WO2020149307A1 - 光送信器及び光送信器の制御方法 - Google Patents

光送信器及び光送信器の制御方法 Download PDF

Info

Publication number
WO2020149307A1
WO2020149307A1 PCT/JP2020/001090 JP2020001090W WO2020149307A1 WO 2020149307 A1 WO2020149307 A1 WO 2020149307A1 JP 2020001090 W JP2020001090 W JP 2020001090W WO 2020149307 A1 WO2020149307 A1 WO 2020149307A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
modulator
output
electric signal
paths
Prior art date
Application number
PCT/JP2020/001090
Other languages
English (en)
French (fr)
Inventor
祥吾 山中
那須 悠介
広人 川上
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/423,820 priority Critical patent/US11646800B2/en
Publication of WO2020149307A1 publication Critical patent/WO2020149307A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50575Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulator DC bias
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive

Definitions

  • the present invention relates to an optical transmitter and a method for controlling the optical transmitter, and more particularly, to an optical transmitter and an optical transmitter that attenuate the output light intensity of the transmitted light to a value less than a predetermined value in a transmitted light cutoff state. Control method
  • An optical transmitter based on digital coherent technology outputs a light source that outputs carrier light, a quadrature modulator for modulating the carrier light, a transmission electric circuit that drives the quadrature modulator, and a quadrature modulator with appropriate bias conditions. And a control circuit for
  • the control circuit When modulating the carrier light, it is necessary to give a bias voltage from the control circuit so that the child modulator and the parent modulator that make up the quadrature modulator have optimum bias conditions. It is known that the optimum bias condition of the quadrature modulator changes with time. Further, in the quadrature modulator, the optimum bias condition also changes when the temperature of the quadrature modulator changes due to the ambient temperature change. Therefore, the control circuit performs automatic bias control that detects a change in the optimum bias condition of the quadrature modulator and automatically maintains the optimum bias condition (for example, Patent Document 1 below).
  • the transmission electric circuit drives the quadrature modulator with the transmission electric signal according to the input electric signal from the outside.
  • the control circuit has a phase difference of 180 degrees between the light passing through the upper path of the child modulator forming the quadrature modulator and the light passing through the lower path of the child modulator, and passes through the upper path of the parent modulator forming the quadrature modulator.
  • a bias voltage is applied so that the phase difference between the light and the light passing through the lower path of the master modulator becomes 90 degrees.
  • the optical transmitter is required to have a function of attenuating the output light intensity of the optical transmitter to less than a predetermined value (transmission light blocking) according to a control signal from an external host circuit as a standard function.
  • a predetermined value transmission light blocking
  • the transmission electric circuit stops the transmission electric signal
  • the control circuit causes light and child modulation which pass through the upper path of the child modulator which constitutes the quadrature modulator.
  • the phase difference between the light passing through the lower path of the optical modulator and the light passing through the upper path of the parent modulator forming the quadrature modulator is 180 degrees. This can be realized by applying a bias voltage and canceling the light passing through the upper path of the parent modulator and the light passing through the lower path of the parent modulator.
  • the optical transmitter is required to transit from the transmission light blocking state to the normal operation state in a short time.
  • transmission is performed.
  • the state cannot be transited from the light blocking state to the normal operation state in a short time.
  • the temperature of the quadrature modulator changes in the transmission light cutoff state
  • the optimum bias condition of the quadrature modulator changes significantly.
  • the quadrature modulator does not have the optimum bias condition even when the voltage is applied. Therefore, there is a problem in that it is necessary to find the optimum bias condition that has changed due to the temperature change, and it is not possible to make a state transition from the transmission light blocking state to the normal operation state in a short time.
  • An object of the present invention is to provide an optical transmitter and a control method of the optical transmitter that enable state transition.
  • the first aspect of the present invention is an optical transmitter.
  • An optical transmitter according to an embodiment is a light source that outputs carrier light and a quadrature modulator that optically modulates the carrier light by a transmission electric signal.
  • Parent Mach-Zehnder modulation is performed on each of a first pair of paths that branch the carrier light.
  • each of the parent Mach-Zehnder modulators has a first phase modulator on each of two second pairs of paths branching from one of the first pair of paths.
  • a quadrature modulator that has a child Mach-Zehnder modulator that multiplexes the outputs of the paths and a second phase modulator, and that multiplexes the outputs of the first pair of paths, and the inversion of the output light from the quadrature modulators.
  • a light receiving element to which the output light is input, a transmission electric circuit that applies a transmission electric signal corresponding to an input electric signal from the outside to the quadrature modulator, and a control circuit that applies a bias voltage to the quadrature modulator are provided.
  • the transmission electric circuit adjusts the voltage amplitude of the transmission electric signal to be smaller than the half-wave voltage, or stops the transmission electric signal, and the control circuit causes the first phase modulator to operate.
  • the frequency component (n is an integer greater than or equal to 1) of the disturbance signal output by the light receiving element is detected, and the first phase is set so that the frequency component of n times is minimized. It is characterized in that the bias voltage applied to the modulator is controlled.
  • the second aspect of the present invention is a method for controlling an optical transmitter.
  • a control method is a light source that outputs carrier light and a quadrature modulator that optically modulates the carrier light by a transmission electric signal, and a parent Mach-Zehnder modulator is provided in each of a first pair of paths branching the carrier light.
  • Each of the parent Mach-Zehnder modulators has a first phase modulator on each of two second pairs of paths branching from one of the first pair of paths, and a second pair of two paths.
  • Quadrature modulator having a child Mach-Zehnder modulator that multiplexes the outputs of the first and second phase modulators, and that multiplexes the outputs of the first pair of paths, and an inverted output of the output light from the quadrature modulator
  • An optical device including a light-receiving element to which light is input, a transmission electric circuit that applies a transmission electric signal to the quadrature modulator according to an input electric signal from the outside, and a control circuit that applies a bias voltage to the quadrature modulator.
  • a method of controlling a transmitter wherein, when interrupting a transmission optical signal, a transmission electric circuit adjusts a voltage amplitude of the transmission electric signal to be smaller than a half-wavelength voltage, or stops the transmission electric signal,
  • n is an integer of 1 or more
  • the output light intensity of the transmission light is attenuated to a value less than a predetermined value, and the state transitions from the transmission light cutoff state to the normal operation state in a short time. It is possible to provide an optical transmitter and a method of controlling the optical transmitter that enable the above.
  • FIG. 1 is a basic configuration diagram of an optical transmitter according to an embodiment of the present invention.
  • the optical transmitter 100 includes a light source 102 that outputs carrier light, a transmission electric circuit 101 that converts an input electric signal from the outside into a transmission electric signal, and an optical signal in which two polarizations orthogonal to the transmission electric signal are multiplexed. And a polarization multiplexing quadrature modulator 103 for converting and outputting as a transmission optical signal.
  • the optical transmitter 100 includes a control circuit (not shown) for exchanging control signals with an external host circuit and for monitoring/controlling the operating state of the opto-electrical circuit constituting the optical transmitter 100.
  • FIG. 2 is a detailed configuration diagram showing a first example of the polarization multiplexing quadrature modulator 103 of FIG.
  • the polarization multiplexing quadrature modulator includes an optical branching unit 201 that branches the carrier light from the light source 102 for each polarization, and a first quadrature modulator 210 that modulates the carrier light branched for each polarization.
  • each of the first and second quadrature modulators 210 and 220 is a Mach-Zehnder modulator that receives the carrier light branched by the optical branching unit 201 as an input, and the carrier light is divided into two paths at the branching unit on the input side. It is possible to adopt a configuration in which the carrier light branched into two is coupled and the carrier light guided in each of the two paths at the output side coupling portion is coupled.
  • the branching unit and the coupling unit can be configured by a directional coupler, a multi-mode interference circuit (Multi Mode Interference: MMI), or the like, and generally have a 2-input 2-output configuration.
  • the input side of the quadrature modulator (two inputs of the branch section of the Mach-Zehnder modulator) is ports 1 and 2, and the output side (two outputs of the coupling section of the Mach-Zehnder modulator) is ports 3 and 4.
  • port 1 is an input port of the quadrature modulator and port 3 (bar port) is an output port of the quadrature modulator
  • the port 4 (cross port) has an inverted light (phase of Light that is 180 degrees inverted from the phase of the carrier light output from the port 3) is output.
  • the inverted output light of the output light of the quadrature modulators 210 and 220 can be input to the light receiving elements 214 and 224, respectively.
