 1988-11-28 Nippon Steel Corp 耐錆性、溶接性に優れた薄Snメツキ鋼板の製造方法
JP2004060052A (ja) 2002-06-05 2004-02-26 Jfe Steel Kk Si含有化成皮膜を有する錫系めっき鋼板の製造方法
JP2007284789A (ja) 2006-03-24 2007-11-01 Nippon Steel Corp 製缶加工性に優れた容器用鋼板
JP2009249691A (ja) 2008-04-07 2009-10-29 Nippon Steel Corp 溶接性、外観、製缶加工密着性に優れた容器用鋼板
JP2010013728A (ja) 2008-06-05 2010-01-21 Nippon Steel Corp 有機皮膜性能に優れた容器用鋼板およびその製造方法
JP2011174172A (ja) 2010-01-28 2011-09-08 Jfe Steel Corp 錫めっき鋼板およびその製造方法
JP2015180782A (ja) * 2010-03-25 2015-10-15 Jfeスチール株式会社 表面処理鋼板、その製造方法およびそれを用いた樹脂被覆鋼板
WO2015001598A1 (ja) 2013-07-01 2015-01-08 Jfeスチール株式会社 容器用鋼板
JP2018012857A (ja) * 2016-07-21 2018-01-25 日本パーカライジング株式会社 電解処理用金属表面処理剤、電解処理用金属表面処理剤の製造方法、及び、金属材料の表面処理方法
WO2019168179A1 (ja) * 2018-03-01 2019-09-06 日本製鉄株式会社 Snめっき鋼板及びSnめっき鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Surface Analytical Chemistry Library; X-ray Photoelectron Spectroscopy", July 1998, MARUZEN PUBLISHING CO., LTD., pages: 83

Also Published As

Publication number Publication date
US20220389590A1 (en) 2022-12-08
CN114829675B (zh) 2024-03-08
EP4023789A4 (en) 2022-10-05
KR20220103149A (ko) 2022-07-21
EP4023789A1 (en) 2022-07-06
KR102599384B1 (ko) 2023-11-08
JPWO2021124510A1 (ja) 2021-06-24
CN114829675A (zh) 2022-07-29
US11859289B2 (en) 2024-01-02
JP7239020B2 (ja) 2023-03-14

Similar Documents

Publication Publication Date Title
JP6855833B2 (ja) Snめっき鋼板及びSnめっき鋼板の製造方法
JP6806151B2 (ja) Snめっき鋼板
JP6870731B2 (ja) Snめっき鋼板及びSnめっき鋼板の製造方法
JP6806152B2 (ja) Sn系合金めっき鋼板
JP6642774B1 (ja) Snめっき鋼板及びSnめっき鋼板の製造方法
WO2021124510A1 (ja) Sn系めっき鋼板
JP2018135570A (ja) Sn系合金めっき鋼板及びSn系合金めっき鋼板の製造方法
JP7410386B2 (ja) Sn系めっき鋼板
JP7295486B2 (ja) Sn系めっき鋼板
WO2023243717A1 (ja) 錫めっき鋼板および缶
TW202124788A (zh) Sn系鍍敷鋼板
JP6468059B2 (ja) Snめっき鋼板及びSnめっき鋼板の製造方法
JP6003910B2 (ja) 容器用鋼板およびその製造方法
JP6565308B2 (ja) 容器用鋼板及び容器用鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565257

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019956940

Country of ref document: EP

Effective date: 20220331

ENP Entry into the national phase

Ref document number: 20227020657

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE