WO2020145025A1 - 半導体発光素子及び半導体発光素子の製造方法 - Google Patents

半導体発光素子及び半導体発光素子の製造方法 Download PDF

Info

Publication number
WO2020145025A1
WO2020145025A1 PCT/JP2019/048778 JP2019048778W WO2020145025A1 WO 2020145025 A1 WO2020145025 A1 WO 2020145025A1 JP 2019048778 W JP2019048778 W JP 2019048778W WO 2020145025 A1 WO2020145025 A1 WO 2020145025A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
iii
compound semiconductor
group
Prior art date
Application number
PCT/JP2019/048778
Other languages
English (en)
French (fr)
Inventor
優太 小鹿
嘉孝 門脇
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to US17/418,849 priority Critical patent/US11888090B2/en
Priority to DE112019006575.0T priority patent/DE112019006575B4/de
Priority to CN201980088201.2A priority patent/CN113272974A/zh
Publication of WO2020145025A1 publication Critical patent/WO2020145025A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a semiconductor light emitting device and a method for manufacturing the semiconductor light emitting device.
  • a III-V group compound semiconductor such as InGaAsP is used as the semiconductor material of the semiconductor layer in the semiconductor light emitting device.
  • the emission wavelength of the semiconductor light emitting element can be widely adjusted from green to infrared.
  • an infrared-emitting semiconductor light-emitting element having an emission wavelength in the infrared region having a wavelength of 750 nm or more is widely used for applications such as sensors, gas analysis, and surveillance cameras.
  • Patent Document 1 attention is paid to a difference in lattice constant of each layer in a light emitting layer having a laminated structure formed by laminating a plurality of III-V group compound semiconductor layers.
  • Patent Document 1 uses a light emitting layer having a quantum well structure composed of a quaternary compound semiconductor layer of InGaAsP.
  • the lattice constant difference is adjusted by changing the composition ratio of each well layer to distort the quantum well, and an attempt is made to increase the output due to the distortion.
  • the composition ratio of each well layer in Patent Document 1 is adjusted so that the emission transition wavelengths become equal.
  • an object of the present invention is to provide a semiconductor light emitting device with improved light emission output.
  • a further object of the present invention is to provide a method for manufacturing this semiconductor light emitting device.
  • the present inventors have found that the composition wavelength between the layers in the light emitting layer having a laminated structure in which the first and second III-V compound semiconductor layers are laminated. Attention was paid to the difference and the lattice constant difference. Then, it has been found that the light emission output of the semiconductor light emitting device can be improved by providing the laminated structure in which the difference in the composition wavelength is reduced and the difference in the lattice constant in the appropriate range is provided.
  • the present invention has been completed based on the above findings, and its gist configuration is as follows.
  • a semiconductor light emitting device comprising a light emitting layer having a laminated structure in which a first III-V compound semiconductor layer and a second III-V compound semiconductor layer having different composition ratios are repeatedly laminated,
  • the group III element in the first and second group III-V compound semiconductor layers is one or more selected from the group consisting of Al, Ga and In, and the first and second groups
  • the group V element in the III-V group compound semiconductor layer is one kind or two or more kinds selected from the group consisting of As, Sb and P
  • Each of the first and second III-V group compound semiconductor layers is composed of three or more elements selected from the group III element and the group V element,
  • a difference in composition wavelength between the composition wavelength of the first III-V compound semiconductor layer and the composition wavelength of the second III-V compound semiconductor layer is 50 nm or less
  • the first III-V A semiconductor light emitting device characterized in that the ratio of the lattice constant difference between the lattice constant of the group compound semiconductor layer and the lattice constant of the second III-
  • composition wavelength difference between the first and second III-V compound semiconductor layers is 30 nm or less.
  • Each of the first and second III-V group compound semiconductor layers is composed of four or more elements selected from the group III elements and the group V elements (1)
  • the semiconductor light emitting device according to any one of to (3).
  • the group III element is Ga, In
  • the group V element is two or more elements selected from the group consisting of As, Sb, P.
  • a third III-V group compound semiconductor layer is further provided between the first and second III-V group compound semiconductor layers,
  • the third group III-V compound semiconductor layer is composed of four or more elements selected from the group III elements and the group V elements,
  • the composition wavelength difference between the adjacent first, second and third III-V compound semiconductor layers is 50 nm or less, and
  • the ratio of the difference in lattice constant between the first, second and third III-V compound semiconductor layers adjacent to each other is 0.05% or more and 0.60% or less. 4.
  • the semiconductor light emitting device according to any one of 1) to 3) above.
  • a method for manufacturing the semiconductor light emitting device according to any one of (1) to (8) above, A first step of forming the first III-V compound semiconductor layer, A second step of forming the second III-V compound semiconductor layer, A method of manufacturing a semiconductor light emitting device, comprising: a light emitting layer forming step of forming the light emitting layer by repeating the first step and the second step.
  • the present invention it is possible to provide a semiconductor light emitting device having an improved light emission output. Further, the present invention can provide a method for manufacturing the semiconductor light emitting device.
  • FIG. 3 is a schematic cross-sectional view showing one embodiment of a light emitting layer in a semiconductor light emitting device according to the present invention. It is a schematic cross section which shows another aspect of the light emitting layer in the semiconductor light emitting element according to this invention.
  • FIG. 3 is a schematic cross-sectional view showing a semiconductor light emitting device according to one embodiment of the present invention. It is a graph which compares the light emission output in an Example. It is a graph which compares the forward voltage in an Example.
  • III-V compound semiconductor layer when simply referred to as a “III-V group compound semiconductor” in the present specification, its composition is represented by a general formula: (In a Ga b Al c )(P x As y Sb z ).
  • the following relationships are established regarding the composition ratio of each element.
  • the III-V group compound semiconductor layer in the light emitting layer is selected from the group consisting of Al, Ga and In, and the group consisting of the group III element and As, Sb and P. It is composed of three or more kinds of elements selected from the group V elements. Since the combination of the three types of elements with the ratio of the lattice constant difference from the growth substrate being 1% or less is limited, it is more preferable to use four or more types of elements.
  • a total of 3 or more of 1 or 2 or more of each composition ratio a, b, c in the above general formula and 1 or 2 or more of x, y, z is at least 0 or more.
  • composition wavelength and the lattice constant based on composition In the calculation of the composition wavelength and the lattice constant based on the composition in this specification, reference should be made to Haruo Nagai et al., "Photonics Series 6 III-V Group Semiconductor Mixed Crystals", First Edition, Corona, October 25, 1988. Numerical values (from Table 2.1, the value of the nonlinear factor of the ternary mixed crystal, from Table 2.2, the lattice constant of the binary crystal, from Table 2.3, the elastic stiffness constant of the binary crystal, and from Table 2.7) A binary crystal bandgap, etc.) was used.
  • the case where Al or Sb is contained can be calculated based on the literature values described in the above literature.
  • the case of having two kinds from a, b, c and two kinds from x, y, z is referred to as a pseudo quaternary mixed crystal, and a
  • the case of having 3 types from b, c and 1 type from x, y, z (or 1 type from a, b, c, 3 types from x, y, z) is called a pseudo ternary mixed crystal.
  • the “composition wavelength” of the III-V compound semiconductor layer is defined by the following formula ⁇ 1> from the energy band gap Eg based on the composition of the III-V compound semiconductor layer.
  • the energy band gap E is calculated in consideration of the nonlinear factor.
  • the physical property value Eg abxy of the quasi quaternary mixed crystals (In a Ga b )(P x As y ) Band gap) is calculated based on the following equation ⁇ 2> by using the physical property values E abx, E aby, E axy, and E bxy of four ternary mixed crystals (energy band gap considering the nonlinear factors obtained above). be able to.
  • the physical property values of the four ternary mixed crystals take into consideration the nonlinear factor
  • the calculated physical property values of the pseudo-quaternary mixed crystal also necessarily take the nonlinear factor into consideration.
  • the calculation of the mixed crystal lattice constant in the present specification will be described.
  • lattice constants There are two types of lattice constants, a vertical direction (growth direction) and a horizontal direction (in-plane direction) with respect to the plane of the substrate. In this specification, a value in the vertical direction is used.
  • a simple lattice constant of a mixed crystal is calculated according to Beggert's law. Taking the InGaAsP system (that is, the general formula: (In a Ga b )(P x As y )) as an example, the physical property constant A abxy (lattice constant according to Beggert's law) is known at each composition ratio (solid phase ratio).
  • the lattice constant of the growth substrate may be the lattice constant of InP for a s .
  • a layer that electrically functions as p-type is referred to as a p-type layer
  • a layer that electrically functions as n-type is referred to as an n-type layer.
  • a specific impurity such as Si, Zn, S, Sn, or Mg
  • i-type or “undoped”.
  • the undoped III-V group compound semiconductor layer may contain inevitable impurities in the manufacturing process.
  • the dopant concentration when the dopant concentration is low (for example, less than 7.6 ⁇ 10 15 atoms/cm 3 ), it is treated as “undoped” in this specification.
  • the value of the impurity concentration of Si, Zn, S, Sn, Mg, etc. is based on SIMS analysis.
  • the n-type dopant (eg, Si, S, Te, Sn, Ge, O, etc.) impurity concentration (“dopant concentration”) value of the active layer is also based on SIMS analysis. Since the value of the dopant concentration changes greatly near the boundary of each semiconductor layer, the value of the dopant concentration at the center of the active layer in the thickness direction is taken as the value of the dopant concentration.
  • the total thickness of each layer formed can be measured by using an optical interference type film thickness meter. Furthermore, the thickness of each layer can be calculated by observing the cross section of the grown layer with an optical interference type film thickness meter and a transmission electron microscope. When the thickness of each layer is as small as several nanometers, which is similar to a superlattice structure, the thickness can be measured by using TEM-EDS. Regarding the phase ratio, the value obtained by SIMS analysis after exposing the light emitting layer is used. In the cross-sectional view of each layer, when a predetermined layer has an inclined surface, the thickness of the layer is the maximum height from the flat surface of the layer immediately below the layer.
  • the semiconductor light emitting device includes a light emitting layer 50 having a laminated structure in which a first III-V compound semiconductor layer 51 and a second III-V compound semiconductor layer 52 having different composition ratios are repeatedly laminated.
  • the first III-V compound semiconductor layer 51 and the second III-V compound semiconductor layer 52 are abbreviated as the first layer 51 and the second layer 52, respectively.
  • the group III element in the first layer 51 and the second layer 52 is one or more selected from the group consisting of Al, Ga and In, and the first layer
  • the group V element in 51 and the second layer 52 is one or more selected from the group consisting of As, Sb, and P.
  • Each of the first layer 51 and the second layer 52 according to the present invention is composed of one or two or more elements from group III elements and one or two or more elements from group V elements, for a total of three or more elements.
  • the composition wavelength difference between the composition wavelength of the first layer 51 and the composition wavelength of the second layer 52 is set to 50 nm or less, and the lattice constant of the first layer 51 and the lattice constant of the second layer 52.
  • the ratio of the difference in the lattice constant between and is set to 0.05% or more and 0.60% or less.
  • the composition wavelength difference and the lattice constant difference are absolute values.