  • the intensity of the output light from the optical transmitter 100 is reduced. Therefore, in the present embodiment, in order to prevent the intensity of the output light from the optical transmitter 100 from decreasing, the intensity of the inverted output light output from the output side coupling section of the quadrature modulators 210 and 220 is detected.
  • Each of the quadrature modulators 210 and 220 in FIG. 2 further splits the carrier light input for each polarization into two paths and outputs the light according to the phase difference between the light passing through the upper path and the light passing through the lower path.
  • Mach-Zehnder modulators child modulators
  • Mach-Zehnder modulators parent modulators
  • each of the six Mach-Zehnder modulators which are the parent and the child, respectively have a total of eight phase modulators 211a and 211b that change the phase of light according to the transmission electric signal from the transmission electric circuit 101.
  • each parent modulator and child modulator pass through the upper path and the lower path. Generates a phase difference with light. By interfering light at the output of each modulator according to the phase difference, carrier light is modulated by a transmission electric signal and converted into modulated light of each polarization.
  • the control circuit automatically supplies the optimum bias voltage to the child modulators 211 and 212 of the first quadrature modulator 210 and the phase modulators 211c, 211d, 212c, 212d, 213a, and 213b of the parent modulator 213.
  • the bias control method will be described. Although only the automatic bias control method regarding the child modulators 211 and 212 and the parent modulator 213 of the first quadrature modulator 210 is described below, the child modulators 221 and 222 of the second quadrature modulator 220 are described. The same applies to the phase modulators 221c, 221d, 222c, 222d, 223a, and 223b of the parent modulator 223.
  • a control circuit (not shown) superimposes a low-frequency differential disturbance signal on the bias voltage applied to the phase modulators 211c and 211d of the slave modulator 211.
  • the disturbance signal may be given as a single-phase signal to only one of the phase modulators 211c and 211d, or may be given as a push-pull signal to both 211c and 211d.
  • the output light of the child modulator 211 fluctuates according to the disturbance signal, and the control circuit detects the component of the same frequency as the disturbance signal appearing in the light intensity detected by the first light receiving element 214.
  • the control circuit applies the bias voltage to the phase modulators 211c and 211d of the slave modulator 211 while performing feedback control so that the component of the same frequency as the detected disturbance signal is minimized.
  • the component of the same frequency as the disturbance signal becomes the minimum, the phase difference between the light passing through the upper path and the light passing through the lower path provided by the phase modulators 211c and 211d becomes 180 degrees (Null point),
  • the transmission electric circuit drives the phase modulators 211a and 211b around the Null point to generate modulated light.
  • the transmission electric signal is a binary NRZ (Non Return to Zero) signal
  • the output light of the child modulator 211 is BPSK (Binary Phase Shift Keying) modulated light.
  • the bias voltage at which the phase difference between the light passing through the upper path and the light passing through the lower path of the child modulator 211 given by the phase modulators 211c and 211d becomes 180 degrees is the optimum bias of the child modulator in the normal operation state. It is a condition.
  • the control method for giving the optimum bias voltage to the phase modulators 212c and 212d of the child modulator 212 is also the same as above.
  • a control circuit (not shown) superimposes a low-frequency disturbance signal on the bias voltage applied to the phase modulators 211c and 211d of the phase modulator of the slave modulator 211.
  • the disturbance signal may be given as a single-phase signal to only one of the phase modulators 211c and 211d, or may be given as a push-pull signal to both 211c and 211d.
  • the control circuit superimposes the low-frequency disturbance signal on the bias voltage applied to the phase modulators 212c and 212d of the child modulator 212.
  • the disturbance signal may be given to only one of the phase modulators 212c and 212d as a single-phase signal, or may be given to both 212c and 212d as a push-pull signal.
  • the relative phase of the two disturbance signals is set to 90 degrees.
  • the output light of the master modulator 213 fluctuates according to the disturbance signal, and the control circuit detects a component twice the frequency of the disturbance signal that appears in the light intensity detected by the light receiving element 214.
  • the control circuit applies the bias voltage to the phase modulators 213a and 213b of the parent modulator while performing feedback control so that the component of twice the frequency of the detected disturbance signal is minimized.
  • the phase difference between the light passing through the upper path of the parent modulator 213 and the light passing through the lower path becomes 90 degrees (Quad point), and the output light of the child modulator 211 becomes The output light of the child modulator 212 is orthogonal.
  • the transmission electric signal is a binary NRZ signal
  • the output lights of the child modulator 211 and the child modulator 212 are both BPSK modulated lights
  • the output light of the parent modulator 213 is QPSK (Quadrature Phase Shift) that they are orthogonal to each other. Keying) modulated light.
  • the bias voltage that causes the phase difference between the light passing through the upper path and the light passing through the lower path of the parent modulator 213, which is given by the phase modulators 213a and 213b, to be 90 degrees is the optimum bias of the parent modulator in the normal operation state. It is a condition.
  • the control of the slave modulator 211, the control of the slave modulator 212, and the control of the master modulator 213 are sequentially performed along the time axis.
  • the transmission electric circuit 101 sets its output amplitude to a sufficiently low value.
  • the control circuit (not shown) superimposes the low-frequency differential disturbance signal on the bias voltage applied to the phase modulators 211c and 211d of the slave modulator 211 (similar to the normal operation state).
  • the disturbance signal may be given as a single-phase signal to only one of the phase modulators 211c and 211d, or may be given as a push-pull signal to both 211c and 211d.
  • the output light of the child modulator 211 fluctuates according to the disturbance signal, and the control circuit detects the component of the same frequency as the disturbance signal appearing in the light intensity detected by the first light receiving element 214.
  • the control circuit applies the bias voltage to the phase modulators 211c and 211d of the slave modulator 211 while performing feedback control so that the component of the same frequency as the detected disturbance signal is minimized.
  • the component of the same frequency as the disturbance signal becomes the minimum
  • the phase difference between the light passing through the upper path and the light passing through the lower path of the child modulator 211 given by the phase modulators 211c and 211d becomes 180 degrees
  • the transmission electric circuit 101 Drives weakly modulated light by driving the phase modulators 211a and 211b around the Null point with a low-amplitude transmission electric signal.
  • FIG. 3 is a diagram showing the drive amplitude (normalized by a half-wavelength voltage) dependency of the modulation loss of the slave modulator in the BPSK modulation.
  • the modulation loss in the child modulator sharply increases in the region where the drive amplitude is low, and the child modulator can function as an optical attenuator.
  • the transmission electric circuit 101 By detecting weak modulated light by the light receiving element 214 and performing feedback control (that is, when the transmission light signal is cut off, the transmission electric circuit 101 adjusts the voltage amplitude of the transmission electric signal to be smaller than the half-wave voltage. Therefore, even when the temperature changes in the transmission light cutoff state, the bias condition of the child modulator 211 can be kept at the Null point. The same applies to the child modulator 212.
  • the control circuit superimposes a low-frequency disturbance signal on the bias voltage applied to the phase modulators 211c and 211d of the phase modulator of the slave modulator 211 (as in the normal operation state).
  • the disturbance signal may be given as a single-phase signal to only one of the phase modulators 211c and 211d, or may be given as a push-pull signal to both 211c and 211d.
  • the control circuit superimposes the low-frequency disturbance signal on the bias voltage applied to the phase modulators 212c and 212d of the child modulator 212.
  • the disturbance signal may be given to only one of the phase modulators 212c and 212d as a single-phase signal, or may be given to both 212c and 212d as a push-pull signal.
  • the relative phase of the two disturbance signals is set to 90 degrees.
  • the output light of the master modulator 213 fluctuates according to the disturbance signal, and the control circuit detects a component twice the frequency of the disturbance signal appearing in the light intensity detected by the light receiving element 214.
  • the control circuit applies the bias voltage to the phase modulators 213a and 213b of the parent modulator 213 while performing feedback control so that the component of twice the frequency of the detected disturbance signal is minimized.
  • the phase difference between the light passing through the upper path of the parent modulator 213 and the light passing through the lower path becomes 90 degrees, and the weak output light of the child modulator 211 and the child modulation. It is orthogonal to the weak output light of the device 212. Then, the weak output light of the master modulator 213 is detected by the light receiving element 214 and feedback control is performed, so that the bias condition of the master modulator 213 can be maintained at the Quad point even when the temperature changes in the transmission light cutoff state.
  • control of the child modulator 211, control of the child modulator 212, and control of the parent modulator 213 are sequentially performed along the time axis.
  • the slave modulator function as an optical attenuator in the transmission light cutoff state
  • the output intensity of the optical transmitter can be made less than a predetermined value and the transmission light cutoff state can be realized.
