WO2020145725A1 - 화합물 및 이를 포함하는 유기발광소자 - Google Patents

화합물 및 이를 포함하는 유기발광소자 Download PDF

Info

Publication number
WO2020145725A1
WO2020145725A1 PCT/KR2020/000473 KR2020000473W WO2020145725A1 WO 2020145725 A1 WO2020145725 A1 WO 2020145725A1 KR 2020000473 W KR2020000473 W KR 2020000473W WO 2020145725 A1 WO2020145725 A1 WO 2020145725A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
light emitting
compound
Prior art date
Application number
PCT/KR2020/000473
Other languages
English (en)
French (fr)
Inventor
강경준
홍완표
금수정
김명곤
김경희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/417,349 priority Critical patent/US20220077410A1/en
Priority to CN202080007049.3A priority patent/CN113195508B/xx
Publication of WO2020145725A1 publication Critical patent/WO2020145725A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/004Acyclic, carbocyclic or heterocyclic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present specification relates to a compound and an organic light emitting device including the same.
  • the organic light emitting device is a light emitting device using an organic semiconductor material, and requires exchange of holes and/or electrons between the electrode and the organic semiconductor material.
  • the organic light emitting device can be roughly divided into two types according to the operation principle. First, excitons are formed in the organic layer by photons introduced into the device from an external light source, and the excitons are separated into electrons and holes, and the electrons and holes are transferred to different electrodes to be used as a current source (voltage source). It is a light emitting device of the form.
  • the second is a light emitting device in which holes and/or electrons are injected into a layer of an organic semiconductor material that interfaces with an electrode by applying voltage or current to two or more electrodes, and operated by the injected electrons and holes.
  • the organic light emitting phenomenon refers to a phenomenon that converts electrical energy into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon usually has a structure including an anode and a cathode and an organic material layer therebetween.
  • the organic material layer is often composed of a multi-layer structure composed of different materials, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron suppression layer, an electron transport layer, an electron injection layer, etc. Can lose.
  • Materials used as an organic material layer in the organic light emitting device may be classified into light emitting materials and charge transport materials, such as hole injection materials, hole transport materials, electron suppressing materials, electron transport materials, and electron injection materials, depending on their function.
  • the light emitting materials include blue, green, and red light emitting materials, and yellow and orange light emitting materials necessary for realizing a better natural color depending on the light emitting color.
  • a host/dopant system may be used as a light emitting material in order to increase color purity and increase light emission efficiency through energy transfer.
  • the principle is that when a small amount of a dopant having a smaller energy band gap and a higher luminous efficiency is mixed with a light emitting layer than a host mainly constituting the light emitting layer, excitons generated from the host are transported as a dopant to produce high efficiency light. At this time, since the wavelength of the host moves to the wavelength of the dopant, light of a desired wavelength can be obtained according to the type of the dopant used.
  • materials constituting an organic material layer in the device such as a hole injection material, a hole transport material, a light emitting material, an electron suppressing material, an electron transport material, an electron injection material, are stable and efficient It is supported by, and the development of new materials continues to be required.
  • One embodiment of the present specification provides a compound represented by the following Chemical Formula 1.
  • X1 and X2 are each independently NR, O or S,
  • R and R1 to R3 are each independently hydrogen; heavy hydrogen; Halogen group; A substituted or unsubstituted amine group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted silyl group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group, or may combine with an adjacent group to form a ring,
  • a and c are each independently an integer from 0 to 4,
  • b is an integer from 0 to 3
  • each of a plurality of R1 independently bonded to each other, a plurality of R3 each independently bonded to each other, and at least one of the R includes a substituted or unsubstituted dibenzosilol group.
  • Another exemplary embodiment is a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, and at least one layer of the organic material layer provides an organic light emitting device including the above-described compound.
  • the compound represented by Chemical Formula 1 of the present invention can be used as a material for the organic material layer of the organic light emitting device.
  • an organic light emitting device including the compound represented by Chemical Formula 1 of the present invention When an organic light emitting device including the compound represented by Chemical Formula 1 of the present invention is manufactured, an organic light emitting device having high efficiency and low voltage characteristics can be obtained.
  • FIG. 1 shows a structure of an organic light emitting device according to an exemplary embodiment.
  • Figure 2 shows the structure of an organic light emitting device according to another embodiment.
  • 3 shows a method for deriving triplet energy.
  • substitution means that the hydrogen atom bonded to the carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where the substituent is substitutable, and when two or more are substituted , 2 or more substituents may be the same or different from each other.
  • substituted or unsubstituted in this specification is deuterium (-D); Halogen group; Nitrile group; Nitro group; Hydroxy group; Silyl group; Boron group; Alkoxy groups; Alkyl groups; Cycloalkyl group; Aryl group; And one or two or more substituents selected from the group consisting of heterocyclic groups, or substituted with two or more substituents of the above-exemplified substituents, or having no substituents.
  • a substituent having two or more substituents may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are connected.
  • examples of the halogen group include fluorine (-F), chlorine (-Cl), bromine (-Br) or iodine (-I).
  • the silyl group may be represented by the formula of -SiY a Y b Y c , wherein Y a , Y b and Y c are each hydrogen; A substituted or unsubstituted alkyl group; Or it may be a substituted or unsubstituted aryl group.
  • the silyl group specifically includes, but is not limited to, trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like. Does not.
  • the boron group may be represented by the formula of -BY d Y e , wherein Y d and Y e are each hydrogen; A substituted or unsubstituted alkyl group; Or it may be a substituted or unsubstituted aryl group.
  • the boron group may include, but is not limited to, trimethyl boron group, triethyl boron group, tert-butyl dimethyl boron group, triphenyl boron group, phenyl boron group, and the like.
  • the alkyl group may be straight chain or branched chain, and carbon number is not particularly limited, but is preferably 1 to 60. According to an exemplary embodiment, the alkyl group has 1 to 30 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms.
  • alkyl group examples include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, n-pentyl group, hexyl group, n -Hexyl group, heptyl group, n-heptyl group, octyl group, n-octyl group, and the like, but is not limited to these.
  • the alkoxy group may be a straight chain, branched chain or cyclic chain.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is preferably 1 to 20 carbon atoms.
  • Substituents comprising alkyl, alkoxy, and other alkyl group moieties described herein include both straight-chain or ground forms.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, a cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, adamantyl group, and the like, but is not limited thereto.
  • the aryl group is not particularly limited, but is preferably 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the carbon number of the aryl group is 6 to 39. According to one embodiment, the carbon number of the aryl group is 6 to 30.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group, a quarterphenyl group, etc., as a monocyclic aryl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, perylenyl group, triphenyl group, chrysenyl group, fluorenyl group, triphenylenyl group, etc., but is not limited thereto. no.
  • the fluorene group may be substituted, and two substituents may combine with each other to form a spiro structure.
  • Spirofluorene groups such as (9,9-dimethylfluorene group
  • It may be a substituted fluorene group such as (9,9-diphenylfluorene group).
  • substituted fluorene group such as (9,9-diphenylfluorene group
  • the heterocyclic group is a hetero atom and is a ring group containing one or more of N, O, P, S, Si, and Se, and carbon number is not particularly limited, but is preferably 2 to 60 carbon atoms. According to one embodiment, the heterocyclic group has 2 to 36 carbon atoms.
  • heterocyclic group examples include pyridine group, pyrrole group, pyrimidine group, quinoline group, pyridazine group, furan group, thiophene group, imidazole group, pyrazole group, dibenzofuran group, dibenzothiophene group, Dibenzosilol group, carbazole group, benzocarbazole group, benzonaphthofuran group, benzonaphthothiophene group, indenocarbazole group, indolocarbazole group, and the like, but are not limited thereto.
  • heterocyclic group may be applied, except that the heteroaryl group is aromatic.
  • the amine group is -NH 2 ; Alkylamine groups; N-alkylarylamine group; Arylamine group; N-aryl heteroarylamine group; It may be selected from the group consisting of N-alkylheteroarylamine groups and heteroarylamine groups, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • amine group examples include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, and 9-methyl-anthracenylamine group , Diphenylamine group, N-phenylnaphthylamine group, ditolylamine group, N-phenyltolylamine group, triphenylamine group, N-phenylbiphenylamine group, N-phenylnaphthylamine group, N-bi Phenylnaphthylamine group, N-naphthylfluorenylamine group, N-phenylphenanthrenylamine group, N-biphenylphenanthrenylamine group, N-phenylfluorenylamine group, N-phenylterphenylamine Group, N-phenanthrenylfluorenylamine group,
  • the N-alkylarylamine group means an amine group in which an alkyl group and an aryl group are substituted for N of the amine group.
  • the N-aryl heteroarylamine group means an amine group in which an aryl group and a heteroaryl group are substituted with N of the amine group.
  • the N-alkylheteroarylamine group means an amine group in which an alkyl group and a heteroaryl group are substituted with N of the amine group.
  • the alkyl group, aryl group, and heteroaryl group in the N-alkylheteroarylamine group and heteroarylamine group are the same as those of the aforementioned alkyl group, aryl group, and heteroaryl group, respectively.
  • ring is a hydrocarbon ring; Or a hetero ring.
  • the hydrocarbon ring may be an aromatic, aliphatic or aromatic and aliphatic condensed ring, and may be selected from examples of the cycloalkyl group or aryl group, except for the divalent group.
  • the description of the aryl group may be applied, except that the aromatic hydrocarbon ring is divalent.
  • heterocyclic group can be applied to the heterocycle except that it is divalent.
  • any one of the following structures may be formed.
  • A1 to A11 are each independently hydrogen; heavy hydrogen; Halogen group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted amine group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • A12 is hydrogen; heavy hydrogen; Halogen group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • a1 to a4 are each an integer from 0 to 4,
  • a5 is an integer from 0 to 6
  • a1 to a7 are each independently 2 or more, the substituents in parentheses are the same as or different from each other,
  • X1 and X2 are each independently NR, O, or S.
  • R and R1 to R3 are each independently hydrogen; heavy hydrogen; Halogen group; A substituted or unsubstituted amine group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted silyl group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group.
  • R and R1 to R3 are each independently hydrogen; heavy hydrogen; Halogen group; A substituted or unsubstituted diarylamine group having 12 to 60 carbon atoms; A substituted or unsubstituted alkyl group having 1 to 60 carbon atoms; A substituted or unsubstituted cycloalkyl group having 3 to 60 carbon atoms; A substituted or unsubstituted silyl group; A substituted or unsubstituted aryl group having 6 to 60 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 60 carbon atoms.
  • R and R1 to R3 are each independently hydrogen; heavy hydrogen; Halogen group; A substituted or unsubstituted diarylamine group having 12 to 30 carbon atoms; A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; A substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms; A substituted or unsubstituted silyl group; A substituted or unsubstituted aryl group having 6 to 30 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.
  • R and R1 to R3 are each independently hydrogen; heavy hydrogen; Halogen group; A substituted or unsubstituted diarylamine group having 12 to 20 carbon atoms; A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms; A substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms; A substituted or unsubstituted silyl group; A substituted or unsubstituted aryl group having 6 to 20 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 20 carbon atoms.
  • R and R1 to R3 are each independently hydrogen; heavy hydrogen; Halogen group; A dearylamine group having 12 to 20 carbon atoms substituted or unsubstituted with a group selected from the group consisting of deuterium, alkyl groups and substituted or unsubstituted silyl groups; An alkyl group having 1 to 10 carbon atoms unsubstituted or substituted with deuterium; A substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms; A silyl group unsubstituted or substituted with a group selected from the group consisting of a substituted or unsubstituted alkyl group and a substituted or unsubstituted aryl group; An aryl group having 6 to 20 carbon atoms unsubstituted or substituted with a group selected from the group consisting of deuterium, halogen group, alkyl group, and haloalkyl group; Or
  • R is an aryl group having 6 to 20 carbon atoms unsubstituted or substituted with a group selected from the group consisting of deuterium, halogen group, alkyl group, and haloalkyl group; Or a heterocyclic group having 2 to 15 carbon atoms, which is unsubstituted or substituted with a group selected from the group consisting of deuterium, substituted or unsubstituted alkyl group and substituted or unsubstituted aryl group.
  • R is a phenyl group unsubstituted or substituted with a group selected from the group consisting of deuterium, halogen group, alkyl group, and haloalkyl group;
  • a biphenyl group unsubstituted or substituted with a group selected from the group consisting of deuterium, halogen, alkyl, and haloalkyl groups;
  • a terphenyl group unsubstituted or substituted with a group selected from the group consisting of deuterium, halogen, alkyl, and haloalkyl groups;
  • a debenzoylol group unsubstituted or substituted with a group selected from the group consisting of deuterium, alkyl groups, and aryl groups substituted or unsubstituted with alkyl groups.
  • R1 to R3 are each independently hydrogen; heavy hydrogen; Halogen group; A dearylamine group having 12 to 20 carbon atoms substituted or unsubstituted with a group selected from the group consisting of deuterium, alkyl groups and substituted or unsubstituted silyl groups; An alkyl group having 1 to 10 carbon atoms unsubstituted or substituted with deuterium; A substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms; A silyl group unsubstituted or substituted with a group selected from the group consisting of a substituted or unsubstituted alkyl group and a substituted or unsubstituted aryl group; An aryl group having 6 to 20 carbon atoms unsubstituted or substituted with a group selected from the group consisting of deuterium, halogen group, alkyl group, and haloalkyl group; Or a hetero
  • R1 to R3 are each independently hydrogen; heavy hydrogen; Halogen group; A dephenylamine group unsubstituted or substituted with a group selected from the group consisting of deuterium, alkyl groups and substituted or unsubstituted silyl groups; A methyl group unsubstituted or substituted with deuterium; An isopropyl group unsubstituted or substituted with deuterium; Tert-butyl group unsubstituted or substituted with deuterium; A substituted or unsubstituted adamantyl group; A substituted or unsubstituted cyclohexyl group; A substituted or unsubstituted trialkylsilyl group; A substituted or unsubstituted triarylsilyl group; A phenyl group unsubstituted or substituted with a group selected from the group consisting of deuterium, halogen, alkyl, and haloalky
  • a to c are each independently, an integer of 0 to 3, and when a to c are each independently 2 or more, the substituents in parentheses are the same or different from each other, and adjacent groups are combined. Can form a ring.
  • the compound represented by Chemical Formula 1 has at least one silicon element.
  • the compound represented by Chemical Formula 1 has 1 to 3 silicon elements.
  • the compound represented by Chemical Formula 1 has 1 to 2 silicon elements.
  • each of a plurality of R1 independently bonded to each other, a plurality of R3 each independently bonded to each other, and at least one of the R includes a substituted or unsubstituted dibenzosilol group.
  • R1 and R3 combine with each other to form a ring is excluded.
  • including a substituted or unsubstituted dibenzosilol group has a substituted or unsubstituted dibenzosilol group as a substituent on the backbone of Formula 1, or a condensed ring is formed on the backbone of Formula 1 In the backbone of Formula 1, it may have a substituted or unsubstituted dibenzosilol group containing a benzene group.
  • a plurality of R1 when a plurality of R1 is bonded to each other to include a substituted or unsubstituted dibenzosilol group, a plurality of R1 are bonded to each other To form a ring of the backbone of Formula 1 may have a substituted or unsubstituted dibenzosilol group containing a benzene group.
  • A7, A10, A11 and a7 are as defined above.
  • a plurality of R3 when a plurality of R3 is bonded to each other to include a substituted or unsubstituted dibenzosilol group, a plurality of R3 is bonded to each other To form a ring of the backbone of Formula 1 may have a substituted or unsubstituted dibenzosilol group containing a benzene group.
  • A7, A10, A11 and a7 are as defined above.
  • A7, A10 and A11 are each independently hydrogen; A substituted or unsubstituted alkyl group; A substituted or unsubstituted aryl group; Or it may be a substituted or unsubstituted heterocyclic group.
  • A10 and A11 are each independently substituted or unsubstituted aryl group having 6 to 30 carbon atoms; Or it may be a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.
  • A10 and A11 are each independently substituted or unsubstituted aryl group having 6 to 30 carbon atoms; Or it may be a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.
  • A10 and A11 may each independently be a substituted or unsubstituted aryl group having 6 to 15 carbon atoms.
  • A10 and A11 may be a substituted or unsubstituted phenyl group.
  • R may include a substituted or unsubstituted dibenzosilol group, including the formula (5).
  • R10 and R11 are each independently a substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • R12 is hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted silyl group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group containing N, O or S,
  • g is an integer from 0 to 7
  • Chemical Formula 1 may be represented by any one of the following Chemical Formulas 2 to 4.
  • R4 to R8 are each independently hydrogen; heavy hydrogen; Halogen group; A substituted or unsubstituted amine group; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted silyl group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group containing N, O or S,
  • d and f are each independently an integer from 0 to 4,
  • e is an integer from 0 to 3
  • d to f are each independently, when 2 or more, the substituents in parentheses are the same as or different from each other,
  • R'and R" are each independently a substituted or unsubstituted alkyl group; a substituted or unsubstituted cycloalkyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted aryl group; or a substituted or unsubstituted heterocyclic group ego,
  • At least one of R'and R" includes the following Chemical Formula 5,
  • R10 and R11 are each independently a substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • R12 is hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; A substituted or unsubstituted silyl group; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group containing N, O or S,
  • g is an integer from 0 to 7
  • R4 to R8 are each independently, hydrogen; heavy hydrogen; Halogen group; A substituted or unsubstituted amine group; A substituted or unsubstituted alkyl group having 1 to 60 carbon atoms; A substituted or unsubstituted cycloalkyl group having 3 to 60 carbon atoms; A substituted or unsubstituted silyl group having 1 to 60 carbon atoms; A substituted or unsubstituted aryl group having 6 to 60 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 60 carbon atoms containing N, O or S.
  • R4 to R8 are each independently, hydrogen; heavy hydrogen; Halogen group; A substituted or unsubstituted amine group; A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; A substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms; A substituted or unsubstituted silyl group having 1 to 30 carbon atoms; A substituted or unsubstituted aryl group having 6 to 30 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms containing N, O or S.
  • R4 to R8 are each independently, hydrogen; heavy hydrogen; Halogen group; A substituted or unsubstituted amine group; A substituted or unsubstituted alkyl group having 1 to 15 carbon atoms; A substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms; A substituted or unsubstituted silyl group having 1 to 15 carbon atoms; A substituted or unsubstituted aryl group having 6 to 15 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 15 carbon atoms containing N, O or S.
  • R'and R" are each independently, a substituted or unsubstituted alkyl group having 1 to 60 carbon atoms; a substituted or unsubstituted cycloalkyl group having 3 to 60 carbon atoms; a substituted or unsubstituted carbon number.
  • R'and R" are each independently, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms; a substituted or unsubstituted carbon number.
  • R'and R" are each independently, a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms; a substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms; a substituted or unsubstituted carbon number.
  • At least one of R'and R" includes the formula (5).
  • At least one of R'and R" is represented by the formula (5) above.
  • R'and R" are each independently represented by the above formula (5).
  • R10 and R11 are each independently, a substituted or unsubstituted alkyl group having 1 to 60 carbon atoms; Or a substituted or unsubstituted aryl group having 6 to 60 carbon atoms.
  • R10 and R11 are each independently, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; Or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • R10 and R11 are each independently, a substituted or unsubstituted alkyl group having 1 to 15 carbon atoms; Or a substituted or unsubstituted aryl group having 6 to 15 carbon atoms.
  • R10 and R11 are a substituted or unsubstituted phenyl group.
