WO2020145088A1 - シクロブタンの製造方法 - Google Patents

シクロブタンの製造方法 Download PDF

Info

Publication number
WO2020145088A1
WO2020145088A1 PCT/JP2019/050022 JP2019050022W WO2020145088A1 WO 2020145088 A1 WO2020145088 A1 WO 2020145088A1 JP 2019050022 W JP2019050022 W JP 2019050022W WO 2020145088 A1 WO2020145088 A1 WO 2020145088A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
catalyst
general formula
hydrogen fluoride
represented
Prior art date
Application number
PCT/JP2019/050022
Other languages
English (en)
French (fr)
Inventor
友亮 江藤
中村 新吾
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020217024996A priority Critical patent/KR102578063B1/ko
Priority to CN201980088269.0A priority patent/CN113272268B/zh
Priority to SG11202107214UA priority patent/SG11202107214UA/en
Publication of WO2020145088A1 publication Critical patent/WO2020145088A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/07Preparation of halogenated hydrocarbons by addition of hydrogen halides
    • C07C17/087Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C23/00Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
    • C07C23/02Monocyclic halogenated hydrocarbons
    • C07C23/06Monocyclic halogenated hydrocarbons with a four-membered ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present disclosure relates to a method for producing cyclobutane.
  • Cyclobutane containing a halogen atom is a compound useful as a dry etching gas for semiconductors, various refrigerants, foaming agents, heat transfer media, and the like.
  • Non-Patent Document 1 from 3,3,4,4,-tetrafluorocyclobutene, CoF 3 , MnF 3 , AgF 2 , CeF 4 or KCoF 4 or the like using a fluorinating agent, by a fluorination reaction, 1H- A method of making heptafluorocyclobutane is disclosed.
  • Non-Patent Document 2 a hexafluoro cyclobutene (cC 4 F 6), using a hydrogen bromide (HBr), by an addition reaction, to produce 1 Br, 2H-hexafluoro-cyclobutane and (cC 4 F 6 BrH) Is disclosed.
  • the present disclosure aims to produce cyclobutane containing a halogen atom with high selectivity.
  • the present disclosure includes the following configurations.
  • a method for producing comprising a step of reacting cyclobutene represented by and hydrogen fluoride in a gas phase in the presence of a catalyst.
  • Item 2. The production method according to Item 1, wherein 0.1 mol to 100 mol of hydrogen fluoride is supplied and reacted with 1 mol of cyclobutene represented by the general formula (2).
  • Item 3. The production method according to Item 1 or 2, wherein the catalyst is at least one catalyst selected from the group consisting of activated carbon and a chromium compound.
  • Item 5. The composition according to Item 4, which is used as a cleaning gas, an etching gas, a deposit gas, or a building block for organic synthesis.
  • cyclobutane containing a halogen atom can be produced with high selectivity.
  • the present disclosure includes the following embodiments.
  • the reaction is an addition reaction with hydrogen fluoride, and the step is performed in the gas phase in the presence of a catalyst.
  • cyclobutane containing a fluorine atom can be produced with high selectivity.
  • the “selectivity” refers to the target compound (fluorine atom is included in the effluent gas with respect to the total molar amount of compounds other than the raw material compounds (cyclobutane containing a fluorine atom) in the effluent gas from the reactor outlet. It means the ratio (mol%) of the total molar amount of (including cyclobutane).
  • the "conversion rate” refers to a compound other than the raw material compound (such as cyclobutane containing a fluorine atom) contained in the outflow gas from the reactor outlet with respect to the molar amount of the raw material compound (cyclobutene) supplied to the reactor. Means the ratio (mol%) of the total molar amount of.
  • the method for producing cyclobutane according to the present disclosure is suitable for industrial level production.
  • the method for producing cyclobutane according to the present disclosure uses cyclobutene and hydrogen fluoride as raw materials, and these raw materials are available on an industrial level.
  • the method for producing cyclobutane according to the present disclosure can achieve high selectivity when 1H-heptafluorocyclobutane is the target compound.
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and represent a hydrogen atom, a halogen atom or a perfluoroalkyl group.
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and represent a hydrogen atom, a halogen atom or a perfluoroalkyl group.
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and each represents a hydrogen atom, a halogen atom or a perfluoroalkyl group.
  • Examples of the halogen atom of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the perfluoroalkyl group of X 1 , X 2 , X 3 , X 4 , X 5 and X 6 is an alkyl group in which all hydrogen atoms are replaced by fluorine atoms.
  • the perfluoroalkyl group is, for example, a perfluoroalkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 4 carbon atoms, and particularly preferably 1 to 3 carbon atoms. It is preferably a fluoroalkyl group.
  • the perfluoroalkyl group is preferably a linear or branched perfluoroalkyl group.
  • the perfluoroalkyl group is preferably a trifluoromethyl group (CF 3 -) and a pentafluoroethyl group (C 2 F 5 -).
  • cyclobutene represented by the general formula (2) which is a raw material compound
  • X 1 , X 2 , X 3 , X 4 , X 5 and cyclobutane containing a fluorine atom can be produced with high selectivity.
  • X 6 are the same or different and each is a fluorine atom or a perfluoroalkyl group.
  • Examples of the cyclobutene represented by the general formula (2), which is a raw material compound, include the following:
  • the cyclobutene represented by the general formula (2) can be used alone or in combination of two or more kinds.
  • a known or commercially available product can be adopted.
  • cyclobutane containing a fluorine atom can be produced with high selectivity and high selectivity, and thus X 1 , X 2 , X 3 , X 4 , X 5 and X More preferably, 6 is a fluorine atom.
  • the molar ratio of cyclobutene to hydrogen fluoride (HF) is usually preferably supplied to the reactor in a gas phase together with cyclobutene (raw material compound) represented by the general formula (2).
  • the amount of hydrogen fluoride supplied is preferably about 0.1 mol to 100 mol with respect to 1 mol of cyclobutene (raw material compound) represented by the general formula (2).
  • the supply amount of hydrogen fluoride is more preferably about 0.5 mol to 50 mol, still more preferably about 1 mol to 30 mol, based on 1 mol of cyclobutene (raw material compound) represented by the general formula (2). Particularly preferred is about 20 to 20 mol.
  • the step of reacting cyclobutene and hydrogen fluoride in the present disclosure is an addition reaction with hydrogen fluoride, and is performed in the gas phase in the presence of a catalyst.
  • the step (addition reaction) of reacting cyclobutene and hydrogen fluoride in the present disclosure is preferably carried out in a gas phase, particularly preferably in a gas phase continuous flow system using a fixed bed reactor. When the gas phase continuous flow system is used, the apparatus, operation and the like can be simplified, and it is economically advantageous.
  • X 1 , X 2 , X 3 , X 4 and X 6 are fluorine. More preferably, it is an atom.
  • the addition reaction is hydrogen fluoride.
  • Catalyst The step of reacting cyclobutene and hydrogen fluoride in the present disclosure is carried out in the gas phase in the presence of a catalyst in the addition reaction with hydrogen fluoride.
  • the catalyst used in this step is preferably activated carbon.
  • the catalyst used in this step is preferably a metal catalyst.
  • metal catalysts chromium catalysts such as chromium oxide, chromium fluoride oxide, and chromium fluoride; aluminum catalysts such as aluminum oxide, aluminum fluoride oxide and aluminum fluoride; iron oxides, iron fluoride oxides, iron fluorides, etc. It is preferable to use a metal catalyst such as a catalyst, a nickel catalyst such as nickel oxide, nickel fluoride oxide or nickel fluoride, or a magnesium catalyst such as magnesium oxide, magnesium fluoride oxide or magnesium fluoride.