  • the transmission light cutoff state is changed to the normal operation state, only the low output amplitude setting of the transmission electric circuit 101 is returned to the high amplitude setting of the normal operation state, so that the transmission light cutoff state is changed to the normal operation state in a short time. It is possible to make a state transition to a state.
  • FIG. 4 is a detailed configuration diagram showing a second example of the polarization multiplexing quadrature modulator 103 of FIG.
  • the polarization multiplexing quadrature modulator includes an optical branching unit 201 that branches the carrier light from the light source 102 for each polarization, and a first quadrature modulator 210 that modulates the carrier light branched for each polarization.
  • optical attenuators 215 and 225 for adjusting the respective intensities of output light from the second quadrature modulator 220, and light reception for detecting the light intensity of the inverted output light of the output light of the optical attenuators 215 and 225, respectively.
  • the elements 216 and 226, and the optical multiplexing unit 202 that orthogonally multiplexes the output light from the first quadrature modulator 210 and the second quadrature modulator 220 and outputs the multiplexed light as a polarization multiplexed transmission optical signal.
  • the addition of the optical attenuators 215 and 225 and the light receiving elements 216 and 226 differs from the configuration of the first example of the polarization multiplexing quadrature modulator 103 described with reference to FIG.
  • the optical attenuators 215 and 216 have the same Mach-Zehnder modulator configuration as the child modulators 211, 212, 221, and 222, and the control circuit (not shown). (Shown) configures it to act as an optical attenuator.
  • a control circuit (not shown) gives an optimum bias voltage to the quadrature modulator 210 by the same control method as in the first example. Further, the control circuit detects the light intensity of the inverted output of the optical attenuator 215 by the light receiving element 216. When the light intensity of the inverted output of the optical attenuator 215 becomes the minimum, the light intensity of the output of the optical attenuator 215 becomes the maximum, so the control circuit outputs the voltage at which the light intensity detected by the light receiving element 216 becomes the minimum. It is applied to the attenuator 215.
  • the transmission electric circuit 101 sets its output amplitude to a sufficiently low value.
  • the control circuit (not shown) keeps the bias conditions of the child modulators 211, 212, 221, and 222 at the Null point and sets the bias conditions of the parent modulators 213 and 223 to Quad by the same control method as in the first example. Keep to the point. Further, the control circuit detects the light intensity of the inverted output of the optical attenuator 215 by the light receiving element 216.
  • the control circuit When the light intensity of the inverted output of the optical attenuator 215 becomes the maximum, the light intensity of the output of the optical attenuator 215 becomes the minimum, so the control circuit outputs the voltage at which the light intensity detected by the light receiving element 216 becomes the maximum. It is applied to the attenuator 215.
  • the control circuit receives light.
  • the element 214 may detect the disturbance signal and its twice the frequency component instead of detecting the disturbance signal and its twice the frequency component.
  • the child modulator functions as an optical attenuator, and the optical attenuator 215 further attenuates the weak output light from the parent modulator 210, whereby the output intensity of the optical transmitter 100 is increased.
  • the transmission light blocking state can be realized by setting the value to be less than a predetermined value. Further, when the state transitions from the transmission light blocking state to the normal operation state, the low output amplitude setting of the transmission electric circuit 101 is returned to the high amplitude setting of the normal operation state, and the light intensity detected by the light receiving element 216 is controlled by the control circuit. Since only the minimum voltage is applied to the optical attenuator 215, the transmission light blocking state can be changed to the normal operation state in a short time.
  • FIG. 5 is a detailed configuration diagram showing a third example of the polarization multiplexing quadrature modulator 103 of FIG.
  • the polarization multiplexing quadrature modulator includes an optical branching unit 201 that branches the carrier light from the light source 102 for each polarization, and a first quadrature modulator 210 that modulates the carrier light branched for each polarization.
  • optical attenuators 215 and 225 for adjusting the respective intensities of output light from the second quadrature modulator 220, and light reception for detecting the light intensity of the inverted output light of the output light of the optical attenuators 215 and 225, respectively.
  • the elements 216 and 226, the light receiving elements 217 and 227 for branching the output light of the optical attenuators 215 and 225 by several percent, and detecting the light intensity of the branched output light, the first quadrature modulator, and the first quadrature modulator, respectively.
  • An optical multiplexer 202 that orthogonally multiplexes the output light from the two quadrature modulators and outputs the multiplexed light as a polarization multiplexed transmission optical signal.
  • the addition of the light receiving elements 217 and 227 differs from the configuration of the second example of the polarization multiplexing quadrature modulator 103 described with reference to FIG.
  • a normal operation state and a transmission light blocking state of the polarization multiplexing quadrature modulator 103 of the third example will be described. Note that, although the path of the first quadrature modulator 210 is described below, the same applies to the path of the second quadrature modulator 220.
  • a control circuit (not shown) gives an optimum bias voltage to the quadrature modulator 210 by the same control method as in the first example. Further, in order to apply the optimum bias voltage to the quadrature modulator 210, the control circuit detects the disturbance signal and its twice the frequency component by the light receiving element 214 instead of detecting the disturbance signal and its twice the frequency component by the light receiving element 217. A frequency component may be detected. Further, the control circuit detects the light intensity obtained by branching the output light of the optical attenuator 215 by several percent with the light receiving element 217, and applies a voltage to the optical attenuator 215 so that the output light intensity of the optical transmitter 100 has a desired value. ..
  • the transmission electric circuit 101 sets its output amplitude to a sufficiently low value.
  • the control circuit maintains the bias condition of the child modulators 211, 212, 221, 222 at the Null point and the bias condition of the parent modulators 213, 223 at the Quad point by the same control method as in the first example.
  • the control circuit detects the light intensity of the inverted output of the optical attenuator 215 by the light receiving element 216. When the light intensity of the inverted output of the optical attenuator 215 becomes the maximum, the light intensity of the output of the optical attenuator 215 becomes the minimum, so the control circuit outputs the voltage at which the light intensity detected by the light receiving element 216 becomes the maximum. It is applied to the attenuator 215.
  • the control circuit receives light.
  • the element 214 may detect the disturbance signal and its twice the frequency component instead of detecting the disturbance signal and its twice the frequency component. In this case, since the light receiving element 214 is not used in the normal operation state or the optical transmission light blocking state, it may be omitted (it may not be provided).
  • the output intensity of the optical transmitter is reduced by causing the slave modulator to function as an optical attenuator in the transmission light blocking state, and by further attenuating the weak output light from the parent modulator with the optical attenuator. Is less than a predetermined value, and the transmission light blocking state can be realized. Further, when the state transitions from the transmission light blocking state to the normal operation state, the low output amplitude setting of the transmission electric circuit is returned to the high amplitude setting of the normal operation state, and the control circuit sets the light intensity detected by the light receiving element 217 to the desired value. Since only the voltage having the value of is applied to the optical attenuator 215, it is possible to transit from the transmission light blocking state to the normal operation state in a short time.
  • the transmission electric circuit 101 sets its output amplitude to a sufficiently low value.
  • the amplitude may be set to zero and the transmitted electrical signal may be stopped.
  • the actual splitting ratio of the light to the upper path and the lower path of the child modulator is not exactly 50:50.
  • the phase difference is 180 degrees, the light cannot be completely extinguished.
  • the control circuit in order to keep the bias condition of the child modulator at the Null point, the control circuit has the child modulation.
  • a low-frequency disturbance signal was superimposed on the bias voltage applied to the phase modulator of the detector, and the same frequency component as the disturbance signal appearing in the light intensity detected by the light receiving element was detected, but the disturbance signal was not superimposed.
  • a bias voltage may be applied to the phase modulator of the child modulator so that the light intensity detected by the light receiving element is minimized.
  • the output amplitude of the transmission electric circuit is sufficiently low, the light intensity becomes the minimum when the bias condition of the child modulator is the Null point. Therefore, by minimizing the light intensity detected by the light receiving element 214, 216, or 217. , The child modulator bias condition can be kept at the Null point.
  • Optical Transmitter 101 Transmitting Electric Circuit 102
  • Light Source 103
  • Polarization Multiplexing Quadrature Modulator 201
  • Optical Splitting Unit 202
  • Optical Multiplexing Unit 210, 220 Quadrature Modulator 214, 216, 217, 224, 226, 227
  • Photosensitive Element 211, 212, 221, 222 Mach-Zehnder modulator (child modulator) 213,223 Mach-Zehnder modulator (parent modulator) 211a, 211b, 212a, 212b, 221a, 221b, 222a, 222b
  • Phase modulator 211c, 211d, 212c, 212d, 213a, 213b, 221c, 221d, 222c, 222d, 223a, 223b