  • R12 is hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 60 carbon atoms; A substituted or unsubstituted cycloalkyl group having 3 to 60 carbon atoms; A substituted or unsubstituted silyl group having 1 to 60 carbon atoms; A substituted or unsubstituted aryl group having 6 to 60 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 60 carbon atoms containing N, O or S.
  • R12 is hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms; A substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms; A substituted or unsubstituted silyl group having 1 to 30 carbon atoms; A substituted or unsubstituted aryl group having 6 to 30 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms containing N, O or S.
  • R12 is hydrogen; heavy hydrogen; A substituted or unsubstituted alkyl group having 1 to 15 carbon atoms; A substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms; A substituted or unsubstituted silyl group having 1 to 15 carbon atoms; A substituted or unsubstituted aryl group having 6 to 15 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 15 carbon atoms containing N, O or S.
  • the formula 1 may be represented by any one of the following compounds.
  • compounds having various energy band gaps may be synthesized by introducing various substituents to the core structure as described above.
  • the HOMO and LUMO energy levels of the compound can be adjusted by introducing various substituents to the core structure having the above structure.
  • the organic light emitting device includes a first electrode; A second electrode provided to face the first electrode; And at least one layer of an organic material provided between the first electrode and the second electrode, and at least one layer of the organic material layer comprises the above-described compound.
  • At least one layer of the organic material layer may use a compound represented by the following Chemical Formula 6 as a host.
  • Ar is deuterium; A substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • n is an integer from 1 to 10
  • n 2 or more, the substituents in parentheses are the same or different from each other.
  • the triplet energy of the compound represented by the formula (6) is lower than the triplet energy of the compound represented by the formula (1) herein and may be used as a host material for fluorescent emission.
  • the content of the light emitting layer doping material may include 1 part by weight to 10 parts by weight based on 100 parts by weight of the host. According to an example, the content of the light emitting layer doping material may include 1 part by weight to 5 parts by weight based on 100 parts by weight of the host.
  • Ar is deuterium; A substituted or unsubstituted aryl group having 6 to 60 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 60 carbon atoms.
  • Ar is deuterium; A substituted or unsubstituted aryl group having 6 to 30 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms.
  • Ar is deuterium; A substituted or unsubstituted aryl group having 6 to 15 carbon atoms; Or a substituted or unsubstituted heterocyclic group having 2 to 15 carbon atoms.
  • Ar is deuterium; An aryl group unsubstituted or substituted with a group selected from the group consisting of deuterium, an aryl group unsubstituted or substituted with deuterium, and a heterocyclic group unsubstituted or substituted with deuterium; Or a heterocyclic group unsubstituted or substituted with a group selected from the group consisting of deuterium, aryl groups unsubstituted or substituted with deuterium, and heterocyclic groups unsubstituted or substituted with deuterium.
  • the compound represented by Chemical Formula 6 may include one or more deuterium.
  • the compound represented by Chemical Formula 6 may be any one selected from the following compounds.
  • the number of excitons generated in singlet and triplet is generated at a ratio of 25:75 (single term: triplet), and fluorescent emission, phosphorescence emission, and thermal activation delayed fluorescence depending on the light emission type according to exciton movement It can be divided into luminescence.
  • the thermally activated delayed fluorescence represents a phenomenon using a phenomenon in which reverse intersystem crossing (RISC) from triplet excitons to singlet excitons occurs, which is also referred to as Thermally Activated Delayed Fluorescence (TADF).
  • RISC reverse intersystem crossing
  • TADF Thermally Activated Delayed Fluorescence
  • the compounds of the present invention have delayed fluorescence properties of less than ⁇ E st 0.5eV.
  • the compound of the present invention has a delayed fluorescence property of less than ⁇ E st 0.5 eV, and thus, an organic light-emitting device having high efficiency by inverting the excitons in the triplet excited state to the singlet excited state in reverse phase transition You can implement
  • materials less than ⁇ E st 0.5eV satisfy delayed fluorescence properties, and to confirm this, can be confirmed by measuring PLQY (Photoluminescence quantum yield) and exciton lifetime. If the PLQY difference between the nitrogen atmosphere and the oxygen atmosphere is large, it is said that there is a delayed fluorescence property, and the shorter the exciton lifetime in microseconds, the stronger the delayed fluorescence property.
  • PLQY Photoluminescence quantum yield
  • the organic light-emitting device of the present specification may be manufactured by a conventional method and material for manufacturing an organic light-emitting device, except that one or more organic material layers are formed using the compound represented by Chemical Formula 1 above.
  • an organic light emitting device having an organic material layer including the compound represented by Compound 1 it may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method.
  • the solution application method means spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited to these.
  • the organic material layer of the organic light emitting device of the present specification may have a single layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention is a hole transport layer, a hole injection layer, an electron blocking layer, a layer simultaneously performing hole transport and hole injection, an electron transport layer, an electron injection layer, a hole blocking layer, and an electron transport and injection simultaneously as an organic material layer It may have a structure including one or more of the layers.
  • the structure of the organic light emitting device of the present specification is not limited thereto, and may include fewer or more organic material layers.
  • the organic material layer includes a hole transport layer or a hole injection layer, and the hole transport layer or the hole injection layer may include a compound represented by Formula 1 described above.
  • the organic material layer may include an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer may include a compound represented by Formula 1 described above.
  • the organic material layer includes a light emitting layer, and the light emitting layer may include a compound represented by Chemical Formula 1 described above.
  • the organic material layer includes a light emitting layer
  • the light emitting layer may include the compound represented by Chemical Formula 1 as a doping material for the light emitting layer.
  • the organic material layer includes a light emitting layer
  • the light emitting layer may include the compound represented by Chemical Formula 1 as the blue fluorescent doping material of the light emitting layer.
  • the organic material layer includes a light emitting layer
  • the light emitting layer includes the compound represented by Formula 1 as the blue fluorescent doping material of the light emitting layer
  • the compound represented by Formula 6 is a host of the light emitting layer It can contain as.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode
  • the organic light emitting device may have, for example, a stacked structure as described below, but is not limited thereto.
  • the structure of the organic light emitting device of the present specification may have a structure as shown in FIGS. 1 and 2, but is not limited thereto.
  • FIG. 1 illustrates a structure of an organic light emitting device in which an anode 2, a light emitting layer 3, and a cathode 4 are sequentially stacked on a substrate 1.
  • the compound may be included in the light emitting layer 3.
  • an anode 2 an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8, and a cathode 4 are sequentially stacked on an organic light emitting device on a substrate 1
  • the structure is illustrated.
  • the organic light emitting device uses a metal vapor deposition (PVD) method, such as sputtering or e-beam evaporation, to have a metal or conductive metal oxide on the substrate or alloys thereof It is prepared by depositing an anode to form an anode, and then forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, an electron blocking layer, an electron transport layer, and an electron injection layer, and then depositing a material that can be used as a cathode thereon. Can be.
  • an organic light emitting device may be made by sequentially depositing a cathode material, an organic material layer, and a cathode material on a substrate.
  • the organic material layer may be a multi-layered structure including a hole injection layer, a hole transport layer, an electron injection and electron transport layer, an electron blocking layer, a light emitting layer and an electron transport layer, an electron injection layer, an electron injection and electron transport layer, and the like.
  • the present invention is not limited thereto, and may be a single-layer structure.
  • the organic material layer has a smaller number of solvent processes, such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer, rather than deposition using various polymer materials. Can be prepared in layers.
  • the positive electrode is an electrode for injecting holes
  • a positive electrode material is preferably a material having a large work function to facilitate hole injection into an organic material layer.
  • Specific examples of the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); A combination of metal and oxide such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole and polyaniline, but are not limited thereto.
  • the cathode is an electrode for injecting electrons
  • the cathode material is preferably a material having a small work function to facilitate electron injection into an organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof;
  • There is a multilayer structure material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • the hole injection layer is a layer that serves to smoothly inject holes from the anode to the light emitting layer.
  • a hole injection material can be well injected with holes from the anode at a low voltage, and HOMO (highest occupied) of the hole injection material It is preferable that the molecular orbital is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • the hole injection material include metal porphyrine, oligothiophene, arylamine-based organic substances, hexanitrile hexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based substances.
  • the thickness of the hole injection layer may be 1 nm to 150 nm.
  • the thickness of the hole injection layer is 1 nm or more, there is an advantage of preventing the hole injection characteristics from deteriorating, and when it is 150 nm or less, the thickness of the hole injection layer is too thick, so that the driving voltage is increased to improve hole movement. There is an advantage that can be prevented.
  • the hole transport layer may serve to facilitate the transport of holes.
  • a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer is suitable for a material having high mobility for holes.
  • Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers having a conjugated portion and a non-conjugated portion, but are not limited thereto.
  • An electron blocking layer may be provided between the hole transport layer and the light emitting layer.
  • the electron blocking layer may be a material known in the art.
  • the light emitting layer may emit red, green, or blue light, and may be made of a phosphorescent material or a fluorescent material.
  • a material capable of emitting light in the visible region by receiving and bonding holes and electrons from the hole transport layer and the electron transport layer, respectively is preferably a material having good quantum efficiency for fluorescence or phosphorescence.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole compounds; Poly(p-phenylenevinylene) (PPV)-based polymers; Spiro compounds; Polyfluorene, rubrene, and the like, but are not limited to these.
  • Alq 3 8-hydroxy-quinoline aluminum complex
  • Carbazole-based compounds Dimerized styryl compounds
  • BAlq 10-hydroxybenzo quinoline-metal compound
  • Benzoxazole, benzthiazole and benzimidazole compounds Poly(p-phenylenevinylene) (PPV)-based polymers
  • Spiro compounds Polyfluorene, rubrene, and the like, but are not limited to these.
  • a compound represented by Chemical Formula 1 may be used as a light emitting dopant.
  • phosphorescent materials such as (4,6-F2ppy) 2 Irpic, spiro-DPVBi, spiro-6P, distylbenzene (DSB), distriarylene (DSA), PFO-based polymers, PPV-based polymers, etc. It may further include a fluorescent material.
  • the host material of the light emitting layer includes a condensed aromatic ring derivative or a heterocyclic compound.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, and the like
  • heterocyclic compounds include carbazole derivatives, dibenzofuran, and dibenzofuran Derivatives, dibenzothiophene, dibenzothiophene derivatives, ladder-type furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the compound represented by Chemical Formula 6 described above can be used as a host.
  • the compound represented by the formula (6) as a host may be used alone or in combination with an additional host.
  • the electron transport layer may serve to facilitate the transport of electrons.
  • the electron transport material a material capable of receiving electrons well from the cathode and transferring them to the light emitting layer, a material having high mobility for electrons is suitable. Specific examples include the Al complex of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the thickness of the electron transport layer may be 1 to 50 nm.
  • the thickness of the electron transport layer is 1 nm or more, there is an advantage of preventing the electron transport properties from deteriorating, and if it is 50 nm or less, the thickness of the electron transport layer is too thick to prevent the driving voltage from rising to improve the movement of electrons. There is an advantage.
  • the electron injection layer may serve to facilitate injection of electrons.
  • the electron injection material has the ability to transport electrons, has an electron injection effect from the cathode, has an excellent electron injection effect on the light emitting layer or the light emitting material, prevents movement of excitons generated in the light emitting layer to the hole injection layer, and also , A compound having excellent thin film forming ability is preferred.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone and the like and their derivatives, metal Complex compounds, nitrogen-containing 5-membered ring derivatives, and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato) zinc, bis(8-hydroxyquinolinato) copper, bis(8-hydroxyquinolinato) manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis(10-hydroxybenzo[h]quinolinato) zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( There are o-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphtholato) aluminum, bis (2-methyl-8-quinolinato) (2-naphtholato) gallium, It is not limited to this.
  • the hole blocking layer is a layer that prevents the cathode from reaching the hole, and may be generally formed under the same conditions as the hole injection layer. Specifically, there are oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, BCP, aluminum complex, and the like, but are not limited thereto.
  • the organic light emitting device may be a front emission type, a back emission type, or a double-sided emission type depending on the material used.
  • the compound represented by Formula 1 of the present specification may have a core structure as shown in the following reaction formula.
  • Substituents can be combined by methods known in the art, and the type, location, and number of substituents can be varied according to techniques known in the art.
  • R1 to R3 are as defined in Formula 1.
  • t Bu means tert-butyl group.
  • intermediate C-3 instead of C-1 (10 g) and C-2 (12.3 g), the same as the synthesis of intermediate C-3 using C-6 (10 g) and C-2 (8.2 g). By the method, 12.4 g of intermediate C-7 was obtained.
  • intermediate C-3 instead of C-1 (10 g) and C-2 (12.3 g), the same as the synthesis of intermediate C-3 using C-6 (10 g) and C-10 (9.8 g). By the method, 11.9 g of intermediate C-11 was obtained.
  • Tf means a trifluoromethanesulfonyl group.
  • a glass substrate coated with a thin film of indium tin oxide (ITO) at a thickness of 1300 ⁇ was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • ITO indium tin oxide
  • Fischer Co. was used as a detergent
  • distilled water filtered secondarily by a filter of Millipore Co. was used as distilled water.
  • ultrasonic washing was repeated for 10 minutes by repeating it twice with distilled water.
  • ultrasonic cleaning was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was washed for 5 minutes using oxygen plasma, and then transferred to a vacuum evaporator.
  • the following compound HAT was thermally vacuum-deposited to a thickness of 50 Pa to form a hole injection layer. Then, the following compound HT-A 1000 ⁇ was vacuum-deposited as a first hole transport layer, followed by depositing the following compound HT-B 100 ⁇ as a second hole transport layer.
  • the host BH-A and the dopant Compound A-1 were vacuum deposited at a weight ratio of 97: 3 to form a 200-mm thick light emitting layer.
  • the deposition rate of the organic material in the above process 0.4 to 1.0 was maintained ⁇ / sec, and the magnesium was 2 ⁇ / sec was maintained at a deposition rate of, During the deposition, a vacuum 5 ⁇ 10 -8 to 1 ⁇ 10 -7 torr By maintaining the, an organic light emitting device was produced.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that the host and dopant compounds shown in Table 1 below were used as the light emitting layer material in Example 1.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that the host and dopant compounds shown in Table 1 below were used as the light emitting layer material in Example 1.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that the host and dopant compounds shown in Table 1 below were used as the light-emitting layer material in Example 1. Specifically, the host used the first host and the second host in a 1:1 weight ratio instead of the BH-A of Example 1.
  • Example 1 4.3 3.85 Example 2 4.3 4.11 Example 3 4.3 3.87 Example 4 4.2 3.81 Example 5 4.2 3.93 Comparative Example 1 4.5 3.74 Comparative Example 2 4.6 3.52 Example 6 4.3 4.15 Example 7 4.1 3.81 Example 8 4.1 3.91 Example 9 4.1 3.92 Example 10 4 3.89 Example 11 3.9 3.99 Comparative Example 3 4.4 3.70 Comparative Example 4 4.5 3.55 Example 12 4.223 3.89 Example 13 4.2 4.00 Example 14 4.1 4.00 Example 15 4.1 3.98 Example 16 4.2 4.09 Example 17 4.2 3.77 Example 18 3.9 3.99 Comparative Example 5 4.4 3.72 Comparative Example 6 4.4 3.51
  • the compound was calculated using the TD-DFT(B3LYP) method/6-31G* basis method to calculate the energy levels of the singlet (S 1 ) and triplet (triplet, T 1 ) in the absorption state of the molecule.
  • the calculation results are shown in Table 3 below.
  • the ⁇ E ST is defined as the absolute value of the difference between E S (single energy level, eV) and E T (single energy level, eV).
  • Compounds B-1 to B-3 of Examples 19 to 21 ⁇ E ST of X-2, X-4 has a smaller value than that.
  • the difference between the triplet energy and the singlet energy of the compound represented by Formula 1 ( ⁇ E ST ) is less than 0.5 eV (more Preferably, 0.15 eV or less), the smaller the value, the higher the quantum efficiency of the material due to the thermally activated delayed fluorescence (TADF) effect when used as a dopant in the light emitting layer. It can also be increased.
  • TADF thermally activated delayed fluorescence
  • the thermally activated delayed fluorescence refers to a phenomenon in which a reverse interphase transition is induced from a triplet excited state to a singlet excited state by thermal energy, and the exciton of the singlet excited state moves to a ground state to cause fluorescence emission. .
  • the difference value ( ⁇ E ST ) between the triplet energy and the singlet energy of the compound represented by Formula 1 was measured, and the measuring equipment used to measure it is a JASCO FP-8600 fluorescence spectrophotometer.
  • the singlet energy E s can be obtained as follows.
  • a sample for measurement is prepared by dissolving a compound to be measured using toluene as a solvent at a concentration of 1 ⁇ M.
  • the sample solution is put in a quartz cell and degassing is performed using nitrogen gas (N 2 ) to remove oxygen in the solution, and a fluorescence spectrum is measured at room temperature (300K) using a measuring device.
  • N 2 nitrogen gas
  • a fluorescence spectrum is measured at room temperature (300K) using a measuring device.
  • the wavelength value (nm) of the maximum emission peak is obtained, and the value obtained by converting the wavelength value (nm) into the energy value (eV) is taken as the singlet energy E S (eV).
  • the triplet energy E T can be obtained by connecting the temperature controller PMU-830 to the JASCO FP-8600 fluorescence spectrophotometer measurement equipment as follows. To obtain the singlet energy, a quartz cell containing a sample solution from which oxygen has been removed is placed in a device containing liquid nitrogen (N 2 ). After temperature stabilization (77K), the phosphorescence spectrum, which is a 20 microsecond delayed emission, is measured. At this time, in the phosphorescence spectrum, the x-axis is the wavelength ( ⁇ , unit: nm), and the y-axis is the luminous intensity. When the tangent that goes down from the maximum emission peak at the longest wavelength to the short wavelength is drawn, The wavelength value (nm) is obtained as shown in FIG. 3. The value obtained by converting the wavelength value (nm) into an energy value (eV) is referred to as triplet energy E T (eV).
  • the difference ( ⁇ E ST ) between the triplet energy and the singlet energy of the compound represented by Formula 1 is less than 0.5 eV, more preferably 0.15 eV or less, and high quantum efficiency can be obtained when the above range is satisfied. have. It was confirmed that Examples ⁇ E ST of Compounds A-1 and A-2 satisfies the above range, and the resulting thermal activation delayed fluorescence effect was compared through comparison of device data of Examples and Comparative Examples in Table 2. Confirmed indirectly.
  • an organic device was manufactured as shown in the following hole-only and electron-only device structures.
  • ITO / F4TCNQ thickness 100 ⁇ ) / HT-A (1000 ⁇ ) / HT-B (50 ⁇ ) / BH-C (200 ⁇ ) + A-1 (3wt% doped) / HAT (100 ⁇ ) / Ag 1000 ⁇
  • the charge mobility can be measured by measuring the time it takes for the charge (electron or electron) generated by the potential difference to move to the opposite electrode in the device. Related measurement data are shown in FIG. 4.
  • the electron transfer properties of compounds X-1, X-2, and A-1 are relatively similar, but the hole transport characteristics of compound A-1 can be confirmed to be very good.
  • Compound A-1 with improved hole transport properties can improve the efficiency of the device by moving the light emitting zone of the device, which is generally biased toward the hole transport layer, by balancing the charge, and also lower the driving voltage of the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 화학식 1로 표시되는 화합물 및 이를 포함하는 유기발광소자를 제공한다.