  • the catalyst is preferably at least one selected from the group consisting of the above metal catalysts.
  • the catalyst used in this step is preferably at least one selected from the group consisting of activated carbon and the metal catalyst.
  • chromium catalysts such as activated carbon, chromium oxide, chromium fluoride oxide, and chromium fluoride are more preferable because the target compound can be obtained with higher selectivity. It is also possible to further improve the conversion rate of the raw material compound.
  • the catalyst may be in powder form, but pellet form is preferred for the gas phase continuous flow reaction.
  • the specific surface area of the catalyst measured by the BET method (hereinafter, also referred to as BET specific surface area) is usually 10 to 3,000 m 2 /g, preferably 10 to 2,500 m 2 /g, more preferably 20 to It is 2,000 m 2 /g, more preferably 30 to 1,500 m 2 /g.
  • BET specific surface area of the catalyst is in such a range, the density of the catalyst particles is not too small, and thus the target compound can be obtained with high selectivity. It is also possible to improve the conversion rate of the raw material compound.
  • activated carbon having a BET specific surface area of 800 m 2 /g to 2,000 m 2 /g.
  • activated carbon When using activated carbon as a catalyst, it is preferable to use powdered activated carbon such as crushed coal, forming coal, granulated coal, and spherical coal. As the powdered activated carbon, it is preferable to use powdered activated carbon having a particle size of 4 mesh (4.76 mm) to 100 mesh (0.149 mm) in the JIS test. When activated carbon is used as the catalyst, it is possible to use activated carbon that has been treated by flowing nitrogen for a certain period of time at a temperature of 300 to 500° C. before use (heat-treated activated carbon).
  • a metal catalyst When a metal catalyst is used as the catalyst, it is preferably supported on a carrier.
  • the carrier include carbon, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica (SiO 2 ), titania (TiO 2 ), and the like.
  • carbon activated carbon, amorphous carbon, graphite, diamond or the like can be used.
  • chromium oxide and fluorinated chromium oxide will be described.
  • chromium oxide for example, when chromium oxide is represented by Cr 2 O 3 .nH 2 O, the value of n is preferably 3 or less, more preferably 1 to 1.5.
  • the chromium oxide is preferably one in which m is usually in the range of 1.5 ⁇ m ⁇ 3.
  • fluorinated chromium oxide can be prepared by fluorinating chromium oxide. Examples of the fluorination include fluorination with hydrogen fluoride (HF) and fluorination with fluorocarbon and the like.
  • Fluorinated chromium oxide as a catalyst can be obtained, for example, according to the method described in Japanese Patent No. 3412165.
  • fluorinating chromium oxide with hydrogen fluoride (HF treatment) fluorinated chromium oxide can be obtained.
  • the fluorination temperature is preferably 100 to 460° C., for example.
  • the pressure for fluorination is preferably the pressure at which it is subjected to a catalytic reaction.
  • the highly fluorinated-chromium oxide catalyst can be obtained by fluorinating chromium oxide at a temperature higher than usual for a long time.
  • the high fluorination-chromium oxide catalyst preferably has a fluorine content of 30% by mass or more, more preferably 30 to 45% by mass.
  • the fluorine content can be measured by a mass change of the catalyst or a general quantitative analysis method of chromium oxide.
  • the lower limit of the reaction temperature is to allow the addition reaction with hydrogen fluoride to proceed more efficiently and obtain the target compound with higher selectivity. From the viewpoint of being able to do so and suppressing the decrease in conversion, it is usually 50° C., preferably 200° C., more preferably 250° C., and further preferably 300° C.
  • the reaction temperature is preferably 50°C to 400°C, more preferably 100°C to 350°C, and further preferably 150°C to 300°C.
  • the reaction temperature is preferably 50°C or higher, more preferably 250°C or higher, even more preferably 300°C or higher.
  • the upper limit of the reaction temperature for reacting cyclobutene with hydrogen fluoride is such that the addition reaction with hydrogen fluoride can proceed more efficiently and the target compound can be obtained with a higher selectivity, and the reaction product decomposes. Or, from the viewpoint of suppressing a decrease in selectivity due to polymerization, it is usually 500°C, preferably 450°C, and more preferably 400°C.
  • the reaction time for reacting cyclobutene with hydrogen fluoride is the contact time of the starting compound with the catalyst (W/F 0 )[W: weight of metal catalyst (g), F 0 : flow rate of starting compound (cc /Sec)], the conversion rate of the raw material compounds can be increased, but the amount of catalyst increases and the equipment becomes large, which is inefficient.
  • the reaction time for reacting cyclobutene and hydrogen fluoride is the contact time (W/F 0 ) of the raw material compound to the catalyst from the viewpoint of improving the conversion rate of the raw material compound and suppressing the equipment cost. It is preferably 1 g ⁇ sec/cc to 30 g ⁇ sec/cc, more preferably 1.5 g ⁇ sec/cc to 10 g ⁇ sec/cc, and 2.0 g ⁇ sec/cc to 5.0 g ⁇ sec/cc. More preferably,
  • the contact time of the raw material compound with the catalyst means the time of contact between the raw material compound and the catalyst.
  • the molar ratio of cyclobutene and hydrogen fluoride The supply amount of hydrogen fluoride, when using activated carbon as a catalyst, and a chromium catalyst, from the viewpoint of reaction cost and productivity, cyclobutene represented by the general formula (2) (raw material).
  • the compound is preferably reacted in an amount of about 0.1 mol to 100 mol, more preferably about 0.5 mol to 75 mol, still more preferably about 1 mol to 50 mol, per 1 mol of the compound).
  • the reaction pressure for reacting cyclobutene and hydrogen fluoride is preferably -0.05 MPa to 2 MPa, from the viewpoint of more efficiently advancing the addition reaction with hydrogen fluoride, and -0.01 MPa to 1 MPa. It is more preferable that the pressure is from normal pressure to 0.5 MPa. In the present disclosure, the pressure is a gauge pressure unless otherwise noted.
  • the shape and structure are particularly Not limited.
  • the reactor include a vertical reactor, a horizontal reactor, a multitubular reactor, and the like.
  • the material of the reactor include glass, stainless steel, iron, nickel, iron-nickel alloy and the like.
  • the reaction between cyclobutene and hydrogen fluoride is a flow system or batch system in which the starting compound is continuously charged into the reactor and the target compound is continuously withdrawn from the reactor. It can be implemented by either method. If the target compound stays in the reactor, the elimination reaction can proceed further, so that it is preferable to carry out the process in a flow system.
  • the step of reacting cyclobutene and hydrogen fluoride in the present disclosure is preferably performed in a gas phase, and particularly preferably performed in a gas phase continuous flow system using a fixed bed reactor. When the gas phase continuous flow system is used, the apparatus, operation and the like can be simplified, and it is economically advantageous.
  • the atmosphere for the reaction between cyclobutene and hydrogen fluoride is preferably in the presence of an inert gas and/or in the presence of hydrogen fluoride from the viewpoint of suppressing the deterioration of the catalyst (activated carbon, chromium catalyst, etc.).
  • the inert gas is preferably at least one selected from the group consisting of nitrogen, helium, argon and carbon dioxide. Among these inert gases, nitrogen is more preferable from the viewpoint of cost reduction.
  • the concentration of the inert gas is preferably 0 to 50 mol% of the gas component introduced into the reactor.
  • Target Compound The target compound in the present disclosure has the general formula (1):
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and represent a hydrogen atom, a halogen atom or a perfluoroalkyl group.