Abstract

送信光遮断状態において送信光の出力光強度を予め決められた値未満まで減衰させる光送信器を提供する。光源から搬送光を分岐した第1の一対の経路のそれぞれに親マッハツェンダ変調器と、親マッハツェンダ変調器の各々が有する第1の位相変調部を含む子マッハツェンダ変調器と、第2の位相変調部とを有する直交変調器と、直交変調器からの出力光の反転出力光が入力される受光素子と、を備えた光送信器であって、送信光信号を遮断する際は、直交変調器に印加する送信電気信号の電圧振幅を半波長電圧より小さくなるよう調整し、第1の位相変調部に多くとも2つの擾乱信号を印加し、受光素子が出力する擾乱信号のn倍の周波数成分を検出し、n倍の周波数成分が最小となるように第1の位相変調部に印加するバイアス電圧を制御する。

Description

光送信器及び光送信器の制御方法
 本発明は、光送信器及び光送信器の制御方法に関し、より詳細には、送信光遮断状態において送信光の出力光強度を予め決められた値未満まで減衰させる光送信器及び光送信器の制御方法に関する。
 デジタル信号処理とコヒーレント検波を組み合わせたデジタルコヒーレント技術に基づいた光送受信器の開発が進んでいる。デジタルコヒーレント技術に基づいた光送信器は搬送光を出力する光源と、搬送光を変調するための直交変調器、直交変調器を駆動する送信電気回路、直交変調器を適切なバイアス状態で動作させるための制御回路等から構成される。
 搬送光を変調する際には、直交変調器を構成する子変調器と親変調器が最適なバイアス条件となるようなバイアス電圧を制御回路から与えることが必要である。直交変調器は最適なバイアス条件が時間とともに変化することが知られている。また、直交変調器は周囲の温度変化によって直交変調器の温度が変化することでも最適なバイアス条件が変化する。そのため、制御回路によって、直交変調器の最適バイアス条件の変化を検知して自動的にバイアス条件を最適に保つ自動バイアス制御が行われる(例えば、以下特許文献1)。
 通常運用状態(搬送光を変調する状態)の際、送信電気回路は外部からの入力電気信号に応じた送信電気信号で直交変調器を駆動する。制御回路は直交変調器を構成する子変調器の上経路を通る光と子変調器の下経路を通る光との位相差が180度、直交変調器を構成する親変調器の上経路を通る光と親変調器の下経路を通る光との位相差が90度となるようなバイアス電圧を与える。
 光送信器は標準機能として、外部のホスト回路からの制御信号に応じて、光送信器の出力光強度を予め決められた値未満まで減衰させる(送信光遮断)機能を有することが求められる。この送信光遮断状態は、例えば下記特許文献2が示すように、送信電気回路は送信電気信号を停止するとともに、制御回路は直交変調器を構成する子変調器の上経路を通る光と子変調器の下経路を通る光との位相差を零度、直交変調器を構成する親変調器の上経路を通る光と親変調器の下経路を通る光との位相差が180度となるようなバイアス電圧を与え、親変調器の上経路を通る光と親変調器の下経路を通る光とが打ち消し合うことで実現することができる。
特許第5261779号公報 特開2016-149685号公報
 光送信器は送信光遮断状態から通常運用状態へ短時間で状態遷移することが求められる。しかしながら、特許文献2のように送信光遮断状態に子変調器と親変調器に印加されるバイアス電圧と、通常運用状態に子変調器と親変調に印加されるバイアス電圧とが異なる場合、送信光遮断状態から通常運用状態へ短時間で状態遷移することができないという課題が生じる。特に、送信光遮断状態において直交変調器の温度が変化した場合、直交変調器の最適バイアス条件が大きく変化するため、前回の通常運用状態に直交変調器に与えていたバイアス電圧と同じ値の電圧を印加しても直交変調器が最適バイアス条件とはならない。そのため、温度変化によって変化した最適バイアス条件を求める必要があり、送信光遮断状態から通常運用状態へ短時間で状態遷移することができないという問題があった。
 本発明は上記の課題を鑑みてなされたものであり、送信光遮断状態において送信光の出力光強度を予め決められた値未満まで減衰させるとともに、送信光遮断状態から通常運用状態へ短時間で状態遷移することを可能とする光送信器および光送信器の制御方法を提供することを目的としている。
 このような目的を達成するために、本発明の第1の態様は、光送信器である。一実施形態の光送信器は、搬送光を出力する光源と、搬送光を送信電気信号により光変調する直交変調器であり、搬送光を分岐した第1の一対の経路のそれぞれに親マッハツェンダ変調器を備え、親マッハツェンダ変調器の各々が、第1の一対の経路の1つを分岐した第2の二対の経路のそれぞれに、第1の位相変調部を有し第2の二対の経路の出力を合波する子マッハツェンダ変調器、および第2の位相変調部を有し、第1の一対の経路の出力を合波する、直交変調器と、直交変調器からの出力光の反転出力光が入力される受光素子と、直交変調器に外部からの入力電気信号に応じた送信電気信号を印加する送信電気回路と、直交変調器にバイアス電圧を印加する制御回路と、を備える。送信光信号を遮断する際は、送信電気回路は、送信電気信号の電圧振幅を半波長電圧より小さくなるよう調整し、または送信電気信号を停止し、制御回路は、第1の位相変調部に多くとも2つの擾乱信号を印加し、受光素子が出力する擾乱信号のn倍の周波数(nは1以上の整数)成分を検出し、n倍の周波数成分が最小となるように第1の位相変調部に印加するバイアス電圧を制御することを特徴とする。
 本発明の第2の態様は、光送信器の制御方法である。一実施形態の制御方法は、搬送光を出力する光源と、搬送光を送信電気信号により光変調する直交変調器であり、搬送光を分岐した第1の一対の経路のそれぞれに親マッハツェンダ変調器を備え、親マッハツェンダ変調器の各々が、第1の一対の経路の1つを分岐した第2の二対の経路のそれぞれに、第1の位相変調部を有し第2の二対の経路の出力を合波する子マッハツェンダ変調器、および第2の位相変調部を有し、第1の一対の経路の出力を合波する、直交変調器と、直交変調器からの出力光の反転出力光が入力される受光素子と、直交変調器に外部からの入力電気信号に応じた送信電気信号を印加する送信電気回路と、直交変調器にバイアス電圧を印加する制御回路と、を備えた光送信器の制御方法であって、送信光信号を遮断する際に、送信電気回路が、送信電気信号の電圧振幅を半波長電圧より小さくなるよう調整する、または送信電気信号を停止するステップと、制御回路が、第1の位相変調部に多くとも2つの擾乱信号を印加するステップと、制御回路が、受光素子が出力する擾乱信号のn倍の周波数(nは1以上の整数)成分を検出するステップと、制御回路が、n倍の周波数成分が最小となるように第1の位相変調部に印加するバイアス電圧を制御するステップとを含むことを特徴とする。
 以上説明したように、本発明によれば、送信光遮断状態において送信光の出力光強度を予め決められた値未満まで減衰させるとともに、送信光遮断状態から通常運用状態へ短時間で状態遷移することを可能とする光送信器および光送信器の制御方法を提供することができる。
本発明の実施の形態に係る光送信器の基本構成図である。 本発明の実施の形態に係る光送信器の偏波多重直交変調器の第1の構成例を示す図である。 BPSK変調における子変調器の変調損失の駆動振幅依存性を示す図である。 本発明の実施の形態に係る光送信器の偏波多重直交変調器の第2の構成例を示す図である。 本発明の実施の形態に係る光送信器の偏波多重直交変調器の第3の構成例を示す図である。
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。同一または類似の符号は、同一または類似の要素を示し、繰り返しの説明を省略する。
  図1は、本発明の実施の形態に係る光送信器の基本構成図である。光送信器100は、搬送光を出力する光源102と、外部から入力電気信号を送信電気信号へ変換する送信電気回路101と、送信電気信号を直交した二つの偏波を多重化した光信号へ変換し、送信光信号として出力する偏波多重直交変調器103とを備える。また、光送信器100は、外部ホスト回路との制御信号のやり取りや、光送信器100を構成する光電気回路の動作状態を監視・制御する制御回路(不図示)を含んでいる。
 図2は、図1の偏波多重直交変調器103の第一の例を示す詳細構成図である。偏波多重直交変調器は、光源102からの搬送光を各偏波用に分岐する光分岐部201と、各偏波用に分岐された搬送光をそれぞれ変調する第1の直交変調器210と第2の直交変調器220と、第1および第2の直交変調器210、220の出力光の反転出力光の光強度をそれぞれ検出するための受光素子214、224と、第1の直交変調器210と第2の直交変調器220からの出力光を直交合波し、偏波多重の送信光信号として出力する光合波部202とを備える。例えば、第1および第2の直交変調器210、220の各々は、光分岐部201により分岐された搬送光を入力とするマッハツェンダ変調器であり、入力側の分岐部で搬送光を2つの経路に分岐し、出力側の結合部で2つの経路をそれぞれ導波した搬送光を結合する構成とすることできる。分岐部および結合部は、方向性結合器や多モード干渉回路(Multi Mode Interference:MMI)等で構成することができ、一般的には、2入力2出力の構成である。直交変調器の入力側(マッハツェンダ変調器の分岐部の2入力)をポート1および2とし、出力側(マッハツェンダ変調器の結合部の2出力)をポート3および4とする。ポート1を直交変調器の入力ポート、ポート3(バーポート)を直交変調器の出力ポートとすると、ポート4(クロスポート)には、ポート3から出力される搬送光の反転光(位相が、ポート3から出力される搬送光の位相から180度反転している光)が出力される。このようにして、受光素子214、224には、直交変調器210、220の出力光の反転出力光をそれぞれ入力することができる。偏波多重直交変調器103の出力光の強度を検出するために、出力光の一部を分岐して検出する場合、光送信器100からの出力光の強度を低下する。そこで、本実施形態では光送信器100からの出力光の強度が下がるのを防ぐために、直交変調器210,220の出力側の結合部から出力される反転出力光の強度を検出している。