  • the ratio of the difference in lattice constant is a value obtained by dividing the absolute value of the difference in lattice constant between the first layer 51 and the second layer 52 by the average value of the lattice constants between the first layer 51 and the second layer 52.
  • the adjacent layers are calculated, and the absolute value of the lattice constant difference between the first layer 51 and the third layer 53 is calculated as the absolute value of the lattice constant between the first layer 51 and the third layer 53.
  • the inventors of the present invention have found that when the composition wavelength difference and the lattice constant difference based on the composition ratio of the first layer 51 and the second layer 52 satisfy this relationship, the light emission output of the semiconductor light emitting device can be significantly increased as compared with the conventional case. Was confirmed experimentally.
  • the present inventors consider the following.
  • the composition wavelength difference is 50 nm or less, there is only a barrier that allows holes to be easily exceeded at the junction temperature during energization (light emission), and a double band with no composition wavelength difference as a band structure during energization (light emission).
  • the structure resembles a heterostructure.
  • the composition wavelength difference is 30 nm or less (more preferably 25 nm or less), there is only a low barrier that can be easily exceeded even with heat energy at room temperature when not energized.
  • the barrier height is lowered by approaching the double hetero structure, and the splitting of the valence band is caused by the strain due to the difference in lattice constant, so that an electron confinement effect similar to the quantum well structure is obtained, so that the light emission output is It is expected to increase.
  • the ratio of the difference in lattice constant between the first layer 51 and the second layer 52 is preferably 0.05 or more, and is 0.3% or more. More preferably, the difference in composition wavelength between the first layer 51 and the second layer 52 may be 20 nm or less, or may be 1 nm or less, and the composition wavelength difference is the same (that is, the composition wavelength difference is 0 nm).
  • the group III element is two kinds of Ga and In and the group V element is two or more kinds selected from the group consisting of As, Sb and P.
  • a quaternary compound semiconductor of InGaAsP hereinafter, InGaAsP semiconductor
  • the III-V group compound semiconductor materials of the first layer 51 and the second layer 52 are both InGaAsP quaternary compound semiconductors, the effect of the present invention can be reliably obtained.
  • the laminated structure of the light emitting layer 50 in the semiconductor light emitting device according to the present invention may be composed of only the first layer 51 and the second layer 52, or may be provided with a further III-V compound semiconductor layer.
  • the third III-V group compound semiconductor layer 53 is provided between the first layer 51 and the second layer 52. (Hereinafter, abbreviated as the third layer 53) may be further provided. A preferable aspect of the third layer 53 will be described.
  • the third layer 53 is provided in the light emitting layer 50, the third layer 53 is formed of one or more kinds of the group III elements described above and a group V element, like the first layer 51 and the second layer 52.
  • the composition wavelength difference between the first layer 51 and the third layer 53, the third layer 53 and the second layer 52, the second layer 52 and the first layer 51 which are adjacent to each other is 50 nm or less, and It is preferable that the ratios of the lattice constant differences between adjacent ones are both 0.05% or more and 0.60% or less.
  • the III-V group compound semiconductor material of the third layer 53 has a group III element of Ga, In, and a group V element.
  • the elements are preferably two or more selected from the group consisting of As, Sb and P, and more preferably a quaternary compound semiconductor of InGaAsP (hereinafter, InGaAsP-based semiconductor).
  • InGaAsP-based semiconductor a quaternary compound semiconductor of InGaAsP
  • the total thickness of the light emitting layer 50 is not limited, but may be, for example, 1 ⁇ m to 8 ⁇ m.
  • the film thickness of each of the first layer 51, the second layer 52, and the third layer 53 in the laminated structure of the light emitting layer 50 is not limited, it can be set to, for example, about 1 to 15 nm.
  • the film thickness of each layer may be the same or different.
  • the film thicknesses of the first layers 51 may be the same or different in the laminated structure. The same applies to the film thickness of the second layers 52 and the film thickness of the third layers 53.
  • the light emitting layer 50 has a superlattice structure in which the first layers 51 have the same thickness and the second layers 52 have the same thickness (third layers also when the third layer 53 is provided). That is one of the preferred embodiments of the present invention.
  • the number of sets of both the first layer 51 and the second layer 52 is not limited, but may be, for example, 3 to 50 sets.
  • One end of the laminated structure can be the first layer 51 and the other end can be the second layer 52.
  • the number of sets of the first layer 51 and the second layer 52 is described as n sets (n is a natural number).
  • one end of the laminated structure may be the first layer 51, a repeating structure of the second layer 52 and the first layer 51 may be provided, and the other end may be the first layer 51.
  • both ends may be the second layers 52.
  • the number of sets of the first layer 51 and the second layer 52 is expressed as n (n is a natural number), and n. We will say that there are 5 groups.
  • both ends of the laminated structure are shown as first layers 51.
  • the number of sets when the third layer 53 is provided in the laminated structure as shown in FIG. 2 is not limited, and may be 3 to 50 as in the embodiment referring to FIG. Although FIG. 2 illustrates a case where the number of stacked groups is n, the number of stacked groups is not limited to this.
  • the composition ratios a, b, c, x, y of the III-V group compound semiconductor in each of the first layer 51, the second layer 52 and the third layer 53. , Z is not limited. However, in order to suppress the deterioration of the crystallinity of the light emitting layer, the selection range of the composition ratio is such that the ratio of the lattice constant difference between the growth substrate and the light emitting layer (first layer and second layer) is 1 in each case. % Or less is preferable.
  • the absolute value of the lattice constant difference between the growth substrate and the first layer is divided by the average value of the growth substrate and the first layer, and the absolute value of the lattice constant difference between the growth substrate and the second layer is used for the growth.
  • the value divided by the average value of the substrate and the second layer is preferably 1% or less.
  • the In composition ratio a in each layer is 0.0 to 1.0
  • the Ga composition ratio b is 0.0 to 1.0
  • the Al composition ratio c is The composition ratio x of P may be 0.0 to 0.35
  • the composition ratio x of P may be 0.0 to 0.95
  • the composition ratio y of As may be 0.15 to 1.0
  • the composition ratio z of Sb may be 0.0 to 0.7. It may be appropriately set within these ranges so as to satisfy the condition of the ratio of the composition wavelength difference and the lattice constant difference.
  • the above emission center wavelength is merely an example.
  • the emission center wavelength can be set within the range of 1000 nm to 2200 nm and includes Sb.
  • infrared rays having a longer wavelength 11 ⁇ m or less can be used.
  • each layer in the light emitting layer 50 is not limited, it is preferable that all of the first layer 51, the second layer 52, and the third layer 53 be i-type in order to surely obtain the effect of the present invention.
  • each layer may be doped with an n-type or p-type dopant.
  • a semiconductor light emitting device 100 according to an exemplary embodiment will be described with reference to FIG.
  • a semiconductor light emitting device 100 includes at least a light emitting layer 50 having the above-described laminated structure, and further includes a supporting substrate 10, an intervening layer 20, a first conductivity type III-V group compound semiconductor layer 30, and a first conductive type III-V compound semiconductor layer 30. It is preferable that the spacer layer 41, the light emitting layer 50, the second spacer layer 42, and the second conductivity type III-V group compound semiconductor layer 70 have a desired configuration in this order. Further, the semiconductor light emitting device 100 may further include a second electrode 80 on the second conductivity type III-V group compound semiconductor layer 70 and a first electrode 90 on the back surface of the support substrate 10.
  • the first conductivity type is n-type
  • the second conductivity type is p-type
  • the first conductivity type is n-type
  • the second conductivity type is p-type
  • the first conductivity type III-V group compound semiconductor layer 30 is referred to as an n-type semiconductor layer 30
  • the second conductivity type III-V group compound semiconductor layer 70 is referred to as a p-type semiconductor layer 70. Then, the present embodiment will be described according to this specific example.
  • the growth substrate may be appropriately selected from compound semiconductor substrates such as InP substrate, InAs substrate, GaAs substrate, GaSb substrate and InSb substrate according to the composition of the light emitting layer 50.
  • the conductivity type of each substrate preferably corresponds to the conductivity type of the semiconductor layer on the growth substrate, and an n-type InP substrate and an n-type GaAs substrate can be exemplified as the compound semiconductor substrate applicable to this embodiment. ..
  • a growth substrate for growing the light emitting layer 50 on the support substrate 10 can be used.
  • various substrates different from the growth substrate may be used as the supporting substrate 10.
  • the intervening layer 20 may be provided on the support substrate 10.
  • the intervening layer 20 can be a III-V group compound semiconductor layer. It can be used as an initial growth layer for epitaxially growing a semiconductor layer on the support substrate 10 as a growth substrate. Further, for example, it can also be used as a buffer layer for buffering lattice distortion between the support substrate 10 as a growth substrate and the n-type semiconductor layer 30. Further, it can also be used as an etching stop layer by changing the semiconductor composition while lattice-matching the growth substrate and the intervening layer 20.
  • the intervening layer 20 is preferably an n-type InGaAs layer.
  • the In composition ratio in the group III element is preferably 0.3 to 0.7, and more preferably 0.5 to 0.6. preferable. Further, if the composition ratio is such that the lattice constant is close to that of the InP substrate as in InGaAs, AlInAs, AlInGaAs, or InGaAsP may be used.
  • the intervening layer 20 may be a single layer or a composite layer with another layer (for example, a superlattice layer).
  • An n-type semiconductor layer 30 can be provided on the support substrate 10 and, if necessary, the intervening layer 20, and the n-type semiconductor layer 30 can be used as an n-type cladding layer.
  • the composition of the III-V group compound semiconductor of the n-type semiconductor layer 30 may be appropriately determined according to the composition of the III-V group compound semiconductor of the light emitting layer 50.
  • the light emitting layer 50 is composed of an InGaAsP-based semiconductor, for example, an n-type InP layer can be used.
  • the n-type semiconductor layer 30 may have a single layer structure or a composite layer in which a plurality of layers are laminated.
  • the thickness of the n-type clad layer can be exemplified by 1 ⁇ m to 5 ⁇ m.
  • the first spacer layer 41 and the second spacer layer 42 are also preferable to provide between the light emitting layer 50 and the n-type semiconductor layer 30 and the p-type semiconductor layer 70, respectively.
  • the first spacer layer 41 can be an undoped or n-type III-V group compound semiconductor layer, and for example, an i-type InP spacer layer is preferably used.
  • the p-side second spacer layer 42 is preferably an undoped III-V group compound semiconductor layer, and for example, an i-type InP spacer layer can be used. By providing the undoped spacer layer 42, it is possible to prevent unnecessary diffusion of the dopant between the light emitting layer 50 and the p-type layer.
  • the thickness of each spacer layer 41, 42 is not limited, but may be, for example, 5 to 500 nm.
  • the p-type semiconductor layer 70 may be provided on the light emitting layer 50 and the second spacer layer 42 as necessary.
  • the p-type semiconductor layer 70 may include a p-type cladding layer 71 and a p-type contact layer 73 in order from the light emitting layer 50 side. It is also preferable to provide the intermediate layer 72 between the p-type cladding layer 71 and the p-type contact layer 73. By providing the intermediate layer 72, the lattice mismatch between the p-type cladding layer 71 and the p-type contact layer 73 can be relaxed.
  • the composition of the III-V group compound semiconductor of the p-type semiconductor layer 70 may be appropriately determined according to the composition of the III-V group compound semiconductor of the light emitting layer 50.