  • Cyclobutane containing a fluorine atom represented by the general formula (1) to be produced is, for example,
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are the same or different and are a hydrogen atom, a halogen atom or a perfluoroalkyl. Indicates a group.
  • the raw material compound is subjected to an addition reaction with hydrogen fluoride in the step of reacting the cyclobutene represented by the general formula (2) with hydrogen fluoride.
  • X 1 , X 2 , X 3 , X 4 and X 6 are more preferably fluorine atoms.
  • the addition reaction is hydrogen fluoride.
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are fluorine atoms.
  • cyclobutane containing a fluorine atom represented by the general formula (1) can be favorably produced at an industrial level with high selectivity.
  • a composition containing a cyclobutane containing a fluorine atom As described above, a cyclobutane containing a fluorine atom represented by the general formula (1) can be obtained. It may be obtained in the form of a composition containing the cyclobutane containing a fluorine atom represented by the formula and the cyclobutene represented by the general formula (2).
  • X 1 , X 2 , X 3 , X 4 , X 5 and X 6 are preferably fluorine atoms.
  • the content of the cyclobutane containing a fluorine atom represented by the general formula (1) with the total amount of the composition being 100 mol %. Is preferably 99 mol% or more.
  • the content of the cyclobutane containing a fluorine atom represented by the general formula (1) with the total amount of the composition being 100 mol %. Is preferably 1 mol% to 99.9 mol%, more preferably 5 mol% to 99.9 mol%, still more preferably 10 mol% to 99.9 mol%.
  • the fluorine atom represented by the general formula (1) is contained.
  • Cyclobutane can be obtained with a particularly high selectivity, and as a result, it is possible to reduce the components other than cyclobutane containing a fluorine atom represented by the general formula (1) in the composition.
  • the labor of purification for obtaining a cyclobutane containing a fluorine atom represented by the general formula (1) can be reduced.
  • composition containing the cyclobutane containing a fluorine atom represented by the general formula (1) of the present disclosure is the same as the case of cyclobutane containing a fluorine atom represented by the general formula (1) alone.
  • the etching gas for forming the fine structure at the tip it can be effectively used for various purposes such as a deposit gas, a building block for organic synthesis, and a cleaning gas.
  • the deposit gas is a gas that deposits the etching resistant polymer layer.
  • the building block for organic synthesis means a substance that can be a precursor of a compound having a highly reactive skeleton.
  • a fluorine-containing organosilicon compound such as CF 3 Si(CH 3 ) 3 , CF 3
  • a fluoroalkyl group such as a group into a substance that can be a detergent or a fluorine-containing pharmaceutical intermediate.
  • the starting compound was a cyclobutene represented by the general formula (2), wherein X 1 , X 2 , X 3 and X 4 were fluorine atoms.
  • the target compound was a cyclobutane containing a fluorine atom represented by the general formula (1), and X 1 , X 2 , X 3 , X 4 , X 5 and X 6 were fluorine atoms.
  • Example 1 (1-1 to 1-5), catalyst: SUS piping (outer diameter: 1/2 inch) was used as the activated carbon reaction tube, and 10 g of activated carbon was charged as the catalyst. The catalyst was used for the addition reaction with hydrogen fluoride. The BET specific surface area of the activated carbon was 850 m 2 /g. 10 g of activated carbon as a catalyst was added to a SUS pipe (outer diameter: 1/2 inch) which is a reactor.
  • the supply amount of hydrogen fluoride was 1 mol or 15 mol with respect to 1 mol of cyclobutene cC 4 F 6 (raw material compound).
  • the reaction proceeded in a gas phase continuous flow system.
  • the reactor was heated at 150°C, 200°C, 250°C or 300°C to start the addition reaction with hydrogen fluoride.
  • mass spectrometry is performed by gas chromatography/mass spectrometry (GC/MS) using gas chromatography (manufactured by Shimadzu Corporation, trade name “GC-2014”), and NMR (manufactured by JEOL, trade name “400YH”). ]) was used for structural analysis by NMR spectrum.
  • GC/MS gas chromatography/mass spectrometry
  • Example 1-1 From the results of mass spectrometry and structural analysis, it was confirmed that cC 4 F 7 H was produced as the target compound.
  • the conversion rate from cC 4 F 6 (raw material compound) was 0.364 mol%
  • the selectivity (yield) for cC 4 F 7 H (target compound) was 18.6 mol%.
  • Example 1-2 the conversion rate was 11.6 mol% and the selectivity was 96.2 mol%.
  • Example 2 (2-1 to 2-8), catalyst: SUS piping (outer diameter: 1/2 inch) was used as a chromium catalyst reaction tube, and 10 g of chromium oxide containing Cr 2 O 3 as a main component was filled as a catalyst. did.
  • anhydrous hydrogen fluoride was passed through the reactor, and the fluorination treatment was performed at a reactor temperature of 200°C to 300°C.
  • the fluorinated chromium oxide was taken out and used for the dehydrofluorination reaction.
  • the BET specific surface area of the fluorinated chromium oxide was 75 m 2 /g. 10 g of fluorinated chromium oxide (chromium fluoride oxide) was added as a catalyst to a SUS pipe (outer diameter: 1/2 inch) which is a reactor.
  • the pressure is normal pressure and the contact time (W/F 0 ) between cyclobutene cC 4 F 6 (raw material compound) and fluorinated chromium oxide (catalyst) is 3.0 g.
  • the raw material compound (cC 4 F 6 H 2 ) was passed through the reactor so as to be sec/cc, 4.0 g ⁇ sec/cc or 5.0 g ⁇ sec/cc.
  • the amount of hydrogen fluoride supplied was 1 mol, 5 mol, or 20 mol with respect to 1 mol of cyclobutene cC 4 F 6 (raw material compound).
  • the reaction proceeded in a gas phase continuous flow system.
  • the reactor was heated at 50°C, 200°C, 250°C, 300°C or 350°C to start the addition reaction with hydrogen fluoride.
  • mass spectrometry is performed by gas chromatography/mass spectrometry (GC/MS) using gas chromatography (manufactured by Shimadzu Corporation, trade name “GC-2014”), and NMR (manufactured by JEOL, trade name “400YH”). ]) was used for structural analysis by NMR spectrum.
  • GC/MS gas chromatography/mass spectrometry
  • Example 2-1 From the results of mass spectrometry and structural analysis, it was confirmed that cC 4 F 7 H was produced as the target compound.
  • the conversion rate from cC 4 F 6 (raw material compound) was 0.942 mol %, and the selectivity (yield) for cC 4 F 7 H (target compound) was 0.7 mol %.
  • Example 2-2 the conversion was 0.183 mol% and the selectivity was 1.6 mol%.
  • Example 2-3 the conversion was 0.506 mol% and the selectivity was 2.4 mol%.
  • Example 2-4 the conversion was 0.396 mol% and the selectivity was 0.7 mol%.
  • Example 2-5 the conversion rate was 0.924 mol% and the selectivity was 4.2 mol%.
  • Example 2-7 the conversion rate was 1.62 mol% and the selectivity was 2.0 mol%.
  • Example 2-8 the conversion rate was 2.87 mol% and the selectivity was 0.2 mol%.
  • the supply amount of hydrogen fluoride was 20 mol per 1 mol of cyclobutene cC 4 F 6 (raw material compound).
  • the reaction proceeded in a gas phase continuous flow system.
  • the reactor was heated at 200°C or 350°C to start the addition reaction with hydrogen fluoride.
  • mass spectrometry is performed by gas chromatography/mass spectrometry (GC/MS) using gas chromatography (manufactured by Shimadzu Corporation, trade name “GC-2014”), and NMR (manufactured by JEOL, trade name “400YH”). ]) was used for structural analysis by NMR spectrum.
  • GC/MS gas chromatography/mass spectrometry
  • the contact time (W/F 0 ) indicates the flow rate of the flowing raw material gas, that is, the time for which the catalyst and the raw material gas are in contact with each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本開示は、フッ素原子を含むシクロブタンを高い選択率で製造することを目的とする。 一般式(1):(式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。) で表されるシクロブタンの製造方法であって、 一般式(2):(式中、X1、X2、X3、X4、X5及びX6は、前記に同じである。) で表されるシクロブテンとフッ化水素とを、触媒の存在下、気相で反応させる工程を含む、製造方法。