 図2の直交変調器210、220はそれぞれ、各偏波用に入力される搬送光をさらに二つの経路に分岐し、上経路を通る光と下経路を通る光との位相差に応じて光を干渉させるマッハツェンダ変調器(子変調器)211,212,221,222と、子変調器がそれぞれ上経路と下経路に備わったマッハツェンダ変調器(親変調器)213,223とが入れ子となって構成されている。親と子で計6個の各マッハツェンダ変調器の上経路と下経路は、それぞれ送信電気回路101からの送信電気信号に応じて光の位相を変化させる計8個の位相変調部211a、211b、212a、212b、221a、221b、222a、222bと制御回路(不図示)からのバイアス電圧に応じて光の位相を変化させる計12個の位相変調部211c、211d、212c、212d、213a、213b、221c、221d、222c、222d、223a、223bを有している。
 制御回路(不図示)が出力するバイアス電圧と、図1に示す送信電気回路101が出力する送信電気信号の電圧によって、各親変調器および子変調器は上経路を通る光と下経路を通る光との間に位相差を発生させる。その位相差に応じて各変調器の出力部で光を干渉させることで、送信電気信号で搬送光を変調し、各偏波の変調光へと変換する。
 通常運用状態において、制御回路が第1の直交変調器210の子変調器211、212および親変調器213の位相変調部211c、211d、212c、212d、213a、213bに最適なバイアス電圧を与える自動バイアス制御方法について説明する。なお、以下では第1の直交変調器210の子変調器211、212と親変調器213に関する自動バイアス制御方法のみを説明しているが、第2の直交変調器220の子変調器221、222と親変調器223の位相変調部221c、221d、222c、222d、223a、223bについても同様である。
 まず、子変調器211の位相変調部211c、211dに最適なバイアス電圧を与える制御方法について説明する。制御回路(不図示)は子変調器211の位相変調部211c、211dに印加するバイアス電圧に低周波の差動の擾乱信号を重畳する。ここで擾乱信号は単相信号として位相変調部211cと211dのうち片方のみに与えてもよいし、プッシュプル信号として211cと211dの両方に与えてもよい。すると、子変調器211の出力光は擾乱信号に応じて変動し、制御回路は第1の受光素子214で検出される光強度に表れる擾乱信号と同じ周波数の成分を検出する。そして、制御回路は検出した擾乱信号と同じ周波数の成分が最小となるように、子変調器211の位相変調部211cと211dに対してバイアス電圧をフィードバック制御しながら印加する。擾乱信号と同じ周波数の成分が最小となるとき、位相変調部211cと211dで与えられる子変調器211の上経路を通る光と下経路を通る光の位相差は180度となり(Null点)、送信電気回路はNull点を中心に位相変調部211a、211bを駆動することで変調光を生成する。例えば、送信電気信号が2値のNRZ(Non Return to Zero)信号の場合、子変調器211の出力光はBPSK(Binary Phase Shift Keying)変調光となる。このように位相変調部211cと211dで与えられる子変調器211の上経路を通る光と下経路を通る光の位相差が180度となるバイアス電圧が通常運用状態での子変調器の最適バイアス条件である。子変調器212の位相変調部212cと212dに最適なバイアス電圧を与える制御方法も上記と同様である。
 次に、親変調器213の位相変調部213a、213bに最適なバイアス電圧を与える制御方法について説明する。制御回路(不図示)は子変調器211の位相変調部の位相変調部211c、211dに印加するバイアス電圧に低周波の擾乱信号を重畳する。ここで擾乱信号は単相信号として位相変調部211cと211dのうち片方のみに与えてもよいし、プッシュプル信号として211cと211dの両方に与えてもよい。同時に制御回路は子変調器212の位相変調部212c、212dに印加するバイアス電圧に低周波の擾乱信号を重畳する。ここで擾乱信号は単相信号として位相変調部212cと212dのうち片方のみに与えてもよいし、プッシュプル信号として212cと212dの両方に与えてもよい。この時、上記二つの擾乱信号の相対位相が90度となるようにする。すると、親変調器213の出力光は擾乱信号に応じて変動し、制御回路は受光素子214で検出される光強度に表れる擾乱信号の周波数の2倍の成分を検出する。そして、制御回路は検出した擾乱信号の周波数の2倍の成分が最小となるように、親変調器の位相変調部213a、213bに対してバイアス電圧をフィードバック制御しながら印加する。擾乱信号の周波数の2倍の成分が最小となるとき親変調器213の上経路を通る光と下経路を通る光の位相差は90度となり(Quad点)、子変調器211の出力光と子変調器212の出力光とは直交する。例えば、送信電気信号が2値のNRZ信号の場合、子変調器211と子変調器212の出力光はともにBPSK変調光となり、親変調器213の出力光はそれらが直交したQPSK(Quadrature Phase Shift Keying)変調光となる。このように位相変調部213aと213bで与えられる親変調器213の上経路を通る光と下経路を通る光の位相差が90度となるバイアス電圧が通常運用状態での親変調器の最適バイアス条件である。
 通常運用状態において子変調器211の制御、子変調器212の制御、親変調器213の制御は時間軸に沿って順次行われる。
 次に、送信光遮断状態において、光送信器100の出力光強度を予め決められた値未満まで減衰さえるための制御方法について説明する。なお、以下では第1の直交変調器210に関する送信光遮断制御方法のみを説明しているが、第2の直交変調器220についても同様である。
 送信光遮断状態において、送信電気回路101はその出力振幅を十分低い値に設定する。併せて、制御回路(不図示)は(通常運用状態と同様に、)子変調器211の位相変調部211c、211dに印加するバイアス電圧に低周波の差動の擾乱信号を重畳する。ここで擾乱信号は単相信号として位相変調部211cと211dのうち片方のみに与えてもよいし、プッシュプル信号として211cと211dの両方に与えてもよい。すると、子変調器211の出力光は擾乱信号に応じて変動し、制御回路は第1の受光素子214で検出される光強度に表れる擾乱信号と同じ周波数の成分を検出する。そして、制御回路は検出した擾乱信号と同じ周波数の成分が最小となるように、子変調器211の位相変調部211cと211dに対してバイアス電圧をフィードバック制御しながら印加する。擾乱信号と同じ周波数の成分が最小となるとき、位相変調部211cと211dで与えられる子変調器211の上経路を通る光と下経路を通る光の位相差は180度となり、送信電気回路101はNull点を中心に位相変調部211a、211bを低振幅の送信電気信号で駆動することで微弱な変調光を生成する。ここで「微弱な」と表現したのは、送信電気回路101の出力振幅が低いため子変調器211の変調損失が増加し、変調光の光強度が減衰するためである。図3は、BPSK変調における子変調器の変調損失の駆動振幅(半波長電圧で規格化)依存性を示す図である。図3からわかるように、駆動振幅が低い領域では子変調器での変調損失が急激に増加し、子変調器を光減衰器として機能させることができる。微弱な変調光を受光素子214で検出しフィードバック制御することで(すなわち、送信光信号を遮断する際は、送信電気回路101が、送信電気信号の電圧振幅を半波長電圧より小さくなるよう調整することで)、送信光遮断状態において温度が変化した場合でも子変調器211のバイアス条件をNull点に保つことができる。子変調器212についても上記と同様である。
 さらに、制御回路は(通常運用状態と同様に、)子変調器211の位相変調部の位相変調部211c、211dに印加するバイアス電圧に低周波の擾乱信号を重畳する。ここで擾乱信号は単相信号として位相変調部211cと211dのうち片方のみに与えてもよいし、プッシュプル信号として211cと211dの両方に与えてもよい。同時に制御回路は子変調器212の位相変調部212c、212dに印加するバイアス電圧に低周波の擾乱信号を重畳する。ここで擾乱信号は単相信号として位相変調部212cと212dのうち片方のみに与えてもよいし、プッシュプル信号として212cと212dの両方に与えてもよい。この時、上記二つの擾乱信号の相対位相が90度となるようにする。すると、親変調器213の出力光は擾乱信号に応じて変動し、制御回路は受光素子214で検出される光強度に表れる擾乱信号の周波数の2倍の成分を検出する。そして、制御回路は検出した擾乱信号の周波数の2倍の成分が最小となるように、親変調器213の位相変調部213a、213bに対してバイアス電圧をフィードバック制御しながら印加する。擾乱信号の周波数の2倍の成分が最小となるとき親変調器213の上経路を通る光と下経路を通る光の位相差は90度となり、子変調器211の微弱な出力光と子変調器212の微弱な出力光とは直交する。そして親変調器213の微弱な出力光を受光素子214で検出しフィードバック制御することで、送信光遮断状態において温度が変化した場合でも親変調器213のバイアス条件をQuad点に保つことができる。