Description

화합물 및 이를 포함하는 유기발광소자
본 명세서는 2019년 01월 11일 한국특허청에 제출된 한국 특허 출원 제10-2019-0003903호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 화합물 및 이를 포함하는 유기발광소자에 관한 것이다.
유기발광소자란 유기 반도체 물질을 이용한 발광소자로서, 전극과 유기 반도체 물질 사이에서의 정공 및/또는 전자의 교류를 필요로 한다. 유기발광소자는 동작 원리에 따라 하기와 같이 크게 두 가지로 나눌 수 있다. 첫째는 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 엑시톤(exiton)이 형성되고, 이 엑시톤이 전자와 정공으로 분리되고, 이 전자와 정공이 각각 다른 전극으로 전달되어 전류원(전압원)으로 사용되는 형태의 발광소자이다. 둘째는 2개 이상의 전극에 전압 또는 전류를 가하여 전극과 계면을 이루는 유기 반도체 물질층에 정공 및/또는 전자를 주입하고, 주입된 전자와 정공에 의하여 작동하는 형태의 발광소자이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기발광소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자억제층, 전자수송층, 전자주입층 등으로 이루어 질 수 있다. 이러한 유기발광소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 이러한 유기 발광 소자는 자발광, 고휘도, 고효율, 낮은 구동 전압, 넓은 시야각, 높은 콘트라스트 등의 특성을 갖는 것으로 알려져 있다.
유기발광소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공 주입 재료, 정공 수송 재료, 전자 억제 물질, 전자 수송 재료, 전자 주입 재료 등으로 분류될 수 있다. 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료가 있다.
또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도펀트 계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트보다 에너지 대역 간극이 작고 발광 효율이 우수한 도펀트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도펀트로 수송되어 효율이 높은 빛을 내는 것이다. 이 때 호스트의 파장이 도펀트의 파장대로 이동하므로, 이용하는 도펀트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.
전술한 유기발광소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공 주입 물질, 정공 수송 물질, 발광 물질, 전자 억제 물질, 전자 수송 물질, 전자 주입 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되므로 새로운 재료의 개발이 계속 요구되고 있다.
본 명세서에는 화합물 및 이를 포함하는 유기발광소자가 기재된다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2020000473-appb-I000001
화학식 1에 있어서,
X1 및 X2는 각각 독립적으로, NR, O 또는 S이고,
R 및 R1 내지 R3는 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이거나, 또는 인접한 기와 서로 결합하여 고리를 형성할 수 있으며,
a 및 c는 각각 독립적으로, 0 내지 4의 정수이고,
b는 0 내지 3의 정수이며,
a 내지 c가 각각 독립적으로 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하고,
단, 각각 독립적으로 서로 결합한 복수의 R1, 각각 독립적으로 서로 결합한 복수의 R3 및 상기 R 중 적어도 하나는 치환 또는 비치환된 디벤조실롤기를 포함한다.
또 하나의 일 실시상태는 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상이 전술한 화합물을 포함하는 유기발광소자를 제공한다.
본 발명의 화학식 1로 표시되는 화합물은 유기발광소자의 유기물층의 재료로서 사용될 수 있다.
본 발명의 화학식 1로 표시되는 화합물을 포함하여 유기발광소자를 제조하는 경우, 고효율 및 저전압 특성을 갖는 유기발광소자를 얻을 수 있다.
도 1은 일 실시상태에 따른 유기발광소자의 구조를 도시한 것이다.
도 2는 또 다른 실시상태에 따른 유기발광소자의 구조를 도시한 것이다.
도 3은 삼중항 에너지의 도출방법을 도시한 것이다.
도 4는 실험예 4의 hole-only 및 electron-only 소자의 측정결과이다.
<부호의 설명>
1: 기판
2: 양극
3: 발광층
4: 음극
5: 정공주입층
6: 정공수송층
7: 발광층
8: 전자수송층
이하 본 명세서에 대하여 더욱 상세히 설명한다.
본 명세서는 상기 화학식 1로 표시되는 화합물을 제공한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환" 이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소(-D); 할로겐기; 니트릴기; 니트로기; 히드록시기; 실릴기; 붕소기; 알콕시기; 알킬기; 시클로알킬기; 아릴기; 및 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 할로겐기의 예로는 불소(-F), 염소(-Cl), 브롬(-Br) 또는 요오드(-I)가 있다.
본 명세서에 있어서, 실릴기는 -SiYaYbYc의 화학식으로 표시될 수 있고, 상기 Ya, Yb 및 Yc는 각각 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, tert-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 -BYdYe의 화학식으로 표시될 수 있고, 상기 Yd 및 Ye는 각각 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, tert-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 30이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 알킬기의 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, 펜틸기, n-펜틸기, 헥실기, n-헥실기, 헵틸기, n-헵틸기, 옥틸기, n-옥틸기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 20인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, i-프로필옥시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 기재된 알킬기, 알콕시기 및 그 외 알킬기 부분을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함한다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기, 시클로옥틸기, 아다만틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 39이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기, 쿼터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 트리페닐기, 크라이세닐기, 플루오레닐기, 트리페닐레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오렌기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다.
상기 플루오렌기가 치환되는 경우,
Figure PCTKR2020000473-appb-I000002
등의 스피로플루오렌기,
Figure PCTKR2020000473-appb-I000003
(9,9-디메틸플루오렌기), 및
Figure PCTKR2020000473-appb-I000004
(9,9-디페닐플루오렌기) 등의 치환된 플루오렌기가 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종원자로 N, O, P, S, Si 및 Se 중 1개 이상을 포함하는 고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 2 내지 36이다. 헤테로 고리기의 예로는 예로는 피리딘기, 피롤기, 피리미딘기, 퀴놀린기, 피리다진기, 퓨란기, 티오펜기, 이미다졸기, 피라졸기, 디벤조퓨란기, 디벤조티오펜기, 디벤조실롤기, 카바졸기, 벤조카바졸기, 벤조나프토퓨란기, 벤조나프토티오펜기, 인데노카바졸기, 인돌로카바졸기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 방향족인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 아민기는 -NH2; 알킬아민기; N-알킬아릴아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 바이페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, N-페닐나프틸아민기, 디톨릴아민기, N-페닐톨릴아민기, 트리페닐아민기, N-페닐바이페닐아민기, N-페닐나프틸아민기, N-바이페닐나프틸아민기, N-나프틸플루오레닐아민기, N-페닐페난트레닐아민기, N-바이페닐페난트레닐아민기, N-페닐플루오레닐아민기, N-페닐터페닐아민기, N-페난트레닐플루오레닐아민기, N-바이페닐플루오레닐아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, N-알킬아릴아민기는 아민기의 N에 알킬기 및 아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-아릴헤테로아릴아민기는 아민기의 N에 아릴기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-알킬헤테로아릴아민기는 아민기의 N에 알킬기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, 알킬아민기; N-알킬아릴아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기 중의 알킬기, 아릴기 및 헤테로아릴기는 각각 전술한 알킬기, 아릴기 및 헤테로아릴기의 예시와 같다.
본 명세서에 있어서, 인접한 기와 서로 결합하여 형성되는 치환 또는 비치환된 고리에서, "고리"는 탄화수소 고리; 또는 헤테로 고리를 의미한다.
상기 탄화수소 고리는 방향족, 지방족 또는 방향족과 지방족의 축합고리일 수 있으며, 상기 2가기인 것을 제외하고 상기 시클로알킬기 또는 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 방향족 탄화수소고리는 2가인 것을 제외하고는 상기 아릴기에 관한 설명이 적용될 수 있다.
상기 헤테로고리는 2가인 것을 제외하고는 상기 헤테로고리기에 대한 설명이 적용될 수 있다.
본 명세서에 있어서, R 및 R1 내지 R3이 각각 독립적으로 인접한 기와 서로 결합하여 고리를 형성하는 경우, 하기 구조 중 어느 하나의 고리를 형성할 수 있다.
Figure PCTKR2020000473-appb-I000005
상기 구조에서,
A1 내지 A11은 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
A12는 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
a1 내지 a4, a6 및 a7은 각각 0 내지 4의 정수이고,
a5는 0 내지 6의 정수이며,
a1 내지 a7은 각각 독립적으로 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하고,
*는 치환되는 위치를 표시한 것이다.
본 명세서의 일 실시상태에 따르면, X1 및 X2는 각각 독립적으로, NR, O 또는 S이다.
본 명세서의 일 실시상태에 따르면, R 및 R1 내지 R3는 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R 및 R1 내지 R3는 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 탄소수 12 내지 60의 디아릴아민기; 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 치환 또는 비치환된 탄소수 3 내지 60의 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R 및 R1 내지 R3는 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 탄소수 12 내지 30의 디아릴아민기; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 치환 또는 비치환된 탄소수 3 내지 30의 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R 및 R1 내지 R3는 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 탄소수 12 내지 20의 디아릴아민기; 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 치환 또는 비치환된 탄소수 3 내지 20의 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R 및 R1 내지 R3는 각각 독립적으로, 수소; 중수소; 할로겐기; 중수소, 알킬기 및 치환 또는 비치환된 실릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 탄소수 12 내지 20의 디아릴아민기; 중수소로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기; 치환 또는 비치환된 탄소수 3 내지 15의 시클로알킬기; 치환 또는 비치환된 알킬기 및 치환 또는 비치환된 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 실릴기; 중수소, 할로겐기, 알킬기, 및 할로알킬기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 또는 중수소, 치환 또는 비치환된 알킬기 및 치환 또는 비치환된 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 탄소수 2 내지 15의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R은 중수소, 할로겐기, 알킬기, 및 할로알킬기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 또는 중수소, 치환 또는 비치환된 알킬기 및 치환 또는 비치환된 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 탄소수 2 내지 15의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R은 중수소, 할로겐기, 알킬기, 및 할로알킬기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 페닐기; 중수소, 할로겐기, 알킬기, 및 할로알킬기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 비페닐기; 중수소, 할로겐기, 알킬기, 및 할로알킬기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 터페닐기; 또는 중수소, 알킬기, 및 알킬기로 치환 또는 비치환된 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 디벤조실롤기이다.
본 명세서의 일 실시상태에 따르면, R1 내지 R3는 각각 독립적으로, 수소; 중수소; 할로겐기; 중수소, 알킬기 및 치환 또는 비치환된 실릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 탄소수 12 내지 20의 디아릴아민기; 중수소로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기; 치환 또는 비치환된 탄소수 3 내지 15의 시클로알킬기; 치환 또는 비치환된 알킬기 및 치환 또는 비치환된 아릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 실릴기; 중수소, 할로겐기, 알킬기, 및 할로알킬기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기; 또는 중수소 또는 알킬기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 탄소수 2 내지 15의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R1 내지 R3는 각각 독립적으로, 수소; 중수소; 할로겐기; 중수소, 알킬기 및 치환 또는 비치환된 실릴기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 디페닐아민기; 중수소로 치환 또는 비치환된 메틸기; 중수소로 치환 또는 비치환된 이소프로필기; 중수소로 치환 또는 비치환된 tert-부틸기; 치환 또는 비치환된 아다만틸기; 치환 또는 비치환된 시클로헥실기; 치환 또는 비치환된 트리알킬실릴기; 치환 또는 비치환된 트리아릴실릴기; 중수소, 할로겐기, 알킬기, 및 할로알킬기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 페닐기; 중수소, 할로겐기, 알킬기, 및 할로알킬기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 비페닐기; 중수소, 할로겐기, 알킬기, 및 할로알킬기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 터페닐기; 중수소, 할로겐기, 알킬기, 및 할로알킬기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 나프틸기; 또는 알킬기로 치환 또는 비치환된 카바졸릴기이다.