Description

シクロブタンの製造方法
 本開示は、シクロブタンの製造方法に関する。
 ハロゲン原子を含むシクロブタンは、半導体用ドライエッチングガスの他、各種冷媒、発泡剤、熱移動媒体等として有用な化合物である。
 非特許文献1では、3,3,4,4,-テトラフルオロシクロブテンから、CoF3、MnF3、AgF2、CeF4又はKCoF4等のフッ素剤を用いて、フッ素化反応により、1H-ヘプタフルオロシクロブタンを製造する方法を開示している。
 非特許文献2では、ヘキサフルオロシクロブテン(cC4F6)から、臭化水素(HBr)を用いて、付加反応により、1Br,2H-ヘキサフルオロシクロブタン(cC4F6BrH)を製造する方法を開示している。
Journal of Fluorine Chemistry, 2006, Vol.127, 79-84, "Fluorination of fluoro-cyclobutene with high-valency metal fluoride" Journal of American Chemistry, 1949, Vol.71, 2339-2340, "The Addition of Hydrogen Bromide to Fluorinated Olefins"
 本開示は、ハロゲン原子を含むシクロブタンを高い選択率で製造することを目的とする。
 本開示は、以下の構成を包含する。
 項1.
 一般式(1):
Figure JPOXMLDOC01-appb-C000004
(式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
で表されるシクロブタンの製造方法であって、
 一般式(2):
Figure JPOXMLDOC01-appb-C000005
(式中、X1、X2、X3、X4、X5及びX6は、前記に同じである。)
で表されるシクロブテンとフッ化水素とを、触媒の存在下、気相で反応させる工程を含む、製造方法。
 項2.
 前記一般式(2)で表されるシクロブテン1モルに対して、0.1モル~100モルのフッ化水素を供給して反応させる、前記項1に記載の製造方法。
 項3.
 前記触媒は、活性炭、及びクロム化合物からなる群から選ばれる少なくとも1種の触媒である、前記項1又は2に記載の製造方法。
 項4.
 一般式(1):
Figure JPOXMLDOC01-appb-C000006
(式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
で表されるシクロブタンを含有する組成物であって、
組成物全量を100mol%として、前記一般式(1)で表されるシクロブタンの含有量が99mol%以上である、組成物。
 項5.
 クリーニングガス、エッチングガス、デポジットガス又は有機合成用ビルディングブロックとして用いられる、前記項4に記載の組成物。
 本開示によれば、ハロゲン原子を含むシクロブタンを高い選択率で製造することができる。
 本発明者らは、鋭意研究を行った結果、原料化合物に対して、フッ化水素による付加反応する工程を、触媒の存在下、気相で反応させることによって、上記一般式(1)で表されるフッ素原子を含むシクロブタンを高い選択率で製造できることを見出した。
 本開示は、かかる知見に基づき、更に研究を重ねた結果完成されたものである。
 本開示は、以下の実施形態を含む。
 本開示の一般式(1):
Figure JPOXMLDOC01-appb-C000007
(式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
で表されるシクロブタンの製造方法は、
 一般式(2):
Figure JPOXMLDOC01-appb-C000008
(式中、X1、X2、X3、X4、X5及びX6は、前記に同じである。)
で表されるシクロブテンとフッ化水素とを反応させる工程を含む。
 本開示では、前記反応は、フッ化水素による付加反応であり、前記工程を、触媒の存在下、気相で反応させる。
 本開示においては、上記要件を満たすことにより、フッ素原子を含むシクロブタンを高い選択率で製造することができる。
 本開示において、「選択率」とは、反応器出口からの流出ガスにおける原料化合物以外の化合物(フッ素原子を含むシクロブタン等)の合計モル量に対する、当該流出ガスに含まれる目的化合物(フッ素原子を含むシクロブタン)の合計モル量の割合(mol%)を意味する。
 本開示において、「転化率」とは、反応器に供給される原料化合物(シクロブテン)のモル量に対する、反応器出口からの流出ガスに含まれる原料化合物以外の化合物(フッ素原子を含むシクロブタン等)の合計モル量の割合(mol%)を意味する。
 本開示のシクロブタンの製造方法は、工業的レベルでの生産に好適である。本開示のシクロブタンの製造方法は、原料としてシクロブテン及びフッ化水素を用いており、これら原料は工業的レベルで入手可能である。本開示のシクロブタンの製造方法は、1H-ヘプタフルオロシクロブタンを目的化合物とした場合に、高い選択率が達成できる。
 (1)原料化合物
 一般式(2)で表されるシクロブテン
 本開示において、原料化合物は、一般式(2):
Figure JPOXMLDOC01-appb-C000009
(式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
で表されるシクロブテン、及びフッ化水素である。
 X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。
 X1、X2、X3、X4、X5及びX6のハロゲン原子は、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。
 X1、X2、X3、X4、X5及びX6のパーフルオロアルキル基は、全ての水素原子がフッ素原子で置換されたアルキル基である。パーフルオロアルキル基は、例えば、炭素数1~20、好ましくは炭素数1~12、より好ましくは炭素数1~6、更に好ましくは炭素数1~4、特に好ましくは炭素数1~3のパーフルオロアルキル基であることが好ましい。パーフルオロアルキル基は、直鎖状、又は分枝鎖状のパーフルオロアルキル基であることが好ましい。前記パーフルオロアルキル基として、トリフルオロメチル基(CF3-)、及びペンタフルオロエチル基(C2F5-)であることが好ましい。
 原料化合物である一般式(2)で表されるシクロブテンとしては、フッ素原子を含むシクロブタンを高い選択率で製造することができる点で、X1、X2、X3、X4、X5及びX6は、同一又は異なって、フッ素原子、又はパーフルオロアルキル基であることがより好ましい。
 原料化合物である一般式(2)で表されるシクロブテンとしては、例えば、次の、
Figure JPOXMLDOC01-appb-C000010
等の化合物が挙げられる。
 これらの一般式(2)で表されるシクロブテンは、単独で用いることもでき、2種以上を組合せて用いることもできる。このようなシクロブテンは、公知又は市販品を採用することができる。