  • the light emitting layer 50 is composed of an InGaAsP-based semiconductor
  • p-type InP is used as the p-type cladding layer
  • p-type InGaAsP is used as the intermediate layer
  • p-type InGaAs that does not contain P is used as the p-type contact layer 73.
  • the film thickness of each layer of the p-type semiconductor layer 70 is not particularly limited, the film thickness of the p-type cladding layer 71 may be 1 ⁇ m to 5 ⁇ m, and the film thickness of the intermediate layer 72 may be 50 to 200 nm.
  • the film thickness of the p-type contact layer 73 may be 50 nm to 200 nm.
  • the first electrode 90 and the second electrode 80 can be provided on the p-type semiconductor layer 70 and on the back surface of the support substrate 10, respectively.
  • the metal material for forming each electrode is a metal such as Ti, Pt, or Au, A general metal such as a metal (Sn or the like) forming a eutectic alloy with gold can be used.
  • the electrode pattern of each electrode is arbitrary and is not limited at all.
  • the present invention is not limited to this.
  • a supporting substrate of the semiconductor light-emitting device of the present invention after forming each semiconductor layer on the growth substrate, while removing the growth substrate by a bonding method, a semiconductor substrate such as Si substrate, such as Mo or W or Kovar It is also possible to bond a metal substrate, various submount substrates using AlN or the like, and use this as a supporting substrate (hereinafter referred to as "bonding method”, see JP-A-2018-006495).
  • the semiconductor light emitting device 100 may be provided with layers other than the III-V group compound semiconductor in addition to the electrodes.
  • the intervening layer 20 made of a metal material can be formed on the supporting substrate 10 made of a Si substrate, and the p-type semiconductor layer 70, the light emitting layer 50, and the n-type semiconductor layer 30 are formed on the intervening layer 20. It is formed sequentially.
  • the intervening layer 20 can be used as a metal reflecting layer on the support substrate 10.
  • the semiconductor light emitting device 100 may be provided with a dielectric layer including an ohmic electrode portion in addition to the III-V group compound semiconductor layer, if necessary.
  • the dielectric material is SiO 2 , SiN, ITO or the like.
  • the case where the first conductivity type semiconductor layer is n-type and the second conductivity type semiconductor layer is p-type has been described as an example, but the conductivity type of each layer is n-type. It is of course understood that the /p type can be reversed from the above embodiments.
  • the first step of forming the first layer 51, the second step of forming the second layer 52, and the first step and the second step are repeated to perform the light emitting layer.
  • each layer of the semiconductor light emitting device 100 may include a step of forming each layer of the semiconductor light emitting device 100 described with reference to FIG. 3, if necessary.
  • the III-V group compound semiconductor materials that can be used as the first layer 51 and the second layer 52, the respective conditions of the composition wavelength difference and the lattice constant difference thereof, the respective film thicknesses, the number of laminated layers, etc. have been described above. As such, redundant description will be omitted.
  • Each of the III-V compound semiconductor layers is a known thin film growth method such as a metal organic chemical vapor deposition (MOCVD) method, a molecular beam epitaxy (MBE) method, or a sputtering method.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • sputtering method a sputtering method.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • sputtering method a sputtering method.
  • InGaAsP-based semiconductor for example, trimethylindium (TMIn) as an In source, trimethylgallium (TMGa) as a Ga source, arsine (AsH 3 ) as an As source, and phosphine (PH 3 ) as a P source are mixed at a predetermined mixing ratio.
  • the InGaAsP-based semiconductor layer can be epitaxially grown to a desired thickness according to the growth time.
  • TMA trimethyl aluminum
  • Sb is used as the group V element
  • TMSb trimethyl antimony
  • a gas of a dopant source containing Si, Zn, or the like as a constituent element may be further used as desired.
  • a known method can be used for forming the metal layers such as the first and second electrodes, and for example, a sputtering method, an electron beam evaporation method, a resistance heating method, or the like can be used.
  • a sputtering method an electron beam evaporation method, a resistance heating method, or the like
  • a known film forming method such as a plasma CVD method or a sputtering method may be applied, and if necessary, a known etching method may be used to form unevenness. It is also possible.
  • a semiconductor light emitting device can be manufactured, for example, as follows.
  • each layer of a III-V compound semiconductor layer including an etching stop layer, an n-type semiconductor layer 30, a light emitting layer 50, a p-type cladding layer 71, an intermediate layer 72, and a p-type contact layer 73 is sequentially formed on a growth substrate. To do.
  • the p-type contact layer 73 island-shaped dispersed p-type ohmic electrode portions are formed. After that, a resist mask is formed on the p-type ohmic electrode portion and its periphery, and the p-type contact layer 73 other than the place where the ohmic electrode portion is formed is removed by wet etching or the like to expose the intermediate layer 72.
  • a dielectric layer is formed on the intermediate layer 72. Further, the p-type ohmic electrode portion and the dielectric layer around the p-type ohmic electrode portion are removed by etching to expose the intermediate layer 72, and a metal reflection layer is formed on the intermediate layer 72.
  • a metal bonding layer is formed on the support substrate.
  • the metal reflection layer and the metal bonding layer are arranged opposite to each other and bonded by heat compression or the like.
  • the etching stop layer is etched to expose the n-type semiconductor layer 30 while the growth substrate is being removed by etching.
  • junction-type semiconductor light emission can be obtained.
  • the conductivity type n type/p type of each layer may be reversed from the above example.
  • Example 1 The semiconductor light emitting devices according to the following Inventive Example 1 and Comparative Examples 1 to 3 were manufactured by the bonding method with the target emission center wavelength set to 1300 nm.
  • each initial growth layer and etching stop layer 2000 nm thick n-type InP layer (n-type semiconductor layer 30 as n-type cladding layer), 100 nm thick i-type InP layer (first spacer layer 41) ), a light emitting layer 50 whose details will be described later, an i-type InP layer having a thickness of 320 nm (second spacer layer 42 ), a p-type InP layer having a thickness of 4800 nm (p-type cladding layer 71 ), and a p-type In 0 having a thickness of 50 nm.
  • n-type InP layer and the n-type InGaAs layer are Si-doped, and the dopant concentration is 7 ⁇ 10 7. It was set to 17 atoms/cm 3 .
  • the p-type InP layer (p-type cladding layer 71) was Zn-doped, and the dopant concentration was 1 ⁇ 10 18 atoms/cm 3 .
  • the i-type In a1 Ga b1 As x1 P y1 layer (first layer 51) is first formed, and then the i-type In a2 Ga b2 As x2 P y2 layer (second layer 52) and i.
  • Ten types of type In a1 Ga b1 As x1 P y1 layers (first layers 51) were alternately laminated to form a laminated structure of 10.5 sets. That is, both ends of the light emitting layer 50 are i-type In a1 Ga b1 As x1 P y1 layers (first layer 51).
  • the i-type In a1 Ga b1 As x1 P y1 layer (first layer 51) is In 0.675 Ga 0.325 As 0.689 P 0.311 having a thickness of 8 nm. That is, the In composition ratio (a1) is 0.675, the Ga composition ratio (b1) is 0.325, the As composition ratio (x1) is 0.689, and the P composition ratio (y1) is 0.311.
  • the i-type In a2 Ga b2 As x2 P y2 layer (second layer 52) is In 0.633 Ga 0.367 As 0.716 P 0.284 with a thickness of 5 nm.
  • each composition of each layer in the above-mentioned invention example 1 is a value measured by SIMS analysis. Regarding each layer of the light emitting layer, SIMS analysis was performed after exposing the light emitting layer to confirm the solid phase ratio of each layer.
  • Island-shaped dispersed p-type ohmic electrode parts (Au/AuZn/Au, total thickness: 530 nm) were formed on the p-type contact layer.
  • a resist pattern was formed, an ohmic electrode was then deposited, and the resist pattern was lifted off.
  • the contact area ratio with the p-type contact layer is 4.5%, and the chip size is 380 ⁇ m square.
  • a resist mask is formed on the p-type ohmic electrode portion and its periphery, and the p-type contact layer other than the place where the ohmic electrode portion is formed is removed by tartaric acid-hydrogen peroxide-based wet etching to expose the intermediate layer.
  • a dielectric layer thinness: 700 nm
  • SiO 2 was formed on the entire surface of the intermediate layer 72 by the plasma CVD method.
  • a window pattern having a shape with a width of 3 ⁇ m added in the width direction and the longitudinal direction is formed with a resist in the upper region of the p-type ohmic electrode portion, and the p-type ohmic electrode portion and the dielectric layer around it are wetted with BHF. It was removed by etching to expose the intermediate layer 72.
  • a metal reflective layer (Al/Au/Pt/Au) was formed on the entire surface of the intermediate layer 72 by vapor deposition.
  • the thickness of each metal layer of the metal reflection layer is 10 nm, 650 nm, 100 nm, and 900 nm in order.
  • a metal bonding layer (Ti/Pt/Au) was formed on a conductive Si substrate (thickness: 300 ⁇ m) to be a supporting substrate.
  • the thickness of each metal layer of the metal bonding layer is 650 nm, 10 nm, and 900 nm in order.
  • the metal reflection layer and the metal bonding layer were arranged to face each other, and heat compression bonding was performed at 300°C. Then, the n-type InP substrate was removed by wet etching with a hydrochloric acid diluting solution, and the etching stop layer was removed by wet etching using a sulfuric acid-hydrogen peroxide system to expose the n-type cladding layer.
  • an n-type electrode Au (thickness: 10 nm)/Ge (thickness: 33 nm)/Au (thickness: 57 nm)/Ni (thickness: 34 nm)/ Au (thickness: 800 nm)/Ti (thickness: 100 nm)/Au (thickness: 1000 nm) was formed by resist pattern formation, n-type electrode vapor deposition, and resist pattern lift-off.
  • a pad portion (Ti (thickness: 150 nm)/Pt (thickness: 100 nm)/Au (thickness: 2500 nm)) was formed on the n-type electrode to form a pattern of the upper surface electrode.
  • a back surface electrode Ti (thickness: 10 nm)/Pt (thickness: 50 nm)/Au (thickness: 200 nm) is formed on the back surface side of the Si substrate, and dicing is performed to divide the chip into individual pieces.
  • a semiconductor light emitting device according to Example 1 was produced.
  • a semiconductor light emitting device was formed according to the bonding method in the same manner as in Inventive Example 1 except that the composition ratios of the first layer 51 and the second layer 52 in Inventive Example 1 were changed as shown in Table 2.
  • Table 2 shows the composition ratio of the first layer 51 and the second layer 52, and the composition wavelength and the lattice constant converted from them. Further, Table 2 shows the ratio of the composition wavelength difference and the lattice constant difference as an absolute value.
  • the second layer 52 of Comparative Example 1 is an i-type InP layer, and the other layers constituting the light emitting layer are i-type InGaAsP layers.
  • Example 2 The semiconductor light emitting devices according to the following Inventive Example 2 and Comparative Examples 4 to 8 were manufactured by the bonding method with the target emission center wavelength set to 1460 nm.
  • ⁇ Evaluation 1 Emission output evaluation> A forward voltage Vf, a light emission output Po by an integrating sphere, and an emission center wavelength when a current of 20 mA is applied to the semiconductor light emitting devices according to each of Inventive Examples 1 and 2 and Comparative Examples 1 to 8 by using a constant current voltage power source. ⁇ p was measured, and the average value of the measurement results of three samples was obtained. The results are shown in Table 4. In addition, a graph showing the relationship between the composition wavelength difference and the emission output Po is shown in FIG. Further, a graph showing the relationship between the composition wavelength difference and the forward voltage Vf is shown in FIG.
  • Luminance output maintenance rate> The initial light emission output of the integrating sphere was measured immediately after the semiconductor light emitting device was manufactured (average of three samples), and then the semiconductor light emitting device was continuously energized with 20 mA at room temperature for 1000 hours, and then the light emitting output of the integrating sphere was measured. (Average of 3 samples). The results are shown in Table 4.
  • Supporting Substrate 20 Intervening Layer 30 First-conductivity-type Semiconductor Layer (n-type Semiconductor Layer) 41 First Spacer Layer 42 Second Spacer Layer 50 Light Emitting Layer 51 First III-V Group Compound Semiconductor Layer (First Layer) 52 Second III-V Group Compound Semiconductor Layer (Second Layer) 53 Third III-V compound semiconductor layer (third layer) 70 Second conductivity type semiconductor layer (p type semiconductor layer) 80 Second Electrode 90 First Electrode 100 Semiconductor Light Emitting Element