본 명세서의 일 실시상태에 따르면, a 내지 c는 각각 독립적으로, 0 내지 3의 정수이며, a 내지 c가 각각 독립적으로 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하며, 서로 인접한 기는 결합하여 고리를 형성할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 적어도 1개의 규소 원소를 갖는다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 1개 내지 3개의 규소 원소를 갖는다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1로 표시되는 화합물은 1개 내지 2개의 규소 원소를 갖는다.
또한, 본 명세서의 일 실시상태에 따르면, 각각 독립적으로 서로 결합한 복수의 R1, 각각 독립적으로 서로 결합한 복수의 R3 및 상기 R 중 적어도 하나는 치환 또는 비치환된 디벤조실롤기를 포함한다. 이 경우 R1 및 R3가 서로 결합하여 고리를 형성하는 경우는 제외한다.
본 명세서의 일 실시상태에서, 치환 또는 비치환된 디벤조실롤기를 포함한다는 것은 화학식 1의 백본에 치환기로서 치환 또는 비치환된 디벤조실롤기를 가지거나, 화학식 1의 백본에 축합된 고리가 형성되어 화학식 1의 백본 중 벤젠기를 포함하는 치환 또는 비치환된 디벤조실롤기를 가질 수 있다.
본 명세서의 일 실시상태에 따르면, 복수의 R1이 서로 결합하여 치환 또는 비치환된 디벤조실롤기를 포함하는 경우, 복수의 R1이 서로 결합하여
Figure PCTKR2020000473-appb-I000006
의 고리를 형성하여 화학식 1의 백본 중 벤젠기를 포함하는 치환 또는 비치환된 디벤조실롤기를 가질 수 있다. 이때, A7, A10, A11 및 a7은 상술한 정의와 같다.
본 명세서의 일 실시상태에 따르면, 복수의 R3가 서로 결합하여 치환 또는 비치환된 디벤조실롤기를 포함하는 경우, 복수의 R3가 서로 결합하여
Figure PCTKR2020000473-appb-I000007
의 고리를 형성하여 화학식 1의 백본 중 벤젠기를 포함하는 치환 또는 비치환된 디벤조실롤기를 가질 수 있다. 이때, A7, A10, A11 및 a7은 상술한 정의와 같다.
본 명세서의 일 실시상태에 따르면, A7, A10 및 A11은 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기일 수 있다.
본 명세서의 일 실시상태에 따르면, A10 및 A11은 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로고리기일 수 있다.
본 명세서의 일 실시상태에 따르면, A10 및 A11은 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로고리기일 수 있다.
본 명세서의 일 실시상태에 따르면, A10 및 A11은 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 15의 아릴기일 수 있다.
본 명세서의 일 실시상태에 따르면, A10 및 A11은 치환 또는 비치환된 페닐기일 수 있다.
본 명세서의 일 실시상태에 따르면, R이 하기 화학식 5를 포함하여, 치환 또는 비치환된 디벤조실롤기를 포함할 수 있다.
[화학식 5]
Figure PCTKR2020000473-appb-I000008
R10 및 R11는 각각 독립적으로, 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이며,
R12는 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 N, O 또는 S를 포함하는 헤테로고리기이고,
g는 0 내지 7의 정수이고,
g가 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 2 내지 4 중 어느 하나로 표시될 수 있다.
[화학식 2]
Figure PCTKR2020000473-appb-I000009
[화학식 3]
Figure PCTKR2020000473-appb-I000010
[화학식 4]
Figure PCTKR2020000473-appb-I000011
화학식 2 내지 4에 있어서,
R4 내지 R8은 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 N, O 또는 S를 포함하는 헤테로고리기이고,
d 및 f는 각각 독립적으로, 0 내지 4의 정수이며,
e는 0 내지 3의 정수이며,
d 내지 f는 각각 독립적으로, 2 이상인 경우 괄호 내의 치환기는 서로 같거나 상이하고,
R' 및 R"은 각각 독립적으로, 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
R' 및 R" 중 적어도 하나는 하기 화학식 5를 포함하며,
[화학식 5]
Figure PCTKR2020000473-appb-I000012
R10 및 R11는 각각 독립적으로, 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이며,
R12는 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 N, O 또는 S를 포함하는 헤테로고리기이고,
g는 0 내지 7의 정수이고,
g가 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, R4 내지 R8은 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 치환 또는 비치환된 탄소수 3 내지 60의 시클로알킬기; 치환 또는 비치환된 탄소수 1 내지 60의 실릴기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 N, O 또는 S를 포함하는 탄소수 2 내지 60의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R4 내지 R8은 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 치환 또는 비치환된 탄소수 3 내지 30의 시클로알킬기; 치환 또는 비치환된 탄소수 1 내지 30의 실릴기; 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 N, O 또는 S를 포함하는 탄소수 2 내지 30의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R4 내지 R8은 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 탄소수 1 내지 15의 알킬기; 치환 또는 비치환된 탄소수 3 내지 15의 시클로알킬기; 치환 또는 비치환된 탄소수 1 내지 15의 실릴기; 치환 또는 비치환된 탄소수 6 내지 15의 아릴기; 또는 치환 또는 비치환된 N, O 또는 S를 포함하는 탄소수 2 내지 15의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R' 및 R"은 각각 독립적으로, 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 치환 또는 비치환된 탄소수 3 내지 60의 시클로알킬기; 치환 또는 비치환된 탄소수 1 내지 60의 실릴기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R' 및 R"은 각각 독립적으로, 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 치환 또는 비치환된 탄소수 3 내지 30의 시클로알킬기; 치환 또는 비치환된 탄소수 1 내지 30의 실릴기; 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R' 및 R"은 각각 독립적으로, 치환 또는 비치환된 탄소수 1 내지 15의 알킬기; 치환 또는 비치환된 탄소수 3 내지 15의 시클로알킬기; 치환 또는 비치환된 탄소수 1 내지 15의 실릴기; 치환 또는 비치환된 탄소수 6 내지 15의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 15의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R' 및 R" 중 적어도 하나는 하기 화학식 5를 포함한다.
[화학식 5]
Figure PCTKR2020000473-appb-I000013
상기 화학식 5에서 치환기의 정의는 상술한 바와 같다.
본 명세서의 일 실시상태에 따르면, R' 및 R" 중 적어도 하나는 상술한 화학식 5로 표시된다.
본 명세서의 일 실시상태에 따르면, R' 및 R"은 각각 독립적으로 상술한 화학식 5로 표시된다.
본 명세서의 일 실시상태에 따르면, R10 및 R11는 각각 독립적으로, 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 60의 아릴기이다.
본 명세서의 일 실시상태에 따르면, R10 및 R11는 각각 독립적으로, 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴기이다.
본 명세서의 일 실시상태에 따르면, R10 및 R11는 각각 독립적으로, 치환 또는 비치환된 탄소수 1 내지 15의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 15의 아릴기이다.
본 명세서의 일 실시상태에 따르면, R10 및 R11는 치환 또는 비치환된 페닐기이다.
본 명세서의 일 실시상태에 따르면, R12는 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 60의 알킬기; 치환 또는 비치환된 탄소수 3 내지 60의 시클로알킬기; 치환 또는 비치환된 탄소수 1 내지 60의 실릴기; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 N, O 또는 S를 포함하는 탄소수 2 내지 60의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R12는 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 치환 또는 비치환된 탄소수 3 내지 30의 시클로알킬기; 치환 또는 비치환된 탄소수 1 내지 30의 실릴기; 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 N, O 또는 S를 포함하는 탄소수 2 내지 30의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, R12는 수소; 중수소; 치환 또는 비치환된 탄소수 1 내지 15의 알킬기; 치환 또는 비치환된 탄소수 3 내지 15의 시클로알킬기; 치환 또는 비치환된 탄소수 1 내지 15의 실릴기; 치환 또는 비치환된 탄소수 6 내지 15의 아릴기; 또는 치환 또는 비치환된 N, O 또는 S를 포함하는 탄소수 2 내지 15의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1은 하기 화합물들 중 어느 하나로 표시될 수 있다.
Figure PCTKR2020000473-appb-I000014
Figure PCTKR2020000473-appb-I000015
Figure PCTKR2020000473-appb-I000016
Figure PCTKR2020000473-appb-I000017
Figure PCTKR2020000473-appb-I000018
Figure PCTKR2020000473-appb-I000019
Figure PCTKR2020000473-appb-I000020
Figure PCTKR2020000473-appb-I000021
Figure PCTKR2020000473-appb-I000022
Figure PCTKR2020000473-appb-I000023
Figure PCTKR2020000473-appb-I000024
Figure PCTKR2020000473-appb-I000025
.
본 명세서에서는 상기와 같이 코어 구조에 다양한 치환기를 도입함으로써 다양한 에너지 밴드갭을 갖는 화합물을 합성할 수 있다. 또한, 본 명세서에서는 상기와 같은 구조의 코어 구조에 다양한 치환기를 도입함으로써 화합물의 HOMO 및 LUMO 에너지 준위도 조절할 수 있다.
또한, 본 명세서에 따른 유기발광소자는 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 상기 전술한 화합물을 포함하는 것을 특징으로 한다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층 중 1층 이상은 하기 화학식 6으로 표시되는 화합물을 호스트로 사용할 수 있다.
[화학식 6]
Figure PCTKR2020000473-appb-I000026
상기 화학식 6에 있어서,
Ar은 중수소; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
n은 1 내지 10의 정수이고,
n이 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
상기 화학식 6으로 표시되는 화합물의 삼중항 에너지가 본원 화학식 1로 표시되는 화합물의 삼중항 에너지보다 낮아 형광 발광을 위한 호스트 재료로 사용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 발광층 도핑 재료의 함량은 호스트 100 중량부를 기준으로 1 중량부 내지 10 중량부로 포함할 수 있다. 일 예에 따르면, 상기 발광층 도핑 재료의 함량은 호스트 100 중량부를 기준으로 1 중량부 내지 5 중량부로 포함할 수 있다. 발광층 내에 도핑 재료를 상기 함량 범위로 포함하는 경우, 제조된 유기발광소자의 구동전압이 낮고, 발광 효율이 우수한 이점이 있다.
본 명세서의 일 실시상태에 따르면, Ar은 중수소; 치환 또는 비치환된 탄소수 6 내지 60의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 60의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, Ar은 중수소; 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, Ar은 중수소; 치환 또는 비치환된 탄소수 6 내지 15의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 15의 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, Ar은 중수소; 중수소, 중수소로 치환 또는 비치환된 아릴기 및 중수소로 치환 또는 비치환된 헤테로고리기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 아릴기; 또는 중수소, 중수소로 치환 또는 비치환된 아릴기 및 중수소로 치환 또는 비치환된 헤테로고리기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 6으로 표시되는 화합물은 1개 이상의 중수소를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 6으로 표시되는 화합물은 하기 화합물 중 선택된 어느 하나일 수 있다.
Figure PCTKR2020000473-appb-I000027
Figure PCTKR2020000473-appb-I000028
Figure PCTKR2020000473-appb-I000029
Figure PCTKR2020000473-appb-I000030
Figure PCTKR2020000473-appb-I000031
일반적인 유기발광소자에서 일중항과 삼중항에서 생성되는 엑시톤의 수가 25:75(일중항:삼중항)의 비율로 생성되며, 엑시톤 이동에 따른 발광 형태에 따라 형광 발광, 인광 발광 및 열활성화 지연형광 발광으로 나눌 수 있다. 상기 열활성화 지연형광은 삼중항 여기자로부터 일중항 여기자로의 역항간 교차(Reverse Intersystem Crossing(RISC))가 일어나는 현상을 이용한 현상을 나타내며, 이는 Thermally Activated Delayed Fluorescence(TADF)라고 지칭하기도 한다. 이러한 열활성화 지연형광을 이용하면, 전계 여기에 의한 형광 발광에 있어서도, 이론적으로는 인광 발광과 동등한 100%의 내부 양자 효율이 가능하게 된다