 送信光遮断状態において子変調器211の制御、子変調器212の制御、親変調器213の制御は時間軸に沿って順次行われる。
 このように、送信光遮断状態において子変調器を光減衰器として機能させることで、光送信器の出力強度を予め決められた値未満とし、送信光遮断状態を実現することができる。また、送信光遮断状態から通常運用状態に状態遷移する際は、送信電気回路101の低い出力振幅設定を通常運用状態の高い振幅設定に戻すだけのため、短時間で送信光遮断状態から通常運用状態に状態遷移することができる。
 図4は、図1の偏波多重直交変調器103の第二の例を示す詳細構成図である。偏波多重直交変調器は、光源102からの搬送光を各偏波用に分岐する光分岐部201と、各偏波用に分岐された搬送光をそれぞれ変調する第1の直交変調器210と第2の直交変調器220と、第1および第2の直交変調器210、220の出力光の反転出力光の光強度をそれぞれ検出するための受光素子214、224と、第1の直交変調器210と第2の直交変調器220からの出力光の強度それぞれを調整する光減衰器215、225と、光減衰器215、225の出力光の反転出力光の光強度をそれぞれ検出するための受光素子216、226と、第1の直交変調器210と第2の直交変調器220からの出力光を直交合波し、偏波多重の送信光信号として出力する光合波部202とを備える。光減衰器215、225と受光素子216、226が追加されたことが、図2を参照して説明した偏波多重直交変調器103の第一の例の構成と異なる。
 偏波多重直交変調器103の第1の例で上述したように、光減衰器215、216は、子変調器211、212、221、222と同様のマッハツェンダ変調器の構成とし、制御回路(不図示)がこれを光減衰器として機能させるように構成する。
 第二の例の偏波多重直交変調器103の通常運用状態と送信光遮断状態について説明する。なお、以下では第1の直交変調器210の経路について説明しているが、第2の直交変調器220の経路についても同様である。
 通常運用状態において、制御回路(不図示)は第一の例と同様の制御方法で直交変調器210に最適なバイアス電圧を与える。さらに制御回路は、受光素子216で光減衰器215の反転出力の光強度を検出する。光減衰器215の反転出力の光強度が最小となる時、光減衰器215の出力の光強度は最大となるため、制御回路は受光素子216で検出される光強度が最小となる電圧を光減衰器215に印加する。
 送信光遮断状態において、送信電気回路101はその出力振幅を十分低い値に設定する。併せて、制御回路(不図示)は第一の例と同様の制御方法で子変調器211、212、221、222のバイアス条件をNull点に保ち、親変調器213、223のバイアス条件をQuad点に保つ。さらに制御回路は、受光素子216で光減衰器215の反転出力の光強度を検出する。光減衰器215の反転出力の光強度が最大となる時、光減衰器215の出力の光強度は最小となるため、制御回路は受光素子216で検出される光強度が最大となる電圧を光減衰器215に印加する。
 また、上記の送信光遮断状態において、子変調器211、212、221、222のバイアス条件をNull点に保ち、親変調器213、223のバイアス条件をQuad点に保つために、制御回路は受光素子214で擾乱信号とその2倍の周波数の成分を検出する代わりに、受光素子216で擾乱信号とその2倍の周波数の成分を検出してもよい。
 このように、送信光遮断状態において子変調器を光減衰器として機能させ、さらに光減衰器215で親変調器210からの微弱な出力光を減衰させることで、光送信器100の出力強度を予め決められた値未満とし、送信光遮断状態を実現することができる。また、送信光遮断状態から通常運用状態に状態遷移する際は、送信電気回路101の低い出力振幅設定を通常運用状態の高い振幅設定に戻し、制御回路は受光素子216で検出される光強度が最小となる電圧を光減衰器215に印加するだけのため、短時間で送信光遮断状態から通常運用状態に状態遷移することができる。
 図5は、図1の偏波多重直交変調器103の第三の例を示す詳細構成図である。偏波多重直交変調器は、光源102からの搬送光を各偏波用に分岐する光分岐部201と、各偏波用に分岐された搬送光をそれぞれ変調する第1の直交変調器210と第2の直交変調器220と、第1および第2の直交変調器210、220の出力光の反転出力光の光強度をそれぞれ検出するための受光素子214、224と、第1の直交変調器210と第2の直交変調器220からの出力光の強度それぞれを調整する光減衰器215、225と、光減衰器215、225の出力光の反転出力光の光強度をそれぞれ検出するための受光素子216、226と、光減衰器215、225の出力光を数パーセント分岐し、分岐された出力光の光強度をそれぞれ検出するための受光素子217、227と、第1の直交変調器と第2の直交変調器からの出力光を直交合波し、偏波多重の送信光信号として出力する光合波部202とを備える。受光素子217、227が追加されたことが図4を参照して説明した偏波多重直交変調器103の第二の例の構成と異なる。
 第三の例の偏波多重直交変調器103の通常運用状態と送信光遮断状態について説明する。なお、以下では第1の直交変調器210の経路について説明しているが、第2の直交変調器220の経路についても同様である。
 通常運用状態において、制御回路(不図示)は第一の例と同様の制御方法で直交変調器210に最適なバイアス電圧を与える。また、直交変調器210に最適なバイアス電圧を与えるために、制御回路は受光素子214で擾乱信号とその2倍の周波数の成分を検出する代わりに、受光素子217で擾乱信号とその2倍の周波数の成分を検出してもよい。さらに制御回路は、受光素子217で光減衰器215の出力光を数パーセント分岐した光強度を検出し、光送信器100の出力光強度が所望の値となる電圧を光減衰器215に印加する。
 送信光遮断状態において、送信電気回路101はその出力振幅を十分低い値に設定する。併せて、制御回路は第一の例と同様の制御方法で子変調器211、212、221、222のバイアス条件をNull点に保ち、親変調器213、223のバイアス条件をQuad点に保つ。さらに制御回路は、受光素子216で光減衰器215の反転出力の光強度を検出する。光減衰器215の反転出力の光強度が最大となる時、光減衰器215の出力の光強度は最小となるため、制御回路は受光素子216で検出される光強度が最大となる電圧を光減衰器215に印加する。
 また、上記の送信光遮断状態において、子変調器211、212、221、222のバイアス条件をNull点に保ち、親変調器213、223のバイアス条件をQuad点に保つために、制御回路は受光素子214で擾乱信号とその2倍の周波数の成分を検出する代わりに、受光素子216で擾乱信号とその2倍の周波数の成分を検出してもよい。この場合、受光素子214は通常運用状態でも光送信光遮断状態でも用いないため削除してもよい(具備しなくてもよい)。
 このように、送信光遮断状態において子変調器を光減衰器として機能させ、さらに光減衰器で親変調器からの微弱な出力光を光減衰器で減衰させることで、光送信器の出力強度を予め決められた値未満とし、送信光遮断状態を実現することができる。また、送信光遮断状態から通常運用状態に状態遷移する際は、送信電気回路の低い出力振幅設定を通常運用状態の高い振幅設定に戻し、制御回路は受光素子217で検出される光強度が所望の値となる電圧を光減衰器215に印加するだけのため、短時間で送信光遮断状態から通常運用状態に状態遷移することができる。
 これまで説明してきた偏波多重直交変調器103の第一、第二、第三の例の送信光遮断状態では送信電気回路101はその出力振幅を十分低い値に設定していたが、その出力振幅を零と設定し、送信電気信号を停止してもよい。送信電気信号を停止した状態でも、実際の子変調器の上経路と下経路への光の分岐比は正確に50:50ではないため、上経路を通る光と下経路を通る光との位相差を180度としても完全に光を消光できない。この完全に消光できない光を受光素子で検出することで、第一の例と同様の制御方法で子変調器バイアス条件をNull点に保ち、親変調器のバイアス条件をQuad点に保つことができる。
 また、これまで説明してきた偏波多重直交変調器103の第一、第二、第三の例の送信光遮断状態では子変調器のバイアス条件をNull点に保つために、制御回路は子変調器の位相変調部に印加するバイアス電圧に低周波の擾乱信号を重畳し、受光素子で検出される光強度に表れる擾乱信号と同じ周波数の成分を検出していたが、擾乱信号を重畳せず受光素子で検出される光強度が最小となるように子変調器の位相変調部にバイアス電圧を印加してもよい。送信電気回路の出力振幅が十分低い場合、子変調器のバイアス条件がNull点のとき光強度は最小となるため、受光素子214、216、または217で検出される光強度を最小とすることで、子変調器バイアス条件をNull点に保つことができる。
 100 光送信器
 101 送信電気回路
 102 光源
 103 偏波多重直交変調器
 201 光分岐部
 202 光合波部
 210、220 直交変調器
 214、216、217、224、226、227 受光素子
 211,212,221,222 マッハツェンダ変調器(子変調器)
 213,223 マッハツェンダ変調器(親変調器)
 211a、211b、212a、212b、221a、221b、222a、222b 位相変調部
 211c、211d、212c、212d、213a、213b、221c、221d、222c、222d、223a、223b 位相変調部
 215、225 光減衰器