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

発光出力を向上させた半導体発光素子を提供する。本発明の半導体発光素子は、組成比が互いに異なる第1のIII-V族化合物半導体層及び第2のIII-V族化合物半導体層を繰り返し積層した積層構造を有する発光層を備える半導体発光素子であって、前記第1及び前記第2のIII-V族化合物半導体層はいずれも、Al,Ga及びIn並びにAs,Sb及びPから選択される3種以上の元素により構成され、前記第1のIII-V族化合物半導体層の組成波長と、前記第2のIII-V族化合物半導体層の組成波長との組成波長差が50nm以下であり、かつ、前記第1のIII-V族化合物半導体層の格子定数と前記第2のIII-V族化合物半導体層の格子定数との格子定数差の比が0.05%以上0.60%以下である。

Description

半導体発光素子及び半導体発光素子の製造方法
 本発明は、半導体発光素子及び半導体発光素子の製造方法に関する。
 半導体発光素子における半導体層の半導体材料として、InGaAsPなどのIII-V族化合物半導体が使用されている。III-V族化合物半導体材料により形成される発光層の組成比を調整することで、半導体発光素子の発光波長を緑色から赤外までと、幅広く調整することが可能である。例えば、波長750nm以上の赤外領域を発光波長とする赤外発光の半導体発光素子であれば、センサー、ガス分析、監視カメラなどの用途で幅広く用いられている。
 これまで、半導体発光素子の特性を改善するための試みが多数行われてきた。例えば特許文献1では、複数のIII-V族化合物半導体層を積層してなる積層構造を用いた発光層における各層の格子定数差に着目している。
 特許文献1は、InGaAsPの4元系化合物半導体層により構成される量子井戸構造を有する発光層を用いている。特許文献1では、各井戸層の組成比を変えることで格子定数差を調整して量子井戸を歪ませ、当該歪みに伴う高出力化等を企図している。なお、特許文献1の各井戸層の組成比は、発光遷移波長が等しくなるように調整されている。
特開平7-147454号公報
 近年、半導体発光素子の用途はますます広がりつつある。そのため、発光層材料としてIII-V族化合物半導体を用いた半導体発光素子の発光出力をさらに向上させる技術が求められている。
 そこで本発明は、発光出力を向上させた半導体発光素子を提供することを目的とする。さらに本発明は、この半導体発光素子の製造方法を提供することを目的とする。
 本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、第1及び第2のIII-V族化合物半導体層を積層してなる積層構造を有する発光層における各層間の組成波長差及び格子定数差に着目した。そして、組成波長差を小さくしつつ、適正範囲の格子定数差を設けた積層構造を設けることにより、半導体発光素子の発光出力を向上できることを知見した。本発明は、上記知見に基づいて完成されたものであり、その要旨構成は以下のとおりである。
(1)組成比が互いに異なる第1のIII-V族化合物半導体層及び第2のIII-V族化合物半導体層を繰り返し積層した積層構造を有する発光層を備える半導体発光素子であって、
 前記第1及び前記第2のIII-V族化合物半導体層におけるIII族元素はAl,Ga,Inからなる群より選択される1種又は2種以上であり、かつ、前記第1及び前記第2のIII-V族化合物半導体層におけるV族元素はAs,Sb,Pからなる群より選択される1種又は2種以上であり、
 前記第1及び前記第2のIII-V族化合物半導体層はいずれも、前記III族元素及び前記V族元素のうちから選択される3種以上の元素により構成され、
 前記第1のIII-V族化合物半導体層の組成波長と、前記第2のIII-V族化合物半導体層の組成波長との組成波長差が50nm以下であり、かつ、前記第1のIII-V族化合物半導体層の格子定数と前記第2のIII-V族化合物半導体層の格子定数との格子定数差の比が0.05%以上0.60%以下であることを特徴とする半導体発光素子。
(2)前記格子定数差の比が0.3%以上である、上記(1)に記載の半導体発光素子。
(3)前記第1及び前記第2のIII-V族化合物半導体層の組成波長差が30nm以下である、上記(1)又は(2)に記載の半導体発光素子。
(4)前記第1及び前記第2のIII-V族化合物半導体層はいずれも、前記III族元素及び前記V族元素のうちから選択される4種以上の元素により構成される上記(1)~(3)のいずれかに記載の半導体発光素子。
(5)前記4種以上の元素を構成する元素のうち、III族元素はGa,Inであり、V族元素はAs,Sb,Pからなる群より選択される2種以上である、上記(4)に記載の半導体発光素子。
(6)前記第1及び前記第2のIII-V族化合物半導体層はいずれもInGaAsPの4元系化合物半導体である、上記(1)~(3)のいずれかに記載の半導体発光素子。
(7)前記発光層の前記積層構造において、前記第1及び第2のIII-V族化合物半導体層の間に第3のIII-V族化合物半導体層がさらに設けられ、
 前記第3のIII-V族化合物半導体層は、前記III族元素及び前記V族元素のうちから選択される4種以上の元素により構成され、
 前記第1、第2及び第3のIII-V族化合物半導体層の隣り合う互いの組成波長差がいずれも50nm以下であり、かつ、
 前記第1、第2及び第3のIII-V族化合物半導体層の隣り合う互いの格子定数差の比がいずれも0.05%以上0.60%以下である、上記(1)~(6)のいずれかに記載の半導体発光素子。
(8)前記第3のIII-V族化合物半導体層はInGaAsPの4元系化合物半導体である、上記(7)に記載の半導体発光素子。
(9)上記(1)~(8)のいずれかに記載の半導体発光素子の製造する方法であって、
 前記第1のIII-V族化合物半導体層を形成する第1工程と、
 前記第2のIII-V族化合物半導体層を形成する第2工程と、
 前記第1工程及び前記第2工程を繰り返し行い前記発光層を形成する発光層形成工程と、を含むことを特徴とする半導体発光素子の製造方法。
 本発明によれば、発光出力を向上させた半導体発光素子を提供することができる。さらに本発明は、この半導体発光素子の製造方法を提供することができる。
本発明に従う半導体発光素子における発光層の一態様を示す模式断面図である。 本発明に従う半導体発光素子における発光層の別の態様を示す模式断面図である。 本発明の一実施形態に従う半導体発光素子を示す模式断面図である。 実施例における発光出力を対比するグラフである。 実施例における順方向電圧を対比するグラフである。
 本発明による実施形態の説明に先立ち、本明細書における諸定義について説明する。
<III-V族化合物半導体層>
 まず、本明細書において単に「III-V族化合物半導体」と称する場合、その組成は一般式:(InGaAl)(PAsSb)により表される。ここで、各元素の組成比については以下の関係が成立する。
 III族元素について、c=1-a-b,0≦a≦1,0≦b≦1,0≦c≦1
 V族元素について、z=1-x-y,0≦x≦1,0≦y≦1,0≦z≦1
 そして後述のとおり、発光層におけるIII-V族化合物半導体層はAl,Ga,Inからなる群より選択される1種又は2種以上と、III族元素及びAs,Sb,Pからなる群より選択されるV族元素のうちから選択される1種又は2種以上からなる3種以上の元素により構成される。3種の元素では、成長用基板との格子定数差の比を1%以下とする組み合わせが限られることから、4種以上の元素を用いて構成されることがより好ましい。上記一般式における各組成比a,b,cのうち1種又は2種以上、x,y,zのうちのうち1種又は2種以上、の合計3種以上が少なくとも0超である。
<組成に基づく組成波長及び格子定数>
 本明細書において組成に基づく組成波長及び格子定数の計算する際には、文献(永井治男ら、「フォトニクスシリーズ6 III-V族半導体混晶」、初版、コロナ社、1988年10月25日)記載の数値(表2.1より3元混晶の非線形因子の値、表2.2より2元結晶の格子定数、表2.3より2元結晶の弾性スティフネス定数、および表2.7より2元結晶のバンドギャップ、等)を使用した。下記では主にInGaAsP系を用いて説明するものの、AlやSbが含まれる場合についても上記文献に記載の文献値に基づき算出することが可能である。以下、各組成比a,b,c,x,y,zのうち、a,b,cから2種、x,y,zから2種を有する場合を擬4元混晶と称し、a,b,cから3種、x,y,zから1種(またはa,b,cから1種、x,y,zから3種)を有する場合を擬3元混晶と称する。
 本明細書におけるIII-V族化合物半導体層の「組成波長」は、III-V族化合物半導体層の組成に基づくエネルギーバンドギャップEgから下記式<1>
  Eg=1239.8/λ  ・・・<1>
により換算される波長λを意味する。各組成比(固相比)が既知である場合、まず、擬4元混晶の基になる4つの3元混晶のエネルギーバンドギャップEを、3元混晶の非線形因子を用いて求める。InGaAsP系(すなわち一般式:(InaGab)(PxAsy))を例として例示すると、3元混晶の(Ga,In)P、(Ga,In)As、Ga(P,As)、In(P,As)について、非線形因子を考慮したエネルギーバンドギャップEを算出する。それぞれの2元系のバンドギャップE0[eV]として文献値からInP:1.35、GaP:2.74、InAs:0.36、GaAs:1.42、および、非線形因子(ボウイングパラメータE0[eV])の値として文献値から(Ga,In)P:0.7、(Ga,In)As:0.51、Ga(P,As):0.3、In(P,As):0.23を用いて計算を行う。例えばInGaPのエネルギーバンドギャップEabxは、
 Eabx=1.35×a + 2.74×b‐0.7×a×b
として計算される。他の3元混晶についても同様に計算する。
 4つの3元混晶のエネルギーバンドギャップを算出した後、ベガードの法則に基づき、擬4元混晶(InaGab)(PxAsy)の物性値Egabxy(擬4元混晶のバンドギャップ)は、4つの3元混晶の物性値Eabx, Eaby, Eaxy, Ebxy(上記により求めた非線形因子を考慮したエネルギーバンドギャップ)を用いると下記式<2>に基づき求めることができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、上記式<2>において、4つの3元混晶の物性値は非線形因子を考慮しているので、算出される擬4元混晶の物性値も非線形因子が必然的に考慮されていることになる。
 次に、本明細書における混晶の格子定数の算出について説明する。格子定数には基板平面に対して垂直方向(成長方向)と水平方向(面内方向)の2種があるところ、本明細書においては垂直方向の値を用いる。まずベガート則に従い混晶の単純な格子定数を計算する。InGaAsP系(すなわち一般式:(InaGab)(PxAsy))を例として例示すると、物性定数Aabxy(ベガート則による格子定数)は、各組成比(固相比)が既知である場合、擬4元混晶の基になる4つの2元混晶の物性定数Bax, Bbx, Bay, Bby(下記表1の文献値の格子定数)をもとに下記式<3>により計算される。