열활성화 지연형광을 발현시키기 위해서는, 실온 또는 발광 소자 중의 발광층 온도에서 전계 여기에 의해 발생한 75%의 삼중항 여기자로부터 일중항 여기자로의 역항간 교차가 일어날 필요가 있다. 또한, 역항간 교차에 의해 발생한 일중항 여기자가, 직접 여기에 의해 발생한 25%의 일중항 여기자와 마찬가지로 형광 발광함으로써, 전술한 100%의 내부 양자 효율이 이론상 가능하게 된다. 이 역항간 교차가 일어나기 위해서는, 최저 여기 일중항 에너지 준위(S1)와 최저 삼중항 여기 에너지 준위(T1)와의 차의 절댓값(ΔEst)이 작을 것이 요구된다.
본 발명의 화합물은 ΔEst 0.5eV 미만의 지연형광 특성을 갖는다.
본 발명의 화합물은 ΔEst 0.5eV 미만의 지연 형광 특성을 가짐으로써, 일반적으로 삼중항 여기 상태(excited state)의 엑시톤들이 일중항 여기 상태(excited state)로 역계간전이하여 고효율을 갖는 유기발광소자를 구현할 수 있다.
일반적으로 ΔEst 0.5eV 미만인 물질들은 지연 형광 특성을 충족하며, 이를 확인하기 위해서는 PLQY(Photoluminescence quantum yield) 측정 및 여기자 수명을 측정하여 확인할 수 있다. 질소 분위기 및 산소 분위기에서의 PLQY 차가 크다면 지연 형광 특성이 있다고 말하며, 마이크로초 단위의 여기자 수명이 짧을수록 지연 형광 특성이 강하다고 말할 수 있다.
본 명세서의 유기발광소자는 전술한 화학식 1로 표시되는 화합물을 이용하여 1층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기발광소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 화합물 1로 표시되는 화합물을 포함하는 유기물층이 형성된 유기발광소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 명세서의 유기발광소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기발광소자는 유기물층으로서 정공수송층, 정공주입층, 전자차단층, 정공수송 및 정공주입을 동시에 하는 층, 전자수송층, 전자주입층, 정공차단층, 및 전자수송 및 주입을 동시에 하는 층 중 1층 이상을 포함하는 구조를 가질 수 있다. 그러나, 본 명세서의 유기발광소자의 구조는 이에 한정되지 않고 더 적은 수 또는 더 많은 수의 유기물층을 포함할 수 있다.
본 명세서의 유기발광소자에서, 상기 유기물층은 정공수송층 또는 정공주입층을 포함하고, 상기 정공수송층 또는 정공주입층은 전술한 화학식 1로 표시되는 화합물을 포함할 수 있다.
또 하나의 본 명세서의 유기발광소자에서, 상기 유기물층은 전자수송층 또는 전자주입층을 포함하고, 상기 전자수송층 또는 전자주입층은 전술한 화학식 1로 표시되는 화합물을 포함할 수 있다.
또 하나의 본 명세서의 유기발광소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 전술한 화학식 1로 표시되는 화합물을 포함할 수 있다.
또 하나의 일 실시상태에 따르면, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 전술한 화학식 1로 표시되는 화합물을 발광층의 도핑 재료로 포함할 수 있다.
또 하나의 일 실시상태에 따르면, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 전술한 화학식 1로 표시되는 화합물을 발광층의 청색 형광 도핑 재료로 포함할 수 있다.
또 하나의 일 실시상태에 따르면, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 전술한 화학식 1로 표시되는 화합물을 발광층의 청색 형광 도핑 재료로 포함하고, 상기 화학식 6으로 표시되는 화합물을 발광층의 호스트로 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 제2 전극은 음극이다.
또 하나의 일 실시상태에 따르면, 상기 제1 전극은 음극이고, 제2 전극은 양극이다.
상기 유기발광소자는 예컨대 하기와 같은 적층 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.
(1) 양극/정공수송층/발광층/음극
(2) 양극/정공주입층/정공수송층/발광층/음극
(3) 양극/정공수송층/발광층/전자수송층/음극
(4) 양극/정공수송층/발광층/전자수송층/전자주입층/음극
(5) 양극/정공주입층/정공수송층/발광층/전자수송층/음극
(6) 양극/정공주입층/정공수송층/발광층/전자수송층/전자주입층/음극
(7) 양극/정공수송층/전자차단층/발광층/전자수송층/음극
(8) 양극/ 정공수송층/전자차단층/발광층/전자수송층/전자주입층/음극
(9) 양극/정공주입층/정공수송층/전자차단층/발광층/전자수송층/음극
(10) 양극/정공주입층/정공수송층/전자차단층/발광층/전자수송층/전자주입 층/음극
(11) 양극/정공수송층/발광층/정공차단층/전자수송층/음극
(12) 양극/정공수송층/발광층/정공차단층/전자수송층/전자주입층/음극
(13) 양극/정공주입층/정공수송층/발광층/정공차단층/전자수송층/음극
(14) 양극/정공주입층/정공수송층/발광층/정공차단층/전자수송층/전자주입 층/음극
(15) 양극/정공주입층/제1 정공수송층/제2 정공수송층 /발광층/제1 전자수송층/제2 전자수송층/음극
(16) 양극/정공주입층/제1 정공수송층/제2 정공수송층 /발광층/전자수송층/ 전자수송 및 주입을 동시에 수행하는 층/음극
본 명세서의 유기발광소자의 구조는 도 1 및 도 2에 나타낸 것과 같은 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.
도 1에는 기판(1) 위에 양극(2), 발광층(3) 및 음극(4)이 순차적으로 적층된 유기발광소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화합물은 상기 발광층(3)에 포함될 수 있다.
도 2에는 기판(1) 위에 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)이 순차적으로 적층된 유기발광소자의 구조가 예시되어 있다.
예컨대, 본 명세서에 따른 유기발광소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 발광층, 전자차단층, 전자수송층 및 전자주입층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다.
상기 유기물층은 정공주입층, 정공수송층, 전자주입 및 전자수송을 동시에 하는 층, 전자차단층, 발광층 및 전자수송층, 전자주입층, 전자주입 및 전자수송을 동시에 하는 층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용매 공정(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
상기 양극은 정공을 주입하는 전극으로, 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO, Indium Tin Oxide), 인듐아연 산화물(IZO, Indium Zinc Oxide)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극은 전자를 주입하는 전극으로, 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 양극으로부터 발광층으로 정공의 주입을 원활하게 하는 역할을 하는 층이며, 정공 주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입 받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 정공주입층의 두께는 1nm 내지 150nm일 수 있다. 상기 정공주입층의 두께가 1nm 이상이면, 정공 주입 특성이 저하되는 것을 방지할 수 있는 이점이 있고, 150nm 이하이면, 정공주입층의 두께가 너무 두꺼워 정공의 이동을 향상시키기 위해 구동전압이 상승되는 것을 방지할 수 있는 이점이 있다.
상기 정공수송층은 정공의 수송을 원활하게 하는 역할을 할 수 있다. 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공수송층과 발광층 사이에 전자차단층이 구비될 수 있다. 상기 전자차단층은 당 기술분야에 알려져 있는 재료가 사용될 수 있다.
상기 발광층은 적색, 녹색 또는 청색을 발광할 수 있으며, 인광 물질 또는 형광 물질로 이루어질 수 있다. 상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
발광층이 청색 발광을 하는 경우, 발광 도펀트로 본원 화학식 1로 표시되는 화합물을 사용할 수 있다. 추가로, (4,6-F2ppy)2Irpic와 같은 인광 물질이나, spiro-DPVBi, spiro-6P, 디스틸벤젠(DSB), 디스트릴아릴렌(DSA), PFO계 고분자, PPV계 고분자와 같은 형광 물질을 더 포함할 수 있다.
발광층의 호스트 재료로는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란, 디벤조퓨란 유도체, 디벤조티오펜, 디벤조티오펜 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
발광 도펀트로 본원 화학식 1로 표시되는 화합물을 사용하는 경우, 상술한 화학식 6으로 표시되는 화합물을 호스트로 사용할 수 있다. 이때, 호스트로 화학식 6으로 표시되는 화합물을 단독 또는 추가의 호스트와 혼합하여 사용할 수 있다.
상기 전자수송층은 전자의 수송을 원활하게 하는 역할을 할 수 있다. 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자수송층의 두께는 1 내지 50nm일 수 있다. 전자수송층의 두께가 1nm 이상이면, 전자 수송 특성이 저하되는 것을 방지할 수 있는 이점이 있고, 50nm 이하이면, 전자수송층의 두께가 너무 두꺼워 전자의 이동을 향상시키기 위해 구동전압이 상승되는 것을 방지할 수 있는 이점이 있다.
상기 전자주입층은 전자의 주입을 원활하게 하는 역할을 할 수 있다. 전자 주입 물질로는 전자를 수송하는 능력을 갖고, 음극으로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
상기 정공차단층은 정공의 음극 도달을 저지하는 층으로, 일반적으로 정공주입층과 동일한 조건으로 형성될 수 있다. 구체적으로 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, BCP, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되지 않는다.
본 발명에 따른 유기발광소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 명세서의 화학식 1로 표시되는 화합물은 하기 반응식과 같이 코어구조가 제조될 수 있다. 치환기는 당 기술분야에 알려져 있는 방법에 의하여 결합될 수 있으며, 치환기의 종류, 위치 및 개수는 당 기술분야에 알려져 있는 기술에 따라 변경될 수 있다.
<반응식>
Figure PCTKR2020000473-appb-I000032
여기서, R1 내지 R3은 화학식 1에서의 정의와 같다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하기 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
[합성예]
[합성예 1] 화합물 A-1의 합성
가. 중간체 C-3의 합성
Figure PCTKR2020000473-appb-I000033
시작 물질 C-1(10g), C-2 (12.3g), Pd(PtBu3)2 (0.43 g), NaOtBu (8.0g) 및 톨루엔 (200ml)이 들어간 플라스크를 110℃에서 가열하고, 1시간 동안 교반하였다. 반응액을 실온까지 냉각시키고, 물 및 톨루엔을 가하여 분액한 후, 용매를 감압하에서 증류 제거하였다. 재결정(diethyl ether/hexane/methanol)으로 정제하여 화합물 C-3(14.9g)을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=440에서 피크가 확인되었다.
여기서, tBu은 tert-부틸기를 의미한다.
나. 중간체 C-5의 합성
Figure PCTKR2020000473-appb-I000034
중간체 C-3의 합성에서, C-1(10g), C-2 (12.3g) 및 톨루엔 대신, C-3(5 g), C-4(6.6g) 및 자일렌(50mL)을 이용하여 중간체 C-3의 합성과 동일한 방법으로 중간체 C-5를 합성하였다.
컬럼 크로마토그래피 정제법(eluent: ethylacetate/hexane)을 이용하여 6.7g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=961에서 피크가 확인되었다.
다. 화합물 A-1의 합성
Figure PCTKR2020000473-appb-I000035
중간체 C-5 (6.0 g) 및 톨루엔 (60 ml)이 들어간 플라스크에, 아르곤 분위기 하, 0℃에서 1.7M의 tert-부틸리튬펜탄 용액 (12.8 ml)을 가하였다. 적하 종료 후, 70℃로 승온하여 4시간 동안 교반하였다. -40℃로 냉각하고 삼브롬화 붕소 (0.9 ml)를 가하고, 상온으로 승온하며 4시간 동안 교반하였다. 반응 종료되면 sat.aq. Na2S2O3 및 sat.aq. NaHCO3를 가하여 분액한 후, 용매를 감압하에서 증류 제거하였다. 실리카겔 컬럼 크로마토그래피 (전개액: 헥산/톨루엔 =1/30)로 정제하여, 화합물 A-1 (1.2 g)를 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=935에서 피크가 확인되었다.
[합성예 2] 화합물 A-4의 합성
가. 중간체 C-9의 합성
Figure PCTKR2020000473-appb-I000036
중간체 C-3의 합성에서, C-1(10g) 및 C-2 (12.3g)대신, C-6(10 g) 및 C-2(8.2g)을 이용하여 중간체 C-3의 합성과 동일한 방법으로 중간체 C-7 12.4g을 얻었다.
중간체 C-5의 합성에서, C-3(5 g) 및 C-4(6.6g)대신, C-7(8 g) 및 C-8(7.5g)을 이용하여 중간체 C-5의 합성과 동일한 방법으로 중간체 C-9 9.4g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=1025에서 피크가 확인되었다.
나. 화합물 A-4의 합성
Figure PCTKR2020000473-appb-I000037
화합물 A-1의 합성에서, C-5 (6.0 g) 대신, C-9(8 g)을 이용하여 화합물 A-1의 합성과 동일한 방법으로 화합물 A-4 1.6g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=1000에서 피크가 확인되었다.
[합성예 3] 화합물 A-5의 합성
가. 중간체 C-13의 합성
Figure PCTKR2020000473-appb-I000038
중간체 C-3의 합성에서, C-1(10g) 및 C-2 (12.3g)대신, C-6(10 g) 및 C-10(9.8g)을 이용하여 중간체 C-3의 합성과 동일한 방법으로 중간체 C-11 11.9g을 얻었다.
중간체 C-5의 합성에서, C-3(5 g) 및 C-4(6.6g)대신, C-11(6.5g) 및 C-12(4.4g)을 이용하여 중간체 C-5의 합성과 동일한 방법으로 중간체 C-13 6.3g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=1006에서 피크가 확인되었다.
나. 화합물 A-5의 합성
Figure PCTKR2020000473-appb-I000039
화합물 A-1의 합성에서, C-5 (6.0 g) 대신, C-13(6g)을 이용하여 화합물 A-1의 합성과 동일한 방법으로 화합물 A-5 1.3g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=980에서 피크가 확인되었다.
[합성예 4] 화합물 A-2의 합성
가. 중간체 C-16의 합성
Figure PCTKR2020000473-appb-I000040
여기서 Tf는 트리플루오로메탄술포닐(trifluoromethanesulfonyl)기를 의미한다.
중간체 C-3의 합성에서, C-1(10g) 및 C-2 (12.3g)대신, C-14(25 g) 및 C-15(47.8g)을 이용하여 중간체 C-3의 합성과 동일한 방법으로 아민화 반응을 한 다음, 정제과정 없이 다음 반응을 진행하였다.
아민화 반응 생성물을 다이메틸폼아마이드 (dimethylformamide, DMF) (300 mL)에 녹인 후 포타슘 카보네이트 (18.6g)을 상온에서 추가한 다음, 0℃에서 트리플릭 언하이드라이드 (triflic anhydride) (19.1g)를 천천히 적가하였다. 2시간 동안 교반하여 반응 종료 후 물 200mL, 에틸아세테이트 300mL를 넣고 30분 동안 교반하였다. 유기층을 aq. NaCl을 이용하여 2차례 씻어준다. 분액한 유기층을 회수하여 Mg2SO4(anhydrous) 처리하여 여과하였다. 여과한 용액의 용매를 감압 증류 제거하고 컬럼크로마토그래피(에틸아세테이트/헥산) 정제법을 이용하여 중간체 C-16를 34.7g을 얻었다.
나. 중간체 C-20의 합성
Figure PCTKR2020000473-appb-I000041
