WO2020138233A1 - 電気化学デバイス用の炭素質材料、電気化学デバイス用負極および電気化学デバイス - Google Patents

電気化学デバイス用の炭素質材料、電気化学デバイス用負極および電気化学デバイス Download PDF

Info

Publication number
WO2020138233A1
WO2020138233A1 PCT/JP2019/051006 JP2019051006W WO2020138233A1 WO 2020138233 A1 WO2020138233 A1 WO 2020138233A1 JP 2019051006 W JP2019051006 W JP 2019051006W WO 2020138233 A1 WO2020138233 A1 WO 2020138233A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonaceous material
negative electrode
electrochemical device
less
mass
Prior art date
Application number
PCT/JP2019/051006
Other languages
English (en)
French (fr)
Inventor
淳一 有馬
恭幸 弘田
昭典 山端
奥野 壮敏
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to US17/417,863 priority Critical patent/US20220069305A1/en
Priority to JP2020563384A priority patent/JP7389054B2/ja
Priority to CN201980086182.XA priority patent/CN113196520A/zh
Priority to KR1020217018450A priority patent/KR20210107662A/ko
Priority to EP19902330.0A priority patent/EP3905389A4/en
Publication of WO2020138233A1 publication Critical patent/WO2020138233A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/20Powder free flowing behaviour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a carbonaceous material for an electrochemical device, a negative electrode for an electrochemical device, and an electrochemical device.
  • Electrochemical devices include secondary batteries and capacitors that utilize electrochemical phenomena.
  • a lithium-ion secondary battery which is one of the electrochemical devices, is widely used in small mobile devices such as mobile phones and notebook computers.
  • a negative electrode material for a lithium ion secondary battery non-graphitizable carbon has been developed which is capable of doping (charging) and undoping (discharging) lithium in an amount exceeding the theoretical capacity of graphite of 372 mAh/g (for example, Patent Document 1). ), has been used.
  • the non-graphitizable carbon can be obtained by using, for example, petroleum pitch, coal pitch, phenol resin, or plant as a carbon source.
  • carbon sources plants are attracting attention because they are raw materials that can be continuously and stably supplied by cultivation and can be obtained at low cost.
  • a carbonaceous material obtained by firing a plant-derived carbon raw material has many pores, and thus a good charge/discharge capacity is expected (for example, Patent Document 1 and Patent Document 2).
  • non-graphitizable carbon When non-graphitizable carbon is used as, for example, a negative electrode material of a lithium ion secondary battery, it is usually used that has an average particle diameter D 50 of about 15 ⁇ m or less so that the negative electrode can be easily densified. (For example, Patent Document 3).
  • the negative electrode layer containing a carbonaceous material having a small average particle diameter that is usually used (for example, Patent Document 3) at the time of charging/discharging (hereinafter, also simply referred to as volume capacity). ), the resistance becomes large, and as a result, the discharge capacity retention rate at the time of high rate discharge is lowered.
  • volume capacity a carbonaceous material having a small average particle diameter that is usually used
  • simply increasing the average particle size of the carbonaceous material contained in the negative electrode material of the device would reduce the negative electrode density and fail to obtain a good volume capacity.
  • An object of the present invention is to provide an electrochemical device (for example, a lithium-ion secondary battery that is a non-aqueous electrolyte secondary battery) that exhibits good volume capacity when applied as a negative electrode layer and has an excellent discharge capacity retention rate. Etc.) to provide a carbonaceous material. It is also an object of the present invention to provide a negative electrode for an electrochemical device containing such a carbonaceous material, and an electrochemical device including the negative electrode for such an electrochemical device.
  • an electrochemical device for example, a lithium-ion secondary battery that is a non-aqueous electrolyte secondary battery
  • a negative electrode for an electrochemical device containing a carbonaceous material even when the negative electrode layer was formed by including a carbonaceous material having an average particle diameter larger than usual, such carbonaceous material was used. If the basic fluidity energy BFE (Basic Flowability Energy) measured by powder fluidity analysis of the material is within a predetermined range under specific conditions, the negative electrode layer can be preferably formed, and the negative electrode layer is included. It has been found that the electrochemical device exhibits good volume capacity and has excellent discharge capacity retention.
  • BFE Basic Flowability Energy
  • the present invention includes the following preferred embodiments.
  • a negative electrode for an electrochemical device comprising the carbonaceous material according to any one of [1] to [4] above.
  • the negative electrode for electrochemical device according to the above [6] wherein the negative electrode layer has a thickness of 100 ⁇ m or more.
  • An electrochemical device using the carbonaceous material for an electrochemical device of the present invention as a negative electrode material exhibits a good volume capacity and an excellent discharge capacity maintenance rate.
  • an electrochemical device refers to any device that can include a negative electrode containing a carbonaceous material and that utilizes an electrochemical phenomenon.
  • the electrochemical device is, for example, a rechargeable battery such as a lithium-ion secondary battery, a nickel-hydrogen secondary battery, a nickel-cadmium secondary battery, and an electric double-layer capacitor that can be repeatedly used by charging. Including capacitors.
  • the electrochemical device can be a non-aqueous electrolyte secondary battery, such as a lithium-ion secondary battery, a sodium-ion battery, a lithium-sulfur battery, a lithium-air battery, an all-solid-state battery, an organic radical battery, and the like. In particular, it may be a lithium ion secondary battery.
  • the carbonaceous material for an electrochemical device is a powder having an average particle diameter D 50 measured by a laser scattering method of 30 ⁇ m or more, and a measurement container having a diameter of 50 mm and a volume of 160 mL.
  • the average particle diameter D 50 of the carbonaceous material of the present embodiment measured by a laser scattering method is 30 ⁇ m or more, preferably 38 ⁇ m or more, more preferably 40 ⁇ m or more, still more preferably 45 ⁇ m or more, still more preferably 50 ⁇ m or more. ..
  • the average particle diameter D 50 is the particle diameter at which the cumulative volume becomes 50%.
  • the average particle diameter D 50 is measured by a laser scattering method using a particle size distribution measuring device.
  • the average particle diameter D 50 of the carbonaceous material of the present embodiment but also the average particle diameter D 50 in the state of a plant-derived char to be described later and, if necessary, before the calcination step and before the crushing step and/or the classification step.
  • the average particle size D 50 of the subsequent state of the plant-derived char carbon precursor can also be measured using the same method.
  • the volume of the negative electrode layer can be easily increased when applied to the negative electrode layer of the electrochemical device, and the electrochemical device can be efficiently used. It is possible to increase the ratio of the negative electrode occupying in the inside.
  • the upper limit of the average particle diameter D 50 is not particularly limited, but is usually 500 ⁇ m or less, preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, further preferably 200 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 80 ⁇ m or less. can do. This is because when the average particle diameter D 50 is equal to or less than the upper limit value, it is easy to adjust the basic fluidity energy BFE measured by the powder fluidity analysis described below within a predetermined range under specific conditions. This is because the electrode density is likely to increase.
  • the calculated basic fluidity energy BFE is 270 mJ or more and 1100 mJ or less, preferably 270 mJ or more and 1000 mJ or less, more preferably 280 mJ or more and 800 mJ or less, even more preferably 290 mJ or more and 800 mJ or less, and still more preferably 290 mJ or more and 600 mJ or less.
  • the basic fluidity energy BFE is determined by the powder fluidity analyzer, and depends on the blade height required when moving the blade installed in the apparatus for the sample powder filled in the apparatus. It is a value (J) of the moving energy of the blade.
  • the basic fluidity energy BFE can be measured by a powder rheometer FT4 manufactured by Freeman Technology.
  • the basic fluidity energy BFE can be calculated by filling 120 mL of powder in such an apparatus and allowing the powder to enter while rotating at a blade tip speed of 100 mm/sec.
  • the basic fluidity energy BFE of the powder of carbonaceous material is small when the particles of the powder are light and the average particle size D 50 is small, and the average particle size D 50 of the powder is large. And can grow.
  • the basic fluidity energy BFE is not only the average particle diameter D 50 of the powder of carbonaceous material, but also the amount of fine powder contained in the powder, the particle size distribution, the physical properties of the particle surface of the powder, and the surface functional groups. It is estimated that various physical properties such as quantity are also related. As one example of these physical properties, the following is estimated regarding the amount of fine powder.
  • the basic fluidity energy BFE may not be too large when, for example, the amount of fine powder is an appropriate amount. Absent. When forming an electrode with such a powdery carbonaceous material, the electrode density does not become insufficient. On the other hand, similarly, when the average particle diameter D 50 of the carbonaceous material powder is large and 30 ⁇ m or more, and, for example, the amount of fine powder is too small, the basic fluidity energy BFE can be extremely large. When forming an electrode with such a powdery carbonaceous material, the electrode density may be insufficient.
  • the basic fluidity energy BFE becomes small. It has been found that when an electrode is formed of such a powdery carbonaceous material, an electrode layer that can be suitably used cannot be obtained appropriately. Specifically, when an electrode layer having a large volume, particularly an electrode layer having a large thickness, is formed, if the amount of the binder to be added is small, the electrode layer will be defective, and it is preferable to increase the amount of the binder to improve the defective molding. It was found that the electrode density could not be obtained and, as a result, the volumetric capacity was reduced.
  • the carbonaceous material of the present embodiment has an average particle diameter D 50 of 30 ⁇ m or more, the amount of fine powder in the powder of the carbonaceous material, the particle size distribution, the physical properties of the particle surface of the powder, and the surface functional group A powder fluidity analyzer having an average particle diameter D 50 measured by a laser scattering method of 30 ⁇ m or more, and a measurement container having a diameter of 50 mm and a volume of 160 mL, by adjusting various physical properties such as amount.
  • the method for adjusting the amount of fine powder contained in the powder of carbonaceous material is not particularly limited, but it should be adjusted in the pulverizing step and/or the classifying step, particularly the classifying step in the manufacturing process of the carbonaceous material described later. You can
  • the carbonaceous material preferably, when the carbonaceous material is doped with lithium until it is in a fully charged state and subjected to 7 Li nucleus-solid state NMR analysis, a low magnetic field side with respect to a resonance peak of LiCl as a reference substance.
  • the main resonance peak shifted by 115 ppm or more, more preferably 115 ppm or more and 145 ppm or less is observed.
  • Such a carbonaceous material suitably functions when applied to a lithium ion secondary battery which is one of electrochemical devices. Specifically, a large shift value of the main resonance peak to the low magnetic field side indicates that the amount of lithium present as clusters is large.
  • the shift value to the low magnetic field side is more preferably 142 ppm or less, and more preferably 138 ppm or less, from the viewpoint of easily dissociating the clusters and achieving quick charge/discharge. It is even more preferred to be present.
  • the small shift value of the main resonance peak to the low magnetic field side indicates that the amount of lithium existing between the carbon layers is large. From the viewpoint of easily increasing the charge/discharge volume capacity, the shift value to the low magnetic field side is more preferably 120 ppm or more.
  • the main resonance peak is observed means that the lithium species giving the main resonance peak is present in 3% or more which is the detection limit of the 7 Li nucleus-solid state NMR analysis method described later. means.
  • “doping lithium until a fully charged state” means that a positive electrode is an electrode containing a carbonaceous material, and a negative electrode is an electrode containing metallic lithium. It means that the charging is carried out with the termination voltage usually in the range of 0.1 to 0 mV, preferably 0.05 to 0 mV, and more preferably 0.01 to 0 mV.
  • the 7 Li nucleus-solid state NMR spectrum can be measured using a nuclear magnetic resonance apparatus, as in the examples described later.
  • the method for adjusting the chemical shift value of the main resonance peak to the low magnetic field side is not limited at all, but, for example, plant-derived char, a carbon precursor or a mixture of a carbon precursor and a volatile organic compound may be added to 800 It is possible to use a method in which a heat treatment is performed at a temperature of not less than 1° C. and not more than 1400° C. while supplying an inert gas containing a halogen compound or an inert gas not containing a halogen compound in an amount of 14 L/min or more per 50 g of these substances.
  • the mixture of the carbon precursor and the volatile organic substance is preferably heat-treated with an inert gas containing no halogen compound.
  • the average interplanar spacing d 002 of (002) planes calculated from the wide-angle X-ray diffraction method using the Bragg equation is preferably 0.36 nm or more, and more preferably 0.36 nm or more and 0.42 nm. Or less, more preferably 0.38 nm or more and 0.4 nm or less, and still more preferably 0.382 nm or more and 0.396 nm.
  • the average interplanar spacing d 002 of the (002) planes is too small, the resistance when the ions used in the electrochemical device (for example, lithium ions) are inserted into the carbonaceous material may increase, and further the output The resistance at the time may increase, and the input/output characteristics of the electrochemical device may deteriorate. Further, since the carbonaceous material repeatedly expands and contracts, the stability as an electrode material may be impaired. If the average interplanar spacing d 002 is too large, the diffusion resistance of such ions becomes small, but the volume of the carbonaceous material becomes large, and the effective capacity per volume may become small.
  • the method of adjusting the average interplanar spacing to be in the above range is not limited at all, but for example, when firing a carbon precursor that gives a carbonaceous material to be described later, if the temperature is in the range of 800° C. or higher and 1400° C. or lower, Good.
  • a method of mixing with a thermally decomposable resin such as polystyrene and firing it may be used.
  • the specific surface area of the carbonaceous material is preferably 1 m 2 /g or more and 100 m 2 /g or less, more preferably 3 m 2 /g or more and 50 m 2 /g or less, and further preferably 3 m 2 /g or more and 30 m 2 /g or less. , And more preferably 5 m 2 /g or more and 25 m 2 /g or less, for example, 5 m 2 /g or more and 20 m 2 /g or less. If the specific surface area is too small, the adsorption amount of ions (for example, lithium ions) used in the electrochemical device on the carbonaceous material decreases, and the charge capacity of the non-aqueous electrolyte secondary battery may decrease. If the specific surface area is too large, such ions react with the surface of the carbonaceous material and are consumed, so that the utilization efficiency of the ions becomes low.
  • ions for example, lithium ions
  • the specific surface areas of the carbonaceous material and the carbon precursor described later are determined by the BET method (nitrogen adsorption BET three-point method) (BET specific surface area).
  • BET method nitrogen adsorption BET three-point method
  • the approximate formula derived from the BET formula is described below.
  • v m is an adsorption amount (cm 3 /g) necessary to form a monomolecular layer on the sample surface
  • v is an actually measured adsorption amount (cm 3 /g)
  • p 0 is a saturated vapor pressure
  • p is Absolute pressure
  • c is a constant (reflecting heat of adsorption)
  • N is Avogadro's number 6.022 ⁇ 10 23
  • a(nm 2 ) is an area (molecular occupied cross-sectional area) occupied by adsorbate molecules on the sample surface.
  • the amount of nitrogen adsorbed on the sample at the liquid nitrogen temperature can be measured as follows using, for example, "BELL Sorb Mini” manufactured by Japan BELL.
  • the sample tube is filled with the sample tube, the sample tube is cooled to ⁇ 196° C., the pressure is once reduced, and then nitrogen (purity 99.999%) is adsorbed to the sample at a desired relative pressure.
  • the adsorbed gas amount v is the amount of nitrogen adsorbed on the sample when the equilibrium pressure is reached at each desired relative pressure.
  • the carbonaceous material contains substantially no nitrogen element.
  • “not substantially containing” means that the content is 10 ⁇ 6 mass% or less, which is the detection limit of the elemental analysis (inert gas fusion-thermal conductivity method) described later. If the elemental nitrogen content is too high, the ions utilized in the electrochemical device react with nitrogen to consume such ions, which not only reduces the utilization efficiency of the ions but also increases the oxygen content in the air during storage. May react.
  • the method for adjusting the nitrogen element content to the above range is not limited at all, for example, in the production method described later, the plant-derived char is heat-treated at 500° C. or higher and 940° C. or lower in an inert gas atmosphere containing a halogen compound.
  • the nitrogen element content can be adjusted to the above range by vapor-phase deashing by a method including a step, or by mixing the carbon precursor with a volatile organic substance and firing as necessary.
  • the carbonaceous material contains substantially no oxygen element.
  • “not substantially containing” means that the content is 10 ⁇ 6 mass% or less, which is the detection limit of the elemental analysis (inert gas fusion-thermal conductivity method) described later. If the oxygen element content is too high, ions used in the electrochemical device (for example, lithium ions) react with oxygen to consume the ions, which may reduce the utilization efficiency of the ions. Furthermore, not only is the probability of attracting oxygen and water in the air to increase the probability of reacting with the carbonaceous material, but also the water is adsorbed, it is not easily desorbed.
  • the method for adjusting the oxygen element content to the above range is not limited at all, for example, in the production method described below, a plant-derived char is heat-treated at 500° C. or more and 940° C. or less in an inert gas atmosphere containing a halogen compound.
  • the oxygen element content can be adjusted to the above range by vapor-phase deashing by a method including a step, or by mixing the carbon precursor with a volatile organic substance and firing as necessary.
  • the nitrogen element content or oxygen element content can be measured by performing elemental analysis using a commercially available oxygen/nitrogen analyzer.
  • the content of potassium element contained in the carbonaceous material is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, and more preferably 0.1% by mass or less from the viewpoint of increasing the dedoping capacity and decreasing the non-dedoping capacity.
  • the content is more preferably 03 mass% or less, particularly preferably 0.01 mass% or less, particularly preferably 0.005 mass% or less.
  • the content of iron element contained in the carbonaceous material is preferably 0.02% by mass or less, more preferably 0.015% by mass or less, from the viewpoint of increasing the dedoping capacity and the viewpoint of decreasing the non-dedoping capacity.
  • the non-aqueous electrolyte secondary battery using this carbonaceous material has a large dedoping capacity and a non-desorption capacity. Doping capacity tends to be small. Further, when the content of the potassium element and/or the iron element contained in the carbonaceous material is not more than the above upper limit value, it is possible to suppress the occurrence of short circuit due to the elution and reprecipitation of these metal elements in the electrolytic solution.
  • the carbonaceous material does not substantially contain elemental potassium and elemental iron. Details of the measurement of the contents of the potassium element and the iron element are as described in Examples, and a fluorescent X-ray analyzer can be used.
  • the content of potassium element and the content of iron element contained in the carbonaceous material are usually 0% by mass or more.
  • the potassium element content and the iron element content contained in the carbonaceous material tend to decrease as the potassium element content and the iron element content contained in the carbon precursor decrease.
  • the carbonaceous material preferably has a true density ⁇ Bt of 1.4 g/cm 3 or more and 1.7 g/cm 3 or less by the butanol method, and 1.42 g / cm 3 or more 1.65 g / cm 3 more preferably less, and more preferably not more than 1.44 g / cm 3 or more 1.6 g / cm 3.
  • the carbonaceous material having such a true density ⁇ Bt can be produced, for example, by firing a plant raw material at 800° C. or higher and 1400° C. or lower.
  • details of the measurement of the true density ⁇ Bt are as described in the examples. That is, the true density ⁇ Bt can be measured by the butanol method according to the method defined in JIS R 7212.
  • the moisture absorption amount of the carbonaceous material is preferably 40,000 ppm or less, more preferably 20,000 ppm or less, still more preferably 10,000 ppm or less.
  • the smaller the amount of moisture absorption the more the amount of moisture adsorbed on the carbonaceous material decreases, and the number of ions (for example, lithium ions) used for the electrochemical device adsorbed on the carbonaceous material increases, which is preferable.
  • the smaller the amount of moisture absorption the more preferable is that the reaction between the adsorbed water and the nitrogen atoms of the carbonaceous material and the self-discharge due to the reaction between the adsorbed water and the ions can be reduced.
  • the moisture absorption amount of the carbonaceous material can be reduced, for example, by reducing the amounts of nitrogen atoms and oxygen atoms contained in the carbonaceous material.
  • the moisture absorption amount of the carbonaceous material can be measured by the Karl Fischer method.
  • the carbonaceous material is obtained, for example, by firing a carbon precursor or a mixture of a carbon precursor and a volatile organic substance in an inert gas atmosphere at 800° C. or higher and 1400° C. or lower as needed.
  • a carbonaceous material which can be sufficiently carbonized and which has pores suitable for the electrode material.
  • the carbon precursor is a precursor of a carbonaceous material that supplies a carbon component when a carbonaceous material is produced, and uses a plant-derived carbon material (also referred to as “plant-derived char” in this specification) as a raw material.
  • plant-derived carbon material also referred to as “plant-derived char” in this specification
  • char generally refers to a powder-like solid that is rich in carbon content that is not melt-softened when coal is heated, but here it is rich in carbon content that is not melt-softened obtained by heating organic matter. A powdered solid is also shown.
  • plant raw material that is a raw material for plant-derived char.
  • coconut shells, coffee beans, tea leaves, sugar cane, fruits (eg, mandarin oranges, bananas), straws, shells, hardwoods, conifers, and bamboos can be exemplified.
  • waste for example, used tea leaves
  • a part of plant material for example, banana and mandarin orange peel.
  • palm shells are preferable because they are easily available in large quantities and are industrially advantageous.
  • the palm shell is not particularly limited, and examples thereof include palm palm (oil palm), coconut palm, salak, and palm palm. These palm shells can be used alone or in combination.
  • Palm shells of coconut palm and palm palm which are used as foods, raw materials for detergents, raw materials for biodiesel oil, and are a large amount of biomass waste, are particularly preferable.
  • the method for producing char from a plant raw material is not particularly limited, but for example, heat treating the plant raw material in an inert gas atmosphere at 300° C. or higher (also referred to as “preliminary firing” in the present specification). Can be manufactured by.
  • the carbonaceous material produced from plant-derived char is basically suitable as a negative electrode material for electrochemical devices because it can be doped with a large amount of active material.
  • the plant-derived char contains a large amount of metal elements contained in the plant.
  • palm shell char may contain about 0.3 mass% of potassium element and about 0.1 mass% of iron element.
  • plant-derived char also contains alkali metals (eg sodium) other than potassium, alkaline earth metals (eg magnesium, calcium), transition metals (eg iron, copper) and other metals.
  • alkali metals eg sodium
  • alkaline earth metals eg magnesium, calcium
  • transition metals eg iron, copper