 一般式(2)で表されるシクロブテンでは、フッ素原子を含むシクロブタンを高い選択率を高い選択率で製造することができる点で、X1、X2、X3、X4、X5及びX6は、フッ素原子であることがより好ましい。
 シクロブテンとフッ化水素とのモル比
 フッ化水素(HF)は、通常、一般式(2)で表されるシクロブテン(原料化合物)と共に、気相状態で反応器に供給することが好ましい。フッ化水素の供給量は、上記一般式(2)で表されるシクロブテン(原料化合物)1モルに対して、0.1モル~100モル程度で、反応させることが好ましい。フッ化水素の供給量は、上記一般式(2)で表されるシクロブテン(原料化合物)1モルに対して、0.5モル~50モル程度がより好ましく、1モル~30モル程度が更に好ましく、1モル~20モル程度が特に好ましい。フッ化水素の供給量を前記範囲とすることで、フッ化水素による付加反応を良好に進行させ、不純物の生成を低減することができ、生成物のフッ素原子を含むシクロブタンの選択率が高く、高収率で回収することができる。
 (2)付加反応
 本開示におけるシクロブテンとフッ化水素とを反応させる工程は、フッ化水素による付加反応であり、触媒の存在下、気相で行う。本開示におけるシクロブテンとフッ化水素とを反応させる工程(付加反応)では、気相で行い、特に固定床反応器を用いた気相連続流通式で行うことが好ましい。気相連続流通式で行う場合は、装置、操作等を簡略化できるとともに、経済的に有利である。
 本開示におけるシクロブテンとフッ化水素とを反応させる工程では、例えば、原料化合物として、一般式(2)で表されるシクロブテンでは、X1、X2、X3、X4及びX6は、フッ素原子であることがより好ましい。
 以下の反応式に従い、フッ化水素による付加反応であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 触媒
 本開示におけるシクロブテンとフッ化水素とを反応させる工程は、フッ化水素による付加反応において、触媒の存在下、気相で行う。
 本工程で用いられる触媒は、活性炭であることが好ましい。
 本工程で用いられる触媒は、金属触媒であることが好ましい。金属触媒として、酸化クロム、フッ化酸化クロム、フッ化クロム等のクロム触媒、酸化アルミニウム、フッ化酸化アルミニウム、フッ化アルミニウム等のアルミニウム触媒、酸化鉄、フッ化酸化鉄、フッ化鉄等の鉄触媒、酸化ニッケル、フッ化酸化ニッケル、フッ化ニッケル等のニッケル触媒、酸化マグネシウム、フッ化酸化マグネシウム、フッ化マグネシウム等のマグネシウム触媒等の金属触媒であることが好ましい。触媒は、前記金属触媒からなる群より選択される少なくとも1種であることが好ましい。
 本工程で用いられる触媒は、活性炭及び前記金属触媒からなる群より選択される少なくとも1種であることが好ましい。これら触媒のうち、目的化合物をより高い選択率で得ることができる点から、活性炭、酸化クロム、フッ化酸化クロム、フッ化クロム等のクロム触媒がより好ましい。また、原料化合物の転化率をより向上させることも可能である。
 本工程において、気相で、原料化合物と触媒とを接触させるに当たっては、触媒を固体の状態(固相)で原料化合物と接触させることが好ましい。
 本工程において、触媒は、粉末状でもよいが、ペレット状の方が気相連続流通式の反応に好ましい。
 前記触媒のBET法により測定した比表面積(以下、BET比表面積とも称する。)は、通常10~3,000m2/gであり、好ましくは10~2,500m2/gであり、より好ましくは20~2,000m2/gであり、更に好ましくは30~1,500m2/gである。触媒のBET比表面積がこのような範囲にある場合、触媒の粒子の密度が小さ過ぎることがない為、高い選択率で目的化合物を得ることができる。また、原料化合物の転化率を向上させることも可能である。例えば、触媒として、BET比表面積は800m2/g~2,000m2/gである活性炭を用いることが好ましい。
 触媒として活性炭を用いる場合、破砕炭、成形炭、顆粒炭、球状炭等の粉末活性炭を用いる事が好ましい。粉末活性炭は、JIS試験で、4メッシュ(4.76mm)~100メッシュ(0.149mm)の粒度を示す粉末活性炭を用いることが好ましい。触媒として活性炭を用いる場合、使用前に、例えば300~500℃の温度条件で一定時間窒素を流して処理したもの(熱処理した活性炭)を用いることができる。
 触媒として金属触媒を用いる場合、担体に担持されていることが好ましい。担体としては、例えば、炭素、アルミナ(Al2O3)、ジルコニア(ZrO2)、シリカ(SiO2)、チタニア(TiO2)等が挙げられる。炭素としては、活性炭、不定形炭素、グラファイト、ダイヤモンド等を用いることができる。
 本開示における触媒の一例として、酸化クロム及びフッ素化された酸化クロムについて、説明する。酸化クロムは、例えば、酸化クロムをCr2O3・nH2Oで表した場合に、nの値が3以下であることが好ましく、1~1.5であることがより好ましい。また、前記酸化クロムは、組成式:CrOmにおいて、mが通常1.5<m<3の範囲にあるものが好ましい。触媒として、フッ素化された酸化クロムは、酸化クロムをフッ素化することにより調製することができる。フッ素化としては、フッ化水素(HF)によるフッ素化、フルオロカーボン等によるフッ素化を挙げることができる。
 触媒としてのフッ素化された酸化クロムは、例えば、日本特許第3412165号に記載されている方法に従って得ることができる。酸化クロムをフッ化水素によりフッ素化(HF処理)することによってフッ素化された酸化クロムを得ることができる。フッ素化の温度は、例えば、100~460℃が好ましい。フッ素化の圧力は、触媒反応に供される時の圧力が好ましい。本開示において、フッ素含有量の多い高フッ素化-酸化クロム触媒を用いることが特に好ましい。高フッ素化-酸化クロム触媒は、酸化クロムを通常より高温で、長時間フッ素化することにより得ることができる。
 高フッ素化-酸化クロム触媒は、フッ素含有量が30質量%以上であることが好ましく、30~45質量%であることがより好ましい。フッ素含有量は、触媒の質量変化、又は一般的なクロム酸化物の定量分析法によって測定することができる。
 気相反応温度
 本開示におけるシクロブテンとフッ化水素とを反応させる工程では、反応温度の下限値は、より効率的にフッ化水素による付加反応を進行させ、目的化合物をより高い選択率で得ることができる観点、転化率の低下を抑制する観点から、通常50℃であり、好ましくは200℃であり、より好ましくは250℃であり、更に好ましくは300℃である。
 触媒として活性炭を用いる場合、反応温度は50℃~400℃が好ましく、100℃~350℃がより好ましく、150℃~300℃が更に好ましい。
 触媒としてクロム触媒を用いる場合、反応温度は50℃以上が好ましく、250℃以上がより好ましく、300℃以上が更に好ましい。
 シクロブテンとフッ化水素とを反応させる反応温度の上限値は、より効率的にフッ化水素による付加反応を進行させ、目的化合物をより高い選択率で得ることができる観点、且つ反応生成物が分解又は重合することによる選択率の低下を抑制する観点から、通常500℃であり、好ましくは450℃であり、より好ましくは400℃である。