C-16(33g), C-17 (7.8g), Palladium(0) bis(dibenzylideneacetone) (Pd(dba)2)(0.25g), 2-Dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl (Xphos)(0.42g), Cs2CO3 (43g) 및 자일렌 (220ml)이 들어간 플라스크를 130℃에서 가열하고, 12시간 동안 교반하였다. 반응액을 실온까지 냉각시키고, sat. aq. NH4Cl 및 톨루엔을 가하여 분액한 후, 용매를 감압하에서 증류 제거하였다. 실리카겔 컬럼 크로마토그래피 (ethylacetate/hexane)으로 정제하여 중간체 C-18 (23.4g)을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=765에서 피크가 확인되었다.
중간체 C-5의 합성에서, C-3(5 g) 및 C-4(6.6g)대신, C-18(9g) 및 C-19(2.4g)을 이용하여 중간체 C-5의 합성과 동일한 방법으로 중간체 C-20 7.4g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=926에서 피크가 확인되었다.
다. 화합물 A-2의 합성
Figure PCTKR2020000473-appb-I000042
화합물 A-1의 합성에서, C-5 (6.0 g) 대신, C-20(6.5g)을 이용하여 화합물 A-1의 합성과 동일한 방법으로 화합물 A-2 1.6g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, 화합물 A-2는 [M+H]+=900에서 피크가 확인되었다.
[합성예 5] 화합물 A-3의 합성
가. 중간체 C-22의 합성
Figure PCTKR2020000473-appb-I000043
중간체 C-5의 합성에서, C-3(5 g) 및 C-4(6.6g)대신, C-18(9g) 및 C-21(4.0g)을 이용하여 중간체 C-5의 합성과 동일한 방법으로 중간체 C-22 8.1g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=1050에서 피크가 확인되었다.
나. 화합물 A-3의 합성
Figure PCTKR2020000473-appb-I000044
화합물 A-1의 합성에서, C-5 (6.0 g) 대신, C-22(7g)을 이용하여 화합물 A-1의 합성과 동일한 방법으로 화합물 A-3 2.4g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, 화합물 A-3은 [M+H]+=1024에서 피크가 확인되었다.
[합성예 6] 화합물 A-8의 합성
가. 중간체 C-25의 합성
Figure PCTKR2020000473-appb-I000045
중간체 C-5의 합성에서, C-3(5 g) 및 C-4(6.6g)대신, C-23(8g), C-24(21.8g)을 이용하여 중간체 C-5의 합성과 동일한 방법으로 중간체 C-25 16.6g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=1171에서 피크가 확인되었다.
나. 화합물 A-8의 합성
Figure PCTKR2020000473-appb-I000046
중간체 C-25 (15 g) 및 톨루엔 (80 ml)이 들어간 플라스크에, 아르곤 분위기 하, 0℃에서 n-부틸리튬펜탄 용액 (10.2ml, 2.5M in hexane)을 가하였다. 적하 종료 후, 50℃로 승온하여 2시간 동안 교반하였다. -40℃로 냉각하고 삼브롬화 붕소 (1.8 ml)를 가하고, 실온으로 승온하며 4시간 동안 교반하였다. 그 후, 다시 0℃까지 냉각하고 N,N-디이소프로필에틸아민 (10 ml)을 가하고, 반응액을 실온에서 30분 더 추가 교반하였다. Sat.aq.NaCl 및 에틸아세테이트를 가하여 분액한 후, 용매를 감압 하에서 증류 제거하였다. 실리카겔 컬럼 크로마토그래피 (전개액: 헥산/톨루엔)로 정제하여, 화합물 A-8 (1.8g)를 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=1102에서 피크가 확인되었다.
[합성예 7] 화합물 A-9의 합성
Figure PCTKR2020000473-appb-I000047
중간체 C-5의 합성에서, C-3(5 g) 및 C-4(6.6g)대신, C-26(8g), C-27(22.6g)을 이용하여 중간체 C-5의 합성과 동일한 방법으로 중간체 C-28 14.6g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=1051에서 피크가 확인되었다.
화합물 A-8의 합성에서, C-25 (15 g) 대신, C-28(13g)을 이용하여 화합물 A-8의 합성과 동일한 방법으로 화합물 A-9 1.3g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=981에서 피크가 확인되었다.
[합성예 8] 화합물 A-6의 합성
가. 중간체 C-31의 합성
Figure PCTKR2020000473-appb-I000048
중간체 C-29 (20g), C-30 (14.9g), K2CO3 (24.7g) 및 N,N-dimethylacetamide(DMAC) (200mL)이 들어간 플라스크를 160℃에서 가열하고, 12시간 동안 교반하였다. 상온으로 냉각 후 에틸아세테이트 (300mL)와 물(200mL) 가하여 분액한 후, 유기층을 aq. 1N NaOH로 2차례 씻어주었다. 유기층의 용매를 감압 하에서 증류 제거하고, 실리카겔 컬럼 크로마토그래피 (전개액: 헥산/톨루엔)로 정제하여, 중간체 C-31 (13.5g)를 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=369에서 피크가 확인되었다.
나. 화합물 A-6의 합성
Figure PCTKR2020000473-appb-I000049
중간체 C-5의 합성에서, C-3(5 g) 및 C-4(6.6g)대신, C-31(11 g) 및 C-4(18g)을 이용하여 중간체 C-5의 합성과 동일한 방법으로 중간체 C-32 14.3g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=846에서 피크가 확인되었다.
화합물 A-1의 합성에서, C-5 (6.0 g) 대신, C-32(13g)을 이용하여 화합물 A-1의 합성과 동일한 방법으로 화합물 A-6 1.5g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=820에서 피크가 확인되었다.
[합성예 9] 화합물 A-7의 합성
Figure PCTKR2020000473-appb-I000050
중간체 C-31의 합성에서 C-29 (20g) 및 C-30 (14.9g) 대신, C-29(15 g) 및 C-33(11.4g)을 이용하여 중간체 C-31의 합성과 동일한 방법으로 중간체 C-34 8.8g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=373에서 피크가 확인되었다.
중간체 C-5의 합성에서, C-3(5 g) 및 C-4(6.6g)대신, C-34(8 g) 및 C-4(13g)을 이용하여 중간체 C-5의 합성과 동일한 방법으로 중간체 C-35 12.2g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=850에서 피크가 확인되었다.
화합물 A-1의 합성에서, C-5 (6.0 g) 대신, C-35(10g)을 이용하여 화합물 A-1의 합성과 동일한 방법으로 화합물 A-7 0.9g을 얻었다. 얻어진 고체의 질량스펙트럼 측정결과, [M+H]+=824에서 피크가 확인되었다.
[실험예 1]
[실시예 1]
ITO(indium tin oxide)가 1300Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 및 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 하기 화합물 HAT를 50Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 그 위에 제1 정공수송층으로 하기 화합물 HT-A 1000Å을 진공 증착하고, 연이어 제2 정공수송층으로 하기 화합물 HT-B 100Å을 증착하였다. 호스트인 BH-A와 도펀트인 화합물 A-1를 97: 3의 중량비로 진공 증착하여 200Å두께의 발광층을 형성하였다.
그 다음에 제1 전자수송층으로 하기 화합물 ET-A 50Å을 진공 증착하고, 연이어 전자 주입 및 전자 수송을 동시에 하는 제 2 전자 수송층으로 하기 화합물 ET-B와 하기 화합물 Liq를 1:1 비율로 300Å을 증착하였고, 이 위에 순차적으로 500Å 두께로 마그네슘과 은(질량비 10:1)을 동시에 증착하여 음극을 형성하여, 유기 발광 소자를 제조하였다.
상기의 과정에서 유기물의 증착속도는 0.4 ~ 1.0 Å/sec를 유지하였고, 은과 마그네슘은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 5×10-8 내지 1×10-7 torr를 유지하여, 유기 발광 소자를 제작하였다.
Figure PCTKR2020000473-appb-I000051
Figure PCTKR2020000473-appb-I000052
[실시예 2 내지 11]
상기 실시예 1에서 발광층 물질로 하기 표 1에 기재된 호스트 및 도펀트 화합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다.
[비교예 1 내지 4]
상기 실시예 1에서 발광층 물질로 하기 표 1에 기재된 호스트 및 도펀트 화합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다.
Figure PCTKR2020000473-appb-I000053
[실시예 12 내지 18 및 비교예 5 내지 6]
상기 실시예 1에서 발광층 물질로 하기 표 1에 기재된 호스트 및 도펀트 화합물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다. 구체적으로, 호스트는 실시예 1의 BH-A 대신 제1 호스트 및 제2 호스트를 1:1 중량비로 사용하였다.
제 1 호스트(발광층) 제 2 호스트(발광층) 도판트(발광층)
실시예 1 BH-A - A-1
실시예 2 BH-A - A-2
실시예 3 BH-A - A-4
실시예 4 BH-A - A-6
실시예 5 BH-A - A-8
비교예 1 BH-A - X-1
비교예 2 BH-A - X-2
실시예 6 BH-B - A-2
실시예 7 BH-C - A-1
실시예 8 BH-C - A-4
실시예 9 BH-C - A-8
실시예 10 BH-D - A-2
실시예 11 BH-D - A-8
비교예 3 BH-C - X-3
비교예 4 BH-D - X-2
실시예 12 BH-A BH-C A-1
실시예 13 BH-A BH-C A-4
실시예 14 BH-B BH-C A-2
실시예 15 BH-A BH-D A-1
실시예 16 BH-B BH-D A-4
실시예 17 BH-B BH-D A-6
실시예 18 BH-C BH-D A-2
비교예 5 BH-A BH-C X-1
비교예 6 BH-B BH-C X-2
상기 실시예 1 내지 18 및 비교예 1 내지 6에 의해 제작된 유기 발광 소자를 10 mA/cm2의 전류밀도에서 구동 전압 및 효율을 측정하였고, 그 결과를 하기 표 2에 나타내었다.
entry 10mA/cm2
구동전압 (V) 발광효율 (cd/A)
실시예 1 4.3 3.85
실시예 2 4.3 4.11
실시예 3 4.3 3.87
실시예 4 4.2 3.81
실시예 5 4.2 3.93
비교예 1 4.5 3.74
비교예 2 4.6 3.52
실시예 6 4.3 4.15
실시예 7 4.1 3.81
실시예 8 4.1 3.91
실시예 9 4.1 3.92
실시예 10 4 3.89
실시예 11 3.9 3.99
비교예 3 4.4 3.70
비교예 4 4.5 3.55
실시예 12 4.223 3.89
실시예 13 4.2 4.00
실시예 14 4.1 4.00
실시예 15 4.1 3.98
실시예 16 4.2 4.09
실시예 17 4.2 3.77
실시예 18 3.9 3.99
비교예 5 4.4 3.72
비교예 6 4.4 3.51
[실험예 2]
Figure PCTKR2020000473-appb-I000054
상기 화합물을 TD-DFT(B3LYP) method/6-31G* basis 방법을 이용하여 분자의 absorption 상태에서의 일중항(singlet, S1) 및 삼중항(triplet, T1)의 에너지 준위를 계산하였다. 계산결과는 하기 표 3과 같다.
화합물 S1 (eV) T1 (eV) △EST (eV)
비교예 7 X-4 3.14 2.64 0.50
비교예 8 X-2 3.05 2.54 0.51
실시예 19 B-1 2.97 2.54 0.43
실시예 20 B-2 2.94 2.49 0.45
실시예 21 B-3 2.99 2.61 0.38
상기 △EST는 ES(일중항 에너지 준위, eV)와 ET(삼중항 에너지 준위, eV) 사이의 차이의 절대값으로 정의한다.실시예 19 내지 21의 화합물 B-1 내지 B-3의 △EST는 X-2, X-4의 그것보다 작은 값을 가진다.상기 화학식 1로 표시되는 화합물의 삼중항 에너지와 일중항 에너지의 차이값(△EST)은 0.5 eV미만이고(보다 바람직하게는 0.15 eV 이하) 그 값이 작을 수록 발광층의 도펀트로 사용 시, 열활성화 지연 형광(TADF, Thermally activated delayed fluorescence) 효과로 인해 물질의 양자효율(quantum yield)이 높으며, 이로 인하여 소자의 효율 또한 높일 수 있다.
상기 열활성화 지연 형광이란 열에너지에 의하여 삼중항 여기 상태로부터 일중항 여기 상태로 역계간전이가 유도되고, 일중항 여기 상태의 엑시톤이 바닥 상태(Ground State)로 이동하여 형광 발광을 일으키는 현상을 의미한다.
[실험예 3]
상기 화학식 1로 표시되는 화합물의 상기 삼중항 에너지와 일중항 에너지의 차이값 (△EST)을 실측하였고, 측정하기 위해 이용한 측정장비는 JASCO FP-8600 형광분광광도계이다.
상기 일중항 에너지 Es는 다음과 같이 얻을 수 있다. 톨루엔을 용매로 하여 측정할 화합물을 1μM 농도로 용해하여 측정용 시료를 준비한다. 시료용액을 석영셀에 넣고 질소 기체(N2)를 이용하여 탈기(degassing)해주어 용액내 산소를 제거한 다음, 측정 장비를 이용하여 실온(300K)에서 형광 스펙트럼을 측정한다. 이때 최대발광피크의 파장값(nm)을 얻고, 이 파장값(nm)을 에너지값(eV)으로 환산한 값을 일중항 에너지 ES(eV)로 한다.
상기 삼중항 에너지 ET는 JASCO FP-8600 형광분광광도계 측정장비에 온도조절장치 PMU-830를 연결하여 다음과 같이 얻을 수 있다. 일중항 에너지를 얻기 위해 준비한 산소를 제거한 시료용액을 넣은 석영셀을 액체질소(N2)가 담긴 장치에 넣는다. 온도 안정화(77K)가 된 다음, 20 마이크로초(microsecond) 지연된 발광인 인광 스펙트럼을 측정한다. 이때 인광 스펙트럼은 x축이 파장(λ, 단위: nm)이고 y축이 발광도인데, 가장 장파장에서의 최대발광피크에서부터 단파장 방향으로 내려가는 접선을 그었을 때, 그 접선과 x축과의 만나는 점의 파장값(nm)을 도 3과 같이 얻는다. 이 파장값(nm)을 에너지값(eV)으로 환산한 값을 삼중항 에너지 ET(eV)로 한다.
하기의 화합물을 상기의 방법을 이용하여 일중항, 삼중항 에너지 및 그 차이값을 구하였다.
화합물 일중항 에너지(eV) 삼중항 에너지(eV) △EST(eV)
실시예 22 화합물 A-1 2.68 2.56 0.12
실시예 23 화합물 A-2 2.67 2.59 0.08
상기 화학식 1로 표시되는 화합물의 삼중항 에너지와 일중항 에너지의 차이값 (△EST)은 0.5 eV 미만이고, 보다 바람직하게는 0.15 eV 이하이며, 상기 범위를 만족하는 경우 높은 양자효율을 얻을 수 있다. 화합물 A-1, A-2의 △EST는 상기 범위를 만족하는 것을 실시예 22 내지 23으로 확인하였으며, 이로 인한 열활성화 지연 형광 효과를 표 2의 실시예 및 비교예의 소자데이터의 비교를 통하여 간접적으로 확인하였다.
[실험예 4]
상기 실시예 1에서와 유사하게 아래의 hole-only 및 electron-only 소자 구조와 같이 유기 소자를 제작하였다.
<hole only device 구조>
ITO / F4TCNQ (두께100Å) / HT-A (1000 Å) / HT-B (50 Å) / BH-C (200 Å) + A-1 (3wt% 도핑) / HAT (100Å) / Ag 1000Å
<electron only device 구조>
ITO / Mg + Ag(10:1 질량비, 두께 330 Å) / Liq (10 Å) / BH-B (200 Å) + A-1 (3wt% 도핑) / ET-A (50 Å) / ET-B + Liq (155 Å +155 Å) / Mg + Ag (10:1 질량비, 두께 330 Å) / Al (800 Å)
Figure PCTKR2020000473-appb-I000055
전위차에 의해 생성된 전하(전공 또는 전자)가 소자내에서 반대쪽 전극으로 이동하는데 걸린 시간을 측정하여 전하이동도를 측정할 수 있다. 관련 측정자료를 도 4에 나타냈다.
도 4의 결과에 따르면, 전자 이동 특성은 화합물 X-1, X-2, A-1이 상대적으로 유사하지만, 정공 이동 특성은 화합물 A-1이 매우 좋은 것을 확인 할 수 있다. 정공 이동 특성이 향상된 화합물 A-1은 전하의 균형을 맞추어 일반적으로 정공수송층을 향해 치우쳐 있는 소자의 발광존을 이동 시킴으로써 소자의 효율을 향상 시킬 수 있으며, 소자의 구동전압 또한 낮출 수 있다.