  • the deashing method is not particularly limited, but for example, a method of extracting and demineralizing metal components using acidic water containing a mineral acid such as hydrochloric acid or sulfuric acid, an organic acid such as acetic acid or formic acid (liquid phase deashing), hydrogen chloride
  • a method of deashing by exposing to a high temperature gas phase containing a halogen compound such as (gas phase deashing) can be used.
  • halogen compound is not particularly limited, but for example, fluorine, chlorine, bromine, iodine, hydrogen fluoride, hydrogen chloride, hydrogen bromide, iodine bromide, chlorine fluoride (ClF), iodine chloride (ICl), iodine bromide ( IBr) and bromine chloride (BrCl). It is also possible to use a compound that generates these halogen compounds by thermal decomposition, or a mixture thereof. From the viewpoint of the stability of the halogen compound used and the supply stability thereof, hydrogen chloride is preferable.
  • a halogen compound and an inert gas may be mixed and used.
  • the inert gas is not particularly limited as long as it is a gas that does not react with the carbon component forming the plant-derived char.
  • nitrogen, helium, argon and krypton, and a mixed gas thereof can be mentioned. From the viewpoint of supply stability and economic efficiency, nitrogen is preferable.
  • the mixing ratio of the halogen compound and the inert gas is not limited as long as sufficient deashing can be achieved, but for example, safety, economy and residual carbon content can be maintained.
  • the amount of the halogen compound with respect to the inert gas is preferably 0.01% by volume or more and 10% by volume or less, more preferably 0.05% by volume or more and 8% by volume or less, and further preferably 0.1% by volume. % To 5% by volume.
  • the temperature of the gas phase demineralization may be changed depending on the char derived from the plant which is the object of demineralization, but from the viewpoint of easily adjusting the potassium content, the iron content, the nitrogen element content, the oxygen element content and the like to a preferable range, for example, It can be carried out at 500°C or higher and 980°C or lower, preferably 600°C or higher and 950°C or lower, more preferably 650°C or higher and 940°C or lower, and further preferably 850°C or higher and 930°C or lower. If the decalcification temperature is too low, the decalcification efficiency may decrease and the decalcification may not be performed sufficiently. If the deashing temperature becomes too high, activation by a halogen compound may occur.
  • the gas phase deashing time is not particularly limited, but from the viewpoint of economic efficiency of the reaction equipment and structure retention of carbon content, for example, 5 minutes or more and 300 minutes or less, preferably 10 minutes or more and 200 minutes. It is below, more preferably from 20 minutes to 150 minutes.
  • potassium and iron contained in plant-derived char can be removed.
  • the content of potassium element contained in the carbon precursor obtained after vapor-phase deashing is preferably 0.1% by mass or less, and 0.05% by mass from the viewpoint of increasing the dedoping capacity and decreasing the non-dedoping capacity. The following is more preferable, and 0.03 mass% or less is further preferable.
  • the iron element content contained in the carbon precursor obtained after vapor phase deashing is preferably 0.02 mass% or less, and 0.015 mass% from the viewpoint of increasing the dedoping capacity and decreasing the non-dedoping capacity. The following is more preferable, and 0.01% by mass or less is further preferable.
  • the dedoping capacity may decrease in the electrochemical device using the obtained carbonaceous material.
  • the non-dedoped capacity may increase.
  • the plant-derived char carbon precursor after vapor-phase deashing does not substantially contain potassium element and iron element. Details of the measurement of the contents of elemental potassium and elemental iron are as described above.
  • the potassium element content and the iron element content contained in the carbon precursor are usually 0 mass% or more.
  • the particle size of the plant-derived char that is the target of gas-phase demineralization is not particularly limited, but if the particle size is too small, the vapor phase containing the removed potassium and the like, and the plant-derived char. Separation can be difficult. Therefore, the lower limit of the average particle diameter D 50 of the plant-derived char is preferably 100 ⁇ m or more, more preferably 300 ⁇ m or more, and further preferably 500 ⁇ m or more. In addition, the upper limit of the average particle diameter D 50 is preferably 10,000 ⁇ m or less, more preferably 8000 ⁇ m or less, still more preferably 5000 ⁇ m or less, from the viewpoint of fluidity in a mixed gas flow.
  • the device used for gas phase decalcification is not particularly limited as long as it is a device capable of heating while mixing plant-derived char and a gas phase containing a halogen compound.
  • a continuous type or a batch type intra-layer flow system using a fluidized bed or the like can be used using a fluidized furnace.
  • the supply amount (fluid flow amount) of the gas phase is not particularly limited, but from the viewpoint of fluidity in a mixed gas flow, for example, 1 g/min or more, and more preferably 5 ml/min or more, per 1 g of plant-derived char,
  • the gas phase is preferably supplied at 10 ml/min or more.
  • halogen heat treatment In vapor-phase deashing, after heat treatment in an inert gas atmosphere containing a halogen compound (also referred to as “halogen heat treatment” in the present specification), heat treatment in the absence of a halogen compound (herein, It is preferable to perform "gas phase deoxidation treatment"). Since the halogen heat treatment contains halogen in the plant-derived char, it is preferable to remove the halogen contained in the plant-derived char by gas phase deoxidation treatment. Specifically, the gas-phase deoxidation treatment is carried out in an inert gas atmosphere containing no halogen compound, for example, 500° C. or higher and 980° C. or lower, preferably 600° C. or higher and 950° C.
  • the heat treatment is performed at 850° C. or higher and 930° C. or lower, but the heat treatment temperature is preferably the same as or higher than the temperature of the first heat treatment.
  • the halogen can be removed by cutting off the supply of the halogen compound and performing heat treatment after the halogen heat treatment.
  • the time of the gas phase deoxidation treatment is not particularly limited, but is preferably 5 minutes or more and 300 minutes or less, more preferably 10 minutes or more and 200 minutes or less, and further preferably 10 minutes or more and 100 minutes. That is all.
  • the carbon precursor can be adjusted in average particle diameter D 50 and basic fluidity energy BFE through a pulverizing step and/or a classifying step.
  • the crushing step and/or the classification step are preferably performed after the deashing treatment.
  • the firing step described below is performed as necessary.
  • the carbon precursor in the pulverizing step and/or the classifying step is an average of 30 ⁇ m or more in the carbonaceous material of the present embodiment after the firing step.
  • the carbonaceous material has an average particle diameter D 50 of 30 ⁇ m or more and a basic fluidity within a predetermined range under a specific condition by performing a pulverizing step and/or a classifying step after the firing step of the carbon precursor. It is also possible to adjust to have energy BFE. That is, in the present embodiment, the pulverizing step and/or the classifying step may be performed before the firing step, after the firing step, or both before the firing step and after the firing step.
  • the carbon precursor may or may not shrink depending on the conditions of the main calcination, which will be described later, if necessary, but it may shrink in the range of about 0 to 20%. Therefore, when the calcination step described below is performed, when the crushing step and/or the classification step are performed only before the calcination step, the carbonaceous material of the present embodiment after calcination has an average particle diameter D 50 of 30 ⁇ m or more. And, crushing and/or classification may be performed in consideration of shrinkage so as to have a basic fluidity energy BFE within a predetermined range under specific conditions. Specifically, the average particle diameter D 50 of the plant-derived char carbon precursor may be adjusted so that the desired average particle diameter D 50 after firing is about 0 to 20% larger. ..
  • the carbon precursor obtained after the pulverization and/or classification step after the deashing step can be directly used as the carbonaceous material of the present invention without performing the firing step described later.
  • the carbon precursor does not dissolve even if the heat treatment step described below is performed, and therefore the order of the crushing step is not particularly limited as long as it is after the deashing step.
  • the crushing device used in the crushing process is not particularly limited, and for example, a jet mill, a ball mill, a bead mill, a hammer mill, a rod mill or the like can be used.
  • a jet mill a ball mill, a bead mill, a hammer mill, a rod mill or the like
  • the efficiency of pulverization the method of pulverizing by contacting particles with each other like a jet mill has a long pulverizing time and the efficiency of volume is lowered. From the viewpoint of avoiding contamination of impurities from the medium, it is preferable to use a bead mill.
  • the classification step after the pulverization step it becomes possible to more accurately adjust the average particle diameter D 50 of the carbonaceous material and the fluidity energy BFE, particularly the fluidity energy BFE.
  • the classification step it is possible to remove small fine particles having a particle size of 0.1 ⁇ m or more and 10 ⁇ m or less, preferably 0.1 ⁇ m or more and 5 ⁇ m or less and to remove excessively coarse particles.
  • the classification method is not particularly limited, but examples include classification using a sieve, wet classification, and dry classification.
  • the wet classifier include classifiers that use the principles of gravity classification, inertial classification, hydraulic classification, centrifugal classification, and the like.
  • the dry classifier include classifiers that use the principles of sedimentation classification, mechanical classification, centrifugal classification, and the like.
  • the content of small fine powder having a particle diameter of 0.1 ⁇ m or more and 10 ⁇ m or less, preferably 0.1 ⁇ m or more and 5 ⁇ m or less is one of the powder characteristics that greatly affects the numerical value of the basic fluidity energy BFE as described above.
  • the content of the fine powder is not too small and is appropriate so that the carbon precursor of the present embodiment has a basic fluidity energy BFE within a predetermined range under specific conditions. It is preferable to adjust so.
  • the specific surface area of grinding and / or classifying after the carbon precursor is preferably not more than 30 m 2 / g or more 800 m 2 / g, more preferably not more than 40 m 2 / g or more 700 meters 2 / g, for example 50 m 2 / It is g or more and 600 m 2 /g or less. It is preferable to carry out the pulverization and/or classification step so that a carbon precursor having a specific surface area within this range can be obtained. Note that either one of the pulverizing step and the classifying step may be performed, or both the pulverizing step and the classifying step may be performed.
  • the specific surface area is too small, the micropores of the carbonaceous material may not be sufficiently reduced even after the firing step described below, and the hygroscopicity of the carbonaceous material may be less likely to decrease.
  • problems may occur such as generation of acid due to hydrolysis of the electrolytic solution and generation of gas due to electrolysis of water. Further, the oxidation of the carbonaceous material progresses in an air atmosphere, and the battery performance may change significantly. If the specific surface area becomes too large, the specific surface area of the carbonaceous material does not become small even after the firing step described below, and the utilization efficiency of the secondary battery may decrease, for example. It is also possible to adjust the specific surface area of the carbon precursor by controlling the temperature of vapor phase deashing.
  • the method for producing a carbonaceous material includes a step of firing a carbon precursor or a mixture of a carbon precursor and a volatile organic substance in an inert gas atmosphere at 800° C. or higher and 1400° C. or lower to obtain a carbonaceous material (in the present specification). , "Also referred to as a "firing step"). When the firing step is not performed, the carbon precursor can be directly used as the carbonaceous material of the present invention as described above.
  • the firing step is preferably performed after the deashing step, and is preferably performed after the deashing step, the crushing step and the classification step.
  • the following is an example of a manufacturing method that includes a firing step in the step of obtaining a carbonaceous material.
  • the carbonaceous material of the present embodiment can be obtained by firing a mixture of a carbon precursor and a volatile organic substance.
  • a mixture of a carbon precursor and a volatile organic substance By mixing the carbon precursor and the volatile organic substance and baking the mixture, it is easy to adjust the BFE of the obtained carbonaceous material to the above preferable range, and it is easy to reduce the specific surface area. Furthermore, the amount of carbon dioxide adsorbed on the carbonaceous material can be adjusted.
  • This carbonaceous coating reduces the specific surface area of the carbonaceous material produced from the plant-derived char carbon precursor, and the SEI (reaction of the carbonaceous material with ions used in electrochemical devices (for example, lithium ions)) Since the reaction of forming a film called Solid Electrolyte Interface) is suppressed, it can be expected to reduce the irreversible capacity. Further, since the generated carbonaceous film can be doped and dedoped with such ions, an effect of increasing the capacity can be expected.
  • volatile organic substances include thermoplastic resins and low molecular weight organic compounds.
  • thermoplastic resin examples include polystyrene, polyethylene, polypropylene, poly(meth)acrylic acid, and poly(meth)acrylic acid ester.
  • (meth)acryl is a general term for acryl and methacryl.
  • low molecular weight organic compound examples include toluene, xylene, mesitylene, styrene, naphthalene, phenanthrene, anthracene, and pyrene.
  • thermoplastic resin polystyrene, polyethylene, and polypropylene are preferable because those that volatilize at the firing temperature and do not oxidize the surface of the carbon precursor when thermally decomposed are preferable.
  • the low molecular weight organic compound preferably has low volatility at room temperature, and naphthalene, phenanthrene, anthracene, pyrene and the like are preferable.
  • thermoplastic resin olefin resin, styrene resin, and (meth)acrylic acid resin
  • olefin resin examples include polyethylene, polypropylene, a random copolymer of ethylene and propylene, a block copolymer of ethylene and propylene, and the like.
  • styrene resin examples include polystyrene, poly( ⁇ -methylstyrene), and a copolymer of styrene and an alkyl ester of (meth)acrylic acid (wherein the alkyl group has 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms). be able to.
  • Examples of the (meth)acrylic acid-based resin include polyacrylic acid, polymethacrylic acid, and (meth)acrylic acid alkyl ester polymers (wherein the alkyl group has 1 to 12, preferably 1 to 6 carbon atoms). it can.
  • a hydrocarbon compound having 1 to 20 carbon atoms can be used as the low molecular weight organic compound.
  • the carbon number of the hydrocarbon compound is preferably 2-18, more preferably 3-16.
  • the hydrocarbon compound may be a saturated hydrocarbon compound or an unsaturated hydrocarbon compound, and may be a chain hydrocarbon compound or a cyclic hydrocarbon compound.
  • the unsaturated bond may be a double bond or a triple bond, and the number of unsaturated bonds contained in one molecule is not particularly limited.
  • the chain hydrocarbon compound is an aliphatic hydrocarbon compound, and can include a linear or branched alkane, alkene, or alkyne.
  • cyclic hydrocarbon compound examples include an alicyclic hydrocarbon compound (eg, cycloalkane, cycloalkene, cycloalkyne) or an aromatic hydrocarbon compound.
  • aliphatic hydrocarbon compound examples include methane, ethane, propane, butane, pentane, hexane, octane, nonane, decane, ethylene, propylene, butene, pentene, hexene and acetylene.
  • Examples of the alicyclic hydrocarbon compound include cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclopropane, cyclopentene, cyclohexene, cycloheptene, cyclooctene, decalin, norbornene, methylcyclohexane and norbornadiene.
  • aromatic hydrocarbon compound benzene, toluene, xylene, mesitylene, cumene, butylbenzene, styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, vinylxylene, p- Examples thereof include monocyclic aromatic compounds such as tert-butylstyrene and ethylstyrene, and condensed 3 to 6-ring condensed polycyclic aromatic compounds such as naphthalene, phenanthrene, anthracene, and pyrene, and preferably condensed polycyclic aromatic compounds.
  • the hydrocarbon compound may have an arbitrary substituent.
  • the substituent is not particularly limited, and examples thereof include an alkyl group having 1 to 4 carbon atoms (preferably an alkyl group having 1 to 2 carbon atoms), an alkenyl group having 2 to 4 carbon atoms (preferably an alkenyl having 2 carbon atoms). Group) and a cycloalkyl group having 3 to 8 carbon atoms (preferably a cycloalkyl group having 3 to 6 carbon atoms).
  • the volatile organic compound is preferably in a solid state at room temperature from the viewpoint of easy mixing and uneven distribution, for example, a thermoplastic resin solid at room temperature such as polystyrene, polyethylene or polypropylene, or naphthalene, phenanthrene, anthracene.
  • a low molecular weight organic compound that is solid at room temperature such as pyrene, is more preferable.
  • the thermoplastic resin is preferably an olefin resin and a styrene resin, polystyrene, Polyethylene and polypropylene are more preferred.
  • a hydrocarbon compound having 1 to 20 carbon atoms is preferable, a condensed polycyclic aromatic compound is more preferable, since naphthalene, phenanthrene, and anthracene are preferable, since it is safer to have low volatility at room temperature. Or pyrene is more preferable.
  • a thermoplastic resin is preferable, an olefin resin and a styrene resin are more preferable, polystyrene, polyethylene and polypropylene are further preferable, and polystyrene and polyethylene are particularly preferable.
  • the volatile organic matter is an organic matter having a residual coal rate of preferably less than 5% by mass, more preferably less than 3% by mass, from the viewpoint of stable operation of the burning equipment.
  • the residual coal rate in the present invention is preferably the residual coal rate when ashed at 800°C.
  • the volatile organic substance is preferably one that generates a volatile substance (for example, a hydrocarbon gas or a tar component) that can reduce the specific surface area of the carbon precursor produced from plant-derived char. Further, from the viewpoint of maintaining the properties of the carbonaceous material produced after firing, the residual carbon rate is preferably less than 5% by mass. When the residual coal rate is less than 5%, it is difficult to locally generate carbonaceous materials having different properties.
  • the residual coal rate can be measured by quantifying the carbon content of the ignition residue after the sample is ignited in an inert gas. Intense heat means that about 1 g of volatile organic matter (this accurate mass is W 1 (g)) is put in a crucible and 20 liters of nitrogen is flowed for 1 minute while the crucible is heated in an electric furnace at 10° C./min. The temperature is raised from room temperature to 800° C., and then ignited at 800° C. for 1 hour. The residue at this time is the ignition residue, and its mass is W 2 (g). Next, the ignition residue is subjected to elemental analysis according to the method defined in JIS M8819 to measure the carbon mass ratio P 1 (%).
  • the residual coal rate P 2 (mass %) can be calculated by the following formula.
  • the mass ratio of the carbon precursor and the volatile organic material in the mixture is not particularly limited, but preferably the mass ratio of the carbon precursor and the volatile organic material. Is 97:3 to 40:60.
  • the mass ratio of the carbon precursor and the volatile organic compound in the above mixture is more preferably 95:5 to 60:40, further preferably 93:7 to 80:20.
  • the volatile organic substance is 3 parts by mass or more, the specific surface area can be sufficiently reduced. Further, when the amount of the volatile organic substance is 60 parts by mass or less, the effect of reducing the specific surface area is not saturated and it is difficult to excessively consume the volatile organic substance, which is industrially advantageous.
  • the mixing of the carbon precursor with the volatile organic substance that is liquid or solid at room temperature may be performed at any stage before the grinding process or after the grinding process.
  • the carbon precursor and the volatile organic matter which is a liquid or solid at room temperature are weighed and simultaneously supplied to the crushing apparatus so that the crushing and the mixing are performed. Can be done at the same time. Further, when using a volatile organic substance that is a gas at room temperature, a non-oxidizing gas containing a gaseous volatile organic substance is circulated in a heat treatment apparatus containing a plant-derived char carbon precursor to be pyrolyzed, and the plant-derived The method of mixing with the char carbon precursor of 1 can be used.
  • the average particle diameter D 50 of the volatile organic substance is preferably 0.1 ⁇ m or more and 2000 ⁇ m or less, more preferably 1 ⁇ m or more and 1000 ⁇ m or less, and further preferably It is 2 ⁇ m or more and 600 ⁇ m or less.
  • the above-mentioned carbon precursor or mixture may contain components other than the carbon precursor and volatile organic substances.
  • it may include natural graphite, artificial graphite, metal-based material, alloy-based material, or oxide-based material.
  • the content of the other components is not particularly limited, but is preferably 50 parts by mass or less, and more preferably 100 parts by mass of the carbon precursor or the mixture of the carbon precursor and the volatile organic compound. Is 30 parts by mass or less, more preferably 20 parts by mass or less, and most preferably 10 parts by mass or less.
  • the carbon precursor or a mixture of the carbon precursor and a volatile organic substance is fired at 800°C or higher and 1400°C or lower.
  • the fired carbon precursor or mixture is fired at 800° C. or higher and 1400° C. or lower to perform main firing, and (b) the fired carbon precursor or mixture is heated to 350° C. Any of a firing step of pre-baking at a temperature of not less than 800° C. and less than 800° C. and then performing a main baking at not less than 800° C. and not more than 1400° C.
  • the carbon precursor is coated with the tar component and the hydrocarbon gas in the main firing step.
  • the firing step (b) it is considered that the carbon precursor is coated with the tar component and the hydrocarbon-based gas in the pre-firing step.
  • the pre-baking step can be carried out, for example, by baking the ground carbon precursor or mixture at 350° C. or higher and lower than 800° C.
  • the pre-baking step can remove volatile components (for example, CO 2 , CO, CH 4 , H 2, etc.) and tar components. It is possible to reduce the generation of volatile components and tar components in the main firing step performed after the preliminary firing step, and reduce the burden on the firing equipment.
  • the pre-baking step is preferably performed at 350°C or higher, more preferably 400°C or higher.
  • the pre-baking step can be carried out in accordance with a normal pre-baking procedure.
  • the preliminary firing can be performed in an inert gas atmosphere.
  • the inert gas may include nitrogen and argon.
  • the pre-baking may be carried out under reduced pressure, for example, 10 kPa or less.
  • the pre-baking time is not particularly limited, it can be carried out, for example, in the range of 0.5 hours or more and 10 hours or less, and preferably 1 hour or more and 5 hours or less.
  • the main calcination step can be carried out in accordance with a normal main calcination procedure.
  • a carbonaceous material for a non-aqueous electrolyte secondary battery can be obtained.
  • the specific temperature of the main firing step is preferably 800°C or higher and 1400°C or lower, more preferably 1000°C or higher and 1350°C or lower, and further preferably 1100°C or higher and 1300°C or lower.
  • the main calcination is performed in an inert gas atmosphere.
  • the inert gas include nitrogen and argon, and it is also possible to perform the main firing in an inert gas containing a halogen gas.
  • the main firing step can be performed under reduced pressure, for example, 10 kPa or less.
  • the time for carrying out the main firing step is not particularly limited, but it can be carried out, for example, from 0.05 hours to 10 hours, preferably from 0.05 hours to 8 hours, and preferably from 0.05 hours to 6 hours. The following is more preferable.
  • the calcined product (carbonaceous material) has an average particle diameter D 50 of 30 ⁇ m or more by performing a pulverizing step and/or a classifying step after the calcining step, and has a predetermined range under specific conditions. It may be adjusted to have a basic fluidity energy BFE within.
  • the crushing step and/or the classifying step are performed after the firing step, there is an advantage in process control such that fine powder does not scatter during firing.
  • a negative electrode for an electrochemical device includes the carbonaceous material of the above-described embodiment.
  • the electrochemical device negative electrode of the present embodiment may be, in particular, the nonaqueous electrolyte secondary battery negative electrode containing the carbonaceous material of the above-described embodiments.