 気相反応時間
 シクロブテンとフッ化水素とを反応させる反応時間は、原料化合物の触媒に対する接触時間(W/F0)[W:金属触媒の重量(g)、F0:原料化合物の流量(cc/sec)]を長くすれば原料化合物の転化率を上げることができるが、触媒の量が多くなって設備が大きくなり、非効率である。
 その為、シクロブテンとフッ化水素とを反応させる反応時間は、原料化合物の転化率を向上させる点、及び設備コストを抑制する点から、原料化合物の触媒に対する接触時間(W/F0)が、1g・sec/cc~30g・sec/ccであることが好ましく、1.5g・sec/cc~10g・sec/ccであることがより好ましく、2.0g・sec/cc~5.0g・sec/ccであることが更に好ましい。
 上記原料化合物の触媒に対する接触時間とは、原料化合物及び触媒が接触する時間を意味する。
 シクロブテンとフッ化水素とのモル比
 フッ化水素の供給量は、触媒として活性炭、及びクロム触媒を用いる場合、反応コスト及び生産性の観点から、上記一般式(2)で表されるシクロブテン(原料化合物)1モルに対して、0.1モル~100モル程度で反応させることが好ましく、0.5モル~75モル程度がより好ましく、1モル~50モル程度が更に好ましい。
 気相反応圧力
 シクロブテンとフッ化水素とを反応させる反応圧力は、より効率的にフッ化水素による付加反応を進行させる点から、-0.05MPa~2MPaであることが好ましく、-0.01MPa~1MPaであることがより好ましく、常圧~0.5MPaであることが更に好ましい。なお、本開示において、圧力については表記が無い場合はゲージ圧とする。
 シクロブテンとフッ化水素との反応において、原料化合物と触媒(活性炭、クロム触媒等)とを接触させて反応させる反応器としては、上記温度及び圧力に耐えうるものであれば、形状及び構造は特に限定されない。反応器としては、例えば、縦型反応器、横型反応器、多管型反応器等が挙げられる。反応器の材質としては、例えば、ガラス、ステンレス、鉄、ニッケル、鉄ニッケル合金等が挙げられる。
 気相反応の例示
 シクロブテンとフッ化水素との反応(フッ化水素による付加反応)は、反応器に原料化合物を連続的に仕込み、当該反応器から目的化合物を連続的に抜き出す流通式及びバッチ式のいずれの方式によっても実施することができる。目的化合物が反応器に留まると、更に脱離反応が進行し得ることから、流通式で実施することが好ましい。本開示におけるシクロブテンとフッ化水素とを反応させる工程では、気相で行い、特に固定床反応器を用いた気相連続流通式で行うことが好ましい。気相連続流通式で行う場合は、装置、操作等を簡略化できるとともに、経済的に有利である。
 シクロブテンとフッ化水素との反応を行う際の雰囲気については、触媒(活性炭、クロム触媒等)の劣化を抑制する点から、不活性ガス存在下及び/又はフッ化水素存在下であることが好ましい。当該不活性ガスは、窒素、ヘリウム、アルゴン及び二酸化炭素からなる群より選択される少なくとも1種であることが好ましい。これらの不活性ガスの中でも、コストを抑える点から、窒素がより好ましい。当該不活性ガスの濃度は、反応器に導入される気体成分の0~50mol%とすることが好ましい。
 シクロブテンとフッ化水素との反応(フッ化水素による付加反応)終了後は、必要に応じ、常法にしたがって精製処理を行い、一般式(1)で表されるフッ素原子を含むシクロブタンを得ることができる。
 (3)目的化合物
 本開示における目的化合物は、一般式(1):
Figure JPOXMLDOC01-appb-C000012
(式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
で表されるフッ素原子を含むシクロブタンである。
 製造しようとする一般式(1)で表されるフッ素原子を含むシクロブタンは、例えば、次の、
Figure JPOXMLDOC01-appb-C000013
等の化合物が挙げられる。
 一般式(1)で表されるフッ素原子を含むシクロブタンでは、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。
 本開示におけるシクロブタンの製造方法では、原料化合物は、一般式(2)で表されるシクロブテンとフッ化水素とを反応させる工程において、フッ化水素による付加反応を行い、例えば、原料化合物として、一般式(2)で表されるシクロブテンでは、X1、X2、X3、X4及びX6は、フッ素原子であることがより好ましい。
 以下の反応式に従い、フッ化水素による付加反応であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 目的化合物は、一般式(1)で表されるフッ素原子を含むシクロブタンとして、X1、X2、X3、X4、X5及びX6は、フッ素原子であることがより好ましい。
 本開示の製造方法によれば、一般式(1)で表されるフッ素原子を含むシクロブタンを目的化合物として、工業的レベルで、高い選択率で良好に製造することができる。
 (4)フッ素原子を含むシクロブタンを含む組成物
 以上のようにして、一般式(1)で表されるフッ素原子を含むシクロブタンを得ることができるが、上記のように、一般式(1)で表されるフッ素原子を含むシクロブタンと、一般式(2)で表されるシクロブテンとを含有する組成物の形で得られることもある。
 組成物に含まれる一般式(1)で表されるフッ素原子を含むシクロブタンとして、X1、X2、X3、X4、X5及びX6は、フッ素原子であることが好ましい。
 本開示の一般式(1)で表されるフッ素原子を含むシクロブタンを含む組成物において、前記組成物の総量を100mol%として、一般式(1)で表されるフッ素原子を含むシクロブタンの含有量は99mol%以上であることが好ましい。
 本開示の一般式(1)で表されるフッ素原子を含むシクロブタンを含む組成物において、前記組成物の総量を100mol%として、一般式(1)で表されるフッ素原子を含むシクロブタンの含有量は1mol%~99.9mol%が好ましく、5mol%~99.9mol%がより好ましく、10mol%~99.9mol%が更に好ましい。
 本開示の製造方法によれば、一般式(1)で表されるフッ素原子を含むシクロブタンを含む組成物として得られた場合であっても、一般式(1)で表されるフッ素原子を含むシクロブタンを特に高い選択率で得ることができ、その結果、前記組成物中の一般式(1)で表されるフッ素原子を含むシクロブタン以外の成分を少なくすることが可能である。本開示の製造方法によれば、一般式(1)で表されるフッ素原子を含むシクロブタンを得る為の精製の労力を削減することができる。
 本開示の一般式(1)で表されるフッ素原子を含むシクロブタンを含む組成物は、一般式(1)で表されるフッ素原子を含むシクロブタン単独の場合と同様に、半導体、液晶等の最先端の微細構造を形成するためのエッチングガスの他、デポジットガス、有機合成用ビルディングブロック、クリーニングガス等の各種用途に有効利用できる。