Claims (8)

  1.  搬送光を出力する光源と、
     前記搬送光を送信電気信号により光変調する直交変調器であり、前記搬送光を分岐した第1の一対の経路のそれぞれに親マッハツェンダ変調器を備え、前記親マッハツェンダ変調器の各々が、前記第1の一対の経路の1つを分岐した第2の二対の経路のそれぞれに、第1の位相変調部を有し前記第2の二対の経路の出力を合波する子マッハツェンダ変調器、および第2の位相変調部を有し、前記第1の一対の経路の出力を合波する、前記直交変調器と、
     前記直交変調器からの出力光の反転出力光が入力される受光素子と、
     前記直交変調器に外部からの入力電気信号に応じた前記送信電気信号を印加する送信電気回路と、
     前記直交変調器にバイアス電圧を印加する制御回路と、
    を備えた光送信器であって、
     送信光信号を遮断する際は、前記送信電気回路は、前記送信電気信号の電圧振幅を半波長電圧より小さくなるよう調整し、または前記送信電気信号を停止し、
     前記制御回路は、前記第1の位相変調部に多くとも2つの擾乱信号を印加し、前記受光素子が出力する前記擾乱信号のn倍の周波数(nは1以上の整数)成分を検出し、前記n倍の周波数成分が最小となるように前記第1の位相変調部に印加する前記バイアス電圧を制御する、光送信器。
  2.  搬送光を出力する光源と、
     前記搬送光を送信電気信号により光変調する直交変調器であり、前記搬送光を分岐した第1の一対の経路のそれぞれに親マッハツェンダ変調器を備え、前記親マッハツェンダ変調器の各々が、前記第1の一対の経路の1つを分岐した第2の二対の経路のそれぞれに第1の位相変調部を有し、前記第2の二対の経路の出力を合波する子マッハツェンダ変調器、および第2の位相変調部を有し、前記第1の一対の経路の出力を合波する、前記直交変調器と、
     前記直交変調器からの出力光の反転出力光が入力される第1の受光素子と、
     前記直交変調器からの出力光の強度を調整する光減衰器と、
     前記光減衰器からの出力光の反転出力光が入力される第2の受光素子と、
     前記直交変調器に外部からの入力電気信号に応じた前記送信電気信号を印加する送信電気回路と、
     前記直交変調器にバイアス電圧を印加する制御回路と、
    を備えた光送信器であって、
     送信光信号を遮断する際は、前記送信電気回路は、前記送信電気信号の電圧振幅を半波長電圧より小さくなるよう調整し、または前記送信電気信号を停止し、
     前記制御回路は前記第2の受光素子が出力する前記光減衰器の反転出力に応じて変化する電気信号を検出し、前記電気信号が最大となるように前記光減衰器を制御し、
     前記制御回路は前記第1の位相変調部に多くとも2つの擾乱信号を印加し、前記第1の受光素子または前記第2の受光素子が出力する前記擾乱信号のn倍の周波数(nは1以上の整数)成分を検出し、前記n倍の周波数成分が最小となるように前記第1の位相変調部に印加する前記バイアス電圧を制御する、光送信器。
  3.  搬送光を出力する光源と、
     前記搬送光を送信電気信号により光変調する直交変調器であり、前記搬送光を分岐した第1の一対の経路のそれぞれに親マッハツェンダ変調器を備え、前記親マッハツェンダ変調器の各々が、前記第1の一対の経路の1つを分岐した第2の二対の経路のそれぞれに第1の位相変調部を有し、前記第2の二対の経路の出力をそれぞれ合波する子マッハツェンダ変調器、および第2の位相変調部を有し、前記第1の一対の経路の出力を合波する、前記直交変調器と、
     前記直交変調器からの出力光の反転出力光が入力される第1の受光素子と、
     前記直交変調器からの出力光の強度を調整する光減衰器と、
     前記光減衰器からの出力光の反転出力光が入力される第2の受光素子と、
     前記光減衰器からの出力光の一部を入力される第3の受光素子と、
     前記直交変調器に外部からの入力電気信号に応じた前記送信電気信号を印加する送信電気回路と、
     前記直交変調器にバイアス電圧を印加する制御回路と、
    を備えた光送信器であって、
     送信光信号を遮断する際は、前記送信電気回路は前記送信電気信号の電圧振幅を半波長電圧より小さくなるよう調整し、または前記送信電気信号を停止し、
     前記制御回路は前記第2の受光素子が出力する前記光減衰器の反転出力に応じて変化する電気信号を検出し、前記電気信号が最大となるように前記光減衰器を制御し、
     前記制御回路は前記第1の位相変調部に多くとも2つの擾乱信号を印加し、前記第1の受光素子または前記第2の受光素子が出力する前記擾乱信号のn倍の周波数(nは1以上の整数)成分を検出し、前記n倍の周波数成分が最小となるように前記第1の位相変調部に印加する前記バイアス電圧を制御し、
     通常運用状態において、前記制御回路は前記第3の受光素子が出力する前記光減衰器からの出力光の一部の強度に応じて変化する電気信号を検出し、前記光送信器の出力が所望の値となる電圧を前記光減衰器に印加する、光送信器。
  4.  前記擾乱信号が2つであり、かつ前記2つの擾乱信号が前記第1の位相変調部に各々印加される場合は、前記2つの擾乱信号の相対位相差が90度である請求項1ないし3のいずれか一項に記載の光送信器。
  5.  搬送光を出力する光源と、前記搬送光を送信電気信号により光変調する直交変調器であり、前記搬送光を分岐した第1の一対の経路のそれぞれに親マッハツェンダ変調器を備え、前記親マッハツェンダ変調器の各々が、前記第1の一対の経路の1つを分岐した第2の二対の経路のそれぞれに、第1の位相変調部を有し前記第2の二対の経路の出力を合波する子マッハツェンダ変調器、および第2の位相変調部を有し、前記第1の一対の経路の出力を合波する、前記直交変調器と、前記直交変調器からの出力光の反転出力光が入力される受光素子と、前記直交変調器に外部からの入力電気信号に応じた前記送信電気信号を印加する送信電気回路と、前記直交変調器にバイアス電圧を印加する制御回路と、を備えた光送信器の制御方法であって、
     送信光信号を遮断する際に、前記送信電気回路が、前記送信電気信号の電圧振幅を半波長電圧より小さくなるよう調整する、または前記送信電気信号を停止するステップと、
     前記制御回路が、前記第1の位相変調部に多くとも2つの擾乱信号を印加するステップと、
     前記制御回路が、前記受光素子が出力する前記擾乱信号のn倍の周波数(nは1以上の整数)成分を検出するステップと、
     前記制御回路が、前記n倍の周波数成分が最小となるように前記第1の位相変調部に印加する前記バイアス電圧を制御するステップと、
    を含む、制御方法。
  6.  搬送光を出力する光源と、前記搬送光を送信電気信号により光変調する直交変調器であり、前記搬送光を分岐した第1の一対の経路のそれぞれに親マッハツェンダ変調器を備え、前記親マッハツェンダ変調器の各々が、前記第1の一対の経路の1つを分岐した第2の二対の経路のそれぞれに第1の位相変調部を有し、前記第2の二対の経路の出力を合波する子マッハツェンダ変調器、および第2の位相変調部を有し、前記第1の一対の経路の出力を合波する、前記直交変調器と、前記直交変調器からの出力光の反転出力光が入力される第1の受光素子と、前記直交変調器からの出力光の強度を調整する光減衰器と、前記光減衰器からの出力光の反転出力光が入力される第2の受光素子と、前記直交変調器に外部からの入力電気信号に応じた前記送信電気信号を印加する送信電気回路と、前記直交変調器にバイアス電圧を印加する制御回路と、を備えた光送信器の制御方法であって、
     送信光信号を遮断する際に、前記送信電気回路が、前記送信電気信号の電圧振幅を半波長電圧より小さくなるよう調整する、または前記送信電気信号を停止するステップと、
     前記制御回路が、前記第2の受光素子が出力する前記光減衰器の反転出力に応じて変化する電気信号を検出するステップと、
     前記制御回路が,前記電気信号が最大となるように前記光減衰器を制御するステップと、
     前記制御回路が、前記第1の位相変調部に多くとも2つの擾乱信号を印加するステップと、
     前記制御回路が、前記第1の受光素子または前記第2の受光素子が出力する前記擾乱信号のn倍の周波数(nは1以上の整数)成分を検出するステップと、
     前記制御回路が、前記n倍の周波数成分が最小となるように前記第1の位相変調部に印加する前記バイアス電圧を制御するステップと、
    を含む、制御方法。
  7.  搬送光を出力する光源と、前記搬送光を送信電気信号により光変調する直交変調器であり、前記搬送光を分岐した第1の一対の経路のそれぞれに親マッハツェンダ変調器を備え、前記親マッハツェンダ変調器の各々が、前記第1の一対の経路の1つを分岐した第2の二対の経路のそれぞれに第1の位相変調部を有し、前記第2の二対の経路の出力をそれぞれ合波する子マッハツェンダ変調器、および第2の位相変調部を有し、前記第1の一対の経路の出力を合波する、前記直交変調器と、前記直交変調器からの出力光の反転出力光が入力される第1の受光素子と、前記直交変調器からの出力光の強度を調整する光減衰器と、前記光減衰器からの出力光の反転出力光が入力される第2の受光素子と、前記光減衰器からの出力光の一部を入力される第3の受光素子と、前記直交変調器に外部からの入力電気信号に応じた前記送信電気信号を印加する送信電気回路と、前記直交変調器にバイアス電圧を印加する制御回路と、備えた光送信器の制御方法であって、
     送信光信号を遮断する際に、前記送信電気回路が、前記送信電気信号の電圧振幅を半波長電圧より小さくなるよう調整する、または前記送信電気信号を停止するステップと、
     前記制御回路が、前記第2の受光素子が出力する前記光減衰器の反転出力に応じて変化する電気信号を検出するステップと、
     前記制御回路が、前記電気信号が最大となるように前記光減衰器を制御するステップと、
     前記制御回路が、前記第1の位相変調部に多くとも2つの擾乱信号を印加するステップと、
     前記制御回路が、前記第1の受光素子または前記第2の受光素子が出力する前記擾乱信号のn倍の周波数(nは1以上の整数)成分を検出するステップと、
     前記制御回路が、前記n倍の周波数成分が最小となるように前記第1の位相変調部に印加する前記バイアス電圧を制御するステップと、
     通常運用状態において、前記制御回路が、前記第3の受光素子が出力する前記光減衰器からの出力光の一部の強度に応じて変化する電気信号を検出するステップと、
     前記制御回路が、前記光送信器の出力が所望の値となる電圧を前記光減衰器に印加するステップと、
    を含む、制御方法。
  8.  前記擾乱信号が2つであり、かつ前記2つの擾乱信号が前記第1の位相変調部に各々印加される場合は、前記2つの擾乱信号の相対位相差が90度である請求項5ないし7のいずれか一項に記載の制御方法。
PCT/JP2020/001090 2019-01-17 2020-01-15 光送信器及び光送信器の制御方法 WO2020149307A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/423,820 US11646800B2 (en) 2019-01-17 2020-01-15 Optical transmitter and method for controller optical transmitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019006096A JP7295377B2 (ja) 2019-01-17 2019-01-17 光送信器及び光送信器の制御方法
JP2019-006096 2019-01-17