  • the negative electrode of the present embodiment is a collector plate made of a metal plate or the like after adding a binder (binder) to the carbonaceous material of the above-described embodiment, adding an appropriate amount of an appropriate solvent and kneading to form an electrode mixture. It can be manufactured by coating and drying on, followed by pressure molding. In this specification, a layer formed on the current collector plate after pressure forming is referred to as a negative electrode layer.
  • a conductive additive may be added to the carbonaceous material of the above-described embodiment.
  • An electrode having higher conductivity can be manufactured by adding the conductive additive.
  • a conductive auxiliary agent can be added when necessary when preparing the electrode mixture.
  • the conductive additive conductive carbon black, vapor grown carbon fiber (VGCF), nanotubes and the like can be used.
  • the addition amount of the conductive additive varies depending on the type of the conductive additive used, but if the added amount is too small, the expected conductivity may not be obtained, and if it is too large, the dispersion in the electrode mixture is poor. May be.
  • the binder is not particularly limited as long as it does not react with the electrolytic solution such as PVDF (polyvinylidene fluoride), SBR (styrene-butadiene rubber), polytetrafluoroethylene, CMC (carboxymethyl cellulose) or a mixture thereof.
  • PVDF is preferable because PVDF attached to the surface of the active material hardly inhibits the movement of ions (for example, lithium ions) used in the electrochemical device, and good input/output characteristics are easily obtained.
  • a polar solvent such as N-methylpyrrolidone (NMP) is preferably used to dissolve PVDF and form a slurry.
  • NMP N-methylpyrrolidone
  • an aqueous emulsion such as SBR or CMC can be dissolved in water and used. If the added amount of the binder is too large, the resistance of the obtained electrode becomes large, and the internal resistance of the battery becomes large, which may deteriorate the battery performance.
  • the preferable addition amount of the binder varies depending on the kind of the binder used, but for example, in the case of PVDF type binder, it is preferably 0.5% by mass or more and 5% by mass or less, more preferably 0.8% by mass or more and 4% by mass. % Or less, and more preferably 1% by mass or more and 3% by mass or less.
  • a mixture of a plurality of binders such as SBR or a mixture of SBR and CMC can be used.
  • the total amount of all binders used when water is used as the solvent is preferably 0.1% by mass or more and 5% by mass or less, more preferably 0.5% by mass or more and 3% by mass or less, and further preferably 0.8% by mass or more. It is from 2% by mass to 2% by mass.
  • the negative electrode layer is basically formed on both surfaces of the current collector plate, but may be formed on one surface if necessary.
  • the thickness of the negative electrode layer (per one surface) varies depending on the type and size of the electrochemical device to be applied, but is preferably 100 ⁇ m or more, more preferably 120 ⁇ m or more, still more preferably 130 ⁇ m or more, still more preferably 150 ⁇ m. Or more, and more preferably 160 ⁇ m or more.
  • the thickness of the negative electrode layer normally used in a lithium-ion secondary battery or the like is about 20 ⁇ m or more and 60 ⁇ m or less, but the carbonaceous materials of the above-described embodiments are particularly effective when the thickness of the negative electrode layer is large. This is because even if it is present, an excellent charge/discharge volume capacity can be exhibited, so that the effect of the carbonaceous material can be suitably exerted in the negative electrode having a thickness in such a range.
  • the upper limit of the thickness of the negative electrode layer is not particularly limited, but is, for example, 10 mm or less, particularly 5 mm or less, more particularly 1 mm or less, still more particularly 500 ⁇ m or less, and even more particularly 280 ⁇ m or less.
  • the thickness of the negative electrode layer can be calculated as a value obtained by subtracting the thickness of the current collector plate after measuring the thickness in the thickness direction of the negative electrode including the current collector plate with a micrometer or the like.
  • the negative electrode density of the negative electrode for electrochemical device according to the present embodiment that is, the numerical value (g/cm 3 ) obtained by dividing the mass (g) of the carbonaceous material of the above-mentioned embodiment by the volume (cm 3 ) of the negative electrode layer is preferable. Is more than 0.95 g/cm 3 , more preferably more than 0.97 g/cm 3 , even more preferably 0.98 g/cm 3 or more, and even more preferably 1 g/cm 3 or more. Is. The larger the negative electrode density, the larger the volume capacity in the electrochemical device.
  • An electrochemical device includes the negative electrode for an electrochemical device according to the above-described embodiment.
  • the electrochemical device of this embodiment may be, in particular, a non-aqueous electrolyte secondary battery including the negative electrode for electrochemical device of the above embodiment.
  • the electrochemical device shows a good volume capacity and has an excellent discharge capacity retention rate, even when the volume of the negative electrode layer inside is increased. This is because the specific carbonaceous material described above is used as the negative electrode material, whereby the negative electrode ratio in the device can be effectively increased while maintaining a good volume capacity.
  • the carbonaceous material of the above-described embodiment is used to form the negative electrode of an electrochemical device
  • other materials that constitute an electrochemical device such as a secondary battery and a capacitor
  • a positive electrode material for example, a secondary battery and a capacitor
  • an electrolytic solution for example, an electrolytic solution
  • various materials conventionally used or proposed can be used.
  • a layered oxide system (which is expressed as LiMO 2 and M is a metal: for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , or LiNi x Co y Mo z O 2 (where x and y are used).
  • Z represents a composition ratio
  • an olivine system represented by LiMPO 4
  • M represents a metal such as LiFePO 4, etc.
  • a spinel system represented by LiM 2 O 4
  • M represents a metal such as LiMn 2 O 4 etc.
  • the mixed metal chalcogen compound of 1) is preferable, and these chalcogen compounds may be mixed if necessary.
  • the positive electrode is formed by molding these positive electrode materials together with a suitable binder and a carbon material for imparting conductivity to the electrodes, and forming a layer on the conductive current collector plate.
  • a non-aqueous solvent type electrolytic solution When applied to an electrochemical device in combination with these positive electrode and negative electrode, for example, a non-aqueous solvent type electrolytic solution can be used.
  • the non-aqueous solvent type electrolytic solution is generally formed by dissolving an electrolyte in a non-aqueous solvent.
  • the non-aqueous solvent include organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, ⁇ -butyl lactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, and 1,3-dioxolane. Can be used alone or in combination of two or more.
  • LiClO 4 LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiCl, LiBr, LiB(C 6 H 5 ) 4 , LiN(SO 3 CF 3 ) 2 or the like can be used.
  • a non-aqueous electrolyte secondary battery in general, the positive electrode and the negative electrode formed as described above are opposed to each other through a liquid-permeable separator made of a non-woven fabric or other porous material as necessary, and electrolysis is performed. It is formed by immersing it in a liquid.
  • a non-woven fabric usually used for secondary batteries or a permeable separator made of other porous material can be used.
  • a solid electrolyte made of a polymer gel impregnated with an electrolytic solution can be used instead of the separator or together with the separator.
  • the carbonaceous material for an electrochemical device according to the present invention is suitable as a carbonaceous material for a battery mounted on a vehicle such as an automobile, typically a non-aqueous electrolyte secondary battery for driving a vehicle.
  • the vehicle can be a vehicle generally known as an electric vehicle, a hybrid vehicle with a fuel cell or an internal combustion engine, and the like without any particular limitation.
  • the power supply device including the battery in one of the embodiments of the present invention, the electric drive mechanism that is driven by the power supply from the power supply device, and the control device that controls the electric drive mechanism are provided.
  • the vehicle may further include a power generation brake or a regenerative brake, and a mechanism that converts energy generated by braking into electricity to charge the non-aqueous electrolyte secondary battery.
  • the average particle diameter D 50 (particle size distribution) of the carbon precursor and the carbonaceous material was measured by the following method. Samples of carbon precursors and carbonaceous materials prepared in Examples and Comparative Examples described below were charged into an aqueous solution containing 0.3% by mass of a surfactant (Wako Pure Chemical Industries, Ltd. “Toriton X100”), It was treated with an ultrasonic cleaner for 10 minutes or more and dispersed in an aqueous solution. The particle size distribution was measured using this dispersion. The particle size distribution measurement was performed using a particle size/particle size distribution measuring device (“Microtrac MT 3000” manufactured by Nikkiso Co., Ltd.). The particle size at which the cumulative volume was 50% was defined as the average particle size D 50 .
  • the basic fluidity energy BFE of the powders of the carbonaceous material samples prepared in Examples and Comparative Examples described later was measured using a powder rheometer FT4 manufactured by Freeman Technology. Specifically, the basic fluidity energy BFE was measured by the following operation. First, 120 mL of a powder of a sample of each carbonaceous material was filled in a measurement container (diameter 50 mm, volume 160 ml). A measurement blade (blade blade diameter R: 48 mm, spiral angle ⁇ : 5°) was introduced into the measurement container filled with the powder while rotating at a blade tip speed of 100 mm/sec, and a load cell at the bottom of the device was used.
  • the vertical stress F and the rotation torque T were measured with an upper torque meter.
  • the basic fluidity energy BFE(J) which is the value (J) of the transfer energy of the corresponding blade, was calculated.
  • the potassium element content and the iron element content were measured by the following methods.
  • a carbon sample containing predetermined potassium element and iron element was prepared in advance, and the relationship between the intensity of potassium K ⁇ ray and the content of potassium element and the intensity of the iron K ⁇ ray and the content of iron element were measured by using a fluorescent X-ray analyzer. A calibration curve for the relationship was created.
  • the intensities of the potassium K ⁇ line and the iron K ⁇ line in the fluorescent X-ray analysis of the powder samples of the carbonaceous materials prepared in Examples and Comparative Examples described later were measured, and the potassium element content and The iron element content was determined.
  • the fluorescent X-ray analysis was performed using LAB CENTER XRF-1700 manufactured by Shimadzu Corporation under the following conditions.
  • the holder for the upper irradiation method was used, and the sample measurement area was set within the circumference of a diameter of 20 mm.
  • the measurement sample was placed by placing 0.5 g of the measurement sample in a polyethylene container having an inner diameter of 25 mm, pressing the back with a plankton net, and covering the measurement surface with a polypropylene film for measurement.
  • the X-ray source was set to 40 kV and 60 mA.
  • LiF (200) was used as the dispersive crystal
  • a gas flow type proportional coefficient tube was used as the detector, and 2 ⁇ was measured in the range of 90 to 140° at a scanning speed of 8°/min.
  • the true density ⁇ Bt was measured by the butanol method according to the method defined in JIS R7212.
  • the mass (m 1 ) of a specific gravity bottle with a side tube having an internal volume of about 40 mL was accurately measured.
  • m 2 mass of carbonaceous material powder prepared in Examples and Comparative Examples described later was placed flat on the bottom so as to have a thickness of about 10 mm. It was 1-Butanol was gently added to this to a depth of about 20 mm from the bottom.
  • the pycnometer was placed in a vacuum desiccator and gradually evacuated to 2.0 to 2.7 kPa. After maintaining the pressure for 20 minutes or longer, and after the generation of air bubbles has stopped, take out the pycnometer, fill it with 1-butanol, plug it, and put it in a constant temperature water tank (adjusted to 30 ⁇ 0.03°C) for 15 minutes. After soaking for 1 minute or longer, the liquid surface of 1-butanol was aligned with the marked line. Next, this was taken out, the outside was well wiped off, and after cooling to room temperature, the mass (m 4 ) was accurately measured.
  • the same pycnometer was filled with only 1-butanol, immersed in a constant temperature water bath in the same manner as described above, the marked lines were adjusted, and then the mass (m 3 ) was measured.
  • distilled water excluding dissolved gas by boiling was taken in a pycnometer, immersed in a constant temperature water bath in the same manner as described above, the marked lines were adjusted, and then the mass (m 5 ) was measured.
  • the true density ⁇ Bt was calculated by the following formula. At this time, d is the specific gravity of water at 30° C. (0.9946).
  • AVANCE300 manufactured by BRUKER
  • AVANCE300 lithium chloride was used as a reference substance and the peak of lithium chloride was set to 0 ppm.
  • the thickness of the negative electrode layer was a value obtained by subtracting the thickness of the current collector plate after measuring the thickness of the negative electrode layer prepared in Examples and Comparative Examples described later with a micrometer.
  • the negative electrode density (g/cm 3 ) is the mass (g) of the carbonaceous material mixed in the slurry when the negative electrode layer is prepared in Examples and Comparative Examples described later, and the volume (cm) of the prepared negative electrode layer. It was set as the numerical value (g/cm 3 ) divided by 3 ). The volume of the negative electrode layer was calculated using the thickness of the negative electrode layer and the diameter of the negative electrode layer (14 mm).
  • Example 1 The coconut shell was carbonized at 500° C. and then crushed to obtain a coconut shell char having an average particle size of about 2 mm.
  • Halogen heat treatment was carried out at 900° C. for 30 minutes while supplying nitrogen gas containing 1% by volume of hydrogen chloride gas at a flow rate of 18 L/min to 100 g of this palm shell char. After that, only the supply of hydrogen chloride gas was stopped, and while supplying nitrogen gas at a flow rate of 18 L/min, heat treatment was further performed at 900° C. for 30 minutes to perform gas phase deoxidation treatment, and a carbon precursor was obtained. ..
  • the obtained carbon precursor was roughly crushed to an average particle size of 44 ⁇ m using a ball mill, and then crushed and classified using a compact jet mill (COSJET SYSTEM ⁇ -mkIII manufactured by Seishin Enterprise Co., Ltd.) to obtain an average particle size.
  • a carbon precursor having a D 50 of 50 ⁇ m was obtained.
  • the carbonaceous material taken out had an average particle diameter D 50 of 50 ⁇ m and a basic fluidity energy BFE of 340 mJ.
  • the amount of the non-graphitizable carbonaceous material recovered was 6.2 g, and the recovery rate was 89%.
  • the negative electrode containing the carbonaceous material was obtained.
  • the conditions at the time of firing during the production of the carbonaceous material, the physical properties of the carbonaceous material and the physical properties of the prepared negative electrode layer are collectively shown in Table 1 below.
  • Example 2 A carbonaceous material having an average particle diameter D 50 of 50 ⁇ m and a basic fluidity energy BFE of 340 mJ was prepared in the same manner as in Example 1 except that the thickness was changed when forming the negative electrode layer. A negative electrode (negative electrode layer) having a thickness of 280 ⁇ m produced by using the above was obtained. The conditions at the time of firing during the production of the carbonaceous material, the physical properties of the carbonaceous material and the physical properties of the prepared negative electrode layer are collectively shown in Table 1 below.
  • Example 3 A carbonaceous material having an average particle diameter D 50 of 50 ⁇ m and a basic fluidity energy BFE of 352 mJ was prepared in the same manner as in Example 1 except that polystyrene was not mixed during firing. A negative electrode (negative electrode layer) having a thickness of 160 ⁇ m was obtained. The conditions at the time of firing during the production of the carbonaceous material, the physical properties of the carbonaceous material and the physical properties of the prepared negative electrode layer are collectively shown in Table 1 below.
  • Example 4 The average particle diameter D 50 was 50 ⁇ m and the basic fluidity was the same as in Example 1 except that the amount of the mixture at the time of firing was 50 g and the sample layer height was about 20 mm.
  • a carbonaceous material having an energy BFE of 332 mJ and a negative electrode (negative electrode layer) having a thickness of 160 ⁇ m produced using the carbonaceous material were obtained.
  • the conditions at the time of firing during the production of the carbonaceous material, the physical properties of the carbonaceous material and the physical properties of the prepared negative electrode layer are collectively shown in Table 1 below.
  • Example 5 In the same manner as in Example 1 except that the carbon precursor and the carbonaceous material were finely pulverized so that the average particle diameter D 50 was smaller, and classification was appropriately performed to remove fine powder and excessively large particles. A carbonaceous material having an average particle diameter D 50 of 38 ⁇ m and a basic fluidity energy BFE of 301 mJ, and a 160 ⁇ m-thick negative electrode (negative electrode layer) produced using the same were obtained. The conditions at the time of firing during the production of the carbonaceous material, the physical properties of the carbonaceous material and the physical properties of the prepared negative electrode layer are collectively shown in Table 1 below.
  • Example 6 The average particle size D 50 was 42 ⁇ m and the basic fluidity energy BFE was 42 ⁇ m in the same manner as in Example 1 except that the proportion of the amount of fine powder was adjusted so that the basic fluidity energy BFE was increased by the classification step.
  • a carbonaceous material having a thickness of 573 mJ and a negative electrode (negative electrode layer) having a thickness of 160 ⁇ m produced using the carbonaceous material are collectively shown in Table 1 below.
  • Example 1 Comparative Example 1
  • the carbon precursor and the carbonaceous material were pulverized extremely finely so that the average particle diameter D 50 was extremely small, and the fine powder and larger particles were roughly removed.
  • a carbonaceous material having an average particle diameter D 50 of 5 ⁇ m and a basic fluidity energy BFE of 125 mJ, and a 160 ⁇ m-thick negative electrode (negative electrode layer) produced using the same were obtained.
  • the conditions at the time of firing during the production of the carbonaceous material, the physical properties of the carbonaceous material and the physical properties of the prepared negative electrode layer are collectively shown in Table 1 below.
  • Comparative example 2 A carbonaceous material having an average particle diameter D 50 of 5 ⁇ m and a basic fluidity energy BFE of 125 mJ in the same manner as in Comparative Example 1 except that the amount of SBR was increased to 1.5% by mass when forming the negative electrode layer. , And a negative electrode (negative electrode layer) having a thickness of 160 ⁇ m, which was manufactured using the above.
  • the conditions at the time of firing during the production of the carbonaceous material, the physical properties of the carbonaceous material and the physical properties of the prepared negative electrode layer are collectively shown in Table 1 below.
  • Example 3 The average particle diameter D 50 was 50 ⁇ m in the same manner as in Example 1 except that the classification process was strengthened so that the amount of fine powder was extremely small so that the basic fluidity energy BFE was very large.
  • a carbonaceous material having a basic fluidity energy BFE of 1140 mJ and a 160 ⁇ m-thick negative electrode (negative electrode layer) produced using the same were obtained.
  • the conditions at the time of firing during the production of the carbonaceous material, the physical properties of the carbonaceous material and the physical properties of the prepared negative electrode layer are collectively shown in Table 1 below.
  • Comparative Example 4 A carbonaceous material having an average particle diameter D 50 of 5 ⁇ m and a basic fluidity energy BFE of 112 mJ was prepared in the same manner as in Comparative Example 1 except that polystyrene was not mixed during firing. A negative electrode (negative electrode layer) having a thickness of 160 ⁇ m was obtained. The conditions at the time of firing during the production of the carbonaceous material, the physical properties of the carbonaceous material and the physical properties of the prepared negative electrode layer are collectively shown in Table 1 below.
  • Comparative example 5 The average particle diameter D 50 was 5 ⁇ m and the basic fluidity was the same as in Comparative Example 1 except that polystyrene was not mixed during firing and the amount of SBR was increased to 1.5% by mass during formation of the negative electrode layer.
  • a carbonaceous material having an energy BFE of 112 mJ and a negative electrode (negative electrode layer) having a thickness of 160 ⁇ m produced using the carbonaceous material were obtained.
  • the conditions at the time of firing during the production of the carbonaceous material, the physical properties of the carbonaceous material and the physical properties of the prepared negative electrode layer are collectively shown in Table 1 below.
  • Example 6 Same as Example 5 except that the carbon precursor and the carbonaceous material were further finely pulverized so that the average particle diameter D 50 was slightly smaller, and appropriately classified to remove fine powder and excessively large particles.
  • a carbonaceous material having an average particle diameter D 50 of 25 ⁇ m and a basic fluidity energy BFE of 260 mJ, and a 160 ⁇ m-thick negative electrode (negative electrode layer) produced using the same were obtained.
  • the conditions at the time of firing during the production of the carbonaceous material, the physical properties of the carbonaceous material and the physical properties of the prepared negative electrode layer are collectively shown in Table 1 below.
  • Example 4 since the height of the sheath layer during firing was increased, the desorbed hydrogen stayed in the sample during firing and eroded the carbon structure, resulting in a reduction in the proportion of lithium clusters. It is considered that the value was not suitable as compared with others.
  • Comparative Examples 1 and 4 the binder was insufficient with respect to the average particle diameter D 50 , and the negative electrode layer was cracked or dropped due to defective molding, so that the negative electrode density and the NMR shift value could not be measured.
  • Comparative Examples 2 and 5 the amount of the binder added was increased to improve the molding failure, but the negative electrode density was lowered.
  • the average particle diameter D 50 was 50 ⁇ m, which was the same value as in Examples 1 to 4, but the basic fluidity energy BFE was an extremely large value because the amount of fine powder was removed so that the amount of fine powder was almost eliminated. Was falling.
  • Comparative Example 6 the average particle diameter D 50 was less than 30 ⁇ m. Therefore, it is considered that the electrode density was reduced as compared with Example 5 when the negative electrode layer was formed.
  • a charging/discharging test was performed on the lithium secondary battery having the above structure using a charging/discharging test device (“TOSCAT” manufactured by Toyo System Co., Ltd.). Doping of lithium was performed at a rate of 70 mA/g with respect to the mass of the active material, and doping was performed until the lithium potential became 1 mV. Furthermore, a constant voltage of 1 mV was applied to the lithium potential for 8 hours to complete the doping. The capacity at this time was defined as the charging capacity (mAh/g).
  • discharge capacity X 1 (hereinafter, discharge capacity X 1 Also called).
  • the irreversible capacity can be calculated by subtracting the discharge capacity X 1 (mAh/g) from the charge capacity (mAh/g).
  • a value obtained by multiplying the electrode density (g/cm 3 ) in Table 1 by the charge capacity (mAh/g) is defined as the volume capacity (charge) (mAh/cm 3 ), and the electrode density (g/cm) in Table 1 above is calculated.
  • a rate test was performed on the lithium secondary battery having the above structure. Doping with lithium was performed at a rate of 70 mA/g with respect to the mass of the active material, and doping was performed until the lithium potential reached 1 mV. Furthermore, a constant voltage of 1 mV was applied to the lithium potential for 8 hours to complete the doping. The capacity at this time was defined as the charging capacity (mAh/g). Next, dedoping was performed at a rate of 1050 mA/g with respect to the mass of the active material until the lithium potential became 1.5 V, and the capacity discharged at this time was defined as a discharge capacity X 2 (mAh/g).
  • the discharge capacity retention rate (3C/0.2C) is summarized in Table 2 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、レーザー散乱法によって測定される平均粒子径D50が30μm以上であり、かつ、直径50mmおよび容積160mLの測定容器を備える粉体流動性分析装置により、翼先端速度100mm/秒および粉体試料充填容量120mLの条件下において測定され、式;BFE=T/(Rtanα)+F(式中、R=48mm、α=5°、Tは装置により測定される回転トルクの数値であり、かつFは装置により測定される垂直応力の数値である)によって算出される基本流動性エネルギーBFEが、270mJ以上1100mJ以下である、電気化学デバイス用の炭素質材料に関する。