 前記デポジットガスとは、エッチング耐性ポリマー層を堆積させるガスである。
 前記有機合成用ビルディングブロックとは、反応性が高い骨格を有する化合物の前駆体となり得る物質を意味する。例えば、本開示の一般式(1)で表されるフッ素原子を含むシクロブタン、及びこれを含む組成物とCF3Si(CH3)3等の含フッ素有機ケイ素化合物とを反応させると、CF3基等のフルオロアルキル基を導入して洗浄剤や含フッ素医薬中間体となり得る物質に変換することが可能である。
 以上、本開示の実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能である。
 以下に実施例を挙げ、本開示を具体的に説明するが、本開示は、これら実施例によって何ら限定されるものではない。
 実施例
 実施例のフッ素原子を含むシクロブタンの製造方法では、原料化合物は、一般式(2)で表されるシクロブテンにおいて、X1、X2、X3及びX4は、フッ素原子とした。
 以下の反応式に従って、シクロブテンに対してフッ化水素による付加反応を行った。
Figure JPOXMLDOC01-appb-C000015
 目的化合物は、一般式(1)で表されるフッ素原子を含むシクロブタンとして、X1、X2、X3、X4、X5及びX6は、フッ素原子とした。
 実施例1(1-1~1-5)、触媒:活性炭
 反応管としてSUS配管(外径:1/2インチ)を用い、触媒として活性炭10gを充填した。前記触媒をフッ化水素による付加反応に用いた。活性炭のBET比表面積は850m2/gであった。反応器であるSUS配管(外径:1/2インチ)に、触媒として活性炭を10g加えた。
 窒素雰囲気下、200℃で2時間乾燥した後、圧力を常圧、シクロブテンcC4F6(原料化合物)と活性炭(触媒)との接触時間(W/F0)が2.0g・sec/ccとなるように、反応器に原料化合物(cC4F6)を流通させた。
 フッ化水素の供給量は、シクロブテンcC4F6(原料化合物)1モルに対して、1モル又は15モルとした。
 気相連続流通式で反応を進行させた。
 反応器を150℃、200℃、250℃又は300℃で加熱してフッ化水素による付加反応を開始した。フッ化水素による付加反応を開始してから1時間後に、除害塔を通った留出分を集めた。
 その後、ガスクロマトグラフィー(島津製作所社製、商品名「GC-2014」)を用いてガスクロマトグラフィー/質量分析法(GC/MS)により質量分析を行い、NMR(JEOL社製、商品名「400YH」)を用いてNMRスペクトルによる構造解析を行った。
 質量分析及び構造解析の結果から、目的化合物としてcC4F7Hが生成したことが確認された。実施例1-1では、cC4F6(原料化合物)からの転化率は0.364mol%であり、cC4F7H(目的化合物)の選択率(収率)は18.6mol%であった。
 実施例1-2では、転化率:11.6mol%、選択率:96.2mol%であった。
 実施例1-3では、転化率:4.57mol%、選択率:84.9mol%であった。
 実施例1-4では、転化率:2.30mol%、選択率:38.8mol%であった。
 実施例1-5では、転化率:0.6mol%、選択率:94.2mol%であった。
 実施例2(2-1~2-8)、触媒:クロム触媒
 反応管としてSUS配管(外径:1/2インチ)を用い、触媒としてCr2O3を主成分とする酸化クロム10gを充填した。前記触媒を脱離反応(脱フッ化水素反応)に使用する前処理として、反応器に無水フッ化水素を流通させ、反応器の温度を200℃から300℃としてフッ素化処理を行った。フッ素化された酸化クロムを取り出し、脱フッ化水素反応に用いた。フッ素化された酸化クロムのBET比表面積は75m2/gであった。反応器であるSUS配管(外径:1/2インチ)に、触媒としてフッ素化した酸化クロム(フッ化酸化クロム)を10g加えた。
 窒素雰囲気下、200℃で2時間乾燥した後、圧力を常圧、シクロブテンcC4F6(原料化合物)とフッ素化した酸化クロム(触媒)との接触時間(W/F0)が3.0g・sec/cc、4.0g・sec/cc又は5.0g・sec/ccとなるように、反応器に原料化合物(cC4F6H2)を流通させた。
 フッ化水素の供給量は、シクロブテンcC4F6(原料化合物)1モルに対して、1モル、5モル又は20モルとした。
 気相連続流通式で反応を進行させた。
 反応器を50℃、200℃、250℃、300℃又は350℃で加熱してフッ化水素による付加反応を開始した。フッ化水素による付加反応を開始してから1時間後に、除害塔を通った留出分を集めた。
 その後、ガスクロマトグラフィー(島津製作所社製、商品名「GC-2014」)を用いてガスクロマトグラフィー/質量分析法(GC/MS)により質量分析を行い、NMR(JEOL社製、商品名「400YH」)を用いてNMRスペクトルによる構造解析を行った。
 質量分析及び構造解析の結果から、目的化合物としてcC4F7Hが生成したことが確認された。実施例2-1では、cC4F6(原料化合物)からの転化率は0.942mol%であり、cC4F7H(目的化合物)の選択率(収率)は0.7mol%であった。
 実施例2-2では、転化率:0.183mol%、選択率:1.6mol%であった。
 実施例2-3では、転化率:0.506mol%、選択率:2.4mol%であった。
 実施例2-4では、転化率:0.396mol%、選択率:0.7mol%であった。
 実施例2-5では、転化率:0.924mol%、選択率:4.2mol%であった。
 実施例2-6では、転化率:1.37mol%、選択率:3.0mol%であった。
 実施例2-7では、転化率:1.62mol%、選択率:2.0mol%であった。
 実施例2-8では、転化率:2.87mol%、選択率:0.2mol%であった。
 比較例1及び2
 前記実施例の実験方法に倣い、触媒を用いずに、シクロブテンcC4F6(原料化合物)に対して、フッ化水素を供給し、反応を行った。
 フッ化水素の供給量は、シクロブテンcC4F6(原料化合物)1モルに対して、20モルとした。
 気相連続流通式で反応を進行させた。
 反応器を200℃又は350℃で加熱してフッ化水素による付加反応を開始した。フッ化水素による付加反応を開始してから1時間後に、除害塔を通った留出分を集めた。
 その後、ガスクロマトグラフィー(島津製作所社製、商品名「GC-2014」)を用いてガスクロマトグラフィー/質量分析法(GC/MS)により質量分析を行い、NMR(JEOL社製、商品名「400YH」)を用いてNMRスペクトルによる構造解析を行った。
 質量分析及び構造解析の結果から、cC4F6(原料化合物)からの転化率は0.801mol%(比較例1)又は0.695mol%(比較例2)であったが、cC4F7H(目的化合物)の生成は確認されなかった。
 各実施例の結果を以下の表1に示す。表1において、接触時間(W/F0)とは、流通する原料ガスを流す速度を示しており、即ち、触媒及び原料ガスが接触する時間を意味する。モル比HF/cC4F6とは、cC4F6 1モルに対するHFの使用量(モル)である。
Figure JPOXMLDOC01-appb-T000016