  Aabxy=a×x×Bax+b×x×Bbx+a×y×Bay+b×y×Bby   ・・・<3>
Figure JPOXMLDOC01-appb-T000002
 次いで、弾性定数のC11、C12についても、上記式<3>と同様にして、(InaGab)(PxAsy)の弾性定数のC11abxy、C12abxyをそれぞれ算出する。
 そして、成長用基板の格子定数をasとすると、半導体結晶の弾性的性質に基づく格子変形を考慮して下記式<4>を適用し、格子変形を考慮した(垂直方向の)格子定数aabxy求めることができる。
  aabxy=Aabxy‐2×(as-Aabxy)×C12abxy/C11abxy  ・・・<4>
 ここで、本実施形態においては、InPを成長用基板としていることから、成長用基板の格子定数をasにはInPの格子定数を用いればよい。
 擬3元混晶の場合は、一般式:(InGaAl)(As))を例とすると下記式<5>,<6>からバンドギャップEgabcy及びベガート則による格子定数Aabcyを計算することができる。
Figure JPOXMLDOC01-appb-M000003
     Aabcy=a×Bay+b×Bby+c×Bcy ・・・<6>
 なお、III-V族化合物半導体が3元系、5元系又は6元系の場合で前述と同様の考えに従って式を変形し、組成波長及び格子定数を求めることができる。また、2元系については上記文献に記載の値を用いることができる。
<p型、n型及びi型並びにドーパント濃度>
 本明細書において、電気的にp型として機能する層をp型層と称し、電気的にn型として機能する層をn型層と称する。一方、Si、Zn、S、Sn、Mg等の特定の不純物を意図的には添加しておらず、電気的にp型又はn型として機能しない場合、「i型」又は「アンドープ」と言う。アンドープのIII-V族化合物半導体層には、製造過程における不可避的な不純物の混入はあって良い。具体的には、ドーパント濃度が低い(例えば7.6×1015atoms/cm未満)場合、「アンドープ」であるとして、本明細書では取り扱うものとする。Si、Zn、S、Sn、Mg等の不純物濃度の値は、SIMS分析によるものとする。同様に、活性層のn型ドーパント(例えばSi、S、Te、Sn、Ge、O等の)不純物濃度(「ドーパント濃度」)の値もSIMS分析によるものとする。なお、各半導体層の境界付近においてドーパント濃度の値は大きく変移するため、活性層の厚さ方向の中央におけるドーパント濃度の値をドーパント濃度の値とする。
<各層の膜厚及び組成>
 また、形成される各層の厚さ全体は、光干渉式膜厚測定器を用いて測定することができる。さらに、各層の厚さのそれぞれは、光干渉式膜厚測定器及び透過型電子顕微鏡による成長層の断面観察から算出できる。また、超格子構造に類する程度に各層の厚さが数nm程度で小さい場合にはTEM-EDSを用いて厚さを測定することができ、本明細書における発光層の各層の組成比(固相比)については、発光層を露出させた後、SIMS分析により得られた値を用いることとする。なお、各層の断面図において、所定の層が傾斜面を有する場合、その層の厚さは、当該層の直下層の平坦面からの最大高さを用いるものとする。
 以下、本発明の実施形態について図面を参照して詳細に例示説明する。なお、同一の構成要素には原則として同一の参照番号を付して、重複する説明を省略する。各図において、説明の便宜上、基板及び各層の縦横の比率を実際の比率から誇張して示している。
(半導体発光素子)
 本発明の一態様を示す図1を参照する。本発明に従う半導体発光素子は、組成比が互いに異なる第1のIII-V族化合物半導体層51及び第2のIII-V族化合物半導体層52を繰り返し積層した積層構造を有する発光層50を備える。以下、第1のIII-V族化合物半導体層51及び第2のIII-V族化合物半導体層52をそれぞれ第1層51及び第2層52とそれぞれ略記する。そして、本発明に従う半導体発光素子において、第1層51及び第2層52におけるIII族元素はAl,Ga,Inからなる群より選択される1種又は2種以上であり、かつ、第1層51及び第2層52におけるV族元素はAs,Sb,Pからなる群より選択される1種又は2種以上である。
 以下では、第1層51のIII-V族化合物半導体の組成を(Ina1Gab1Alc1)(Px1Asy1Sbz1);c=1-a-b,z=1-x-y,0≦a≦1,0≦b≦1,0≦c≦1,0≦x≦1,0≦y≦1,0≦z≦1と表記する。同様に、第2層52のIII-V族化合物半導体の組成を(Ina2Gab2Alc2)(Px2Asy2Sbz1);c=1-a-b,z=1-x-y,0≦a≦1,0≦b≦1,0≦c≦1,0≦x≦1,0≦y≦1,0≦z≦1と表記する。本発明による第1層51及び第2層52はいずれも、III族元素から1種または2種以上、及びV族元素から1種または2種以上の合計3種以上の元素により構成される。
 そして、本発明においては、第1層51の組成波長と、第2層52の組成波長との組成波長差を50nm以下とし、かつ、第1層51の格子定数と第2層52の格子定数との格子定数差の比を0.05%以上0.60%以下とする。なお、組成波長差及び格子定数差は絶対値での値とする。なお、格子定数差の比とは、第1層51及び第2層52の格子定数差の絶対値を、第1層51及び第2層52の格子定数の平均値で割った値とする。後述する第3層53が設けられる場合は、隣接する層についてそれぞれ計算し、第1層51と第3層53の格子定数差の絶対値を第1層51と第3層53の格子定数の平均値で割った値と、第3層53と第2層52の格子定数差の絶対値を第3層53と第2層52の格子定数の平均値で割った値とし、それぞれの値について0.05%以上0.60%以下とする。第1層51及び第2層52の組成比に基づく組成波長差及び格子定数差がこの関係を満たす場合に、半導体発光素子の発光出力を従来よりも大幅に高めることができることを本発明者らは実験的に確認した。
 組成波長差及び格子定数差が上記条件を満たすことで半導体発光素子の発光出力が高まる理由は定かではなく、また、本発明は理論に束縛されるものではないものの、本発明効果が得られる理由を本発明者らは以下のように考えている。組成波長差が50nm以下であると、通電時(発光時)のジャンクション温度においてホールが容易に超えられる障壁(バリア)しかなく、通電時(発光時)のバンド構造としては組成波長差のないダブルヘテロ構造に似た構造となる。また、組成波長差が30nm以下(より好ましくは25nm以下)であると、非通電時の室温の熱エネルギーであっても容易に超えられる低い障壁(バリア)しかないために、バンド構造としては組成波長差のないダブルヘテロ構造にさらに近づき、ダブルヘテロ構造とほぼ同じ構造となる。そして、ダブルヘテロ構造に近づくことでバリアハイトを下げ、かつ、格子定数差に起因する歪から価電子帯の分裂が生じることにより量子井戸構造と似た電子の閉じ込め効果を得られるために発光出力が高まると考えられる。
 ここで、本発明効果をより確実に得るためには、第1層51及び第2層52の格子定数差の比は0.05以上であることが好ましく、0.3%以上であることがより好ましい特に、第1層51及び第2層52のそれぞれの組成波長の差が20nm以下であってもよく、また1nm以下であってもよく、組成波長差が同一(すなわち、組成波長差が0nm)であってもよい。
 さらに、III族元素はGa,Inの2種であり、V族元素はAs,Sb,Pからなる群より選択される2種以上であることがより好ましい。また、InGaAsPの4元系化合物半導体(以下、InGaAsP系半導体)であることがさらに好ましい。第1層51及び第2層52の各III-V族化合物半導体材料がいずれもInGaAsPの4元系化合物半導体であれば、本発明効果を確実に得ることができる。この場合、第1層51におけるAlの組成比c及びSbの組成比zはともに0であり、組成式(Ina1Gab1)(Px1Asy1);b=1-a,y=1-x,0≦a≦1,0≦b≦1,0≦x≦1,0≦y≦1となり、かつ、第2層52におけるAlの組成比c及びSbの組成比zはともに0であり、組成式(Ina2Gab2)(Px2Asy2);b=1-a,y=1-x,0≦a≦1,0≦b≦1,0≦x≦1,0≦y≦1となる。
 本発明に従う半導体発光素子における発光層50の積層構造は、第1層51及び第2層52のみにより構成されてもよいし、さらなるIII-V族化合物半導体層が設けられていてもよい。例えば、本発明の別の態様を示す図2に図示されるように、発光層50の積層構造において、第1層51と第2層52の間に第3のIII-V族化合物半導体層53(以下、第3層53と略記する)がさらに設けられてもよい。第3層53の好ましい態様について説明する。
 第1層51及び第2層52に倣い、第3層53のIII-V族化合物半導体の組成を(Ina3Gab3Alc3)(Px3Asy3Sbz3);c=1-a-b,z=1-x-y,0≦a≦1,0≦b≦1,0≦c≦1,0≦x≦1,0≦y≦1,0≦z≦1と表記する。第3層53が発光層50に設けられる場合、第3層53は、第1層51及び第2層52と同様に、上述のIII族元素から1種又は2種以上、及びV族元素から1種または2種以上で選択される3種以上の元素により構成されることが好ましい。さらにこの場合、第1層51と第3層53、第3層53と第2層52、第2層52と第1層51の隣り合う互いの組成波長差がいずれも50nm以下であり、かつ、隣り合う互いの格子定数差の比がいずれも0.05%以上0.60%以下であることが好ましい。
 また、本発明効果をより確実に得る観点で、第3層53が設けられる場合には、第3層53のIII-V族化合物半導体材料が、III族元素はGa,Inであり、V族元素はAs,Sb,Pからなる群より選択される2種以上であることが好ましく、InGaAsPの4元系化合物半導体(以下、InGaAsP系半導体)であることがより好ましい。この場合、第3層53におけるAlの組成比c及びSbの組成比zはともに0である。
-膜厚-
 発光層50の全体の膜厚は制限されないものの、例えば1μm~8μmとすることができる。また、発光層50の積層構造における第1層51、第2層52及び第3層53の各層の膜厚も制限されないものの、例えば1~15nm程度とすることができる。各層の膜厚は互いに同じでもよいし、異なってもよい。また、第1層51同士の膜厚に関し、積層構造内で同じでもよいし異なっていてもよい。第2層52同士の膜厚及び第3層53の膜厚同士についても同様である。ただし、第1層51同士の膜厚及び第2層52同士の膜厚(第3層53が設けられる場合は第3層同士の膜厚についても)を同一にして発光層50を超格子構造とすることは、本発明における好ましい態様の一つである。
-積層組数-
 図1を参照する。第1層51及び第2層52の両者の組数は制限されないものの、例えば3~50組とすることができる。積層構造の一端を第1層51とし、他端を第2層52とすることができる。この場合、第1層51及び第2層52の組数はn組(nは自然数である)であると表記する。