Description

電気化学デバイス用の炭素質材料、電気化学デバイス用負極および電気化学デバイス
 本発明は、電気化学デバイス用の炭素質材料、電気化学デバイス用負極および電気化学デバイスに関する。
 電気化学デバイスには、電気化学的な現象を利用する二次電池およびキャパシタ等が挙げられる。例えば、電気化学デバイスの1つであるリチウムイオン二次電池は、携帯電話やノートパソコンのような小型携帯機器に広く用いられている。リチウムイオン二次電池の負極材料としては、黒鉛の理論容量372mAh/gを超える量のリチウムのドープ(充電)および脱ドープ(放電)が可能な難黒鉛化性炭素が開発され(例えば特許文献1)、使用されてきた。
 難黒鉛化性炭素は、例えば石油ピッチ、石炭ピッチ、フェノール樹脂、植物を炭素源として得ることができる。これらの炭素源の中でも、植物は、栽培することによって持続して安定的に供給可能な原料であり、安価に入手できるため注目されている。また、植物由来の炭素原料を焼成して得られる炭素質材料には、細孔が多く存在するため、良好な充放電容量が期待される(例えば特許文献1および特許文献2)。
 難黒鉛化性炭素が例えばリチウムイオン二次電池の負極材料として使用される場合、負極を高密度化し易いように、平均粒子径D50が約15μm以下程度のものが用いられるのが通常であった(例えば特許文献3)。
特開平9-161801号公報 特開平10-21919号公報 特表2012-533864号公報
 負極材料として炭素質材料、特に難黒鉛化性炭素を用いた電気化学デバイスの様々な用途において、デバイスにおける負極の高エネルギー密度化が求められている。高エネルギー密度化の1つの手段として、負極層の体積を増して、デバイスの内部に占める負極比率を増すことが考えられる。
 しかしながら、負極比率を増すために、通常使用されるような小さい平均粒子径の炭素質材料(例えば特許文献3)を含んでなる負極層の充放電時の体積容量(以下、単に体積容量ともいう)を高めようとすると、抵抗が大きくなってしまい、その結果、高レート放電時の放電容量維持率の低下が起こることが分かった。一方、単純にデバイスの負極材料に含まれる炭素質材料の平均粒子径を大きくするだけでは、負極密度が低下してしまい、良好な体積容量を得ることができないことも分かった。
 本発明の目的は、負極層として適用される際に、良好な体積容量を示し、かつ優れた放電容量維持率を有する、電気化学デバイス(例えば非水電解質二次電池であるリチウムイオン二次電池等)に用いる炭素質材料を提供することにある。本発明の目的はまた、そのような炭素質材料を含む電気化学デバイス用負極、およびそのような電気化学デバイス用負極を含む電気化学デバイスを提供することにある。
 本発明者らが鋭意研究した結果、炭素質材料を含む電気化学デバイス用負極に関して、通常より大きい平均粒子径の炭素質材料を含ませて負極層を形成した場合であっても、かかる炭素質材料の粉体流動性分析によって測定される基本流動性エネルギーBFE(Basic Flowability Energy)が特定条件下で所定の範囲内であると、負極層を好適に形成することができ、該負極層を含む電気化学デバイスは、良好な体積容量を示し、かつ優れた放電容量維持率を有することが分かった。
 すなわち、本発明は、以下の好適な態様を包含する。
〔1〕レーザー散乱法によって測定される平均粒子径D50が30μm以上であり、かつ、直径50mmおよび容積160mLの測定容器を備える粉体流動性分析装置により、翼先端速度100mm/秒および粉体試料充填容量120mLの条件下において測定され、式;BFE=T/(Rtanα)+F(式中、R=48mm、α=5°、Tは装置により測定される回転トルクの数値であり、かつFは装置により測定される垂直応力の数値である)によって算出される基本流動性エネルギーBFEが、270mJ以上1100mJ以下である、電気化学デバイス用の炭素質材料。
〔2〕前記炭素質材料に満充電状態となるまでリチウムをドープし、Li核-固体NMR分析を行ったとき、基準物質であるLiClの共鳴ピークに対して低磁場側に115ppm以上シフトした主共鳴ピークが観測される、前記〔1〕に記載の炭素質材料。
〔3〕広角X線回折法によるBragg式を用いて算出される(002)面の平均面間隔d002が0.36nm以上である、前記〔1〕または〔2〕に記載の炭素質材料。
〔4〕前記炭素質材料は植物由来である前記〔1〕~〔3〕のいずれかに記載の炭素質材料。
〔5〕前記〔1〕~〔4〕のいずれかに記載の炭素質材料を含む、電気化学デバイス用負極。
〔6〕負極層の厚さが100μm以上である、前記〔6〕に記載の電気化学デバイス用負極。
〔7〕前記〔5〕または〔6〕に記載の電気化学デバイス用負極を含む、電気化学デバイス。
 本発明の電気化学デバイス用の炭素質材料を負極材料として用いる電気化学デバイスは、良好な体積容量を示し、かつ優れた放電容量維持率を有する。
 以下、本発明の実施形態について、詳細に説明する。なお、本発明を以下の実施形態に制限する趣旨ではない。
 本明細書において、電気化学デバイスとは、炭素質材料を含有する負極を含み得、かつ電気化学的な現象を利用するデバイス全般をいう。具体的には、電気化学デバイスは、例えば、充電により繰り返し使用が可能である、リチウムイオン二次電池、ニッケル水素二次電池、ニッケルカドミウム二次電池等の二次電池および電気二重層キャパシタ等のキャパシタ等を含む。これらのうち、電気化学デバイスは、特に非水電解質二次電池(例えばリチウムイオン二次電池、ナトリウムイオン電池、リチウム硫黄電池、リチウム空気電池、全固体電池、有機ラジカル電池等)であり得、より特にリチウムイオン二次電池であり得る。
(電気化学デバイス用の炭素質材料)
 本発明の1つの実施形態に係る電気化学デバイス用の炭素質材料は、レーザー散乱法によって測定される平均粒子径D50が30μm以上であり、かつ、直径50mmおよび容積160mLの測定容器を備える粉体流動性分析装置により、翼先端速度100mm/秒および粉体試料充填容量120mLの条件下において測定され、式;BFE=T/(Rtanα)+F(式中、R=48mm、α=5°、Tは装置により測定される回転トルクの数値であり、かつFは装置により測定される垂直応力の数値である)によって算出される基本流動性エネルギーBFEが、270mJ以上1100mJ以下である(以下、特定条件下で所定の範囲内の基本流動性エネルギーBFEを有する、ともいう)。
 本実施形態の炭素質材料のレーザー散乱法によって測定される平均粒子径D50は、30μm以上、好ましくは38μm以上、より好ましくは40μm以上、さらに好ましくは45μm以上、よりさらに好ましくは50μm以上である。
 平均粒子径D50とは、累積体積が50%となる粒子径である。本明細書において、平均粒子径D50は、レーザー散乱法によって、粒度分布測定器を用いて測定される。本実施形態の炭素質材料の平均粒子径D50だけでなく、後述する植物由来のチャーの状態の平均粒子径D50および必要に応じて実施する焼成工程の前かつ粉砕工程および/または分級工程後の植物由来のチャー炭素前駆体の状態の平均粒子径D50についても、同様の方法を用いて測定することができる。
 本実施形態の炭素質材料の平均粒子径D50を30μm以上とすることによって、電気化学デバイスの負極層に適用される際に、容易に負極層の体積を増加させ、効率的に電気化学デバイスの内部に占める負極比率を増すことができる。かかる平均粒子径D50の上限は、特に限定されないが、通常、500μm以下、好ましくは400μm以下、より好ましくは300μm以下、さらに好ましくは200μm以下、よりさらに好ましくは100μm以下、特に好ましくは80μm以下とすることができる。これは、平均粒子径D50がかかる上限値以下であると、後述する粉体流動性分析によって測定される基本流動性エネルギーBFEを、特定条件下において所定の範囲内に調整し易く、その結果、電極密度も高まり易くなるためである。
 本実施形態の炭素質材料は、直径50mmおよび容積160mLの測定容器を備える粉体流動性分析装置により、翼先端速度100mm/秒および粉体試料充填容量120mLの条件下において測定され、式;BFE=T/(Rtanα)+F(式中、R=48mm、α=5°、Tは装置により測定される回転トルクの数値であり、かつFは装置により測定される垂直応力の数値である)によって算出される基本流動性エネルギーBFEが、270mJ以上1100mJ以下、好ましくは270mJ以上1000mJ以下、より好ましくは280mJ以上800mJ以下、さらに好ましくは290mJ以上800mJ以下、さらにより好ましくは290mJ以上600mJ以下である。
 基本流動性エネルギーBFEとは、粉体流動性分析装置により測定される、装置内に充填された試料粉体について装置に設置されているブレードを動かすときに必要とする、ブレード高さに応じたブレードの移動エネルギーの値(J)である。基本流動性エネルギーBFEは、フリーマンテクノロジー社製のパウダーレオメーターFT4により測定することができる。
 例えば、フリーマンテクノロジー社製のパウダーレオメーターFT4による測定は、粉体が充填された容器にブレードを一定の翼先端速度で回転させながら進入させ、装置底部のロードセルにより垂直応力Fを、上部トルク計により回転トルクTを測定することにより行われる。このときの垂直応力F、回転トルクTおよびブレード高さから、ブレードが粉体中を移動する際に要したエネルギーを算出する。ブレード半径(ブレード翼径ともいう)をR、ブレード先端が移動する螺旋角度をα°とすると、ブレード高さに応じたブレードの移動エネルギー、すなわち基本流動性エネルギーBFEは、BFE=T/(Rtanα)+Fで求められる。なお、フリーマンテクノロジー社製のパウダーレオメーターFT4では、α=5°、R=48mm、粉体を充填する容器の直径50mm、容器の容積160mmとなっている(平村行慶、「粉体のレオロジー評価と流動性に関する考察」、粉体工学会誌、2017年、Vol.54、No.9、p604-608参照)。例えば、かかる装置に粉体を120mL充填して、100mm/秒の翼先端速度で回転させながら進入させることで、基本流動性エネルギーBFEを算出することができる。
 一般的に、炭素質材料の粉体の基本流動性エネルギーBFEは、該粉体の粒子が軽く平均粒子径D50が小さい場合小さくなり、該粉体の平均粒子径D50が大きいものであると大きくなり得る。しかしながら、基本流動性エネルギーBFEは、炭素質材料の粉体の平均粒子径D50だけでなく、該粉体に含まれる微粉の量、粒度分布、粉体の粒子表面の物性および表面官能基の量等の種々の物性も関連すると推定される。これらの物性の1例として、微粉の量に関して、次のような事が推定される。炭素質材料の粉体の平均粒子径D50が大きく例えば本実施形態のように30μm以上であっても、例えば微粉量が適量である場合には、基本流動性エネルギーBFEが大きくなり過ぎることはない。このような粉体の炭素質材料で、電極を形成する場合、電極密度が不足してしまうことはない。一方、同様に、炭素質材料の粉体の平均粒子径D50が大きく30μm以上であり、かつ例えば微粉量が少量過ぎる場合には、基本流動性エネルギーBFEは極めて大きくなり得る。このような粉体の炭素質材料で、電極を形成する場合、電極密度が不足し得る。また、炭素質材料の粉体の平均粒子径D50が小さく例えば30μm未満である場合には、基本流動性エネルギーBFEは小さくなる。このような粉体の炭素質材料で、電極を形成する場合、好適に利用可能な電極層を適切に得ることができないということが分かった。詳細には、体積が大きい電極層、特に厚さが大きい電極層を形成すると、添加するバインダーの量が少ない場合電極層は成形不良となり、成形不良を改善するためにバインダー量を増加すると良好な電極密度を得られず、その結果、体積容量が減少することが分かった。
 すなわち、本実施形態の炭素質材料は、平均粒子径D50が30μm以上であり、該炭素質材料の粉体中の微粉の量、粒度分布、粉体の粒子表面の物性および表面官能基の量等の種々の物性が調整されていることによって、レーザー散乱法によって測定される平均粒子径D50が30μm以上であり、かつ、直径50mmおよび容積160mLの測定容器を備える粉体流動性分析装置により、翼先端速度100mm/秒および粉体試料充填容量120mLの条件下において測定され、式;BFE=T/(Rtanα)+F(式中、R=48mm、α=5°、Tは装置により測定される回転トルクの数値であり、かつFは装置により測定される垂直応力の数値である)によって算出される基本流動性エネルギーBFEが、270mJ以上1100mJ以下となっている。このような炭素質材料を電気化学デバイス用の負極材料として用いると、良好な充放電体積容量を示し、かつ優れた放電容量維持率を有することができる。かかる効果は、負極層の体積、特に負極層の厚さが大きい場合において、より顕著に発揮される。
 例えば、炭素質材料の粉体に含まれる微粉の量の調整方法は、特に限定されないが、後述する炭素質材料の製造過程の際の粉砕工程および/または分級工程、特に分級工程において調整することができる。
 炭素質材料において、好ましくは、該炭素質材料に満充電状態となるまでリチウムをドープし、Li核-固体NMR分析を行ったとき、基準物質であるLiClの共鳴ピークに対して低磁場側に115ppm以上、より好ましくは115ppm以上145ppm以下シフトした主共鳴ピークが観測される。このような炭素質材料は、電気化学デバイスの1つであるリチウムイオン二次電池に適用される場合、好適に機能する。具体的には、主共鳴ピークの低磁場側へのシフト値が大きいことは、クラスター化して存在するリチウムの量が多いことを示している。本実施形態の炭素質材料において、クラスターを迅速に解離させ、早い充放電を達成しやすい観点からは、上記の低磁場側へのシフト値は、142ppm以下であることがより好ましく、138ppm以下であることがさらにより好ましい。主共鳴ピークの低磁場側へのシフト値が小さいことは、炭素層間に存在するリチウムの量が多いことを示している。充放電体積容量を高めやすい観点からは、上記の低磁場側へのシフト値は、120ppm以上であることがより好ましい。
 ここで、本明細書において、「主共鳴ピークが観測される」とは、主共鳴ピークを与えるリチウム種が後述するLi核-固体NMR分析法の検出限界である3%以上存在することを意味する。
 また、本明細書において、「満充電状態となるまでリチウムをドープし」とは、炭素質材料を含む電極を正極とし、金属リチウムを含む電極を負極とする非水電解質二次電池を組み立て、終了電圧を、通常0.1~0mV、好ましくは0.05~0mV、より好ましくは0.01~0mVの範囲として充電を行うことを意味する。
 特に、Li核-固体NMRスペクトルの測定は、後述する実施例と同様に、核磁気共鳴装置を用いて測定することができる。
 主共鳴ピークの低磁場側への化学シフト値を上記の範囲に調整する方法は何ら限定されないが、例えば、植物由来のチャー、炭素前駆体または炭素前駆体と揮発性有機物との混合物を、800℃以上1400℃以下の温度で、ハロゲン化合物を含む不活性ガスまたはハロゲン化合物を含まない不活性ガスをこれらの物質50gあたり14L/分以上の量で供給しながら熱処理する方法を用いることができる。なお、炭素前駆体と揮発性有機物との混合物はハロゲン化合物を含まない不活性ガスで熱処理することが好ましい。
 炭素質材料は、広角X線回折法からBragg式を用いて算出される(002)面の平均面間隔d002が、好ましくは0.36nm以上であり、より好ましくは0.36nm以上0.42nm以下であり、さらに好ましくは0.38nm以上0.4nm以下であり、よりさらに好ましくは0.382nm以上0.396nmであり得る。(002)面の平均面間隔d002が小さすぎる場合には、電気化学デバイスに利用されるイオン(例えばリチウムイオン)が炭素質材料に挿入される際の抵抗が大きくなることがあり、さらに出力時の抵抗が大きくなることがあり、電気化学デバイスとしての入出力特性が低下することがある。また、炭素質材料が膨張収縮を繰り返すため、電極材料としての安定性を損なうことがある。平均面間隔d002が大きすぎる場合には、かかるイオンの拡散抵抗は小さくなるものの、炭素質材料の体積が大きくなり、体積あたりの実行容量が小さくなることがある。
 平均面間隔を上記範囲に調整する方法は何ら限定されないが、例えば、炭素質材料を与える炭素前駆体に対して後述する焼成を行う場合、その温度を800℃以上1400℃以下の範囲で行えばよい。また、ポリスチレン等の熱分解性樹脂と混合して焼成する方法を用いることもできる。
 炭素質材料の比表面積は、好ましくは1m/g以上100m/g以下であり、より好ましくは3m/g以上50m/g以下、さらに好ましくは3m/g以上30m/g以下、よりさらに好ましくは5m/g以上25m/g以下、例えば5m/g以上20m/g以下である。小さすぎる比表面積では、炭素質材料への電気化学デバイスに利用されるイオン(例えばリチウムイオン)の吸着量が少なくなり、非水電解質二次電池の充電容量が少なくなることがある。大きすぎる比表面積では、かかるイオンが炭素質材料の表面で反応して消費されるので、該イオンの利用効率が低くなる。
 なお、本明細書において、炭素質材料および後述する炭素前駆体の比表面積は、BET法(窒素吸着BET3点法)により定められる(BET比表面積)。以下にBETの式から誘導された近似式を記す。
Figure JPOXMLDOC01-appb-M000001
 上記の近似式を用いて、液体窒素温度における、窒素吸着による3点法によりvを求め、以下の式により試料の比表面積を計算する。
Figure JPOXMLDOC01-appb-M000002
 このとき、vは試料表面に単分子層を形成するに必要な吸着量(cm/g)、vは実測される吸着量(cm/g)、pは飽和蒸気圧、pは絶対圧、cは定数(吸着熱を反映)、Nはアボガドロ数6.022×1023、a(nm)は吸着質分子が試料表面で占める面積(分子占有断面積)である。
 より詳細には、例えば日本BELL社製「BELL Sorb Mini」を用いて、次のようにして液体窒素温度における試料への窒素の吸着量を測定することができる。試料を試料管に充填し、試料管を-196℃に冷却した状態で、一旦減圧し、その後所望の相対圧にて試料に窒素(純度99.999%)を吸着させる。各所望の相対圧にて平衡圧に達した時の試料に吸着した窒素量を吸着ガス量vとする。
 比表面積を上記範囲に調整する他の方法は何ら限定されないが、例えば、炭素質材料を製造する際に、炭素前駆体の必要に応じて行う焼成の温度や焼成時間を調整する方法を用いることができる。すなわち、焼成温度を高くしたり、焼成時間を長くすると比表面積は小さくなる傾向があるので、上記の範囲の比表面積が得られるように、焼成温度や焼成時間を調整すればよい。また、揮発性有機物と混合して焼成する方法を用いてもよい。後述するように、炭素前駆体と揮発性有機物とを混合して焼成することで、炭素前駆体の表面には、揮発性有機物の熱処理により得られる炭素質被膜が形成されると考えられる。そして、この炭素質被膜により、炭素前駆体から得た炭素質材料の比表面積が減少すると考えられる。そのため、混合する揮発性有機物の量を調整することで、炭素質材料の比表面積の上記の範囲に調整することができる。
 炭素質材料が含む窒素元素含量は、少ないほどよいが、通常、元素分析によって得られた分析値において、1.0質量%以下、好ましくは0.8質量%以下、より好ましくは0.7質量%以下、さらに好ましくは0.5質量%以下、特に好ましくは0.4質量%以下、とりわけ好ましくは0.3質量%以下、極めて好ましくは0.25質量%以下、最も好ましくは0.2質量%以下、例えば0.15質量%以下である。炭素質材料は、窒素元素を実質的に含有しないことがさらに好ましい。ここで、実質的に含有しないとは、後述の元素分析(不活性ガス融解-熱伝導度法)の検出限界である10-6質量%以下であることを意味する。窒素元素含量が多すぎると、電気化学デバイスに利用されるイオンと窒素とが反応してかかるイオンが消費されるので、イオンの利用効率を低下させるだけでなく、保存中に空気中の酸素と反応することがある。
 窒素元素含量を上記の範囲に調整する方法は何ら限定されないが、例えば、後述する製造方法において、植物由来のチャーを、ハロゲン化合物を含む不活性ガス雰囲気中、500℃以上940℃以下で熱処理する工程を含む方法で気相脱灰すること、または、炭素前駆体を揮発性有機物と混合して必要に応じて焼成することにより、窒素元素含量を上記の範囲に調整することができる。