Claims (5)

  1.  一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
    で表されるシクロブタンの製造方法であって、
     一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、X1、X2、X3、X4、X5及びX6は、前記に同じである。)
    で表されるシクロブテンとフッ化水素とを、触媒の存在下、気相で反応させる工程を含む、製造方法。
  2.  前記一般式(2)で表されるシクロブテン1モルに対して、0.1モル~100モルのフッ化水素を供給して反応させる、請求項1に記載の製造方法。
  3.  前記触媒は、活性炭、及びクロム化合物からなる群から選ばれる少なくとも1種の触媒である、請求項1又は2に記載の製造方法。
  4.  一般式(1):
    Figure JPOXMLDOC01-appb-C000003
    (式中、X1、X2、X3、X4、X5及びX6は、同一又は異なって、水素原子、ハロゲン原子、又はパーフルオロアルキル基を示す。)
    で表されるシクロブタンを含有する組成物であって、
    組成物全量を100mol%として、前記一般式(1)で表されるシクロブタンの含有量が99mol%以上である、組成物。
  5.  クリーニングガス、エッチングガス、デポジットガス又は有機合成用ビルディングブロックとして用いられる、請求項4に記載の組成物。 
PCT/JP2019/050022 2019-01-09 2019-12-20 シクロブタンの製造方法 WO2020145088A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217024996A KR102578063B1 (ko) 2019-01-09 2019-12-20 시클로부탄의 제조 방법
CN201980088269.0A CN113272268B (zh) 2019-01-09 2019-12-20 环丁烷的制造方法
SG11202107214UA SG11202107214UA (en) 2019-01-09 2019-12-20 Method for producing cyclobutane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019001661A JP6874778B2 (ja) 2019-01-09 2019-01-09 シクロブタンの製造方法
JP2019-001661 2019-01-09

Publications (1)

Publication Number Publication Date
WO2020145088A1 true WO2020145088A1 (ja) 2020-07-16

Family

ID=71521517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050022 WO2020145088A1 (ja) 2019-01-09 2019-12-20 シクロブタンの製造方法

Country Status (5)

Country Link
JP (1) JP6874778B2 (ja)
KR (1) KR102578063B1 (ja)
SG (1) SG11202107214UA (ja)
TW (1) TWI798518B (ja)
WO (1) WO2020145088A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023049515A1 (en) * 2021-09-27 2023-03-30 Honeywell International Inc. Fluorine substituted cyclobutene compounds, and compositions, methods and uses including same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1342429A (en) * 1970-05-10 1974-01-03 Grace W R & Co Anaesthetic cyclobutane compounds
JP2008239552A (ja) * 2007-03-28 2008-10-09 National Institute Of Advanced Industrial & Technology 含フッ素環状化合物およびその製造方法
JP2012188359A (ja) * 2011-03-09 2012-10-04 Nippon Zeon Co Ltd 含ハロゲノフッ素化シクロアルカン、及び含水素フッ素化シクロアルカンの製造方法
JP2015533029A (ja) * 2012-10-30 2015-11-16 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 高アスペクト比酸化物エッチング用のフルオロカーボン分子
CN107721810A (zh) * 2017-11-07 2018-02-23 中国民航大学 一种合成灭火剂八氟环丁烷的方法
JP2018533607A (ja) * 2015-11-12 2018-11-15 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. 2,3,3,3−テトラフルオロプロペン及び/又はフッ化ビニリデンを製造する方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2992279A (en) * 1955-09-14 1961-07-11 Haszeldine Robert Neville 1-iodo, 2-trifluoromethyl perfluorocycloalkanes
KR101050919B1 (ko) * 2006-04-28 2011-07-20 쇼와 덴코 가부시키가이샤 1,2,3,4-테트라클로로헥사플루오로부탄의 제조 방법
CN102026946B (zh) * 2008-07-18 2014-03-12 日本瑞翁株式会社 含氢氟烯烃化合物的制造方法
JP5056963B2 (ja) * 2010-03-31 2012-10-24 ダイキン工業株式会社 含フッ素アルカンの製造方法
TWI695423B (zh) * 2014-06-18 2020-06-01 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 用於tsv/mems/功率元件蝕刻的化學物質

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1342429A (en) * 1970-05-10 1974-01-03 Grace W R & Co Anaesthetic cyclobutane compounds
JP2008239552A (ja) * 2007-03-28 2008-10-09 National Institute Of Advanced Industrial & Technology 含フッ素環状化合物およびその製造方法
JP2012188359A (ja) * 2011-03-09 2012-10-04 Nippon Zeon Co Ltd 含ハロゲノフッ素化シクロアルカン、及び含水素フッ素化シクロアルカンの製造方法
JP2015533029A (ja) * 2012-10-30 2015-11-16 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 高アスペクト比酸化物エッチング用のフルオロカーボン分子
JP2018533607A (ja) * 2015-11-12 2018-11-15 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. 2,3,3,3−テトラフルオロプロペン及び/又はフッ化ビニリデンを製造する方法
CN107721810A (zh) * 2017-11-07 2018-02-23 中国民航大学 一种合成灭火剂八氟环丁烷的方法

Also Published As

Publication number Publication date
TW202035347A (zh) 2020-10-01
CN113272268A (zh) 2021-08-17
SG11202107214UA (en) 2021-07-29
JP6874778B2 (ja) 2021-05-19
KR102578063B1 (ko) 2023-09-14
KR20210113300A (ko) 2021-09-15
JP2020111520A (ja) 2020-07-27
TWI798518B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
JP6673413B2 (ja) フルオロオレフィンの製造方法
JP5348240B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP6827246B2 (ja) ハロゲン化ブテン化合物の製造方法
WO2014094587A1 (zh) 一种制备1,3,3,3-四氟丙烯的工艺
KR102566765B1 (ko) 시클로부텐의 제조 방법
JP2016504326A (ja) HFO−1234ze及びHFC−245faの共同製造方法
JP2022087300A (ja) フルオロエチレンの製造方法
JP2023174809A (ja) フルオロオレフィン化合物の製造方法
JP6874778B2 (ja) シクロブタンの製造方法
JP5246327B2 (ja) 気相フッ素化による含フッ素プロペンの製造方法
CN113272268B (zh) 环丁烷的制造方法
JP2021014410A (ja) ビニル化合物の製造方法
WO2020075729A1 (ja) パーフルオロシクロアルケン化合物の製造方法
RU2807184C2 (ru) Способ получения циклобутана
RU2807184C9 (ru) Способ получения циклобутана
JP2021011474A (ja) フッ化ビニル化合物の製造方法
JP2002018286A (ja) 金属フッ化物の処理方法及び該金属フッ化物からなる合成触媒
CN117597322A (zh) 烯烃的制造方法
KR20220019801A (ko) 알칸의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217024996

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19909024

Country of ref document: EP

Kind code of ref document: A1