 また、積層構造の一端を第1層51とし、第2層52及び第1層51の繰り返し構造を設けて他端を第1層51としてもよい。あるいはその逆に両端を第2層52としてもよい。この場合、第1層51及び第2層52の組数をn(nは自然数である)と表記し、n.5組であると言うこととする。図1では積層構造の両端を第1層51として図示している。
 なお、図2のように積層構造に第3層53が設けられている場合の組数も制限されず、図1を参照する態様と同様に3~50組としてよい。図2では積層組数がn組である場合を図示しているものの、必ずしもこの態様に制限されない。
-組成比-
 組成波長差及び格子定数差の条件を満足する限りは、第1層51、第2層52及び第3層53の各層のIII-V族化合物半導体の組成比a,b,c,x,y,zは制限されない。ただし、発光層の結晶性の悪化を抑制するために、組成比の選択範囲は、成長用基板と発光層(第1層と第2層)との間の格子定数差の比をいずれも1%以下とすることが好ましい。すなわち、成長用基板と第1層の格子定数差の絶対値を成長用基板と第1層の平均値で割った値と、成長用基板と第2層の格子定数差の絶対値を成長用基板と第2層の平均値で割った値がいずれも1%以下であることが好ましい。例えば発光中心波長を1000~1900nmとする場合、成長用基板をInP基板とすれば、各層におけるInの組成比aを0.0~1.0、Gaの組成比bを0.0~1.0、Alの組成比cを0.0~0.35、Pの組成比xを0.0~0.95、Asの組成比yを0.15~1.0、Sbの組成比zを0.0~0.7とすることができる。これらの範囲内から組成波長差及び格子定数差の比の条件を満足するよう、適宜設定すればよい。上記発光中心波長は一例に過ぎず、例えばInGaAsPの4元系化合物半導体(以下、InGaAsP系半導体)である場合には発光中心波長を1000nm以上2200nm以下の範囲内とすることができ、Sbを含む場合にはさらに長波長(11μm以下)の赤外線とすることができる。
-ドーパント-
 発光層50における各層のドーパントは制限されないものの、第1層51、第2層52及び第3層53のいずれもi型とすることが本発明効果を確実に得るためには好ましい。ただし、各層についてn型又はp型ドーパントをドープしてもよい。
 以下では、本発明の半導体発光素子の具体的構成の限定を意図するものではないが、本発明の半導体発光素子が更に備えることのできる具体的態様について説明する。図3を参照して本発明の一実施形態に従う半導体発光素子100を説明する。
 本発明の一実施形態に従う半導体発光素子100は上述した積層構造を有する発光層50を少なくとも備え、さらに、支持基板10、介在層20、第1導電型III-V族化合物半導体層30、第1スペーサ層41、発光層50、第2スペーサ層42、第2導電型III-V族化合物半導体層70の中から所望の構成をこの順に備えることが好ましい。また、半導体発光素子100の第2導電型III-V族化合物半導体層70上には第2電極80を、支持基板10の裏面には第1電極90をさらに備えることができる。なお、第1導電型がn型であれば第2導電型はp型となり、逆に第1導電型がp型であれば第2導電型はn型となる。以下、第1導電型がn型であり、第2導電型がp型である場合の態様を説明する。以下では、説明の便宜状、第1導電型III-V族化合物半導体層30をn型半導体層30と表記し、第2導電型III-V族化合物半導体層70をp型半導体層70と表記して、この具体例に従い本実施形態を説明する。発光層50はn型半導体層30及びp型半導体層70に挟持されることにより、ダブルヘテロ構造に類した構造とすることができ、発光層50への通電により発光層50内で電子及び正孔で結合して発光する。
<成長用基板>
 成長用基板は発光層50の組成に応じて、InP基板、InAs基板、GaAs基板、GaSb基板、InSb基板などの化合物半導体基板から適宜選択すればよい。各基板の導電型については成長用基板上の半導体層の導電型に対応させることが好ましく、本実施形態に適用可能な化合物半導体基板としてn型InP基板及びn型GaAs基板を例示することができる。
<支持基板>
 支持基板10としては、当該支持基板10上に発光層50を成長させる成長用基板を用いることができる。後述する接合法を用いる場合は、成長用基板とは異種の種々の基板を支持基板10として使用してもよい。
<介在層>
 支持基板10上に介在層20を設けてもよい。介在層20をIII-V族化合物半導体層とすることができる。成長用基板としての支持基板10上に半導体層をエピタキシャル成長させるための初期成長層として用いることができる。また、例えば、成長用基板としての支持基板10と、n型半導体層30との間の格子歪みを緩衝させるためのバッファ層として用いることもできる。また、成長用基板と介在層20を格子整合させつつ、半導体組成を変えることで、エッチングストップ層としても用いることができる。例えば支持基板がn型のInP基板である場合は、介在層20をn型InGaAs層とすることが好ましい。この場合、介在層20をInP成長用基板と格子整合させるため、III族元素におけるIn組成比を0.3~0.7とすることが好ましく、0.5~0.6とすることがより好ましい。また上記のInGaAsと同程度にInP基板と格子定数が近くなる組成比とするならば、AlInAsやAlInGaAs、InGaAsPとしてもよい。介在層20は、単層であってもよいし、あるいは、他層との複合層(例えば超格子層)であっても良い。
<n型半導体層>
 支持基板10及び必要に応じて介在層20上に、n型半導体層30を設けることができ、当該n型半導体層30をn型クラッド層として用いることができる。発光層50のIII-V族化合物半導体の組成に応じてn型半導体層30のIII-V族化合物半導体の組成を適宜定めればよい。発光層50がInGaAsP系半導体で構成される場合には、例えばn型InP層を用いることができる。n型半導体層30は単層構造であってもよいし、複数層が積層された複合層であっても構わない。n型クラッド層の厚さとして1μm~5μmを例示することができる。
<スペーサ層>
 n型半導体層30及びp型半導体層70と発光層50との間に第1スペーサ層41及び第2スペーサ層42をそれぞれ設けることも好ましい。第1スペーサ層41はアンドープ又はn型のIII-V族化合物半導体層とすることができ、例えばi型InPスペーサ層を用いることが好ましい。一方p側の第2スペーサ層42はアンドープのIII-V族化合物半導体層とすることが好ましく、例えばi型InPスペーサ層を用いることができる。アンドープのスペーサ層42を設けることで、発光層50とp型層との間の不要なドーパントの拡散を防止することができる。各スペーサ層41,42の厚さは制限されないが、例えば5~500nmとすればよい。
<p型半導体層>
 発光層50及び必要に応じて第2スペーサ層42上にp型半導体層70を設けることができる。p型半導体層70は発光層50の側から順に、p型クラッド層71及びp型コンタクト層73を備えることができる。p型クラッド層71及びp型コンタクト層73の間に中間層72を設けることも好ましい。中間層72を設けることで、p型クラッド層71及びp型コンタクト層73の格子不整合を緩和することができる。発光層50のIII-V族化合物半導体の組成に応じてp型半導体層70のIII-V族化合物半導体の組成を適宜定めればよい。発光層50がInGaAsP系半導体で構成される場合には、p型クラッド層としてp型InPを、中間層としてp型InGaAsPを、p型コンタクト層73としてPを含まないp型InGaAsを例示することができる。p型半導体層70の各層の膜厚は特に制限されないものの、p型クラッド層71の膜厚として1μm~5μmを例示することができ、中間層72の膜厚として50~200nmを例示することができ、p型コンタクト層73の膜厚として50nm~200nmを例示することができる。
<電極>
 p型半導体層70上及び支持基板10の裏面にそれぞれ第1電極90及び第2電極80を設けることができ、各電極を構成するための金属材料は、Ti、Pt、Auなどの金属や、金と共晶合金を形成する金属(Snなど)などの一般的なものを用いることができる。さらに、各電極の電極パターンは任意であり、何ら制限されない。
 これまで、化合物半導体基板を成長用基板として用い、これをそのまま支持基板10として用いる実施形態を説明してきたが、本発明はこれに制限されない。本発明の半導体発光素子の支持基板としては、成長用基板上に各半導体層を形成した後、接合法により成長用基板を除去しつつ、Si基板などの半導体基板、MoやWやコバールなどの金属基板、AlNなどを使用した各種サブマウント基板などを貼り合わせてこれを支持基板として用いることもできる(以下、「接合法」と称し、特開2018-006495号公報を参照する)。
 接合法を用いる場合は、半導体発光素子100は各電極以外にもIII-V族化合物半導体以外の層が設けられ得る。例えば、接合法を用いる場合ではSi基板からなる支持基板10上に金属材料からなる介在層20を形成することができ、この上にp型半導体層70、発光層50、n型半導体層30が順次形成される。なお、介在層20は支持基板10上の金属反射層として用いることができる。さらに、半導体発光素子100は必要に応じてIII-V族化合物半導体層の他、オーミック電極部を含む誘電体層が設けられ得る。誘電体材料はSiO、SiN、ITO等である。
 なお前述のとおり、上記の一実施形態では、第1導電型半導体層がn型であり、第2導電型半導体層がp型である場合を例に説明したものの、各層の導電型のn型/p型を上記の実施形態と逆転できることが当然に理解される。
(半導体発光素子の製造方法)
 本発明による前述の半導体発光素子の製造方法は、第1層51を形成する第1工程と、第2層52を形成する第2工程と、これら第1工程及び第2工程を繰り返し行い発光層50を形成する発光層形成工程と、を少なくとも含む。第3層53を形成する第3工程をさらに含んでもよい。この場合、発光層形成工程においては、第1層51を形成する第1工程、第3層53を形成する第3工程、及び第2層52を形成する第2工程を繰り返し行うことができる。
 また、必要に応じて、図3を参照して説明した半導体発光素子100の各層を形成する工程を含んでもよい。第1層51及び第2層52として用いることのできるIII-V族化合物半導体材料並びにそれらの組成波長差及び格子定数差の各条件、さらには各膜厚、積層組数等については既述のとおりであり、重複する説明を省略する。