 炭素質材料が含む酸素元素含量は、少ないほどよいが、通常、元素分析によって得られた分析値において、0.8質量%以下、好ましくは0.5質量%以下、より好ましくは0.3質量%以下である。炭素質材料は、酸素元素を実質的に含有しないことがさらに好ましい。ここで、実質的に含有しないとは、後述の元素分析(不活性ガス融解-熱伝導度法)の検出限界である10-6質量%以下であることを意味する。酸素元素含量が多すぎると、電気化学デバイスに利用されるイオン(例えばリチウムイオン)と酸素とが反応してイオンが消費されるので、かかるイオンの利用効率を低下させる場合がある。さらに、空気中の酸素および水分を誘引し、炭素質材料と反応する確率を高めるだけでなく、水を吸着したときに、容易に脱離させない等、イオンの利用効率が低下することがある。
 酸素元素含量を上記の範囲に調整する方法は何ら限定されないが、例えば、後述する製造方法において、植物由来のチャーを、ハロゲン化合物を含む不活性ガス雰囲気中、500℃以上940℃以下で熱処理する工程を含む方法で気相脱灰すること、または、炭素前駆体を揮発性有機物と混合して必要に応じて焼成することにより、酸素元素含量を上記の範囲に調整することができる。
 窒素元素含量または酸素元素含量は、市販されている酸素・窒素分析装置を用いて元素分析を行い、測定することができる。
 炭素質材料に含まれるカリウム元素含量は、脱ドープ容量を大きくする観点および非脱ドープ容量を小さくする観点から、0.1質量%以下が好ましく、0.05質量%以下がより好ましく、0.03質量%以下がさらに好ましく、0.01質量%以下が特に好ましく、0.005質量%以下がとりわけ好ましい。炭素質材料に含まれる鉄元素含量は、脱ドープ容量を大きくする観点および非脱ドープ容量を小さくする観点から、0.02質量%以下が好ましく、0.015質量%以下がより好ましく、0.01質量%以下がさらに好ましく、0.006質量%以下が特に好ましく、0.004質量%以下がとりわけ好ましい。炭素質材料に含まれるカリウム元素および/または鉄元素の含量が上記上限値以下であると、この炭素質材料を用いた非水電解質二次電池において、脱ドープ容量が大きくなり、また、非脱ドープ容量が小さくなる傾向にある。さらに、炭素質材料に含まれるカリウム元素および/または鉄元素の含量が上記上限値以下であると、これらの金属元素が電解液中に溶出して再析出することにより短絡が生じることが抑制されるため、非水電解質二次電池の安全性を確保することができる。前記炭素質材料は、カリウム元素および鉄元素を、実質的に含有しないことが特に好ましい。カリウム元素および鉄元素の含量の測定の詳細は実施例に記載するとおりであり、蛍光X線分析装置を用いることができる。なお、前記炭素質材料に含まれるカリウム元素含量および鉄元素含量は、通常0質量%以上である。炭素質材料に含まれるカリウム元素含量および鉄元素含量は、炭素前駆体に含まれるカリウム元素含量および鉄元素含量が少ない程低下する傾向にある。
 炭素質材料は、電気化学デバイスにおける質量あたりの容量を高くする観点から、ブタノール法による真密度ρBtが1.4g/cm以上1.7g/cm以下であることが好ましく、1.42g/cm以上1.65g/cm以下であることがより好ましく、1.44g/cm以上1.6g/cm以下であることがさらに好ましい。このような真密度ρBtを有する炭素質材料は、例えば植物原料を800℃以上1400℃以下で焼成することによって製造することができる。ここで、真密度ρBtの測定の詳細は、実施例に記載する通りである。すなわち、真密度ρBtは、JIS R 7212に定められた方法に従い、ブタノール法により測定することができる。
 炭素質材料の吸湿量は、好ましくは40,000ppm以下、より好ましくは20,000ppm以下、さらに好ましくは10,000ppm以下である。吸湿量が少ないほど、炭素質材料に吸着する水分が減り、炭素質材料に吸着する電気化学デバイスに利用されるイオン(例えばリチウムイオン)が増加するので好ましい。また、吸湿量が少ないほど、吸着した水分と炭素質材料の窒素原子との反応や、吸着した水分と該イオンとの反応による自己放電を低減できるので好ましい。炭素質材料の吸湿量は、例えば、炭素質材料に含まれる窒素原子や酸素原子の量を減らすことにより、減らすことができる。
 本明細書において、炭素質材料の吸湿量は、カールフィッシャー法を用いて測定することができる。
 以下、炭素質材料の製造方法の1例について、詳細に説明する。
 炭素質材料は、例えば炭素前駆体または炭素前駆体と揮発性有機物との混合物を800℃以上1400℃以下の不活性ガス雰囲気下で必要に応じて焼成して得られる。炭素質材料がこれにより得られるものであると、十分に炭化させることが可能であり、かつ電極材料に適した細孔を有する炭素質材料を得ることができる。
 炭素前駆体は、炭素質材料を製造する際に炭素成分を供給する炭素質材料の前駆体であり、植物由来の炭素材(本明細書において、「植物由来のチャー」ともいう)を原料に用いて製造することができる。なお、チャーとは、一般的には、石炭を加熱した際に得られる溶融軟化しない炭素分に富む粉末状の固体を示すが、ここでは有機物を加熱して得られる溶融軟化しない炭素分に富む粉末状の固体も示す。炭素前駆体が植物由来であると、カーボンニュートラルの観点および入手が容易性であるという観点から、環境面および経済面で有利である。
 植物由来のチャーの原料となる植物(本明細書において、「植物原料」ともいう)には、特に制限はない。例えば、椰子殻、珈琲豆、茶葉、サトウキビ、果実(例えば、みかん、バナナ)、藁、殻、広葉樹、針葉樹、竹を例示できる。この例示は、本来の用途に供した後の廃棄物(例えば、使用済みの茶葉)、あるいは植物原料の一部(例えば、バナナやみかんの皮)を包含する。これらの植物は、単独でまたは2種以上組み合わせて使用することができる。これらの植物の中でも、大量入手が容易であり工業的に有利であるため、椰子殻が好ましい。
 椰子殻としては、特に限定されるものではなく、例えばパームヤシ(アブラヤシ)、ココヤシ、サラク、オオミヤシの椰子殻を挙げることができる。これらの椰子殻は、単独または組み合わせて使用することができる。食品、洗剤原料、バイオディーゼル油原料等として利用され、大量に発生するバイオマス廃棄物である、ココヤシおよびパームヤシの椰子殻が特に好ましい。
 植物原料からチャーを製造する方法は特に限定されるものではないが、例えば植物原料を、300℃以上の不活性ガス雰囲気下で、熱処理(本明細書において、「仮焼成」ともいう)することによって製造することができる。
 また、チャー(例えば、椰子殻チャー)の形態で入手することも可能である。
 植物由来のチャーから製造された炭素質材料は、多量の活物質をドープ可能であることから、電気化学デバイスの負極材料として基本的には適している。しかし、植物由来のチャーには、植物に含まれていた金属元素が多く含有されている。例えば、椰子殻チャーでは、カリウム元素を0.3質量%程度、鉄元素を0.1質量%程度含んでいることがある。このような金属元素を多く含んだ炭素質材料を負極として用いると、非水電解質二次電池の電気化学的な特性や安全性に好ましくない影響を与えることがある。
 また、植物由来のチャーは、カリウム以外のアルカリ金属(例えば、ナトリウム)、アルカリ土類金属(例えば、マグネシウム、カルシウム)、遷移金属(例えば、鉄、銅)およびその他の金属類も含んでいる。炭素質材料がこれらの金属類を含むと、電気化学デバイスの負極からの脱ドープ時に不純物が電解液中に溶出し、電池性能に好ましくない影響を与え、安全性を害する可能性がある。
 さらに、本発明者等の検討により、灰分により炭素質材料の細孔が閉塞され、電池の充放電体積容量に悪影響を及ぼすことがあると確認されている。
 従って、植物由来のチャーに含まれているこのような灰分(アルカリ金属、アルカリ土類金属、遷移金属、およびその他の元素類)は、炭素質材料を得るため必要に応じて行う焼成工程の前に、脱灰処理によって灰分を減少させておくことが望ましい。脱灰方法は特に制限されないが、例えば塩酸、硫酸等の鉱酸、酢酸、蟻酸等の有機酸等を含む酸性水を用いて金属分を抽出脱灰する方法(液相脱灰)、塩化水素等のハロゲン化合物を含有した高温の気相に暴露させて脱灰する方法(気相脱灰)を用いることができる。適用する脱灰方法を限定する趣旨ではないが、以下では、脱灰後に乾燥処理の必要が無い点で好ましい気相脱灰について説明する。なお、脱灰された植物由来のチャーを、本明細書において、「植物由来のチャー炭素前駆体」ともいう。
 気相脱灰としては、植物由来のチャーを、ハロゲン化合物を含む気相中で熱処理することが好ましい。ハロゲン化合物は特に制限されないが、例えば、フッ素、塩素、臭素、ヨウ素、フッ化水素、塩化水素、臭化水素、臭化ヨウ素、フッ化塩素(ClF)、塩化ヨウ素(ICl)、臭化ヨウ素(IBr)および塩化臭素(BrCl)等を挙げることができる。熱分解によりこれらのハロゲン化合物を発生する化合物、またはこれらの混合物を用いることもできる。使用するハロゲン化合物の安定性およびその供給安定性の観点から、好ましくは塩化水素である。
 気相脱灰は、ハロゲン化合物と不活性ガスとを混合して使用してもよい。不活性ガスは、植物由来のチャーを構成する炭素成分と反応しないガスであれば特に制限されない。例えば、窒素、ヘリウム、アルゴンおよびクリプトン、ならびにそれらの混合ガスを挙げることができる。供給安定性および経済性の観点から、好ましくは窒素である。
 気相脱灰において、ハロゲン化合物と不活性ガスとの混合比は、十分な脱灰が達成できる限り、限定されるものではないが、例えば、安全性、経済性および炭素中への残留性の観点から、不活性ガスに対するハロゲン化合物の量は好ましくは0.01体積%以上10体積%以下であり、より好ましくは0.05体積%以上8体積%以下であり、さらに好ましくは0.1体積%以上5体積%以下である。
 気相脱灰の温度は、脱灰の対象物である植物由来のチャーにより変えてよいが、カリウム含量、鉄含量、窒素元素含量および酸素元素含量等を好ましい範囲に調整しやすい観点から、例えば500℃以上980℃以下、好ましくは600℃以上950℃以下、より好ましくは650℃以上940℃以下、さらに好ましくは850℃以上930℃以下で実施することができる。脱灰温度が低すぎると、脱灰効率が低下し、十分に脱灰できないことがある。脱灰温度が高くなりすぎると、ハロゲン化合物による賦活が起きることがある。
 気相脱灰の時間は、特に制限されるものではないが、反応設備の経済効率および炭素分の構造保持性の観点から、例えば5分間以上300分間以下であり、好ましくは10分間以上200分間以下であり、より好ましくは20分間以上150分間以下である。
 気相脱灰により、植物由来のチャーに含まれているカリウムおよび鉄等を除去することができる。気相脱灰後に得られる炭素前駆体に含まれるカリウム元素含量は、脱ドープ容量を大きくする観点および非脱ドープ容量を小さくする観点から、0.1質量%以下が好ましく、0.05質量%以下がより好ましく、0.03質量%以下がさらに好ましい。気相脱灰後に得られる炭素前駆体に含まれる鉄元素含量は、脱ドープ容量を大きくする観点および非脱ドープ容量を小さくする観点から、0.02質量%以下が好ましく、0.015質量%以下がより好ましく、0.01質量%以下がさらに好ましい。炭素前駆体に含まれるカリウム元素や鉄元素の含量が多くなると、得られる炭素質材料を用いた電気化学デバイスにおいて、脱ドープ容量が小さくなることがある。また、非脱ドープ容量が大きくなることがある。さらに、これらの金属元素が電解液中に溶出し、再析出した際に短絡が生じ、電気化学デバイスの安全性に大きな問題が生じることがある。気相脱灰後の植物由来のチャー炭素前駆体は、カリウム元素および鉄元素を、実質的に含有しないことが特に好ましい。カリウム元素および鉄元素の含量の測定の詳細は上述した通りである。なお、前記炭素前駆体に含まれるカリウム元素含量および鉄元素含量は、通常0質量%以上である。
 気相脱灰の対象となる植物由来のチャーの粒子径は、特に限定されるものではないが、粒子径が小さすぎる場合、除去されたカリウム等を含む気相と、植物由来のチャーとを分離することが困難になり得る。そのため、植物由来のチャーの平均粒子径D50の下限は100μm以上が好ましく、300μm以上がより好ましく、500μm以上がさらに好ましい。また、平均粒子径D50の上限は、混合ガス気流中での流動性の観点から、10000μm以下が好ましく、8000μm以下がより好ましく、5000μm以下がさらに好ましい。
 気相脱灰に用いる装置は、植物由来のチャーとハロゲン化合物を含む気相とを混合しながら加熱できる装置であれば、特に限定されない。例えば、流動炉を用い、流動床等による連続式またはバッチ式の層内流通方式を用いることができる。気相の供給量(流動量)は特に限定されないが、混合ガス気流中での流動性の観点から、例えば植物由来のチャー1g当たり好ましくは1ml/分以上、より好ましくは5ml/分以上、さらに好ましくは10ml/分以上の気相を供給する。
 気相脱灰においては、ハロゲン化合物を含む不活性ガス雰囲気中での熱処理(本明細書において、「ハロゲン熱処理」ともいう)の後に、さらにハロゲン化合物不存在下での熱処理(本明細書において、「気相脱酸処理」ともいう)を行うことが好ましい。前記ハロゲン熱処理により、ハロゲンが植物由来のチャーに含まれるため、気相脱酸処理により植物由来のチャーに含まれているハロゲンを除去することが好ましい。具体的には、気相脱酸処理は、ハロゲン化合物を含まない不活性ガス雰囲気中で、例えば500℃以上980℃以下、好ましくは600℃以上950℃以下、より好ましくは650℃以上940℃以下、さらに好ましくは850℃以上930℃以下で熱処理することによって行うが、熱処理の温度は、最初の熱処理の温度と同じか、またはそれよりも高い温度で行うことが好ましい。例えば、前記ハロゲン熱処理後に、ハロゲン化合物の供給を遮断して熱処理を行うことにより、ハロゲンを除去することができる。また、気相脱酸処理の時間も特に限定されるものではないが、好ましくは5分間以上300分間以下であり、より好ましくは10分間以上200分間以下であり、さらに好ましくは10分間以上100分間以上である。
 炭素前駆体は、粉砕工程および/または分級工程を経て、平均粒子径D50および基本流動性エネルギーBFEを調整することができる。粉砕工程および/または分級工程は、脱灰処理の後に実施することが好ましい。
 後述する焼成工程は必要に応じて行われるが、焼成工程が行われる場合、粉砕工程および/または分級工程では、炭素前駆体を、焼成工程後の本実施形態の炭素質材料が30μm以上の平均粒子径D50を有し、かつ特定条件下で所定の範囲内の基本流動性エネルギーBFEを有するように、焼成工程前に粉砕および/または分級することが、電極作製時の塗工性の観点から好ましい。粉砕工程および分級工程のいずれか一方のみ行ってもよいし、粉砕工程および分級工程の両方を行ってもよい。あるいは、炭素前駆体の焼成工程後に粉砕工程および/または分級工程を行うことによって、炭素質材料が30μm以上の平均粒子径D50を有し、かつ特定条件下で所定の範囲内の基本流動性エネルギーBFEを有するように調整することも可能である。つまり、本実施形態においては、粉砕工程および/または分級工程は、焼成工程前に行ってもよく、焼成工程後に行ってもよく、焼成工程前と焼成工程後との両方において行ってもよい。
 なお、炭素前駆体は、後述する必要に応じて行われる本焼成の条件により、収縮しない場合もあるが、0~20%程度の範囲において収縮する場合もある。そのため、後述する焼成工程が行われるとき、粉砕工程および/または分級工程を焼成工程前にのみ行う場合は、焼成後の本実施形態の炭素質材料が30μm以上の平均粒子径D50を有し、かつ特定条件下で所定の範囲内の基本流動性エネルギーBFEを有するように、収縮を考慮して、粉砕および/または分級を行ってもよい。具体的には、植物由来のチャー炭素前駆体の平均粒子径D50については、所望する焼成後の平均粒子径D50よりも0~20%程度大きい粒子径となるように調整してもよい。
 脱灰工程後の粉砕および/または分級工程後に得られる炭素前駆体は、後述する焼成工程を行わず、そのまま本発明の炭素質材料となり得る。一方、焼成工程を行う場合、炭素前駆体は、後述する熱処理工程を実施しても溶解しないため、粉砕工程の順番は、脱灰工程後であれば特に限定されない。後述する炭素質材料の比表面積の低減の観点から、焼成工程の前に粉砕工程を実施することが好ましい。これは植物由来のチャーを、必要に応じて揮発性有機物と混合して、焼成した後に粉砕すると、比表面積が十分に低減されない場合があるためである。しかしながら、焼成工程後に粉砕工程を実施することを排除するものではない。
 粉砕工程に用いる粉砕装置は特に限定されるものではなく、例えばジェットミル、ボールミル、ビーズミル、ハンマーミル、またはロッドミル等を使用することができる。粉砕の効率からするとジェットミルのような粒子同士の接触により粉砕する方式は粉砕時間が長く、容積の効率が低下するため、ボールミル、ビーズミルのような粉砕メディア共存下に粉砕する方式が好ましく、粉砕メディアからの不純物混入を回避する観点からは、ビーズミルの使用が好ましい。
 分級工程を粉砕工程後に行ってもよい。粉砕工程後の分級工程によって、炭素質材料の平均粒子径D50および流動性エネルギーBFE、特に流動性エネルギーBFEについては、より正確に調整することが可能となる。例えば、分級工程では、粒子径が0.1μm以上10μm以下、好ましくは0.1μm以上5μm以下程度の小さい微粉を除くことおよび過度に粗大な粒子を除くことができる。
 分級方法は、特に制限されないが、例えば篩を用いた分級、湿式分級および乾式分級を挙げることができる。湿式分級機としては、例えば重力分級、慣性分級、水力分級、遠心分級等の原理を利用した分級機を挙げることができる。乾式分級機としては、沈降分級、機械的分級、遠心分級等の原理を利用した分級機を挙げることができる。
 特に、粒子径が0.1μm以上10μm以下、好ましくは0.1μm以上5μm以下程度の小さい微粉の含有量は、前述したように基本流動性エネルギーBFEの数値に大きく影響を与える粉体特性の1例である。粉砕工程および/または分級工程において、本実施形態の炭素前駆体が特定条件下で所定の範囲内の基本流動性エネルギーBFEを有するように、微粉の含有量を少量過ぎず、適切な量になるように調整することが好ましい。
 粉砕および/または分級後の炭素前駆体の比表面積は、好ましくは30m/g以上800m/g以下であり、より好ましくは40m/g以上700m/g以下であり、例えば50m/g以上600m/g以下である。かかる範囲内の比表面積を有する炭素前駆体が得られるように粉砕および/または分級工程を行うことが好ましい。なお、粉砕工程および分級工程のいずれか一方のみ行ってもよいし、粉砕工程および分級工程の両方を行ってもよい。比表面積が小さすぎると、後述する焼成工程を経ても、炭素質材料の微細孔を十分に低減することができないことがあり、炭素質材料の吸湿性が低下しにくくなることがある。炭素質材料に水分が存在すると、電解液の加水分解に伴う酸の発生や水の電気分解によるガスの発生が問題を引き起こすことがある。また、空気雰囲気下で炭素質材料の酸化が進み、電池性能が大きく変化することもある。比表面積が大きくなりすぎると、後述する焼成工程を経ても炭素質材料の比表面積が小さくならず、例えば二次電池の利用効率が低下することがある。炭素前駆体の比表面積を、気相脱灰の温度の制御によって調整することも可能である。
 炭素質材料の製造方法は、炭素前駆体または炭素前駆体と揮発性有機物との混合物を800℃以上1400℃以下の不活性ガス雰囲気下で焼成し、炭素質材料を得る工程(本明細書において、「焼成工程」ともいう)を必要に応じて具備してもよい。焼成工程を行わない場合は、前述したように炭素前駆体をそのまま本発明の炭素質材料とすることができる。焼成工程は、脱灰工程後に実施するのが好ましく、脱灰工程、粉砕工程および分級工程後に実施するのが好ましい。
 以下、炭素質材料を得る工程において、焼成工程を具備する場合の製造方法の1例について述べる。