Claims (13)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2020000473-appb-I000056
    화학식 1에 있어서,
    X1 및 X2는 각각 독립적으로, NR, O 또는 S이고,
    R 및 R1 내지 R3는 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이거나, 또는 인접한 기와 서로 결합하여 고리를 형성할 수 있으며,
    a 및 c는 각각 독립적으로, 0 내지 4의 정수이고,
    b는 0 내지 3의 정수이며,
    a 내지 c가 각각 독립적으로 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하고,
    단, 각각 독립적으로 서로 결합한 복수의 R1, 각각 독립적으로 서로 결합한 복수의 R3 및 상기 R 중 적어도 하나는 치환 또는 비치환된 디벤조실롤기를 포함한다.
  2. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 1개 내지 3개의 규소 원소를 갖는 것인 화합물.
  3. 청구항 1에 있어서,
    상기 화학식 1은 하기 화학식 2 내지 4 중 어느 하나로 표시되는 화합물:
    [화학식 2]
    Figure PCTKR2020000473-appb-I000057
    [화학식 3]
    Figure PCTKR2020000473-appb-I000058
    [화학식 4]
    Figure PCTKR2020000473-appb-I000059
    화학식 2 내지 4에 있어서,
    R4 내지 R8은 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 N, O 또는 S를 포함하는 헤테로고리기이고,
    d 및 f는 각각 독립적으로, 0 내지 4의 정수이며,
    e는 0 내지 3의 정수이며,
    d 내지 f는 각각 독립적으로, 2 이상인 경우 괄호 내의 치환기는 서로 같거나 상이하고,
    R' 및 R"은 각각 독립적으로, 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
    R' 및 R" 중 적어도 하나는 하기 화학식 5를 포함하며,
    [화학식 5]
    Figure PCTKR2020000473-appb-I000060
    R10 및 R11는 각각 독립적으로, 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이며,
    R12는 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 N, O 또는 S를 포함하는 헤테로고리기이고,
    g는 0 내지 7의 정수이고,
    g가 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
  4. 청구항 1에 있어서,
    R 및 R1 내지 R3이 각각 독립적으로 인접한 기와 결합하여 고리를 형성하는 경우, 하기 구조 중 어느 하나의 고리를 형성하는 것인 화합물:
    Figure PCTKR2020000473-appb-I000061
    상기 구조에서,
    A1 내지 A11은 각각 독립적으로, 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
    A12는 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
    a1 내지 a4, a6 및 a7은 각각 0 내지 4의 정수이고,
    a5는 0 내지 6의 정수이며,
    a1 내지 a7은 각각 독립적으로 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하고,
    *는 치환되는 위치를 표시한 것이다.
  5. 청구항 1에 있어서,
    상기 화학식 1은 하기 화합물들 중 어느 하나로 표시되는 화합물:
    Figure PCTKR2020000473-appb-I000062
    Figure PCTKR2020000473-appb-I000063
    Figure PCTKR2020000473-appb-I000064
    Figure PCTKR2020000473-appb-I000065
    Figure PCTKR2020000473-appb-I000066
    Figure PCTKR2020000473-appb-I000067
    Figure PCTKR2020000473-appb-I000068
    Figure PCTKR2020000473-appb-I000069
    Figure PCTKR2020000473-appb-I000070
    Figure PCTKR2020000473-appb-I000071
    Figure PCTKR2020000473-appb-I000072
    Figure PCTKR2020000473-appb-I000073
    .
  6. 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상이 청구항 1 내지 5 중 어느 한 항에 따른 화합물을 포함하는 유기발광소자.
  7. 청구항 6에 있어서,
    상기 유기물층은 정공수송층 또는 정공주입층을 포함하고, 상기 정공수송층 또는 정공주입층은 상기 화합물을 포함하는 유기발광소자.
  8. 청구항 6에 있어서,
    상기 유기물층은 전자수송층 또는 전자주입층을 포함하고, 상기 전자수송층 또는 전자주입층은 상기 화합물을 포함하는 유기발광소자.
  9. 청구항 6에 있어서,
    상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화합물을 포함하는 유기발광소자.
  10. 청구항 6에 있어서,
    상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화합물을 발광층의 도핑 재료로 포함하는 유기발광소자.
  11. 청구항 10에 있어서,
    상기 화합물의 일중항(singlet) 에너지 준위와 삼중항(triplet) 에너지 준위의 차(βst)는 0.5eV 미만인 것인 유기발광소자.
  12. 청구항 10에 있어서,
    상기 발광층은 하기 화학식 6으로 표시되는 화합물을 호스트로 사용하는 것인 유기발광소자:
    [화학식 6]
    Figure PCTKR2020000473-appb-I000074
    화학식 6에 있어서,
    Ar은 중수소; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이며,
    n은 1 내지 10의 정수이고,
    n이 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
  13. 청구항 12에 있어서,
    Ar은 중수소; 중수소, 중수소로 치환 또는 비치환된 아릴기 및 중수소로 치환 또는 비치환된 헤테로고리기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 아릴기; 또는 중수소, 중수소로 치환 또는 비치환된 아릴기 및 중수소로 치환 또는 비치환된 헤테로고리기로 이루어진 군으로부터 선택된 기로 치환 또는 비치환된 헤테로고리기인 것인 유기발광소자.
PCT/KR2020/000473 2019-01-11 2020-01-10 화합물 및 이를 포함하는 유기발광소자 WO2020145725A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/417,349 US20220077410A1 (en) 2019-01-11 2020-01-10 Compound and organic light-emitting device comprising same
CN202080007049.3A CN113195508B (en) 2019-01-11 2020-01-10 Compound and organic light emitting device comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0003903 2019-01-11
KR20190003903 2019-01-11