 III-V族化合物半導体層の各層は、例えば、有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法や分子線エピタキシ(MBE:Molecular Beam Epitaxy)法、スパッタ法などの公知の薄膜成長方法により形成することができる。InGaAsP系半導体であれば、例えば、In源としてトリメチルインジウム(TMIn)、Ga源としてトリメチルガリウム(TMGa)、As源としてアルシン(AsH)、P源としてホスフィン(PH)などを所定の混合比で用い、これらの原料ガスを、キャリアガスを用いつつ気相成長させることにより、成長時間に応じてInGaAsP系半導体層を所望の厚さでエピタキシャル成長させることができる。また、III族元素としてAlを用いる場合、Al源として例えばトリメチルアルミニウム(TMA)などを用いればよく、V族元素としてSbを用いる場合、Sb源としてTMSb(トリメチルアンチモン)などを用いればよい。さらに、各半導体層をp型又はn型にドーパントする場合は、所望に応じSi、Znなどを構成元素に含むドーパント源のガスをさらに用いればよい。
 また、第1及び第2電極などの金属層の形成は公知の手法を用いることができ、例えばスパッタ法、電子ビーム蒸着法、又は抵抗加熱法などを用いることができる。接合法を用いる場合に誘電体層を形成するのであればプラズマCVD法又はスパッタ法などの、公知の成膜法を適用すればよいし、必要に応じて公知のエッチング法を用いて凹凸形成することも可能である。
 接合法(先に言及した特開2018-006495号公報を参照する)を用いる場合、例えば以下のようにして半導体発光素子を作製することができる。
 まず、成長用基板上にエッチングストップ層、n型半導体層30、発光層50、p型クラッド層71、中間層72、p型コンタクト層73を含むIII-V族化合物半導体層の各層を順次形成する。次いで、p型コンタクト層73上には島状に分散したp型オーミック電極部を形成する。その後、p型オーミック電極部及びその周辺にレジストマスクを形成し、オーミック電極部を形成した場所以外のp型コンタクト層73をウェットエッチング等により除去し、中間層72を露出させる。そして、中間層72上に誘電体層を形成する。さらに、p型オーミック電極部及びその周辺の誘電体層をエッチングにより除去し、中間層72を露出させ、金属反射層を中間層72上に形成する。
 一方、支持基板として導電性Si基板などを用いて、支持基板上に金属接合層を形成する。金属反射層及び金属接合層を対向配置して加熱圧縮等により接合する。そして、成長用基板をエッチングして除去しつつ、エッチングストップ層をエッチングしてn型半導体層30を露出させる。n型半導体層30上に、上面電極を形成することで、接合型の半導体発光を得ることができる。前述のとおり、各層の導電型のn型/p型を上記例と逆転しても構わない。
 以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。
(実験例1)
 狙いの発光中心波長を1300nmとして、以下の発明例1及び比較例1~3に係る半導体発光素子を接合法により作製した。
<発明例1>
 発明例1による半導体発光素子100のIII-V族化合物半導体層の各構成については図3の符号を参照する。Sドープのn型InP基板を成長用基板として用いた。n型InP基板(Sドープ、ドーパント濃度2×1018atoms/cm3)の(100)面上に、厚さ100nmのn型InP層及び厚さ20nmのn型In0.57Ga0.43As層(それぞれを初期成長層及びエッチングストップ層)、厚さ2000nmのn型InP層(n型クラッド層としてのn型半導体層30)、厚さ100nmのi型InP層(第1スペーサ層41)、詳細を後述する発光層50、厚さ320nmのi型InP層(第2スペーサ層42)、厚さ4800nmのp型InP層(p型クラッド層71)、厚さ50nmのp型In0.8Ga0.2As0.50.5層(中間層72)、厚さ100nmのp型In0.57Ga0.43As層(p型コンタクト層73)をMOCVD法により順次形成した。n型InP層及びn型InGaAs層(それぞれを初期成長層及びエッチングストップ層)、n型InP層(n型クラッド層としてのn型半導体層30)はSiドープを行い、ドーパント濃度は7×1017 atoms/cm3とした。p型InP層(p型クラッド層71)はZnドープを行い、ドーパント濃度は1×1018 atoms/cm3とした。p型InGaAsP層(中間層72)、p型InGaAs層(p型コンタクト層73)はZnドープを行い、ドーパント濃度は1×1019 atoms/cm3とした。
 発光層50の形成に際しては、i型Ina1Gab1Asx1y1層(第1層51)をまず形成し、次いでi型Ina2Gab2Asx2y2層(第2層52)及びi型Ina1Gab1Asx1y1層(第1層51)を10層ずつ交互に積層し、10.5組の積層構造とした。すなわち、発光層50の両端はともにi型Ina1Gab1Asx1y1層(第1層51)である。i型Ina1Gab1Asx1y1層(第1層51)は、厚さ8nmのIn0.675Ga0.325As0.6890.311である。すなわち、In組成比(a1)が0.675、Ga組成比(b1)が0.325、As組成比(x1)が0.689、P組成比(y1)が0.311である。また、i型Ina2Gab2Asx2y2層(第2層52)は、厚さ5nmのIn0.633Ga0.367As0.7160.284である。すなわち、In組成比(a2)が0.633、Ga組成比(b2)が0.367、As組成比(x2)が0.716、P組成比(y2)が0.284である。また、発光層の合計膜厚は138nmである。なお、上記した発明例1における各層の各組成はSIMS分析により測定した値である。また、発光層の各層については発光層を露出させた後にSIMS分析して各層の固相比を確認した。
 p型コンタクト層上には島状に分散したp型オーミック電極部(Au/AuZn/Au、合計厚さ:530nm)を形成した。なお、島状のパターン形成にあたっては、レジストパターンを形成し、次いでオーミック電極を蒸着し、レジストパターンのリフトオフにより形成した。p型コンタクト層への接触面積率は4.5%であり、チップサイズは380μm角である。
 次に、p型オーミック電極部及びその周辺にレジストマスクを形成し、オーミック電極部を形成した場所以外のp型コンタクト層を、酒石酸-過酸化水素系のウェットエッチングにより除去し、中間層を露出させた。その後、プラズマCVD法により中間層72上の全面にSiOからなる誘電体層(厚さ:700nm)を形成した。そして、p型オーミック電極部の上方領域に、幅方向及び長手方向に幅3μmを付加した形状の窓パターンをレジストで形成し、p型オーミック電極部及びその周辺の誘電体層を、BHFによるウェットエッチングにより除去し、中間層72を露出させた。
 次に、金属反射層(Al/Au/Pt/Au)を中間層72上の全面に蒸着により形成した。金属反射層の各金属層の厚さは、順に10nm、650nm、100nm、900nmである。
 一方、支持基板となる導電性Si基板(厚さ:300μm)上に、金属接合層(Ti/Pt/Au)を形成した。金属接合層の各金属層の厚さは、順に650nm、10nm、900nmである。
 これら金属反射層及び金属接合層を対向配置して、300℃で加熱圧縮接合を行った。そして、n型InP基板を塩酸希釈液によりウェットエッチングして除去し、さらに、エッチングストップ層を硫酸-過酸化水素系を用いてウェットエッチングして除去してn型クラッド層を露出させた。
 n型クラッド層上に、上面電極の配線部として、n型電極(Au(厚さ:10nm)/Ge(厚さ:33nm)/Au(厚さ:57nm)/Ni(厚さ:34nm)/Au(厚さ:800nm)/Ti(厚さ:100nm)/Au(厚さ:1000nm))を、レジストパターン形成、n型電極の蒸着、レジストパターンのリフトオフにより形成した。さらに、パッド部(Ti(厚さ:150nm)/Pt(厚さ:100nm)/Au(厚さ:2500nm))をn型電極上に形成し、上面電極のパターンを形成した。
 最後に、メサエッチングにより各素子間(幅60μm)の半導体層を除去してダイシングラインを形成した。そして、Si基板の裏面側への裏面電極(Ti(厚さ:10nm)/Pt(厚さ:50nm)/Au(厚さ200nm))を形成し、ダイシングによるチップ個片化を行って、発明例1に係る半導体発光素子を作製した。
<比較例1~3>
 発明例1における第1層51及び第2層52の組成比を表2に記載のとおりに変えた以外は、発明例1と同様として半導体発光素子を接合法に従い形成した。表2に、発明例1を含めて、第1層51及び第2層52の組成比及びこれらより換算させる組成波長及び格子定数を示す。さらに、表2に組成波長差及び格子定数差の比を絶対値で示す。なお、比較例1の第2層52はi型InP層であり、その他の発光層を構成する層はi型InGaAsP層である。
(実験例2)
 狙いの発光中心波長を1460nmとして、以下の発明例2及び比較例4~8に係る半導体発光素子を接合法により作製した。
<発明例2、比較例4~8>
 発明例1における第1層51及び第2層52の組成比を表3に記載のとおりに変えた以外は、発明例1と同様として発明例2及び比較例4~8に係る半導体発光素子を接合法に従い形成した。なお、比較例4の第2層52はi型InP層である。また、表3にこれらの組成波長差及び格子定数差の比を表2と同様に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
<評価1:発光出力評価>
 発明例1,2、比較例1~8のそれぞれにかかる半導体発光素子に定電流電圧電源を用いて20mAの電流を流したときの順方向電圧Vf、積分球による発光出力Po、及び発光中心波長λpを測定し、それぞれ3個の試料の測定結果の平均値を求めた。結果を表4に示す。また、組成波長差と発光出力Poとの関係を示すグラフを図4に示す。さらに、組成波長差と順方向電圧Vfとの関係を示すグラフを図5に示す。
<評価2:発光出力の維持率>
 半導体発光素子作製直後の積分球による初期の発光出力を測定し(3個の試料の平均)、その後、半導体発光素子に室温で20mAを1000時間連続して通電した後に積分球による発光出力を測定した(3個の試料の平均)。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000006
 表4及び図4より、本発明条件に従う組成波長差及び格子定数差を満足する場合に発光出力が向上していることが確認される。また、図5より、順方向電圧については、実施例1,2のそれぞれは、各実験例における比較例と同程度以上に良好な値であったことが確認される。また、発光出力の維持率についても、実施例1,2のそれぞれは、各実験例における比較例と同程度以上に良好な値であったことが確認される。
10      支持基板
20      介在層
30      第1導電型半導体層(n型半導体層)
41      第1スペーサ層
42      第2スペーサ層
50      発光層
51      第1のIII-V族化合物半導体層(第1層)
52      第2のIII-V族化合物半導体層(第2層)
53      第3のIII-V族化合物半導体層(第3層)
70      第2導電型半導体層(p型半導体層)
80      第2電極
90      第1電極
100     半導体発光素子
 