 炭素前駆体と揮発性有機物との混合物を焼成することによって、本実施形態の炭素質材料を得ることができる。炭素前駆体と揮発性有機物とを混合して焼成することにより、得られる炭素質材料のBFEを上記の好ましい範囲に調整しやすく、また、比表面積を低減させやすい。さらに、炭素質材料への二酸化炭素の吸着量を調整することもできる。
 炭素前駆体と揮発性有機物とを混合して焼成することによって炭素質材料の比表面積が低減される機構は、詳細には解明されていないが、以下のように考えることができる。しかしながら、本発明は、以下の説明によって限定されるものではない。植物由来のチャー炭素前駆体と、揮発性有機物とを混合して焼成することで、植物由来のチャー炭素前駆体の表面に、揮発性有機物の熱処理により得られる炭素質被膜が形成されると考えられる。この炭素質被膜により、植物由来のチャー炭素前駆体から生成する炭素質材料の比表面積が減少し、その炭素質材料と電気化学デバイスに利用されるイオン(例えばリチウムイオン)との反応によるSEI(Solid Electrolyte Interphase)と呼ばれる被膜の形成反応が抑制されるので、不可逆容量を低減させることが期待できる。また、生成した炭素質被膜もかかるイオンをドープおよび脱ドープすることができるため、容量が増加する効果も期待できる。
 揮発性有機物としては、例えば熱可塑性樹脂および低分子有機化合物が挙げられる。具体的には、熱可塑性樹脂としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリ(メタ)アクリル酸、およびポリ(メタ)アクリル酸エステル等を挙げることができる。なお、この明細書において、(メタ)アクリルとは、アクリルとメタクリルの総称である。低分子有機化合物としては、トルエン、キシレン、メシチレン、スチレン、ナフタレン、フェナントレン、アントラセン、およびピレン等を挙げることができる。焼成温度下で揮発し、熱分解した場合に炭素前駆体の表面を酸化賦活しないものが好ましいことから、熱可塑性樹脂としてはポリスチレン、ポリエチレン、ポリプロピレンが好ましい。低分子有機化合物としては、さらに安全上の観点から常温下において揮発性が小さいことが好ましく、ナフタレン、フェナントレン、アントラセン、ピレン等が好ましい。
 熱可塑性樹脂として、オレフィン系樹脂、スチレン系樹脂、および(メタ)アクリル酸系樹脂を挙げることができる。オレフィン系樹脂としては、ポリエチレン、ポリプロピレン、エチレンとプロピレンのランダム共重合体、エチレンとプロピレンのブロック共重合体等を挙げることができる。スチレン系樹脂としては、ポリスチレン、ポリ(α-メチルスチレン)、スチレンと(メタ)アクリル酸アルキルエステル(アルキル基の炭素数は1~12、好ましくは1~6)との共重合体等を挙げることができる。(メタ)アクリル酸系樹脂としては、ポリアクリル酸、ポリメタクリル酸、および(メタ)アクリル酸アルキルエステル重合体(アルキル基の炭素数は1~12、好ましくは1~6)等を挙げることができる。
 低分子有機化合物として、例えば炭素数が1~20の炭化水素化合物を用いることができる。炭化水素化合物の炭素数は、好ましくは2~18、より好ましくは3~16である。炭化水素化合物は、飽和炭化水素化合物または不飽和炭化水素化合物でもよく、鎖状の炭化水素化合物でも、環式の炭化水素化合物でもよい。不飽和炭化水素化合物の場合、不飽和結合は二重結合でも三重結合でもよく、1分子に含まれる不飽和結合の数も特に限定されるものではない。例えば、鎖状の炭化水素化合物は、脂肪族炭化水素化合物であり、直鎖状または分枝状のアルカン、アルケン、またはアルキンを挙げることができる。環式の炭化水素化合物としては、脂環式炭化水素化合物(例えば、シクロアルカン、シクロアルケン、シクロアルキン)または芳香族炭化水素化合物を挙げることができる。具体的には、脂肪族炭化水素化合物としては、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、ノナン、デカン、エチレン、プロピレン、ブテン、ペンテン、ヘキセンおよびアセチレン等を挙げることができる。脂環式炭化水素化合物としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロプロパン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、デカリン、ノルボルネン、メチルシクロヘキサン、およびノルボルナジエン等を挙げることができる。さらに、芳香族炭化水素化合物としては、ベンゼン、トルエン、キシレン、メシチレン、クメン、ブチルベンゼン、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、ビニルキシレン、p-tert-ブチルスチレン、エチルスチレン等の単環芳香族化合物、ナフタレン、フェナントレン、アントラセン、ピレン等の3環~6環の縮合多環芳香族化合物を挙げることができるが、好ましくは縮合多環芳香族化合物、より好ましくはナフタレン、フェナントレン、アントラセンまたはピレンである。ここで、前記炭化水素化合物は、任意の置換基を有していてよい。置換基は特に限定されるものではないが、例えば炭素数1~4のアルキル基(好ましくは炭素数1~2のアルキル基)、炭素数2~4のアルケニル基(好ましくは炭素数2のアルケニル基)、炭素数3~8のシクロアルキル基(好ましくは炭素数3~6のシクロアルキル基)を挙げることができる。
 揮発性有機物は、混合の容易性および偏在の回避の観点から、常温で固体状態であることが好ましく、例えばポリスチレン、ポリエチレンまたはポリプロピレン等の常温で固体の熱可塑性樹脂、または、ナフタレン、フェナントレン、アントラセンまたはピレン等の常温で固体の低分子有機化合物がより好ましい。揮発し、焼成温度下に熱分解した場合に、植物由来のチャー炭素前駆体の表面を酸化賦活しないものが好ましいことから、熱可塑性樹脂としては、オレフィン系樹脂およびスチレン系樹脂が好ましく、ポリスチレン、ポリエチレンおよびポリプロピレンがより好ましい。低分子有機化合物としては、さらに常温下に揮発性が小さいことが安全上好ましいことから、炭素数1~20の炭化水素化合物が好ましく、縮合多環芳香族化合物がより好ましく、ナフタレン、フェナントレン、アントラセンまたはピレンがさらに好ましい。さらに、炭素前駆体との混合し易さの観点から、熱可塑性樹脂が好ましく、オレフィン系樹脂およびスチレン系樹脂がより好ましく、ポリスチレン、ポリエチレン、ポリプロピレンがさらに好ましく、ポリスチレン、ポリエチレンが特に好ましい。
 揮発性有機物は、焼成機器の安定稼働の観点から、残炭率が好ましくは5質量%未満、より好ましくは3質量%未満である有機物である。本発明における残炭率は、好ましくは800℃で灰化した場合の残炭率である。揮発性有機物は、植物由来のチャーから製造される炭素前駆体の比表面積を低減させることのできる揮発物質(例えば、炭化水素系ガスやタール成分)を発生させるものが好ましい。また、焼成後生成する炭素質材料の性状を維持する観点から、残炭率は5質量%未満が好ましい。残炭率が5%未満であると局所的に性状の異なる炭素質材料が生成しにくい。
 残炭率は、試料を不活性ガス中で強熱した後の強熱残分の炭素量を定量することにより測定することができる。強熱とは、揮発性有機物およそ1g(この正確な質量をW(g)とする)を坩堝に入れ、1分間に20リットルの窒素を流しながら坩堝を電気炉にて、10℃/分の昇温速度で常温から800℃まで昇温、その後800℃で1時間強熱する。このときの残存物を強熱残分とし、その質量をW(g)とする。次いで、上記強熱残分について、JIS M8819に定められた方法に準拠して元素分析を行い、炭素の質量割合P(%)を測定する。残炭率P(質量%)は以下の式により算出することができる。
Figure JPOXMLDOC01-appb-M000003
 炭素前駆体と揮発性有機物とを混合する場合、混合物における炭素前駆体と揮発性有機物との質量比は、特に限定されるものではないが、好ましくは炭素前駆体と揮発性有機物との質量比が97:3~40:60である。上記混合物における炭素前駆体と揮発性有機物との質量比は、より好ましくは95:5~60:40、さらに好ましくは93:7~80:20である。例えば、揮発性有機物が3質量部以上であると比表面積を十分に低減させることができる。また、揮発性有機物が60質量部以下であると、比表面積の低減効果を飽和させず、揮発性有機物を過剰に消費し難いため、工業的に有利である。
 炭素前駆体と常温で液体または固体の揮発性有機物との混合は、粉砕工程の前または粉砕工程の後のいずれの段階で行ってもよい。
 粉砕工程の前に炭素前駆体を揮発性有機物と混合する場合には、炭素前駆体と常温で液体または固体の揮発性有機物とを計量しながら、粉砕装置に同時に供給することにより粉砕と混合とを同時に行うことができる。また、常温で気体である揮発性有機物を用いる場合、気体の揮発性有機物を含む非酸化性ガスを、植物由来のチャー炭素前駆体を含む熱処理装置内に流通させて熱分解させて、植物由来のチャー炭素前駆体と混合させる方法を用いることができる。
 粉砕工程の後に混合する場合には、混合方法は両者が均一に混合される手法であれば、公知の混合方法を用いることができる。揮発性有機物が常温で固体の場合は、粒子の形状で混合されることが好ましいが、粒子の形や粒子径は特に限定されない。揮発性有機物を粉砕された炭素前駆体に均一に分散させる観点からは、揮発性有機物の平均粒子径D50は、好ましくは0.1μm以上2000μm以下、より好ましくは1μm以上1000μm以下、さらに好ましくは2μm以上600μm以下である。
 上述した炭素前駆体または混合物は、炭素前駆体および揮発性有機物以外の他の成分を含んでいてもよい。例えば、天然黒鉛、人造黒鉛、金属系材料、合金系材料、または酸化物系材料を含むことができる。他の成分の含量は、特に限定されるものではないが、好ましくは、炭素前駆体または該炭素前駆体と揮発性有機物との混合物100質量部に対して、50質量部以下であり、より好ましくは30質量部以下であり、さらに好ましくは20質量部以下であり、最も好ましくは10質量部以下である。
 製造方法における焼成工程においては、好ましくは、炭素前駆体または該炭素前駆体と揮発性有機物との混合物を800℃以上1400℃以下で焼成する。
 焼成工程は、(a)粉砕された炭素前駆体または混合物を、800℃以上1400℃以下で焼成し、本焼成を行う焼成工程、および、(b)粉砕された炭素前駆体または混合物を、350℃以上800℃未満で予備焼成し、その後800℃以上1400℃以下で本焼成を行う焼成工程、のいずれであってもよい。
 焼成工程(a)を実施する場合、本焼成の工程で炭素前駆体へのタール成分および炭化水素系ガスの被覆が起こると考えられる。焼成工程(b)を実施する場合には、予備焼成の工程で炭素前駆体へのタール成分および炭化水素系ガスの被覆が起こると考えられる。
 以下に、焼成工程を行う場合における、予備焼成および本焼成の手順の1例を説明するが、本発明はこれに制限されるものではない。
 (予備焼成)
 予備焼成工程は、例えば粉砕された炭素前駆体または混合物を350℃以上800℃未満で焼成することによって行うことができる。予備焼成工程によって、揮発分(例えばCO、CO、CH、H等)とタール成分とを除去できる。予備焼成工程後に実施する本焼成工程における揮発分やタール成分の発生を軽減でき、焼成機器の負担を軽減することができる。
 予備焼成工程は、350℃以上で実施することが好ましく、400℃以上で実施することがより好ましい。予備焼成工程は、通常の予備焼成の手順に従って実施することができる。具体的には、予備焼成は、不活性ガス雰囲気中で行うことができる。不活性ガスとしては、窒素、アルゴン等を挙げることができる。また、予備焼成は、減圧下で実施してもよく、例えば、10kPa以下で行うことができる。予備焼成の時間も特に限定されるものではないが、例えば0.5時間以上10時間以下の範囲で実施することができ、1時間以上5時間以下が好ましい。
 (本焼成)
 本焼成工程は、通常の本焼成の手順に従って行うことができる。本焼成を行うことにより、非水電解質二次電池用炭素質材料を得ることができる。
 具体的な本焼成工程の温度は、好ましくは800℃以上1400℃以下であり、より好ましくは1000℃以上1350℃以下であり、さらに好ましくは1100℃以上1300℃以下である。本焼成は、不活性ガス雰囲気下で実施する。不活性ガスとしては、窒素、アルゴン等を挙げることができ、ハロゲンガスを含有する不活性ガス中で本焼成を行うことも可能である。また、本焼成工程は、減圧下で行うこともでき、例えば、10kPa以下で実施することも可能である。本焼成工程を実施する時間は特に限定されるものではないが、例えば0.05時間以上10時間以下で行うことができ、0.05時間以上8時間以下が好ましく、0.05時間以上6時間以下がより好ましい。
 焼成物(炭素質材料)は、上記のとおり、焼成工程の後に、粉砕工程および/または分級工程を行うことで、30μm以上の平均粒子径D50を有し、かつ特定条件下で所定の範囲内の基本流動性エネルギーBFEを有するように、調整してもよい。焼成工程後に粉砕工程および/または分級工程を行う場合、焼成時に微粉が飛散しない等の工程管理上の利点がある。
(電気化学デバイス用負極)
 本発明の1つの実施形態に係る電気化学デバイス用負極は、前述の実施形態の炭素質材料を含む。本実施形態の電気化学デバイス用負極は、特に、前述の実施形態の炭素質材料を含む非水電解質二次電池用負極であり得る。
 以下において、本実施形態の電気化学デバイス用負極の製造方法を具体的に述べる。本実施形態の負極は、上述した実施形態の炭素質材料にバインダー(結合剤)を添加し、適当な溶媒を適量添加、混練し、電極合剤とした後に、金属板等からなる集電板に塗布・乾燥後、加圧成形することにより製造することができる。本明細書中では、加圧成形後、集電板上に成形された層を負極層という。
 上述した実施形態の炭素質材料に、導電助剤を添加してもよい。導電助剤の添加によって、より高い導電性を有する電極を製造することができる。更に高い導電性を付与することを目的として、必要に応じて電極合剤の調製時に、導電助剤を添加することができる。導電助剤としては、導電性のカーボンブラック、気相成長炭素繊維(VGCF)、ナノチューブ等を用いることができる。導電助剤の添加量は、使用する導電助剤の種類によっても異なるが、添加する量が少なすぎると期待する導電性が得られないことがあり、多すぎると電極合剤中の分散が悪くなることがある。このような観点から、添加する導電助剤の好ましい割合は0.5質量%以上10質量%以下(ここで、活物質(炭素質材料)量+バインダー量+導電助剤量=100質量%とする)であり、さらに好ましくは0.5質量%以上7質量%以下、特に好ましくは0.5質量%以上5質量%以下である。バインダーとしては、PVDF(ポリフッ化ビニリデン)、SBR(スチレン・ブタジエン・ラバー)、ポリテトラフルオロエチレン、CMC(カルボキシメチルセルロース)またはそれらの混合物等の電解液と反応しないものであれば、特に限定されない。中でもPVDFは、活物質表面に付着したPVDFが電気化学デバイスに利用されるイオン(例えばリチウムイオン)の移動を阻害することが少なく、良好な入出力特性を得やすいために好ましい。PVDFを溶解し、スラリーを形成するためにN-メチルピロリドン(NMP)等の極性溶媒が好ましく用いられる。一方で、SBR等の水性エマルジョンやCMCを水に溶解して用いることもできる。バインダーの添加量が多すぎると、得られる電極の抵抗が大きくなるため、電池の内部抵抗が大きくなり電池性能を低下させることがある。また、バインダーの添加量が少なすぎると、負極材料の粒子相互間および集電板との結合が不十分となることがある。バインダーの好ましい添加量は、使用するバインダーの種類によっても異なるが、例えばPVDF系のバインダーでは、好ましくは0.5質量%以上5質量%以下であり、より好ましくは0.8質量%以上4質量%以下であり、さらに好ましくは1質量%以上3質量%以下である。一方、溶媒に水を使用するバインダーでは、SBRまたはSBRとCMCとの混合物等の複数のバインダーの混合物を使用することができる。溶媒に水を使用する場合に使用される全バインダーの総量として、好ましくは0.1質量%以上5質量%以下、より好ましくは0.5質量%以上3質量%以下、さらに好ましくは0.8質量%以上2質量%以下である。
 負極層は、集電板の両面に形成されることが基本であるが、必要に応じて片面に形成されてもよい。負極層の体積が大きい、特に負極層の厚さが大きいほど、適用される電気化学デバイスの内部に占める負極比率を増すことができて、高容量化に繋がるため、好ましい。例えば、負極層(片面当たり)の厚さは、適用させる電気化学デバイスの種類およびサイズに応じて異なるが、好ましくは100μm以上、より好ましくは120μm以上、さらに好ましくは130μm以上、さらにより好ましくは150μm以上、またさらに好ましくは160μm以上である。これは、例えば通常リチウムイオン二次電池等で使用される負極層の厚さは20μm以上60μm以下程度であるが、上述した実施形態の炭素質材料は、特に負極層の厚さが大きい場合であっても優れた充放電体積容量を示すことができるため、かかる範囲における厚さを有する負極において該炭素質材料の効果が好適に発揮されるためである。負極層(片面当たり)の厚さの上限は、通常、特に限定されないが、例えば10mm以下、特に5mm以下、より特に1mm以下、さらに特に500μm以下、さらにより特に280μm以下とすることによって、入出力特性を高め易く、かつ電気化学デバイスに適合し易くすることができる。なお、本明細書において、負極層の厚さとは、集電板を含む負極厚み方向の厚みをマイクロメーター等により測定した後に集電板の厚みを差し引いた値として算出することができる。
 本実施形態に係る電気化学デバイス用負極の負極密度、すなわち前述の実施形態の炭素質材料の質量(g)を負極層の体積(cm)で除した数値(g/cm)は、好ましくは0.95g/cmを超える値であり、より好ましくは0.97g/cmを超える値であり、さらに好ましくは0.98g/cm以上であり、よりさらに好ましくは1g/cm以上である。負極密度が大きい程、電気化学デバイスにおける体積容量も大きくなる。
(電気化学デバイス)
 本発明の1つの実施形態に係る電気化学デバイスは、前述の実施形態の電気化学デバイス用負極を含む。本実施形態の電気化学デバイスは、特に、前述の実施形態の電気化学デバイス用負極を含む非水電解質二次電池であり得る。
 電気化学デバイスは、特に内部の負極層の体積を大きくした場合でも、良好な体積容量を示し、かつ優れた放電容量維持率を有する。これは、前述した特定の炭素質材料が負極材料として用いられることで、良好な体積容量を有したまま、効果的にデバイスの内部に占める負極比率を増すことができるためである。
 前述の実施形態の炭素質材料を用いて、電気化学デバイスの負極を形成する場合、正極材料、セパレータ、および電解液等の電気化学デバイス(例えば二次電池およびキャパシタ等)を構成する他の材料は、特に限定されることはない。電気化学デバイスにおいては、従来使用され、あるいは提案されている種々の材料を使用することが可能である。
 例えば、正極材料としては、層状酸化物系(LiMOと表されるもので、Mは金属:例えばLiCoO、LiNiO、LiMnO、またはLiNiCoMo(ここでx、y、zは組成比を表わす))、オリビン系(LiMPOで表され、Mは金属:例えばLiFePO等)、スピネル系(LiMで表され、Mは金属:例えばLiMn等)の複合金属カルコゲン化合物が好ましく、これらのカルコゲン化合物を必要に応じて混合してもよい。これらの正極材料を適当なバインダーと電極に導電性を付与するための炭素材料とともに成形して、導電性の集電板上に層形成することにより正極が形成される。
 これらの正極および負極と組み合わせて電気化学デバイスに適用される場合、例えば非水溶媒型電解液が用いられ得る。非水溶媒型電解液は、一般に、非水溶媒に電解質を溶解することにより形成される。非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジエトキシエタン、γ-ブチルラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、スルホラン、または1,3-ジオキソラン等の有機溶媒を、1種または2種以上を組み合わせて用いることができる。電解質としては、LiClO、LiPF、LiBF、LiCFSO、LiAsF、LiCl、LiBr、LiB(C、またはLiN(SOCF等が用いられ得る。