Publications (1)

Publication Number Publication Date
WO2020149307A1 true WO2020149307A1 (ja) 2020-07-23

Family

ID=71613614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001090 WO2020149307A1 (ja) 2019-01-17 2020-01-15 光送信器及び光送信器の制御方法

Country Status (3)

Country Link
US (1) US11646800B2 (ja)
JP (1) JP7295377B2 (ja)
WO (1) WO2020149307A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7295377B2 (ja) * 2019-01-17 2023-06-21 日本電信電話株式会社 光送信器及び光送信器の制御方法
JP2023051413A (ja) * 2021-09-30 2023-04-11 富士通オプティカルコンポーネンツ株式会社 光コヒーレント送受信機及び光変調器の消光方法
US20230353244A1 (en) * 2022-04-28 2023-11-02 Dell Products L.P. Ic-trosa point-to-multipoint optical network system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198461A (ja) * 2002-12-16 2004-07-15 Sumitomo Metal Mining Co Ltd 導波路型可変光減衰器
JP2008092172A (ja) * 2006-09-29 2008-04-17 Fujitsu Ltd 光送信機
JP2010028741A (ja) * 2008-07-24 2010-02-04 Yokogawa Electric Corp 光送信装置
JP5261779B2 (ja) * 2009-09-08 2013-08-14 日本電信電話株式会社 光信号送信器、及びバイアス電圧制御方法
JP2014240889A (ja) * 2013-06-11 2014-12-25 住友電気工業株式会社 光送信器及び光送信器の制御方法
JP2015532471A (ja) * 2012-10-24 2015-11-09 オクラロ テクノロジー リミテッド 光変調器
JP2016149685A (ja) * 2015-02-13 2016-08-18 住友電気工業株式会社 光送受信器および光送受信器の制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042175A1 (en) * 2011-09-22 2013-03-28 Nec Corporation Optical output device and method for contorolling an optical transmitter
JP6059678B2 (ja) * 2014-04-11 2017-01-11 日本電信電話株式会社 光変調装置、及び光変調方法
US10313015B2 (en) * 2015-11-12 2019-06-04 Nippon Telegraph And Telephone Corporation Optical transmitter and bias voltage control method
US10509243B2 (en) * 2017-03-15 2019-12-17 Elenion Technologies, Llc Bias control of optical modulators
US10823987B2 (en) * 2017-08-24 2020-11-03 Lumentum Operations Llc Closed loop bias control for an IQ phase modulator
JP7131165B2 (ja) * 2018-07-25 2022-09-06 日本電信電話株式会社 光送受信器及び光送受信器の制御方法
JP7295377B2 (ja) * 2019-01-17 2023-06-21 日本電信電話株式会社 光送信器及び光送信器の制御方法
US10742324B1 (en) * 2019-05-21 2020-08-11 Elenion Technologies, Llc Bias control of optical modulators

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198461A (ja) * 2002-12-16 2004-07-15 Sumitomo Metal Mining Co Ltd 導波路型可変光減衰器
JP2008092172A (ja) * 2006-09-29 2008-04-17 Fujitsu Ltd 光送信機
JP2010028741A (ja) * 2008-07-24 2010-02-04 Yokogawa Electric Corp 光送信装置
JP5261779B2 (ja) * 2009-09-08 2013-08-14 日本電信電話株式会社 光信号送信器、及びバイアス電圧制御方法
JP2015532471A (ja) * 2012-10-24 2015-11-09 オクラロ テクノロジー リミテッド 光変調器
JP2014240889A (ja) * 2013-06-11 2014-12-25 住友電気工業株式会社 光送信器及び光送信器の制御方法
JP2016149685A (ja) * 2015-02-13 2016-08-18 住友電気工業株式会社 光送受信器および光送受信器の制御方法

Also Published As

Publication number Publication date
US11646800B2 (en) 2023-05-09
US20220116116A1 (en) 2022-04-14
JP2020115602A (ja) 2020-07-30
JP7295377B2 (ja) 2023-06-21

Similar Documents

Publication Publication Date Title
WO2020149307A1 (ja) 光送信器及び光送信器の制御方法
US9823495B2 (en) Method and system for integrated power combiners
EP2148457A2 (en) Optical transmitter
EP3293895B1 (en) Detection and compensation of power imbalances for a transmitter
JP4657616B2 (ja) 記号間干渉を軽減するマルチチャネル光イコライザ
US9319144B2 (en) Optical transmitter and method of controlling optical transmitter
JP2011041307A (ja) 記号間干渉を軽減するマルチチャネル光イコライザ
US20120314277A1 (en) Optical modulator and optical modulation method
CN108139617B (zh) 可插拔光模块和光通信系统
JP5504982B2 (ja) 偏波多重光送信器、および、偏波多重光信号の制御方法
US11606148B2 (en) Polarization processing apparatus, optical transceiver, and optical polarization processing method
EP1087256A2 (en) Optical modulator
US9337936B2 (en) Optical transmission apparatus, optical transmission method and program for optical transmission
US10788679B2 (en) Method and circuit for endless phase and polarization control
US8238758B2 (en) Three-arm DQPSK modulator
WO2020022105A1 (ja) 光送受信器及び光送受信器の制御方法
US7162164B2 (en) Optical vestigial sideband transmitter/receiver
KR100713408B1 (ko) 단측파대 변조 모듈과 그를 이용한 단측파대 변조 수단
US11509396B2 (en) Polarization multi/demultiplexed optical transceiver circuit
JP7238575B2 (ja) モニタ受信器、測定方法及び光90°ハイブリット集積回路
JPH09181683A (ja) 光パルス変調装置
CN113196692A (zh) 光发送装置及方法
CN117318827A (zh) 一种基于时间相位编码芯片实现的时间相位编码方法
JP2003156721A (ja) 偏波モード分散抑制装置
JP2010128244A (ja) 光伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741977

Country of ref document: EP

Kind code of ref document: A1