Claims (9)

  1.  組成比が互いに異なる第1のIII-V族化合物半導体層及び第2のIII-V族化合物半導体層を繰り返し積層した積層構造を有する発光層を備える半導体発光素子であって、
     前記第1及び前記第2のIII-V族化合物半導体層におけるIII族元素はAl,Ga,Inからなる群より選択される1種又は2種以上であり、かつ、前記第1及び前記第2のIII-V族化合物半導体層におけるV族元素はAs,Sb,Pからなる群より選択される1種又は2種以上であり、
     前記第1及び前記第2のIII-V族化合物半導体層はいずれも、前記III族元素及び前記V族元素のうちから選択される3種以上の元素により構成され、
     前記第1のIII-V族化合物半導体層の組成波長と、前記第2のIII-V族化合物半導体層の組成波長との組成波長差が50nm以下であり、かつ、前記第1のIII-V族化合物半導体層の格子定数と前記第2のIII-V族化合物半導体層の格子定数との格子定数差の比が0.05%以上0.60%以下であることを特徴とする半導体発光素子。
  2.  前記格子定数差の比が0.3%以上である、請求項1に記載の半導体発光素子。
  3.  前記第1及び前記第2のIII-V族化合物半導体層の組成波長差が30nm以下である、請求項1又は2に記載の半導体発光素子。
  4.  前記第1及び前記第2のIII-V族化合物半導体層はいずれも、前記III族元素及び前記V族元素のうちから選択される4種以上の元素により構成される請求項1~3のいずれか1項に記載の半導体発光素子。
  5.  前記4種以上の元素を構成する元素のうち、前記III族元素はGa,Inであり、前記V族元素はAs,Sb,Pからなる群より選択される2種以上である、請求項4に記載の半導体発光素子。
  6.  前記第1及び前記第2のIII-V族化合物半導体層はいずれもInGaAsPの4元系化合物半導体である、請求項1~3のいずれか1項に記載の半導体発光素子。
  7.  前記発光層の前記積層構造において、前記第1及び第2のIII-V族化合物半導体層の間に第3のIII-V族化合物半導体層がさらに設けられ、
     前記第3のIII-V族化合物半導体層は、前記III族元素及び前記V族元素のうちから選択される4種以上の元素により構成され、
     前記第1、第2及び第3のIII-V族化合物半導体層の隣り合う互いの組成波長差がいずれも50nm以下であり、かつ、
     前記第1、第2及び第3のIII-V族化合物半導体層の隣り合う互いの格子定数差の比がいずれも0.05%以上0.60%以下である、請求項1~6のいずれか1項に記載の半導体発光素子。
  8.  前記第3のIII-V族化合物半導体層はInGaAsPの4元系化合物半導体である、請求項7に記載の半導体発光素子。
  9.  請求項1~8のいずれか1項に記載の半導体発光素子の製造する方法であって、
     前記第1のIII-V族化合物半導体層を形成する第1工程と、
     前記第2のIII-V族化合物半導体層を形成する第2工程と、
     前記第1工程及び前記第2工程を繰り返し行い前記発光層を形成する発光層形成工程と、を含むことを特徴とする半導体発光素子の製造方法。
     
     
PCT/JP2019/048778 2019-01-07 2019-12-12 半導体発光素子及び半導体発光素子の製造方法 WO2020145025A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/418,849 US11888090B2 (en) 2019-01-07 2019-12-12 Semiconductor light-emitting element and method of producing semiconductor light-emitting element
DE112019006575.0T DE112019006575B4 (de) 2019-01-07 2019-12-12 Lichtemittierendes Halbleiterelement und Verfahren zur Herstellung eines lichtemittierenden Halbleiterelements
CN201980088201.2A CN113272974A (zh) 2019-01-07 2019-12-12 半导体发光元件和半导体发光元件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019000854A JP6679767B1 (ja) 2019-01-07 2019-01-07 半導体発光素子及び半導体発光素子の製造方法
JP2019-000854 2019-01-07

Publications (1)

Publication Number Publication Date
WO2020145025A1 true WO2020145025A1 (ja) 2020-07-16

Family

ID=70166391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048778 WO2020145025A1 (ja) 2019-01-07 2019-12-12 半導体発光素子及び半導体発光素子の製造方法

Country Status (6)

Country Link
US (1) US11888090B2 (ja)
JP (1) JP6679767B1 (ja)
CN (1) CN113272974A (ja)
DE (1) DE112019006575B4 (ja)
TW (1) TWI725679B (ja)
WO (1) WO2020145025A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112217096A (zh) * 2020-12-14 2021-01-12 陕西源杰半导体技术有限公司 半导体器件及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368336B2 (ja) * 2020-09-30 2023-10-24 信越半導体株式会社 紫外線発光素子用金属貼り合わせ基板の製造方法、及び紫外線発光素子の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168153A (ja) * 1997-08-08 1999-03-09 Hitachi Ltd 発光ダイオードおよびその製造方法
JP2002026455A (ja) * 2000-07-03 2002-01-25 Nec Corp 半導体光素子およびその製造方法
JP2007519244A (ja) * 2004-01-23 2007-07-12 エグザロス・アクチェンゲゼルシャフト スーパールミネッセント発光ダイオード
JP2008066326A (ja) * 2006-09-04 2008-03-21 Sumitomo Electric Ind Ltd 半導体光素子を作製する方法
JP2012256811A (ja) * 2011-05-18 2012-12-27 Toshiba Corp 半導体発光素子
JP2018101675A (ja) * 2016-12-20 2018-06-28 Dowaエレクトロニクス株式会社 半導体発光素子およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2806089B2 (ja) * 1991-08-06 1998-09-30 日本電気株式会社 半導体多重歪量子井戸構造
JPH07147454A (ja) 1993-11-26 1995-06-06 Hitachi Ltd 半導体素子
US5625635A (en) * 1994-11-28 1997-04-29 Sandia Corporation Infrared emitting device and method
US5780867A (en) 1996-03-07 1998-07-14 Sandia Corporation Broadband light-emitting diode
KR20010089540A (ko) 1998-12-03 2001-10-06 추후보정 광전자 장치를 위한 화합물 반도체 구조
US7244965B2 (en) * 2002-09-04 2007-07-17 Cree Inc, Power surface mount light emitting die package
JP4592388B2 (ja) * 2004-11-04 2010-12-01 シャープ株式会社 Iii−v族化合物半導体発光素子およびその製造方法
US10374120B2 (en) * 2005-02-18 2019-08-06 Koninklijke Philips N.V. High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials
TWI282636B (en) * 2005-12-29 2007-06-11 Epistar Corp Semiconductor light-emitting device and manufacturing method thereof
DE102011103143B4 (de) 2011-05-25 2014-05-22 Julius-Maximilians-Universität Würzburg Interbandkaskadenlaser-Verstärkermedium
JP5514920B2 (ja) * 2012-01-13 2014-06-04 Dowaエレクトロニクス株式会社 Iii族窒化物エピタキシャル基板および該基板を用いた深紫外発光素子
EP2696365B1 (en) * 2012-08-09 2021-06-23 Samsung Electronics Co., Ltd. Method of manufacturing a semiconductor device using a semiconductor buffer structure
US9306115B1 (en) * 2015-02-10 2016-04-05 Epistar Corporation Light-emitting device
JP6452651B2 (ja) 2016-06-30 2019-01-16 Dowaエレクトロニクス株式会社 半導体光デバイスの製造方法および半導体光デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168153A (ja) * 1997-08-08 1999-03-09 Hitachi Ltd 発光ダイオードおよびその製造方法
JP2002026455A (ja) * 2000-07-03 2002-01-25 Nec Corp 半導体光素子およびその製造方法
JP2007519244A (ja) * 2004-01-23 2007-07-12 エグザロス・アクチェンゲゼルシャフト スーパールミネッセント発光ダイオード
JP2008066326A (ja) * 2006-09-04 2008-03-21 Sumitomo Electric Ind Ltd 半導体光素子を作製する方法
JP2012256811A (ja) * 2011-05-18 2012-12-27 Toshiba Corp 半導体発光素子
JP2018101675A (ja) * 2016-12-20 2018-06-28 Dowaエレクトロニクス株式会社 半導体発光素子およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112217096A (zh) * 2020-12-14 2021-01-12 陕西源杰半导体技术有限公司 半导体器件及其制备方法

Also Published As

Publication number Publication date
TW202027265A (zh) 2020-07-16
US11888090B2 (en) 2024-01-30
JP2020109817A (ja) 2020-07-16
DE112019006575T5 (de) 2021-09-30
DE112019006575B4 (de) 2024-08-22
TWI725679B (zh) 2021-04-21
CN113272974A (zh) 2021-08-17
US20220059721A1 (en) 2022-02-24
JP6679767B1 (ja) 2020-04-15

Similar Documents

Publication Publication Date Title
KR102209263B1 (ko) 반도체 광디바이스의 제조 방법 및 반도체 광디바이스
WO2018151157A1 (ja) 深紫外発光素子およびその製造方法
JP3839799B2 (ja) 半導体発光素子
JP4554526B2 (ja) 半導体発光素子
JPH09186360A (ja) AlGaInP発光ダイオード
JP6785331B2 (ja) 半導体光デバイスの製造方法及び半導体光デバイスの中間体
WO2020255976A1 (ja) 半導体光デバイスの製造方法及び半導体光デバイス
WO2020145025A1 (ja) 半導体発光素子及び半導体発光素子の製造方法
TWI803785B (zh) 發光元件及其製造方法
TWI743463B (zh) 半導體光元件的製造方法以及半導體光元件的中間體
WO2024019098A1 (ja) 半導体発光素子及び半導体発光素子の製造方法
JP7413599B1 (ja) Iii-v族化合物半導体発光素子及びiii-v族化合物半導体発光素子の製造方法
JP3869641B2 (ja) 半導体装置及び半導体レーザ装置
WO2019216308A1 (ja) 半導体発光素子及び半導体発光素子の製造方法
US20230178965A1 (en) Semiconductor stack and light-emitting device
JP6158590B2 (ja) 半導体レーザ
JP6875076B2 (ja) 半導体発光素子の製造方法および半導体発光素子
JP2015167241A (ja) 受光素子およびその製造方法
CN115692561A (zh) 隧穿结及制备方法、多结红外led外延结构及制备方法
JP2017199711A (ja) 受光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909529

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19909529

Country of ref document: EP

Kind code of ref document: A1