 例えば、非水電解質二次電池は、一般に、上記のようにして形成した正極と負極とを必要に応じて不織布、その他の多孔質材料等からなる透液性セパレータを介して対向させて、電解液中に浸漬させることにより、形成される。セパレータとしては、二次電池に通常用いられる不織布、その他の多孔質材料からなる透過性セパレータを用いることができる。あるいはセパレータの代わりに、もしくはセパレータと一緒に、電解液を含浸させたポリマーゲルからなる固体電解質を用いることもできる。
 本発明に係る電気化学デバイス用の炭素質材料は、例えば自動車等の車両に搭載される電池、典型的には車両駆動用非水電解質二次電池用の炭素質材料として好適である。車両とは、通常、電動車両として知られる車、燃料電池または内燃機関とのハイブリッド車等、特に制限されることなく対象とすることができる。しかし、少なくともこのような本発明の実施形態の1つにおける電池を備えた電源装置と、該電源装置からの電源供給により駆動する電動駆動機構と、これを制御する制御装置とを備える。車両は、さらに、発電ブレーキや回生ブレーキを備え、制動によるエネルギーを電気に変換して、前記非水電解質二次電池に充電する機構を備えていてもよい。
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。なお、以下に電気化学デバイス用の炭素質材料およびそれを用いた負極層の物性の測定方法を記載するが、実施例を含めて、本明細書中に記載する物性および測定(または物性値および測定値)は、以下の方法により求めた値に基づくものである。
(レーザー散乱法による平均粒子径D50の測定)
 炭素前駆体および炭素質材料の平均粒子径D50(粒度分布)は、以下の方法により測定した。後述する実施例および比較例で調製した炭素前駆体および炭素質材料の試料を界面活性剤(和光純薬工業(株)製「ToritonX100」)が0.3質量%含まれた水溶液に投入し、超音波洗浄器で10分以上処理し、水溶液中に分散させた。この分散液を用いて粒度分布を測定した。粒度分布測定は、粒子径・粒度分布測定器(日機装(株)製「マイクロトラックM T3000」)を用いて行った。累積体積が50%となる粒子径を、平均粒子径D50とした。
(基本流動性エネルギーBFEの測定)
 後述する実施例および比較例で調製した炭素質材料の試料の粉体の基本流動性エネルギーBFEを、フリーマンテクノロジー社製のパウダーレオメーターFT4を用いて測定した。具体的には以下の操作により基本流動性エネルギーBFEの測定を行った。まず、各炭素質材料の試料の粉体を、測定容器(直径50mm、容積160ml)に120mL充填した。粉体が充填された測定容器に、測定用ブレード(ブレード翼径Rは48mm、螺旋角度αは5°)を、100mm/秒の翼先端速度で回転させながら進入させ、装置底部のロードセルにて垂直応力F、上部トルク計により回転トルクTを測定した。これらの垂直応力Fおよび回転トルクTの測定値を、前述したブレード翼径R=48mmおよび螺旋角度α=5°の数値と共に、式;BFE=T/(Rtanα)+Fに当てはめ、ブレード高さに応じたブレードの移動エネルギーの値(J)である基本流動性エネルギーBFE(J)を算出した。
(広角X線回折法によるBragg式を用いた平均面間隔d002測定)
 「株式会社リガク製MiniFlexII」を用い、後述する実施例および比較例で調製した炭素質材料の粉体を試料ホルダーに充填し、Niフィルターにより単色化したCuKα線を線源とし、X線回折図形を得た。回折図形のピーク位置は重心法(回折線の重心位置を求め、これに対応する2θ値でピーク位置を求める方法)により求め、標準物質用高純度シリコン粉末の(111)面の回折ピークを用いて補正した。CuKα線の波長λを0.15418nmとし、以下に記すBraggの公式によりd002を算出した。
Figure JPOXMLDOC01-appb-M000004
(金属含量測定)
 カリウム元素含量および鉄元素含量の測定方法は、以下の方法により測定した。予め所定のカリウム元素および鉄元素を含有する炭素試料を調製し、蛍光X線分析装置を用いて、カリウムKα線の強度とカリウム元素含量との関係、および鉄Kα線の強度と鉄元素含量との関係に関する検量線を作成した。次いで、後述する実施例および比較例で調製した炭素質材料の粉体の試料について蛍光X線分析におけるカリウムKα線および鉄Kα線の強度を測定し、先に作成した検量線よりカリウム元素含量および鉄元素含量を求めた。蛍光X線分析は、(株)島津製作所製LAB CENTER XRF-1700を用いて、以下の条件で行った。上部照射方式用ホルダーを用い、試料測定面積を直径20mmの円周内とした。被測定試料の設置は、内径25mmのポリエチレン製容器の中に被測定試料を0.5g入れ、裏をプランクトンネットで押さえ、測定表面をポリプロピレン製フィルムで覆い測定を行った。X線源は40kV、60mAに設定した。カリウムについては、分光結晶にLiF(200)、検出器にガスフロー型比例係数管を使用し、2θが90~140°の範囲を、走査速度8°/分で測定した。鉄については、分光結晶にLiF(200)、検出器にシンチレーションカウンターを使用し、2θが56~60°の範囲を、走査速度8°/分で測定した。
(ブタノール法による真密度測定)
 真密度ρBtは、JIS R 7212に定められた方法に従い、ブタノール法により測定した。内容積約40mLの側管付比重びんの質量(m)を正確に量った。次に、その底部に後述する実施例および比較例で調製した炭素質材料の粉体の試料を約10mmの厚さになるように平らに入れた後、その質量(m)を正確に量った。これに1-ブタノールを静かに加えて、底から20mm程度の深さにした。次に比重びんに軽い振動を加えて、大きな気泡の発生がなくなったのを確かめた後、真空デシケーター中に入れ、徐々に排気して2.0~2.7kPaとした。その圧力に20分間以上保ち、気泡の発生が止まった後に、比重びんを取り出し、さらに1-ブタノールを満たし、栓をして恒温水槽(30±0.03℃に調節してあるもの)に15分間以上浸し、1-ブタノールの液面を標線に合わせた。次に、これを取り出して外部をよくぬぐって室温まで冷却した後質量(m)を正確に量った。次に、同じ比重びんに1-ブタノールだけを満たし、前記と同じようにして恒温水槽に浸し、標線を合わせた後質量(m)を量った。また使用直前に沸騰させて溶解した気体を除いた蒸留水を比重びんにとり、前記と同様に恒温水槽に浸し、標線を合わせた後質量(m)を量った。真密度ρBtは以下の式により計算した。このとき、dは水の30℃における比重(0.9946)である。
Figure JPOXMLDOC01-appb-M000005
Li核-固体NMR)
 後述する実施例および比較例で調製した炭素質材料96.2質量部、導電性カーボンブラック(TIMCAL製「Super-P(登録商標)」)2質量部、CMC1質量部、所定量のSBRおよび水を混合し、スラリーを得た。得られたスラリーを銅箔に塗布し、乾燥、プレスし、炭素電極を得た。得られた炭素電極を作用極とし、金属リチウムを対極として使用した。溶媒として、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとを、体積比で1:1:1となるように混合して用いた。この溶媒に、LiPFを1mol/L溶解し、電解質として用いた。セパレータにはポリプロピレン膜を使用した。アルゴン雰囲気下のグローブボックス内でコインセルを作製した。
 作製したコインセルを用いて、電流密度0.2mA/cmの電気量で0mVに到達するまでドーピングし、その後、比容量が1000mAh/gになるまで充電することで、リチウムイオンが満充電状態となるまでドープされた炭素電極を得た。ドープ終了後にドープを2時間休止し、アルゴン雰囲気下で炭素電極を取り出し、電解液を拭き取り、得られた炭素電極を全てNMR用のサンプル管に充填した。
 NMR分析は、核磁気共鳴装置(BRUKER製「AVANCE300」)を用い、MAS-Li-NMRの測定を行った。測定に際して、塩化リチウムを基準物質として用い、塩化リチウムのピークを0ppmに設定した。
(負極層の厚さの測定)
 負極層の厚さは、後述する実施例および比較例で作製された負極層の厚さを、マイクロメーターにより測定した後に集電板の厚みを差し引いた数値とした。
(負極密度)
 負極密度(g/cm)は、後述する実施例および比較例で負極層を作製する際に、スラリー中に混合した炭素質材料の質量(g)を、作製された負極層の体積(cm)で除した数値(g/cm)とした。なお、負極層の体積は、負極層の厚みと負極層の直径(14mm)を用いて算出した。
(実施例1)
 椰子殻を500℃で乾留した後に破砕し、平均粒子径約2mmの椰子殻チャーを得た。この椰子殻チャー100gに対して、塩化水素ガス1体積%を含む窒素ガスを18L/分の流量で供給しながら、900℃で30分間ハロゲン熱処理を実施した。その後、塩化水素ガスの供給のみを停止し、窒素ガスを18L/分の流量で供給しながら、さらに900℃で30分間熱処理することにより気相脱酸処理を実施し、炭素前駆体を得た。得られた炭素前駆体を、ボールミルを用いて平均粒子径44μmに粗粉砕した後、コンパクトジェットミル(株式会社セイシン企業製、コジェットシステムα-mkIII)を用いて粉砕および分級し、平均粒子径D5050μmの炭素前駆体を得た。
 このように調製した炭素前駆体6.4gと、ポリスチレン(積水化成品工業株式会社製、平均粒子径400μm、残炭率1.2%)0.6gとを混合した。この混合物7gを試料層高さが約3mmとなるよう黒鉛製のサヤに入れ、株式会社モトヤマ製管状炉中において、毎分6Lの窒素流量下、毎分10℃の昇温速度で1310℃まで昇温した後、10分間保持し、自然冷却した。炉内温度が200℃以下に低下したことを確認し、炉内から炭素質材料を取り出した。取り出した炭素質材料の平均粒子径D50は50μmであり、基本流動性エネルギーBFEは340mJであった。なお、回収された難黒鉛化炭素質材料は6.2gであり、回収率は89%であった。
 このようにして得た炭素質材料96.2質量部、導電性カーボンブラック(TIMCAL製「Super-P(登録商標)」)2質量部、CMC1質量部、SBR0.8質量部および水を混合し、スラリーを得た。得られたスラリーを銅箔に塗布し、乾燥後プレスして、厚さ160μmの負極(負極層)を得た。
 上述したように、炭素質材料を得た後、かかる炭素質材料を含む負極を得た。炭素質材料の製造の際の焼成時の条件、炭素質材料の物性および作製した負極層の物性を、後の表1においてまとめて示す。
(実施例2)
 負極層を形成する際に厚さを変更した事以外は、実施例1と同様にして、平均粒子径D50が50μmであり、基本流動性エネルギーBFEが340mJである炭素質材料、およびそれを用いて作製した厚さ280μmの負極(負極層)を得た。炭素質材料の製造の際の焼成時の条件、炭素質材料の物性および作製した負極層の物性を、後の表1においてまとめて示す。
(実施例3)
 焼成時にポリスチレンを混合しなかった事以外は、実施例1と同様にして、平均粒子径D50が50μmであり、基本流動性エネルギーBFEが352mJである炭素質材料、およびそれを用いて作製した厚さ160μmの負極(負極層)を得た。炭素質材料の製造の際の焼成時の条件、炭素質材料の物性および作製した負極層の物性を、後の表1においてまとめて示す。
(実施例4)
 焼成時の混合物の仕込み量を50gとし、試料層高さが約20mmとなるようサヤに入れた事以外は、実施例1と同様にして、平均粒子径D50が50μmであり、基本流動性エネルギーBFEが332mJである炭素質材料、およびそれを用いて作製した厚さ160μmの負極(負極層)を得た。炭素質材料の製造の際の焼成時の条件、炭素質材料の物性および作製した負極層の物性を、後の表1においてまとめて示す。
(実施例5)
 炭素前駆体および炭素質材料の平均粒子径D50がより小さくなるように、より細かく粉砕し、微粉および過度に大きい粒子を取り除くよう適宜分級を実施した事以外は、実施例1と同様にして、平均粒子径D50が38μmであり、基本流動性エネルギーBFEが301mJである炭素質材料、およびそれを用いて作製した厚さ160μmの負極(負極層)を得た。炭素質材料の製造の際の焼成時の条件、炭素質材料の物性および作製した負極層の物性を、後の表1においてまとめて示す。
(実施例6)
 分級工程により、基本流動性エネルギーBFEが大きくなるように、微粉の量の割合を調整した事以外は、実施例1と同様にして、平均粒子径D50が42μmであり、基本流動性エネルギーBFEが573mJである炭素質材料、およびそれを用いて作製した厚さ160μmの負極(負極層)を得た。炭素質材料の製造の際の焼成時の条件、炭素質材料の物性および作製した負極層の物性を、後の表1においてまとめて示す。
(比較例1)
 炭素前駆体および炭素質材料の平均粒子径D50が極めて小さくなるように、極めて細かく粉砕し、微粉およびさらに大きい粒子については概ね取り除くように分級を実施した事以外は、実施例1と同様にして、平均粒子径D50が5μmであり、基本流動性エネルギーBFEが125mJである炭素質材料、およびそれを用いて作製した厚さ160μmの負極(負極層)を得た。炭素質材料の製造の際の焼成時の条件、炭素質材料の物性および作製した負極層の物性を、後の表1においてまとめて示す。
(比較例2)
 負極層形成時にSBRの量を1.5質量%に増加した事以外は、比較例1と同様にして、平均粒子径D50が5μmであり、基本流動性エネルギーBFEが125mJである炭素質材料、およびそれを用いて作製した厚さ160μmの負極(負極層)を得た。炭素質材料の製造の際の焼成時の条件、炭素質材料の物性および作製した負極層の物性を、後の表1においてまとめて示す。
(比較例3)
 基本流動性エネルギーBFEが非常に大きくなるように、分級工程を強化して微粉の量が極めて少量となるようにした事以外は、実施例1と同様にして、平均粒子径D50が50μmであり、基本流動性エネルギーBFEが1140mJである炭素質材料、およびそれを用いて作製した厚さ160μmの負極(負極層)を得た。炭素質材料の製造の際の焼成時の条件、炭素質材料の物性および作製した負極層の物性を、後の表1においてまとめて示す。
(比較例4)
 焼成時にポリスチレンを混合しなかった事以外は、比較例1と同様にして、平均粒子径D50が5μmであり、基本流動性エネルギーBFEが112mJである炭素質材料、およびそれを用いて作製した厚さ160μmの負極(負極層)を得た。炭素質材料の製造の際の焼成時の条件、炭素質材料の物性および作製した負極層の物性を、後の表1においてまとめて示す。
(比較例5)
 焼成時にポリスチレンを混合せず、かつ負極層形成時にSBRの量を1.5質量%に増加した事以外は、比較例1と同様にして、平均粒子径D50が5μmであり、基本流動性エネルギーBFEが112mJである炭素質材料、およびそれを用いて作製した厚さ160μmの負極(負極層)を得た。炭素質材料の製造の際の焼成時の条件、炭素質材料の物性および作製した負極層の物性を、後の表1においてまとめて示す。
(比較例6)
 炭素前駆体および炭素質材料の平均粒子径D50がさらにわずかに小さくなるよう、さらにより細かく粉砕し、微粉および過度に大きい粒子を取り除くよう適宜分級を実施した事以外は、実施例5と同様にして、平均粒子径D50が25μmであり、基本流動性エネルギーBFEが260mJである炭素質材料、およびそれを用いて作製した厚さ160μmの負極(負極層)を得た。炭素質材料の製造の際の焼成時の条件、炭素質材料の物性および作製した負極層の物性を、後の表1においてまとめて示す。
Figure JPOXMLDOC01-appb-T000006
 上記表1に示すように、実施例1~6ではいずれも負極密度が1g/cmを下回ることはなく、負極層の厚さが160μmまたは280μmであり、負極層の体積が大きい場合であっても、良好な負極層を成形することができた。なお、実施例4では、焼成時のサヤ層高を大きくしたため、焼成中において試料内に脱離した水素が滞留し、炭素構造を浸食し、その結果、リチウムクラスターの比率が減ったため、NMRシフト値が他と比較して好適ではなかったものと考えられる。
 一方、比較例1および4では、平均粒子径D50に対してバインダーが不足し、成形不良により負極層に割れや脱落が生じたため、負極密度およびNMRシフト値が測定できなかった。一方、比較例2および5では、該成形不良を改善するためバインダーの添加量を増加したが、負極密度が低下していた。比較例3では、平均粒子径D50は50μmであり実施例1~4と同様の値であるが、微粉の量がほとんどなくなるよう取り除いたため、基本流動性エネルギーBFEが極めて大きい数値となり、負極密度が低下していた。比較例6では、平均粒子径D50が30μmを下回ってしまったため、負極層を形成すると、実施例5と比較して電極密度が低下したものと考えられる。
(体積容量(充電および放電)、充放電効率および放電容量維持率の測定)
 上記で作製した実施例1~6および比較例1~6の負極を作用極とし、金属リチウムを対極として使用した。溶媒として、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとを、体積比で1:1:1となるように混合して用いた。この溶媒に、LiPFを1mol/L溶解し、電解質として用いた。セパレータにはポリプロピレン膜を使用した。アルゴン雰囲気下のグローブボックス内でコインセルを作製した。
 上記構成のリチウム二次電池について、充放電試験装置(東洋システム株式会社製、「TOSCAT」)を用いて、充放電試験を行った。リチウムのドーピングは、活物質質量に対し70mA/gの速度で行い、リチウム電位に対して1mVになるまでドーピングした。さらにリチウム電位に対して1mVの定電圧を8時間印加して、ドーピングを終了した。このときの容量を充電容量(mAh/g)とした。次いで、活物質質量に対し70mA/gの速度で、リチウム電位に対して1.5Vになるまで脱ドーピングを行い、このとき放電した容量を放電容量(mAh/g)(以下、放電容量Xともいう)とした。なお、不可逆容量は、充電容量(mAh/g)から放電容量X(mAh/g)を差し引くことにより算出することができる。上記表1の電極密度(g/cm)と該充電容量(mAh/g)とを乗じた数値を体積容量(充電)(mAh/cm)とし、上記表1の電極密度(g/cm)と該放電容量X(mAh/g)とを乗じた数値を体積容量(放電)(mAh/cm)とした。さらに、放電容量X(mAh/g)を充電容量(mAh/g)で除した数値の百分率を充放電効率(初期の充放電効率)(%)として、電池内におけるリチウムイオンの利用効率の指標とした。実施例1~6および比較例1~6における体積容量(充電)(mAh/cm)、体積容量(放電)(mAh/cm)および充放電効率(%)を、後の表2においてまとめて示す。
 加えて、上記構成のリチウム二次電池について、レート試験を実施した。リチウムのドーピングを、活物質質量に対し70mA/gの速度で行い、リチウム電位に対して1mVになるまでドーピングした。さらに、リチウム電位に対して1mVの定電圧を8時間印加して、ドーピングを終了した。このときの容量を充電容量(mAh/g)とした。次いで、活物質質量に対し1050mA/gの速度で、リチウム電位に対して1.5Vになるまで脱ドーピングを行い、このとき放電した容量を放電容量X(mAh/g)とした。かかる放電容量X(mAh/g)を上記の放電容量Xで除した数値の百分率を、放電容量維持率(3C/0.2C)(%)として、電池内におけるリチウムイオンの拡散のし易さ(抵抗)の指標とした。放電容量維持率(3C/0.2C)を、以下の表2においてまとめて示す。
Figure JPOXMLDOC01-appb-T000007
 上記表2に示すように、実施例1~6で得られた炭素質材料を用いて作製したリチウムイオン二次電池では、高い体積容量および放電容量維持率を同時に得られる結果となった。これより、本発明の炭素質材料を含む負極を用いた非水電解質二次電池および電気二重層キャパシタ等の電気化学デバイスは、良好な体積容量を示し、かつ優れた放電容量維持率を有することが明らかとなった。