Publications (1)

Publication Number Publication Date
WO2020145725A1 true WO2020145725A1 (ko) 2020-07-16

Family

ID=71521797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000473 WO2020145725A1 (ko) 2019-01-11 2020-01-10 화합물 및 이를 포함하는 유기발광소자

Country Status (3)

Country Link
US (1) US20220077410A1 (ko)
KR (1) KR102324963B1 (ko)
WO (1) WO2020145725A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021073385A1 (zh) * 2019-10-18 2021-04-22 北京鼎材科技有限公司 一种含硼类化合物及含有其的有机电致发光器件
CN114181094A (zh) * 2020-09-15 2022-03-15 材料科学有限公司 有机化合物及包含有机化合物的有机电致发光元件

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220038199A (ko) * 2020-09-18 2022-03-28 삼성디스플레이 주식회사 발광 소자 및 발광 소자용 다환 화합물
JPWO2022092046A1 (ko) * 2020-10-26 2022-05-05
WO2022103018A1 (ko) * 2020-11-10 2022-05-19 에스에프씨 주식회사 다환 고리 화합물 및 이를 이용한 유기발광소자
KR20240004789A (ko) * 2021-06-24 2024-01-11 광동 어글레이어 압토일렉트라닉 머티어리얼즈 컴퍼니 리미티드 B-n 축합 고리를 함유한 유기 전계 발광 재료 및 이의 응용
KR102494362B1 (ko) * 2022-02-15 2023-02-07 주식회사 로오딘 장수명 유기 발광 재료 및 유기발광다이오드

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170130435A (ko) * 2015-03-25 2017-11-28 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물 및 발광층 형성용 조성물
KR20180010223A (ko) * 2015-07-24 2018-01-30 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 소자, 표시 장치 및 조명 장치
KR20180122298A (ko) * 2017-05-02 2018-11-12 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR20180127918A (ko) * 2017-05-22 2018-11-30 머티어리얼사이언스 주식회사 유기화합물 및 이를 포함하는 유기전계발광소자
US20180370993A1 (en) * 2017-06-23 2018-12-27 Kyulux North America, Inc. Composition of matter for use in organic light-emitting diodes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100948965B1 (ko) * 2007-10-25 2010-03-23 주식회사 하나화인켐 유기 발광 화합물 및 이를 구비한 유기 발광 소자
KR102544981B1 (ko) * 2017-10-16 2023-06-21 삼성디스플레이 주식회사 유기 발광 소자 및 발광 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170130435A (ko) * 2015-03-25 2017-11-28 가꼬우 호징 관세이 가쿠잉 다환 방향족 화합물 및 발광층 형성용 조성물
KR20180010223A (ko) * 2015-07-24 2018-01-30 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 소자, 표시 장치 및 조명 장치
KR20180122298A (ko) * 2017-05-02 2018-11-12 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR20180127918A (ko) * 2017-05-22 2018-11-30 머티어리얼사이언스 주식회사 유기화합물 및 이를 포함하는 유기전계발광소자
US20180370993A1 (en) * 2017-06-23 2018-12-27 Kyulux North America, Inc. Composition of matter for use in organic light-emitting diodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021073385A1 (zh) * 2019-10-18 2021-04-22 北京鼎材科技有限公司 一种含硼类化合物及含有其的有机电致发光器件
CN114181094A (zh) * 2020-09-15 2022-03-15 材料科学有限公司 有机化合物及包含有机化合物的有机电致发光元件

Also Published As

Publication number Publication date
US20220077410A1 (en) 2022-03-10
CN113195508A (zh) 2021-07-30
KR102324963B1 (ko) 2021-11-11
KR20200087717A (ko) 2020-07-21

Similar Documents

Publication Publication Date Title
WO2019132506A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2017204594A1 (ko) 유기 발광 소자
WO2020145725A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020138963A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020076108A1 (ko) 유기발광소자
WO2017119792A1 (ko) 화합물 및 이를 포함하는 유기 전자 소자
WO2020091521A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2018182297A1 (ko) 벤조카바졸계 화합물 및 이를 포함하는 유기 발광 소자
WO2020159279A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2020122451A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020076109A1 (ko) 유기발광소자
WO2020167001A1 (ko) 보론 함유 화합물 및 이를 포함하는 유기 발광 소자
WO2022080927A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021091165A1 (ko) 유기 발광 소자
WO2020145693A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019194615A1 (ko) 다환 화합물 및 이를 포함하는 유기전자소자
WO2019172647A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2020149610A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020145692A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2023096405A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020246835A9 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2017061785A1 (ko) 스피로형 화합물 및 이를 포함하는 유기 발광 소자
WO2020185026A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020153653A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020153652A1 (ko) 화합물 및 이를 포함하는 유기발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20737984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20737984

Country of ref document: EP

Kind code of ref document: A1