Claims (7)

  1.  レーザー散乱法によって測定される平均粒子径D50が30μm以上であり、かつ、直径50mmおよび容積160mLの測定容器を備える粉体流動性分析装置により、翼先端速度100mm/秒および粉体試料充填容量120mLの条件下において測定され、式;BFE=T/(Rtanα)+F(式中、R=48mm、α=5°、Tは装置により測定される回転トルクの数値であり、かつFは装置により測定される垂直応力の数値である)によって算出される基本流動性エネルギーBFEが、270mJ以上1100mJ以下である、電気化学デバイス用の炭素質材料。
  2.  前記炭素質材料に満充電状態となるまでリチウムをドープし、Li核-固体NMR分析を行ったとき、基準物質であるLiClの共鳴ピークに対して低磁場側に115ppm以上シフトした主共鳴ピークが観測される、請求項1に記載の炭素質材料。
  3.  広角X線回折法によるBragg式を用いて算出される(002)面の平均面間隔d002が0.36nm以上である、請求項1または2に記載の炭素質材料。
  4.  前記炭素質材料は植物由来である、請求項1~3のいずれかに記載の炭素質材料。
  5.  請求項1~4のいずれかに記載の炭素質材料を含む、電気化学デバイス用負極。
  6.  負極層の厚さが100μm以上である、請求項5に記載の電気化学デバイス用負極。
  7.  請求項5または6に記載の電気化学デバイス用負極を含む、電気化学デバイス。
PCT/JP2019/051006 2018-12-28 2019-12-25 電気化学デバイス用の炭素質材料、電気化学デバイス用負極および電気化学デバイス WO2020138233A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/417,863 US20220069305A1 (en) 2018-12-28 2019-12-25 Carbonaceous material for electrochemical device, negative electrode for electrochemical device, and electrochemical device
JP2020563384A JP7389054B2 (ja) 2018-12-28 2019-12-25 電気化学デバイス用の炭素質材料、電気化学デバイス用負極および電気化学デバイス
CN201980086182.XA CN113196520A (zh) 2018-12-28 2019-12-25 电化学设备用碳质材料、电化学设备用负极和电化学设备
KR1020217018450A KR20210107662A (ko) 2018-12-28 2019-12-25 전기 화학 디바이스용의 탄소질 재료, 전기 화학 디바이스용 부극 및 전기 화학 디바이스
EP19902330.0A EP3905389A4 (en) 2018-12-28 2019-12-25 CARBON MATERIAL FOR ELECTROCHEMICAL DEVICE, ANODE FOR ELECTROCHEMICAL DEVICE, AND ELECTROCHEMICAL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018248063 2018-12-28
JP2018-248063 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020138233A1 true WO2020138233A1 (ja) 2020-07-02

Family

ID=71128702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051006 WO2020138233A1 (ja) 2018-12-28 2019-12-25 電気化学デバイス用の炭素質材料、電気化学デバイス用負極および電気化学デバイス

Country Status (7)

Country Link
US (1) US20220069305A1 (ja)
EP (1) EP3905389A4 (ja)
JP (1) JP7389054B2 (ja)
KR (1) KR20210107662A (ja)
CN (1) CN113196520A (ja)
TW (1) TW202034565A (ja)
WO (1) WO2020138233A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230261190A1 (en) * 2022-02-14 2023-08-17 Global Graphene Group, Inc. Sodium-Ion Battery Containing a High-Capacity Graphitic Anode and Manufacturing Method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161801A (ja) 1995-10-03 1997-06-20 Kureha Chem Ind Co Ltd 非水溶媒系二次電池の電極用炭素質材料及びその製造方法、並びに非水溶媒系二次電池
JPH1021919A (ja) 1996-06-28 1998-01-23 Kureha Chem Ind Co Ltd 非水溶媒系二次電池の電極用炭素質材料およびその製造方法、並びに非水溶媒系二次電池
WO2013118757A1 (ja) * 2012-02-06 2013-08-15 株式会社クレハ 非水電解質二次電池用炭素質材料
JP2015005377A (ja) * 2013-06-20 2015-01-08 信越化学工業株式会社 非水電解質二次電池用活物質、負極成型体及び非水電解質二次電池
WO2017057146A1 (ja) * 2015-09-30 2017-04-06 株式会社クレハ ナトリウムイオン二次電池負極用炭素質材料及びそれを用いたナトリウムイオン二次電池
WO2017057145A1 (ja) * 2015-09-30 2017-04-06 株式会社クレハ 非水電解質二次電池負極用炭素質材料及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6371995B1 (en) * 1996-02-16 2002-04-16 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery and method for preparing same
KR101096936B1 (ko) 2009-07-23 2011-12-22 지에스칼텍스 주식회사 리튬 이차 전지용 음극 활물질, 그 제조 방법 및 그를 포함하는 리튬 이차 전지
US9468904B2 (en) * 2013-12-31 2016-10-18 Ada Carbon Solutions, Llc Sorbent compositions having pneumatic conveyance capabilities
JP6612507B2 (ja) * 2015-02-19 2019-11-27 株式会社クレハ 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極ならびに非水電解質二次電池
KR102663370B1 (ko) * 2015-08-05 2024-05-03 주식회사 쿠라레 만충전하여 사용하는 비수 전해질 이차 전지용의 난흑연화 탄소질 재료, 그 제조 방법, 비수 전해질 이차 전지용 부극재, 및 만충전된 비수 전해질 이차 전지
CN116093317A (zh) * 2015-10-30 2023-05-09 株式会社可乐丽 非水电解质二次电池用碳质材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161801A (ja) 1995-10-03 1997-06-20 Kureha Chem Ind Co Ltd 非水溶媒系二次電池の電極用炭素質材料及びその製造方法、並びに非水溶媒系二次電池
JPH1021919A (ja) 1996-06-28 1998-01-23 Kureha Chem Ind Co Ltd 非水溶媒系二次電池の電極用炭素質材料およびその製造方法、並びに非水溶媒系二次電池
WO2013118757A1 (ja) * 2012-02-06 2013-08-15 株式会社クレハ 非水電解質二次電池用炭素質材料
JP2015005377A (ja) * 2013-06-20 2015-01-08 信越化学工業株式会社 非水電解質二次電池用活物質、負極成型体及び非水電解質二次電池
WO2017057146A1 (ja) * 2015-09-30 2017-04-06 株式会社クレハ ナトリウムイオン二次電池負極用炭素質材料及びそれを用いたナトリウムイオン二次電池
WO2017057145A1 (ja) * 2015-09-30 2017-04-06 株式会社クレハ 非水電解質二次電池負極用炭素質材料及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3905389A4
YUKIYOSHI HIRAMURA: "Consideration between Evaluation of Powder Rheology and Flowability", JOURNAL OF THE SOCIETY OF POWDER TECHNOLOGY JAPAN, vol. 54, no. 9, 2017, pages 604 - 608

Also Published As

Publication number Publication date
US20220069305A1 (en) 2022-03-03
CN113196520A (zh) 2021-07-30
JP7389054B2 (ja) 2023-11-29
KR20210107662A (ko) 2021-09-01
TW202034565A (zh) 2020-09-16
EP3905389A4 (en) 2022-10-12
EP3905389A1 (en) 2021-11-03
JPWO2020138233A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
JP5894688B2 (ja) 非水電解質二次電池用炭素質材料およびその製造方法、非水電解質二次電池用負極ならびに非水電解質二次電池
US10734650B2 (en) Carbonaceous material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing carbonaceous material for non-aqueous electrolyte secondary battery
JP6612507B2 (ja) 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極ならびに非水電解質二次電池
CN104620428A (zh) 非水电解质二次电池用碳质材料及其制造方法、以及使用所述碳质材料的负极和非水电解质二次电池
WO2017022486A1 (ja) 満充電して用いる非水電解質二次電池用の難黒鉛化炭素質材料、その製造方法、非水電解質二次電池用負極材、および満充電された非水電解質二次電池
JP6245412B2 (ja) 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極および非水電解質二次電池
JP7017296B2 (ja) 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極および非水電解質二次電池
JP7389054B2 (ja) 電気化学デバイス用の炭素質材料、電気化学デバイス用負極および電気化学デバイス
JP2016152223A (ja) 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極ならびに非水電解質二次電池
JP2016152225A (ja) 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極ならびに非水電解質二次電池
JP2019036505A (ja) リチウム硫黄電池用負極およびリチウム硫黄電池
JP7190252B2 (ja) 非水電解質二次電池用難黒鉛化炭素質材料、非水電解質二次電池用負極および非水電解質二次電池
JP7017297B2 (ja) 非水電解質二次電池用炭素質材料の製造方法
JP2016152226A (ja) 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極ならびに非水電解質二次電池
JP2016152224A (ja) 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極ならびに非水電解質二次電池
WO2021070825A1 (ja) 電気化学デバイス用炭素質材料およびその製造方法、電気化学デバイス用負極、電気化学デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563384

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019902330

Country of ref document: EP

Effective date: 20210728